1
|
Salminen K, Zhang YX, Feng L, Kulmala S, Sun JJ. Label-free turn-on electrochemiluminescence assay of β-glucuronidase at single-electrode. Talanta 2025; 292:127939. [PMID: 40090252 DOI: 10.1016/j.talanta.2025.127939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 02/05/2025] [Accepted: 03/12/2025] [Indexed: 03/18/2025]
Abstract
Electrochemiluminescence (ECL) has achieved significant commercial success over the past few decades across various fields, particularly in the healthcare industry. The measurement scheme oftentimes involves target recognition elements (e.g. catching antibodies) labeled with a suitable ECL luminophore (e.g. tris(2,2'-bipyridine)ruthenium(II))). While this approach realizes the ultrasensitive detection of various biomarkers, it is somewhat complicated strategy for certain targets such as enzymes. In this study, β-glucuronidase (B-GLU), a promising biomarker and a common water/foodstuff safety indicator, was quantified by measuring the ECL signal of fluorescent product generated from non-fluorescent substrate by the B-GLU enzyme. To this end, hot electron-induced ECL of three luminophores (fluorescein, 4-methylumbelliferyl and resorufin) that are used as building blocks to synthesize various commercially available non-fluorescent substrates was compared for the first time. To increase the appeal and practicality of this approach, the common multi-well assay format was adapted to the present type ECL by carrying out the ECL reactions at single carbon black/polystyrene electrode. In this electrochemical setup, multiple cells were fabricated on the surface of a poorly conducting substrate by attaching Teflon tape with multiple holes to the substrates surface. Sample throughput time decreases considerable as target, blank and sample signals can be simultaneously obtained from the electrochemical cells when voltage is applied across the single electrode. The detection limit for B-GLU after 2 h of incubation was 0.07 U L-1 when 4-methylumbelliferyl-β-D-glucuronide was used as the fluorogenic substrate and Br- was used as the co-reactant. B-GLU recovery rates from diluted saliva with the present ECL approach were adequate (93-103 %) and similar to those obtained with the fluorescence technique.
Collapse
Affiliation(s)
- Kalle Salminen
- Department of Anesthesiology, Fuzhou University Affiliated Provincial Hospital, Fuzhou, China; Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350116, China
| | - Yi Xue Zhang
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350116, China
| | - Lei Feng
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350116, China
| | - Sakari Kulmala
- Department of Chemistry and Materials Science, Aalto University, FI-000076, Aalto, Finland
| | - Jian-Jun Sun
- Department of Anesthesiology, Fuzhou University Affiliated Provincial Hospital, Fuzhou, China; Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350116, China.
| |
Collapse
|
2
|
Long Z, Jia B, Jing B, Liu X, Tian K, Zhang P, Feng B, Qing T. Effects of chromophoric dissolved organic matter on the optical properties of different fluorescent probes. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 336:126064. [PMID: 40107137 DOI: 10.1016/j.saa.2025.126064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 03/02/2025] [Accepted: 03/15/2025] [Indexed: 03/22/2025]
Abstract
The new detection technology represented by fluorescent probe is an effective supplement to the traditional instrument analysis of environmental pollutants. However, background interference is an inevitable obstacle in the fluorescent analysis of complex samples. Dissolved organic matter (DOM) in water is widespread and significantly affects the performance of fluorescent probes in pollutants detection. In this work, the impact of DOM on the performance of fluorescent probes were investigated under different conditions. Firstly, three-dimensional fluorescence spectroscopy of local lake was performed to identify the composition of organic matter in water. The types of chromophoric DOM in local lake mainly include humic acids and tryptophan, and its concentrations varied over time and across different regions. Then, three fluorescent probes with different fluorescence emission were selected to investigate the interaction between DOM (humic acids, tryptophan, and fulvic acid as the interfering substances) and fluorescent groups. The experimental results demonstrated that humic acid significantly reduced the signal intensity of fluorescent probes through mechanisms such as inner filter effects and fluorescence resonance energy transfer. In contrast, tryptophan and fulvic acid had relatively minor impacts. More importantly, the altered pH and ions of the environmental water did not significantly alter the interference of DOM on fluorescent probe. To further verify the influence of chromophoric DOM on fluorescent probes in real water, the water treatment under UV irradiation with H2O2 was used for the preparation of simulated water samples. The influence of DOM on fluorescent probes in real water samples was also similar to that in buffer. These results suggested that the chromophoric DOM can effectively affect the spectral properties of different fluorescent probes, and greatly interfere with the sensitivity and accuracy of fluorescence detection. This work help to understand the interference mechanisms of DOM in water, and are significant for improving the accuracy of fluorescent probes in water quality monitoring applications.
Collapse
Affiliation(s)
- Zan Long
- College of Environment and Resources, Hunan Provincial University Key Laboratory for Environmental Behavior and Control Principle of New Pollutants, Xiangtan University, Xiangtan 411105 Hunan, China
| | - Bingni Jia
- College of Environment and Resources, Hunan Provincial University Key Laboratory for Environmental Behavior and Control Principle of New Pollutants, Xiangtan University, Xiangtan 411105 Hunan, China
| | - Bingqian Jing
- College of Environment and Resources, Hunan Provincial University Key Laboratory for Environmental Behavior and Control Principle of New Pollutants, Xiangtan University, Xiangtan 411105 Hunan, China
| | - Xiaofeng Liu
- Hunan Institute of Advanced Sensing and Information Technology, Xiangtan University, Xiangtan 411105 Hunan, China
| | - Ke Tian
- College of Environment and Resources, Hunan Provincial University Key Laboratory for Environmental Behavior and Control Principle of New Pollutants, Xiangtan University, Xiangtan 411105 Hunan, China
| | - Peng Zhang
- College of Environment and Resources, Hunan Provincial University Key Laboratory for Environmental Behavior and Control Principle of New Pollutants, Xiangtan University, Xiangtan 411105 Hunan, China
| | - Bo Feng
- College of Environment and Resources, Hunan Provincial University Key Laboratory for Environmental Behavior and Control Principle of New Pollutants, Xiangtan University, Xiangtan 411105 Hunan, China
| | - Taiping Qing
- College of Environment and Resources, Hunan Provincial University Key Laboratory for Environmental Behavior and Control Principle of New Pollutants, Xiangtan University, Xiangtan 411105 Hunan, China; State Environmental Protection Key Laboratory of Monitoring for Heavy Metal Pollutants, Changsha 410019 Hunan, China.
| |
Collapse
|
3
|
Gu H, Sun X, Bao H, Feng X, Chen Y. Optically pH-Sensing in smart wound dressings towards real-time monitoring of wound states: A review. Anal Chim Acta 2025; 1350:343808. [PMID: 40155158 DOI: 10.1016/j.aca.2025.343808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 02/14/2025] [Accepted: 02/14/2025] [Indexed: 04/01/2025]
Abstract
BACKGROUND Over the recent years, the investigations on wound dressings have been undergoing significant evolution, and now smart dressings with the function of the real-time monitoring of the wound states have been recognized as one of the most advanced treatment modalities. Among a variety of wound-related biomarkers, pH represents a promising candidate for in situ supervising the wound healing status. In this regard, a variety of optically pH sensing agents have been widely incorporated into different types of wound dressings. RESULTS Herein, we first presented an overview of the advanced wound dressings, especially those commonly used in wound pH sensing. Then, a comprehensive summary of the optical pH sensing agents that could be incorporated into the wound dressings for detecting the pH alteration on the wound bed was described in detail. These materials were classified into colorimetric dyes (i.e., synthetic and plant-based dyes) and fluorescent probes (i.e., small-molecular fluorescein and fluorescent nanomaterials). Each type of pH sensing agent was fully discussed with advantages and limitations for monitoring the wound pH alteration, as well as typical examples of practical applications. To well interpret messages produced by the color-coding dressings, the approaches for defining and communicating color were also summarized, and a proof-of-concept, the smartphone-based remote supervision was particularly highlighted. SIGNIFICANCE This review provides a comprehensive overview of the utilization of optically pH sensing in advanced wound dressings for the real-time monitoring of the wound states. It was expected to be an informative source for the exploitation of novel diagnostic dressings for wound management, and also a reference the for application of these materials in the biosensing of other physiological or pathological fluids.
Collapse
Affiliation(s)
- Hongchun Gu
- Department of Pharmaceutics, School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Xinxing Sun
- Department of Pharmaceutics, School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Hongyang Bao
- Department of Pharmaceutics, School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Xun Feng
- Department of Sanitary Chemistry, School of Public Health, Shenyang Medical College, Shenyang, 110034, China.
| | - Yang Chen
- Department of Pharmaceutics, School of Pharmacy, China Medical University, Shenyang, 110122, China.
| |
Collapse
|
4
|
Li Y, Luo J, Ndikuryayo F, Chen Y, Liu G, Yang WC. Advances in Fluorescence-based Probes for Abiotic Stress Detection in Plants. ACS Sens 2025; 10:2474-2486. [PMID: 40179349 DOI: 10.1021/acssensors.5c00184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
Abiotic stress poses significant challenges to the ecological environment and global food security. Early and accurate diagnosis of abiotic stress is essential for modern agriculture. Recently, fluorescence sensing technology has emerged as a valuable tool for monitoring abiotic stress due to its ease of use and capability for spatiotemporal visualization. These probes specifically bind to abiotic stress biomarkers, facilitating the detection of stress responses and advancing related biological research. However, there is a lack of comprehensive reviews on fluorescence probe for abiotic stress, which limits progress in this area. This review outlines the biological markers of abiotic stress, discusses the types and design principles of fluorescence probe, and reviews research on detecting plant responses to such stress. Its goal is to inspire the rational design of fluorescence probe for plant bioimaging, promote early diagnosis of abiotic stress, and enhance the understanding of plant defense mechanisms at the molecular level, ultimately providing a scientific basis for stress management in agriculture.
Collapse
Affiliation(s)
- Yuanxiang Li
- College of Chemistry and Materials Engineering, Huaihua University, Huaihua 418008, P.R. China
| | - Ju Luo
- State Key Laboratory of Green Pesticide, Guizhou University, Guiyang 550025, P. R. China
| | - Ferdinand Ndikuryayo
- State Key Laboratory of Green Pesticide, Guizhou University, Guiyang 550025, P. R. China
| | - Yuxuan Chen
- School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, P.R. China
| | - Guozhen Liu
- School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, P.R. China
| | - Wen-Chao Yang
- College of Chemistry and Materials Engineering, Huaihua University, Huaihua 418008, P.R. China
- State Key Laboratory of Green Pesticide, Guizhou University, Guiyang 550025, P. R. China
| |
Collapse
|
5
|
Chen J, Chen M, Yu X. Fluorescent probes in autoimmune disease research: current status and future prospects. J Transl Med 2025; 23:411. [PMID: 40205498 PMCID: PMC11984237 DOI: 10.1186/s12967-025-06430-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Accepted: 03/25/2025] [Indexed: 04/11/2025] Open
Abstract
Autoimmune diseases (AD) present substantial challenges for early diagnosis and precise treatment due to their intricate pathogenesis and varied clinical manifestations. While existing diagnostic methods and treatment strategies have advanced, their sensitivity, specificity, and real-time applicability in clinical settings continue to exhibit significant limitations. In recent years, fluorescent probes have emerged as highly sensitive and specific biological imaging tools, demonstrating substantial potential in AD research.This review examines the response mechanisms and historical evolution of various types of fluorescent probes, systematically summarizing the latest research advancements in their application to autoimmune diseases. It highlights key applications in biomarker detection, dynamic monitoring of immune cell functions, and assessment of drug treatment efficacy. Furthermore, this article analyzes the technical challenges currently encountered in probe development and proposes potential directions for future research. With ongoing advancements in materials science, nanotechnology, and bioengineering, fluorescent probes are anticipated to achieve higher sensitivity and enhanced functional integration, thereby facilitating early detection, dynamic monitoring, and innovative treatment strategies for autoimmune diseases. Overall, fluorescent probes possess substantial scientific significance and application value in both research and clinical settings related to autoimmune diseases, signaling a new era of personalized and precision medicine.
Collapse
Affiliation(s)
- Junli Chen
- Wujin Hospital Affiliated With Jiangsu University, Changzhou, Jiangsu, China
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Mingkai Chen
- Wujin Hospital Affiliated With Jiangsu University, Changzhou, Jiangsu, China
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Xiaolong Yu
- Wujin Hospital Affiliated With Jiangsu University, Changzhou, Jiangsu, China.
- The Wujin Clinical College of Xuzhou Medical University, Changzhou, Jiangsu, China.
| |
Collapse
|
6
|
Xu X, Zhang P, Ruan F, Chang G, Zhou T, Chen D, Li L, Wang X. Construction of a Colorimetric and Fluorescence Dual-Mode Immunoassay Detection of Alpha-Hemolysin in Milk. Foodborne Pathog Dis 2025; 22:167-176. [PMID: 38483346 DOI: 10.1089/fpd.2023.0106] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2025] Open
Abstract
Alpha-hemolysin (Hla) is a major virulence factor secreted by Staphylococcus aureus (S. aureus), which can lyse a variety of mammalian cells and help bacteria evade the host immune system or antibiotics, posing a safety hazard to human health. Therefore, it is critical to establish a quick-responsive and sensitive method for Hla detection to ensure food safety. In this work, a dual-mode immunoassay was developed with both colorimetric and fluorescent readouts for discriminative detection of Hla. The proposed sensing system consists of p-phenylenediamine (PPD) and fluorescein, where fluorescein functions as a fluorescent reporter, and PPD serves a dual function as a colorimetric reporter and fluorescence quencher. Subsequently, the reaction system of this method was optimized, and the detection limit, sensitivity, and specificity were evaluated. Under optimal conditions, the proposed method possesses excellent analytical performance in the range from 0.5 to 500 ng/mL with a limit of detection as low as 0.5 ng/mL. Noteworthy, this method was successfully employed for the detection of Hla in milk with good selectivity and high accuracy. Overall, the dual-mode immunoassay provides a superior platform for the on-site, quantitative, and accurate detection of Hla in food samples.
Collapse
Affiliation(s)
- Xu Xu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Pengfei Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
- College of Food Science, Shanxi Normal University, Taiyuan, Shanxi, China
| | - Fuqian Ruan
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Guanhong Chang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Ting Zhou
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - DiShi Chen
- Sichuan Animal Disease Prevention and Control Center, Chengdu, China
| | - Li Li
- Sichuan Animal Disease Prevention and Control Center, Chengdu, China
| | - Xin Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
7
|
Yen CY, Rana S, Awasthi K, Ohta N, Oh-E M. Characterizing the photoluminescence of fluorescein-labeled cellulose in aqueous and alcohol solutions: influence of the cellulose backbone. Sci Rep 2024; 14:26223. [PMID: 39482331 PMCID: PMC11528010 DOI: 10.1038/s41598-024-72773-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 09/10/2024] [Indexed: 11/03/2024] Open
Abstract
Although many dyes have been introduced into cellulose, whether bound to its backbone or within a cellulose matrix, few studies have determined whether the backbone statically or dynamically quenches the photoluminescence of the dye. To advance cellulosic fluorescent films, the influence of the cellulose backbone on photoluminescence must be understood. We determined the fluorescence properties of fluorescein isothiocyanate (FITC) and fluorescein-labeled cellulose (FLC) in water and alcohol, including their quantum yields [Formula: see text], lifetimes [Formula: see text], and rates of radiative [Formula: see text] and nonradiative [Formula: see text] decay. Dissolved FLC had a ~ 30× lower [Formula: see text] than FITC, suggesting that incorporating FITC into the cellulose backbone remarkably reduces the fluorescence efficiency. The FLC solutions had a six-fold lower [Formula: see text] than their FITC counterparts but a 10-20 times higher [Formula: see text]. Presumably, this was because the cellulose backbone interacted weakly with the fluorescein moieties, suggesting a quenching mechanism that can be termed quasi-static, corresponding to static quenching between the fluorescein moieties and cellulose backbone, in addition to the fluorescence quenching caused by the intramolecular nonradiative processes of fluorescein, as observed in conventional molecules. Using the Strickler‒Berg formula, we deduced the analytical radiative decay rate constants [Formula: see text] and eventually estimated the number of very short-lived fluorescein moieties per single fluorescent fluorescein moiety, corresponding well with static quenching.
Collapse
Affiliation(s)
- Chi-Yang Yen
- Institute of Photonics Technologies, Department of Electrical Engineering, National Tsing Hua University, 101 Sec. 2 Kuang-Fu Road, Hsinchu, 300044, Taiwan
| | - Shailesh Rana
- Department of Applied Chemistry, Institute of Molecular Science, Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, 1001 Ta-Hsueh Road, Hsinchu, 300093, Taiwan
| | - Kamlesh Awasthi
- Department of Applied Chemistry, Institute of Molecular Science, Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, 1001 Ta-Hsueh Road, Hsinchu, 300093, Taiwan
| | - Nobuhiro Ohta
- Department of Applied Chemistry, Institute of Molecular Science, Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, 1001 Ta-Hsueh Road, Hsinchu, 300093, Taiwan.
| | - Masahito Oh-E
- Institute of Photonics Technologies, Department of Electrical Engineering, National Tsing Hua University, 101 Sec. 2 Kuang-Fu Road, Hsinchu, 300044, Taiwan.
| |
Collapse
|
8
|
Ranolia A, Kiran, Priyanka, Kumar Dhaka R, Sindhu J. Real time monitoring of nerve agent mimics: Novel solid state emitter for enhanced precision and reliability. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135508. [PMID: 39182297 DOI: 10.1016/j.jhazmat.2024.135508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/11/2024] [Accepted: 08/12/2024] [Indexed: 08/27/2024]
Abstract
Chemical nerve agents are hazardous compounds that terrorists can exploit to pose a significant threat to public safety and national security. The nucleophilic behaviour of these agents enables their interaction with acetyl cholinesterase in the body, leading to paralysis and potentially fatal consequences. Therefore, developing robust and efficient detection methods for these agents is crucial for preventing their misuse. In this manuscript, (E)-12-(1-hydrazineylideneethyl)benzo[f]pyrido[1,2-a]indole-6,11-dione (HBID) is developed as a novel colorimetric and fluorometric probe for the detection of specific chemical nerve agent simulants in both liquid and vapor phase. HBID reacts rapidly with diethyl chlorophosphate (DCP), a common nerve agent simulant, leading to a significant increase in the fluorescence intensity. Under optimized conditions, HBID exhibits high sensitivity, good recyclability, fast response and low limit of detection (0.092 µM). NMR and mass spectral studies suggest that the reaction involves the nucleophilic addition of HBID to DCP, forming a phosphate ester. Additionally, the developed sensor demonstrates viscosity-sensitive AIE phenomena thus greatly expanding its potential applications in biological systems. This sensitivity enables precise detection and visualization of viscosity changes within cellular environments, making the sensor an invaluable tool for studying complex biological processes. The developed probe also detects pH within biologically relevant range (4-6). In practical applications, the probe-treated strips efficiently detected DCP vapor in real time, showing a noticeable fluorescence response. Further, the probe has a strong potential to detect the presence of DCP in the soil samples.
Collapse
Affiliation(s)
- Anju Ranolia
- Department of Chemistry, COBS&H, CCSHAU, Hisar 125004, India
| | - Kiran
- Department of Chemistry, COBS&H, CCSHAU, Hisar 125004, India
| | - Priyanka
- Department of Chemistry, COBS&H, CCSHAU, Hisar 125004, India
| | | | - Jayant Sindhu
- Department of Chemistry, COBS&H, CCSHAU, Hisar 125004, India.
| |
Collapse
|
9
|
Das S, Indurthi HK, Saha P, Sharma DK. Coumarin-based fluorescent probes for the detection of ions, biomolecules and biochemical species responsible for diseases. DYES AND PIGMENTS 2024; 228:112257. [DOI: 10.1016/j.dyepig.2024.112257] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
10
|
Jaswal A, Swami S, Saini A. Mercury (Hg 2+) Sensing Using Coumarin-Derived Fluorescent Chemo-Sensors: An Intuitive Development from 2015 to 2023. J Fluoresc 2024:10.1007/s10895-024-03889-1. [PMID: 39126606 DOI: 10.1007/s10895-024-03889-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024]
Abstract
Mercury is known as a highly toxic metal that is poisonous even if present in a trace amount. Generally, it enters in the food chain (especially fish) and water resources via different pathways and leads to harmful effects. Owing to the detrimental nature of the metal, traditionally several methods were employed by researchers for regular monitoring of the mercury metal ions. However, these methods are associated with many limitations like high cost of technical expertise, and intricacy of the detection procedure. So, using these methods to detect mercury ions in real time is challenging. Therefore, in recent years fluorescent-based analytical tools emerged rapidly. Among the various fluorescent organic scaffolds, coumarin has been scorching, owing to quick response, light stability, high sensitivity, good selectivity, excellent fluorescence intensity, and fluorescence quantum yield. This review provides a deep dive into the coumarin-derived chemo-sensors development throughout 2015-2023. We anticipate that the review will assist to broad scientific community as a reference document to design more interesting sensors.
Collapse
Affiliation(s)
- Ansh Jaswal
- Department of Chemistry, Chandigarh University, NH-05, Ludhiana - Chandigarh State Hwy, Mohali, Punjab, India, 140413
| | - Suman Swami
- Department of Chemistry, Chandigarh University, NH-05, Ludhiana - Chandigarh State Hwy, Mohali, Punjab, India, 140413.
| | - Ajay Saini
- Central Analytical Facilities, Manipal University Jaipur, Jaipur-Ajmer Express Highway, Dehmi Kalan, Near GVK Toll Plaza, Jaipur, Rajasthan, India, 303007
| |
Collapse
|
11
|
Shi H, Yang J, Lin J, Hong X, Zhou Z, Zhao J, Li Y, Li J, Wu C, Yan J, Wong NK, Gao L. A facile fluorescence-coupling approach to visualizing leonurine uptake and distribution in living cells and Caenorhabditis elegans. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 130:155737. [PMID: 38772183 DOI: 10.1016/j.phymed.2024.155737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 04/16/2024] [Accepted: 05/13/2024] [Indexed: 05/23/2024]
Abstract
BACKGROUND Caenorhabditis elegans (C. elegans) has been recognized for being a useful model organism in small-molecule drug screens and drug efficacy investigation. However, there remain bottlenecks in evaluating such processes as drug uptake and distribution due to a lack of appropriate chemical tools. PURPOSE This study aims to prepare fluorescence-labeled leonurine as an example to monitor drug uptake and distribution of small molecule in C. elegans and living cells. METHODS FITC-conjugated leonurine (leonurine-P) was synthesized and characterized by LC/MS, NMR, UV absorption and fluorescence intensity. Leonurine-P was used to stain C. elegans and various mammalian cell lines. Different concentrations of leonurine were tested in conjunction with a competing parent molecule to determine whether leonurine-P and leonurine shared the same biological targets. Drug distribution was analyzed by imaging. Fluorometry in microplates and flow cytometry were performed for quantitative measurements of drug uptake. RESULTS The UV absorption peak of leonurine-P was 490∼495 nm and emission peak was 520 nm. Leonurine-P specifically bound to endogenous protein targets in C. elegans and mammalian cells, which was competitively blocked by leonurine. The highest enrichment levels of leonurine-P were observed around 72 h following exposure in C. elegans. Leonurine-P can be used in a variety of cells to observe drug distribution dynamics. Flow cytometry of stained cells can be facilely carried out to quantitatively detect probe signals. CONCLUSIONS The strategy of fluorescein-labeled drugs reported herein allows quantification of drug enrichment and visualization of drug distribution, thus illustrates a convenient approach to study phytodrugs in pharmacological contexts.
Collapse
Affiliation(s)
- Hao Shi
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Jinrong Yang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Jiajie Lin
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Xiaobing Hong
- Department of Pharmacy, The Second Affiliated Hospital, Shantou University Medical College, Shantou, China
| | - Ziyuan Zhou
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen 518116, China
| | - Jiamin Zhao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Yiwen Li
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Junjie Li
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Chaofeng Wu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Jinwu Yan
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China.
| | - Nai-Kei Wong
- Clinical Pharmacology Section, Department of Pharmacology, Shantou University Medical College, Shantou, Guangdong 515041, China.
| | - Lei Gao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Southern Medical University, Guangzhou, Guangdong 510515, China; Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Guangzhou, Guangdong 510515, China.
| |
Collapse
|
12
|
Yang Z, Li X, Sun T, Bian J, Bu X, Ge X, Sun J, Liu Z, Xie Z, Xi P, Ai Q, Wei C, Gao B. Multicolor Tuning of Perylene Diimides Dyes for Targeted Organelle Imaging In Vivo. Anal Chem 2024. [PMID: 39023238 DOI: 10.1021/acs.analchem.4c01601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
The adjustment of the emission wavelengths and cell permeability of the perylene diimides (PDI) for multicolor cell imaging is a great challenge. Herein, based on a bay-region substituent engineering strategy, multicolor perylene diimides (MCPDI) were rationally designed and synthesized by introducing azetidine substituents on the bay region of PDIs. With the fine-tuned electron-donating ability of the azetidine substituents, these MCPDI showed high brightness, orange, red, and near infrared (NIR) fluorescence along with Stokes shifts increasing from 35 to 110 nm. Interestingly, azetidine substituents distorted to the plane of the MCPDI dyes, and the twist angle of monosubstituted MCPDI was larger than that of disubstituted MCPDI, which might efficiently decrease their π-π stacking. Moreover, all of these MCPDI dyes were cell-permeable and selectively stained various organelles for multicolor imaging of multiple organelles in living cells. Two-color imaging of lipid droplets (LDs) and other organelles stained with MCPDI dyes was performed to reveal the interaction between the LDs and other organelles in living cells. Furthermore, a NIR-emitting MCPDI dye with a mitochondria-targeted characteristic was successfully applied for tumor-specific imaging. The facile synthesis, excellent stability, high brightness, tunable fluorescence emission, and Stokes shifts make these MCPDI promising fluorescent probes for biological applications.
Collapse
Affiliation(s)
- Zikang Yang
- Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Material Science, Hebei University, Baoding 071002, P. R. China
| | - Xinwei Li
- Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Material Science, Hebei University, Baoding 071002, P. R. China
| | - Tingting Sun
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Jiqing Bian
- Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Material Science, Hebei University, Baoding 071002, P. R. China
| | - Xiaoyu Bu
- Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Material Science, Hebei University, Baoding 071002, P. R. China
| | - Xichuan Ge
- Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Material Science, Hebei University, Baoding 071002, P. R. China
| | - Jing Sun
- Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Material Science, Hebei University, Baoding 071002, P. R. China
| | - Zugang Liu
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, P. R. China
| | - Zhigang Xie
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Peng Xi
- National Biomedical Imaging Center, Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100871, P. R. China
| | - Qi Ai
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, P. R. China
| | - Chao Wei
- Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Material Science, Hebei University, Baoding 071002, P. R. China
| | - Baoxiang Gao
- Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Material Science, Hebei University, Baoding 071002, P. R. China
| |
Collapse
|
13
|
Kaur A, Chaudhary RP. Review on Synthesis of 2-(2-Hydroxyaryl) Benzothiazoles (HBT) for Excited-State Intra-molecular Proton Transfer (ESIPT)-Based Detection of Ions and Biomolecules. Top Curr Chem (Cham) 2024; 382:26. [PMID: 39023635 DOI: 10.1007/s41061-024-00472-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 07/01/2024] [Indexed: 07/20/2024]
Abstract
In this review, we present a systematic and comprehensive summary of the recent developments in the synthetic strategies of 2-(2-hydroxyarylsubstituted)-benzothiazole (HBT) framework along with incorporation of various substituents on phenolic and benzothiazole rings which affect the emission process. The literature, spanning the years 2015-2024, on excited-state intramolecular proton transfer (ESIPT)-based studies of HBT derivatives comprising the effects of solvent polarity, substituents, and extended conjugation on fluorophores has been searched. ESIPT, intramolecular charge transfer, and aggregation-induced emissions enable these fluorescent probes to specifically interact with analytes, thereby altering their luminescence characteristics to achieve analyte detection. These fluorescent probes exhibit large Stokes shifts, high quantum yields, and excellent color transitions. Finally, the applications of HBTs as ESIPT-based fluorescent probes for the detection of cations, anions, and biomolecules have been summarized. We anticipate that this review will provide a comprehensive overview of the current state of research in this field and encourage researchers to develop novel ESIPT-based fluorophores with new applications.
Collapse
Affiliation(s)
- Amandeep Kaur
- Department of Chemistry, Sant Longowal Institute of Engineering and Technology, Longowal, Sangrur, Punjab, 148106, India
| | - R P Chaudhary
- Department of Chemistry, Sant Longowal Institute of Engineering and Technology, Longowal, Sangrur, Punjab, 148106, India.
| |
Collapse
|
14
|
Gao YY, He J, Li XH, Li JH, Wu H, Wen T, Li J, Hao GF, Yoon J. Fluorescent chemosensors facilitate the visualization of plant health and their living environment in sustainable agriculture. Chem Soc Rev 2024; 53:6992-7090. [PMID: 38841828 DOI: 10.1039/d3cs00504f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Globally, 91% of plant production encounters diverse environmental stresses that adversely affect their growth, leading to severe yield losses of 50-60%. In this case, monitoring the connection between the environment and plant health can balance population demands with environmental protection and resource distribution. Fluorescent chemosensors have shown great progress in monitoring the health and environment of plants due to their high sensitivity and biocompatibility. However, to date, no comprehensive analysis and systematic summary of fluorescent chemosensors used in monitoring the correlation between plant health and their environment have been reported. Thus, herein, we summarize the current fluorescent chemosensors ranging from their design strategies to applications in monitoring plant-environment interaction processes. First, we highlight the types of fluorescent chemosensors with design strategies to resolve the bottlenecks encountered in monitoring the health and living environment of plants. In addition, the applications of fluorescent small-molecule, nano and supramolecular chemosensors in the visualization of the health and living environment of plants are discussed. Finally, the major challenges and perspectives in this field are presented. This work will provide guidance for the design of efficient fluorescent chemosensors to monitor plant health, and then promote sustainable agricultural development.
Collapse
Affiliation(s)
- Yang-Yang Gao
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, P. R. China.
| | - Jie He
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, P. R. China.
| | - Xiao-Hong Li
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, P. R. China.
| | - Jian-Hong Li
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, P. R. China.
| | - Hong Wu
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, P. R. China.
| | - Ting Wen
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, P. R. China.
| | - Jun Li
- College of Chemistry, Huazhong Agricultural University, Wuhan 430070, China.
| | - Ge-Fei Hao
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, P. R. China.
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 120-750, Korea.
| |
Collapse
|
15
|
de Nigris A, Minó A, Cinelli G, Colella M, Lopez F, Ambrosone L. Kinetic Model of Fluorescein Release through Bioprinted Polylactic Acid Membrane. Biomimetics (Basel) 2024; 9:342. [PMID: 38921222 PMCID: PMC11202189 DOI: 10.3390/biomimetics9060342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 05/30/2024] [Accepted: 05/31/2024] [Indexed: 06/27/2024] Open
Abstract
Polylactic acid (PLA)-based cylindrical membranes for the controlled release of fluorescein sodium salt (FS) were prepared by bioprinting on systems with an initial FS concentration of 0.003763 gdm-3 and 37.63 gdm-3, and the drug release process was monitored in a bath at 37 °C. Photographs, acquired at regular intervals during the process, revealed marked osmotic swelling of the polymer. Osmotic swelling consists in the enlargement of the polymer structure and due to the influx of water molecules across the membrane. The cylindrical PLA membrane starts to significantly swell once a certain threshold range is crossed. Important amounts of FS can dissolve under these radically changed circumstances, and the dissolved FS molecules are mobile enough to diffuse out of the cylinder, thus allowing drug release. As a matter of fact, in this investigation, we ascertained that polymer swelling promotes the mass transport phenomenon by altering the conditions for drug dissolution and diffusion, hence facilitating FS release after a specific lag time. Furthermore, in order to compare the release kinetics, the half-release time, t0.5, was taken into consideration. The data of this study evidence that, while increasing the initial concentration of FS by three orders of magnitude, the time parameter, t0.5, is only reduced by 5/6. In addition, the yield of the release process is drastically reduced due to the strong aggregation ability of the dye. Finally, it is demonstrated that a compressed exponential kinetic model fits the experimental data well despite the varying physical conditions.
Collapse
Affiliation(s)
- Antonio de Nigris
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, Via F. De Sanctis, 86100 Campobasso, Italy;
| | - Antonio Minó
- Department of Biosciences and Territory (DiBT), University of Molise, Contrada Lappone, Isernia, 86090 Pesche, Italy;
| | - Giuseppe Cinelli
- Department of Agriculture, Environment and Food (DiAAA), University of Molise, 86100 Campobasso, Italy; (G.C.); (F.L.)
| | - Matilde Colella
- Department of Biosciences, Biotechnology and Environment (DBBA), University of Bari “Aldo Moro”, Via Orabona 4, 70125 Bari, Italy;
| | - Francesco Lopez
- Department of Agriculture, Environment and Food (DiAAA), University of Molise, 86100 Campobasso, Italy; (G.C.); (F.L.)
| | - Luigi Ambrosone
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, Via F. De Sanctis, 86100 Campobasso, Italy;
| |
Collapse
|
16
|
Li H, Li M, Zhang S, Chen M, Wang J. Packaged europium/fluorescein-based hydrogen bond organic framework as ratiometric fluorescent probe for visual real-time monitoring of seafood freshness. Talanta 2024; 272:125809. [PMID: 38382300 DOI: 10.1016/j.talanta.2024.125809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/30/2024] [Accepted: 02/15/2024] [Indexed: 02/23/2024]
Abstract
The freshness of sea food has always been the focus of attention from consumers, and food-safety issues are in urgent need of efficient approaches. A HOF-based ratiometric fluorescence probe (HOF-FITC/Eu) featuring superior amine-response, offers the real-time and visual detection of seafood freshness. Via intermolecular hydrogen bond interaction to form hydrogen-bonded organic frameworks (HOFs), which serve as a structural basis for the conjugate loading of pH-sensitive fluorescein (5-FITC) and coordination doping of lanthanide Eu3+. Amine vapors stimulate the dual-wavelength (525 nm and 616 nm) characteristic fluorescence of HOF-FITC/Eu with an inverse trend, resulting in an increase of the ratio of I525 to I616 accompanied by a distinct color transition from red to green. Prepared HOF-FITC/Eu featuring sensitive red-green color change characteristics of amine response are readily dripped into composite films of filter paper through integrated smartphone and 254 nm UV lamp as mobile observation devices to on-site monitor the freshness of raw fish and shrimp samples. The intelligent food probe HOF-FITC/Eu opens a novel material assembly type for fluorescence sensing and a potential pathway for other functional materials in the field of investigational food.
Collapse
Affiliation(s)
- Haiyan Li
- Department of Chemistry, Research Center for Analytical Sciences, College of Sciences, Northeastern University, Box 332, Shenyang, 110819, China
| | - Min Li
- Department of Chemistry, Research Center for Analytical Sciences, College of Sciences, Northeastern University, Box 332, Shenyang, 110819, China
| | - Shangqing Zhang
- Department of Chemistry, Research Center for Analytical Sciences, College of Sciences, Northeastern University, Box 332, Shenyang, 110819, China
| | - Mingli Chen
- Department of Chemistry, Research Center for Analytical Sciences, College of Sciences, Northeastern University, Box 332, Shenyang, 110819, China.
| | - Jianhua Wang
- Department of Chemistry, Research Center for Analytical Sciences, College of Sciences, Northeastern University, Box 332, Shenyang, 110819, China.
| |
Collapse
|
17
|
Alharbi AH, Khan S. Antimicrobial, antioxidant, cell imaging and sensing applications of fluorescein derivatives: A review. Anal Biochem 2024; 688:115479. [PMID: 38342200 DOI: 10.1016/j.ab.2024.115479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/31/2024] [Accepted: 02/03/2024] [Indexed: 02/13/2024]
Abstract
Fluorescein itself is a synthetic organic compound and a prominent member of the xanthene dye family. It exhibits strong fluorescence under ultraviolet (UV) or blue light excitation, making it widely used in various applications, including fluorescence microscopy, flow cytometry, immunoassays, and molecular biology techniques. One of the reasons fluorescein derivatives are highly valuable is their tunable fluorescence properties. Through chemical modifications of the fluorescein structure, different functional groups or substituents can be introduce, altering the compound's fluorescence characteristics such as emission wavelength, intensity, and photo stability. This flexibility allows for tailoring of fluorescent probes to specific experimental requirements, enhancing their utility in a range of scientific disciplines. Fluorescein derivatives also possess excellent antimicrobial and antioxidant activity. This review sheds light on the significant impact of fluorescein derivatives as biological active compounds, highlighting their potential in designing new therapeutic agents with antimicrobial properties. Additionally, their role as antioxidants is discussed. A major aspect covered in the review is the application of fluorescein derivatives as powerful cell imaging probes. Their unique fluorescent properties make them valuable tools for visualizing cellular structures and processes, opening up new possibilities for studying cellular dynamics and interactions.
Collapse
Affiliation(s)
- Amani H Alharbi
- Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Sikandar Khan
- Department of Chemistry, University of Malakand, Chakdara, Khyber Pakhtunkhwa, Pakistan.
| |
Collapse
|
18
|
Wang Q, Wang P, Xiao Y, Feng S, Zhang G, Gong YJ. An asymmetrical flavylium based probe with large Stokes shift and near infrared emission for highly sensitive detecting and visualizing cellular drug induced H 2S fluctuations. Talanta 2024; 271:125734. [PMID: 38309114 DOI: 10.1016/j.talanta.2024.125734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/24/2024] [Accepted: 01/28/2024] [Indexed: 02/05/2024]
Abstract
Hydrogen sulfide (H2S) has been recognized as an important gaseous signaling molecule in living systems, and is of great significance in many pathological and physiological processes. Misregulation of endogenous H2S is implicated in various diseases in the neuronal, gastrointestinal, circulatory, and endocrine systems. Fluorescent probe with large Stokes shift and near infrared emission, is ideal candidate for imaging applications to prevent excitation scattering, autofluorescence interference, matrix absorption caused signal loss, and sample destruction. In this study, a dual-side expansion approach was performed to develop spectra tunable hydroxyl functional flavylium derivative named HN8 with enlarged Stokes shift of 81 nm, lengthened emission of 671 nm, satisfied quantum yield of 0.23, and good fluorescence enhancement factor of 14.3-fold. Moreover, based on HN8, the screened probe HN8DNP displayed 225-fold fluorescence enhancement containing linear correlations to H2S from 0 to 50 μM with good limit of detection (LOD) of 0.31 μM. Therefore, HN8DNP was then applied for imaging exogenous H2S and drug induced enzymatic H2S generation in living cells with satisfied results, revealing the relationship between intracellular H2S levels and related enzyme activities. In a word, the present work provided a potential fluorescence probe for highly selective and sensitive detecting H2S in vitro and in living cells. And the promising dual-side expansion strategy for regulation optical feature of traditional fluorophore may meet the increasing requirements of sensing and imaging applications.
Collapse
Affiliation(s)
- Qian Wang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, PR China
| | - Panpan Wang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, PR China
| | - Yang Xiao
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, PR China
| | - Suling Feng
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, PR China
| | - Guisheng Zhang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, PR China.
| | - Yi Jun Gong
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, PR China.
| |
Collapse
|
19
|
Fujita K, Urano Y. Activity-Based Fluorescence Diagnostics for Cancer. Chem Rev 2024; 124:4021-4078. [PMID: 38518254 DOI: 10.1021/acs.chemrev.3c00612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2024]
Abstract
Fluorescence imaging is one of the most promising approaches to achieve intraoperative assessment of the tumor/normal tissue margins during cancer surgery. This is critical to improve the patients' prognosis, and therefore various molecular fluorescence imaging probes have been developed for the identification of cancer lesions during surgery. Among them, "activatable" fluorescence probes that react with cancer-specific biomarker enzymes to generate fluorescence signals have great potential for high-contrast cancer imaging due to their low background fluorescence and high signal amplification by enzymatic turnover. Over the past two decades, activatable fluorescence probes employing various fluorescence control mechanisms have been developed worldwide for this purpose. Furthermore, new biomarker enzymatic activities for specific types of cancers have been identified, enabling visualization of various types of cancers with high sensitivity and specificity. This Review focuses on recent advances in the design, function and characteristics of activatable fluorescence probes that target cancer-specific enzymatic activities for cancer imaging and also discusses future prospects in the field of activity-based diagnostics for cancer.
Collapse
|
20
|
Zavalishin MN, Kiselev AN, Isagulieva AK, Shibaeva AV, Kuzmin VA, Morozov VN, Zevakin EA, Petrova UA, Knyazeva AA, Eroshin AV, Zhabanov YA, Gamov GA. Shedding Light on Heavy Metal Contamination: Fluorescein-Based Chemosensor for Selective Detection of Hg 2+ in Water. Int J Mol Sci 2024; 25:3186. [PMID: 38542159 PMCID: PMC10970617 DOI: 10.3390/ijms25063186] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 03/06/2024] [Accepted: 03/08/2024] [Indexed: 11/11/2024] Open
Abstract
This article discusses the design and analysis of a new chemical chemosensor for detecting mercury(II) ions. The chemosensor is a hydrazone made from 4-methylthiazole-5-carbaldehyde and fluorescein hydrazide. The structure of the chemosensor was confirmed using various methods, including nuclear magnetic resonance spectroscopy, infrared spectroscopy with Fourier transformation, mass spectroscopy, and quantum chemical calculations. The sensor's ability in the highly selective and sensitive discovery of Hg2+ ions in water was demonstrated. The detection limit for mercury(II) ions was determined to be 0.23 µM. The new chemosensor was also used to detect Hg2+ ions in real samples and living cells using fluorescence spectroscopy. Chemosensor 1 and its complex with Hg2+ demonstrate a significant tendency to enter and accumulate in cells even at very low concentrations.
Collapse
Affiliation(s)
- Maksim N. Zavalishin
- Faculty of Inorganic Chemistry and Technology, Ivanovo State University of Chemistry and Technology, 153000 Ivanovo, Russia; (U.A.P.); (A.A.K.); (A.V.E.); (Y.A.Z.); (G.A.G.)
| | - Alexey N. Kiselev
- G.A. Krestov Institute of Solution Chemistry, Russian Academy of Sciences, 153045 Ivanovo, Russia;
| | - Alexandra K. Isagulieva
- Burnazyan Federal Medical Biophysical Center, Federal Medical Biological Agency of the Russian Federtion, 123182 Moscow, Russia;
- Institute of Gene Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Anna V. Shibaeva
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 119334 Moscow, Russia; (A.V.S.); (V.A.K.); (V.N.M.)
| | - Vladimir A. Kuzmin
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 119334 Moscow, Russia; (A.V.S.); (V.A.K.); (V.N.M.)
- National Research Nuclear University MEPhI, 115409 Moscow, Russia
| | - Vladimir N. Morozov
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 119334 Moscow, Russia; (A.V.S.); (V.A.K.); (V.N.M.)
| | - Eugene A. Zevakin
- Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences, 119991 Moscow, Russia;
| | - Ulyana A. Petrova
- Faculty of Inorganic Chemistry and Technology, Ivanovo State University of Chemistry and Technology, 153000 Ivanovo, Russia; (U.A.P.); (A.A.K.); (A.V.E.); (Y.A.Z.); (G.A.G.)
| | - Alina A. Knyazeva
- Faculty of Inorganic Chemistry and Technology, Ivanovo State University of Chemistry and Technology, 153000 Ivanovo, Russia; (U.A.P.); (A.A.K.); (A.V.E.); (Y.A.Z.); (G.A.G.)
| | - Alexey V. Eroshin
- Faculty of Inorganic Chemistry and Technology, Ivanovo State University of Chemistry and Technology, 153000 Ivanovo, Russia; (U.A.P.); (A.A.K.); (A.V.E.); (Y.A.Z.); (G.A.G.)
| | - Yuriy A. Zhabanov
- Faculty of Inorganic Chemistry and Technology, Ivanovo State University of Chemistry and Technology, 153000 Ivanovo, Russia; (U.A.P.); (A.A.K.); (A.V.E.); (Y.A.Z.); (G.A.G.)
| | - George A. Gamov
- Faculty of Inorganic Chemistry and Technology, Ivanovo State University of Chemistry and Technology, 153000 Ivanovo, Russia; (U.A.P.); (A.A.K.); (A.V.E.); (Y.A.Z.); (G.A.G.)
| |
Collapse
|
21
|
Sun X, Ye Q, Liang Y, Yuan Y, Zhu L, Zhang Q, Han J, Guo R. Chiral cysteine-copper ion-based assemblies for improved phototherapy. J Colloid Interface Sci 2024; 657:993-1002. [PMID: 38104364 DOI: 10.1016/j.jcis.2023.11.170] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 11/17/2023] [Accepted: 11/27/2023] [Indexed: 12/19/2023]
Abstract
Phototherapy, encompassing photothermal therapy and photodynamic therapy, is gaining attention as an appealing cancer treatment modality. To enhance its clinical implementation, a comprehensive exploration of the pivotal factors influencing phototherapy is warranted. In this study, the L/d-cysteine (Cys)-copper ion (Cu2+) chiral nanoparticles, through the assembly of L/d-Cys-Cu2+ coordination complexes, were constructed. We found that these nanoparticles interacted with chiral liposomes in a chirality-dependent manner, with d-Cys-Cu2+ nanoparticles exhibiting more than three times stronger binding affinity than l-Cys-Cu2+ nanoparticles. Furthermore, we demonstrated that the d-Cys-Cu2+ nanoparticles were more efficiently internalized by Hela cells in contrast with l-Cys-Cu2+. On this basis, indocyanine green (ICG), acting as both photothermal and photodynamic agent, was encapsulated into L/d-Cys-Cu2+ nanoparticles. Experimental results showed that the l-Cys-Cu2+-ICG and d-Cys-Cu2+-ICG nanoparticles displayed almost identical photothermal performance and singlet oxygen (1O2) generation capability in aqueous solution. However, upon laser irradiation, the d-Cys-Cu2+-ICG nanoparticles achieved enhanced anti-tumor effects compared to l-Cys-Cu2+-ICG due to their chirality-promoted higher cellular uptake efficiency. These findings highlight the crucial role of chirality in phototherapy and provide new perspectives for engineering cancer therapeutic agents.
Collapse
Affiliation(s)
- Xiaohuan Sun
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China.
| | - Qianyun Ye
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Yuanyuan Liang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225002, China
| | - Yuhe Yuan
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Liqi Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225002, China.
| | - Quan Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225002, China
| | - Jie Han
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China.
| | - Rong Guo
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| |
Collapse
|
22
|
Roy A, Samanta S, Ray S, S SK, Mondal P. Unraveling the mystery of solvation-dependent fluorescence of fluorescein dianion using computational study. J Chem Phys 2024; 160:034302. [PMID: 38235793 DOI: 10.1063/5.0180218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 12/18/2023] [Indexed: 01/19/2024] Open
Abstract
Fluorescein, one of the brightest fluorescent dye molecules, is a widely used fluorophore for various applications from biomedicine to industry. The dianionic form of fluorescein is responsible for its high fluorescence quantum yield. Interestingly, the molecule was found to be nonfluorescent in the gas phase. This characteristic is attributed to the photodetachment process, which out-competes the fluorescence emission in the gas phase. In this work, we show that the calculated vertical and adiabatic detachment energies of fluorescein dianion in the gas and solvent phases account for the drastic differences observed in their fluorescence characteristics. The functional dependence of these detachment energies on the dianion's microsolvation was systematically investigated. The performance of different solvent models was also assessed. The higher thermodynamic stability of fluorescein dianion over the monoanion doublet in the solvent phase plays a crucial role in quenching photodetachment and activating the radiative channel with a high fluorescence quantum yield.
Collapse
Affiliation(s)
- Abheek Roy
- Department of Physics and Center for Atomic, Molecular, and Optical Sciences and Technologies (CAMOST), Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, India
| | - Suvadip Samanta
- Department of Chemistry and Center for Atomic, Molecular, and Optical Sciences and Technologies (CAMOST), Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, India
| | - Soumyadip Ray
- Department of Chemistry and Center for Atomic, Molecular, and Optical Sciences and Technologies (CAMOST), Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, India
| | - Sunil Kumar S
- Department of Physics and Center for Atomic, Molecular, and Optical Sciences and Technologies (CAMOST), Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, India
| | - Padmabati Mondal
- Department of Chemistry and Center for Atomic, Molecular, and Optical Sciences and Technologies (CAMOST), Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, India
| |
Collapse
|
23
|
Ye C, Huang R, Chiou MF, Wang B, Li D, Bao H. Synthesis of a new fluorophore: wavelength-tunable bisbenzo[ f]isoindolylidenes. Chem Sci 2023; 14:13151-13158. [PMID: 38023512 PMCID: PMC10664550 DOI: 10.1039/d3sc04445a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 10/31/2023] [Indexed: 12/01/2023] Open
Abstract
The creation of new functional molecules is a central task in chemical synthesis. Herein, we report the synthesis of a new type of fluorophore, bisbenzo[f]isoindolylidenes, from easily accessible dipropargyl benzenesulfonamides. Wavelength-tunable fluorophores emitting strong fluorescence of green to red light were obtained in this reaction. Late-stage modifications and incorporation of bioactive molecules into these fluorophores give rise to potential applications in biological studies. Detailed computational and experimental studies were conducted to elucidate the mechanism, and suggest a reaction sequence involving Garratt-Braverman type cyclization, isomerization, fragmentation, dimerization and oxidation.
Collapse
Affiliation(s)
- Changqing Ye
- State Key Laboratory of Structural Chemistry, Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences 155 Yangqiao Road West Fuzhou Fujian 350002 P. R. China
| | - Rui Huang
- State Key Laboratory of Structural Chemistry, Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences 155 Yangqiao Road West Fuzhou Fujian 350002 P. R. China
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, College of Life Sciences, Fujian Normal University Fuzhou Fujian 350002 P. R. China
| | - Mong-Feng Chiou
- State Key Laboratory of Structural Chemistry, Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences 155 Yangqiao Road West Fuzhou Fujian 350002 P. R. China
| | - Bo Wang
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, College of Life Sciences, Fujian Normal University Fuzhou Fujian 350002 P. R. China
| | - Daliang Li
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, College of Life Sciences, Fujian Normal University Fuzhou Fujian 350002 P. R. China
| | - Hongli Bao
- State Key Laboratory of Structural Chemistry, Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences 155 Yangqiao Road West Fuzhou Fujian 350002 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| |
Collapse
|
24
|
Wang B, Ren L, Liang T, Hu W, Qiang T. Near infrared in and out: Deep imaging for scrap leather induced autophagy in vivo by an ultrasensitive two-photon polarity probe. Biosens Bioelectron 2023; 237:115453. [PMID: 37331101 DOI: 10.1016/j.bios.2023.115453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/31/2023] [Accepted: 06/06/2023] [Indexed: 06/20/2023]
Abstract
As one of the important means for eukaryotic cells to maintain homeostasis, autophagy allows for transporting deformed biomacromolecules and damaged organelles to lysosome for digestion and degradation. The process of autophagy entails the merging of autophagosomes and lysosomes, culminating in the breakdown of biomacromolecules. This, in turn, leads to a change in lysosomal polarity. Therefore, fully understanding the changes of lysosomal polarity during autophagy is of significance to the study of membrane fluidity and enzymatic reaction. However, the shorter emission wavelength has greatly damaged the imaging depth, thus seriously limiting its biological application. Therefore, in this work, a near infrared in and out lysosome-targeted polarity-sensitive probe NCIC-Pola was developed. The fluorescence intensity of NCIC-Pola showed an approximate 1160-fold increase when the polarity decreased under two-photon excitation (TPE). In addition, the excellent fluorescence emission wavelength (692 nm) enabled the deep imaging analysis of scrap leather induced autophagy in vivo.
Collapse
Affiliation(s)
- Baoshuai Wang
- College of Bioresources and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China
| | - Longfang Ren
- College of Bioresources and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China.
| | - Tianyu Liang
- College of Bioresources and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China; College of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121013, China
| | - Wei Hu
- College of Bioresources and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China; Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi University of Science and Technology, Xi'an, 710021, China; Shaanxi Collaborative Innovation Center of Industrial Auxiliary Chemistry & Technology, Shaanxi University of Science & Technology, Xi'an, 710021, China.
| | - Taotao Qiang
- College of Bioresources and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China; Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi University of Science and Technology, Xi'an, 710021, China; Shaanxi Collaborative Innovation Center of Industrial Auxiliary Chemistry & Technology, Shaanxi University of Science & Technology, Xi'an, 710021, China.
| |
Collapse
|
25
|
Kim Y, Jang S, Chang C, Kim KT. Facile Strategy to Output Fluorescein from Nucleic Acid Interactions. Bioconjug Chem 2023; 34:1606-1612. [PMID: 37639511 DOI: 10.1021/acs.bioconjchem.3c00276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Biomolecular operations, which involve the conversion of molecular signals or interactions into specific functional outputs, are fundamental to the field of biology and serve as the important foundation for the design of diagnostic and therapeutic systems. To maximize their functionalities and broaden their applicability, it is crucial to develop novel outputs and facile chemical transformation methods. With this aim, in this study, we present a straightforward method for converting nucleic acid signals into fluorescein outputs that exhibit a wide range of functionalities. This operation is designed through a DNA-templated reaction based on riboflavin-photocatalyzed oxidation of dihydrofluorescein, which is readily prepared by simple NaBH4 reduction of the fluorescein with no complicated chemical caging steps. The templated photooxidation exhibits high efficiency (kapp = 2.7 × 10-3/s), generating a clear fluorescein output signal distinguishable from a low background, originating from the high stability of the synthesized dihydrofluorescein. This facile and efficient operation allows the nucleic acid-initiated activation of various fluorescein functions, such as fluorescence and artificial oxidase activity, which are applied in the design of novel bioanalytical systems, including fluorescent and colorimetric DNA sensors. The operation presented herein would expand the scope of biomolecular circuit systems for diagnostic and therapeutic applications.
Collapse
Affiliation(s)
- Yeojin Kim
- Department of Chemistry, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Sarah Jang
- Department of Chemistry, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Chuljoo Chang
- Department of Chemistry, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Ki Tae Kim
- Department of Chemistry, Chungbuk National University, Cheongju 28644, Republic of Korea
| |
Collapse
|
26
|
Mao Z, Rha H, Kim J, You X, Zhang F, Tao W, Kim JS. THQ-Xanthene: An Emerging Strategy to Create Next-Generation NIR-I/II Fluorophores. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301177. [PMID: 37114796 PMCID: PMC10288261 DOI: 10.1002/advs.202301177] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/13/2023] [Indexed: 06/19/2023]
Abstract
Near-infrared fluorescence imaging is vital for exploring the biological world. The short emissions (<650 nm) and small Stokes shifts (<30 nm) of current xanthene dyes obstruct their biological applications since a long time. Recently, a potent and universal THQ structural modification technique that shifts emission to the NIR-I/II range and enables a substantial Stokes shift (>100 nm) for THQ-modified xanthene dyes is established. Thus, a timely discussion of THQ-xanthene and its applications is extensive. Hence, the advent, working principles, development trajectory, and biological applications of THQ-xanthene dyes, especially in the fields of fluorescence probe-based sensing and imaging, cancer theranostics, and super-resolution imaging, are introduced. It is envisioned that the THQ modification tactic is a simple yet exceptional approach to upgrade the performance of conventional xanthene dyes. THQ-xanthene will advance the strides of xanthene-based potentials in early fluorescent diagnosis of diseases, cancer theranostics, and imaging-guided surgery.
Collapse
Affiliation(s)
- Zhiqiang Mao
- College of Health Science and EngineeringCollege of Chemistry and Chemical EngineeringHubei UniversityWuhan430062China
- Department of ChemistryKorea UniversitySeoul02841South Korea
| | - Hyeonji Rha
- Department of ChemistryKorea UniversitySeoul02841South Korea
| | - Jungryun Kim
- Department of ChemistryKorea UniversitySeoul02841South Korea
| | - Xinru You
- Center for Nanomedicine and Department of AnesthesiologyBrigham and Women's HospitalHarvard Medical SchoolBostonMA02115USA
| | - Fan Zhang
- College of Health Science and EngineeringCollege of Chemistry and Chemical EngineeringHubei UniversityWuhan430062China
| | - Wei Tao
- Center for Nanomedicine and Department of AnesthesiologyBrigham and Women's HospitalHarvard Medical SchoolBostonMA02115USA
| | - Jong Seung Kim
- Department of ChemistryKorea UniversitySeoul02841South Korea
| |
Collapse
|
27
|
Guo WY, Fu YX, Mei LC, Chen Z, Zhang ZY, Wang F, Yang WC, Liu G, Yang GF. Rational Design of Esterase-Insensitive Fluorogenic Probes for In Vivo Imaging. ACS Sens 2023; 8:2041-2049. [PMID: 37146071 DOI: 10.1021/acssensors.3c00264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Small-molecule fluorogenic probes are indispensable tools for performing research in biomedical fields and chemical biology. Although numerous cleavable fluorogenic probes have been developed to investigate various bioanalytes, few of them meet the baseline requirements for in vivo biosensing for disease diagnosis due to their insufficient specificity resulted from the remarkable esterase interferences. To address this critical issue, we developed a general approach called fragment-based fluorogenic probe discovery (FBFPD) to design esterase-insensitive probes for in vitro and in vivo applications. With the designed esterase-insensitive fluorogenic probe, we successfully achieved light-up in vivo imaging and quantitative analysis of cysteine. This strategy was further extended to design highly specific fluorogenic probes for other representative targets, sulfites, and chymotrypsin. The present study expands the bioanalytical toolboxes available and offers a promising platform to develop esterase-insensitive cleavable fluorogenic probes for in vivo biosensing and bioimaging for the early diagnosis of diseases.
Collapse
Affiliation(s)
- Wu-Yingzheng Guo
- National Key Laboratory of Green Pesticide, Central China Normal University, Wuhan 430079, P.R. China
| | - Yi-Xuan Fu
- National Key Laboratory of Green Pesticide, Central China Normal University, Wuhan 430079, P.R. China
| | - Long-Can Mei
- National Key Laboratory of Green Pesticide, Central China Normal University, Wuhan 430079, P.R. China
| | - Zhao Chen
- National Key Laboratory of Green Pesticide, Central China Normal University, Wuhan 430079, P.R. China
| | - Zi-Ye Zhang
- National Key Laboratory of Green Pesticide, Central China Normal University, Wuhan 430079, P.R. China
| | - Fan Wang
- National Key Laboratory of Green Pesticide, Central China Normal University, Wuhan 430079, P.R. China
| | - Wen-Chao Yang
- National Key Laboratory of Green Pesticide, Central China Normal University, Wuhan 430079, P.R. China
| | - Guozhen Liu
- School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, P.R. China
| | - Guang-Fu Yang
- National Key Laboratory of Green Pesticide, Central China Normal University, Wuhan 430079, P.R. China
| |
Collapse
|
28
|
Assiri MA, Waseem MT, Hamad A, Imran M, Farooq U, Shahzad SA. Ratiometric and colorimetric probes with large stokes shift for sensing of exogenous hypochlorite in potato sprouts and industrial effluents. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 290:122298. [PMID: 36603278 DOI: 10.1016/j.saa.2022.122298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/15/2022] [Accepted: 12/28/2022] [Indexed: 06/17/2023]
Abstract
Being one of the important reactive oxygen species (ROS), hypochlorite ions (ClO-) are involved in the control of several pathological and physiological processes. However, overexpression of ClO- may prompt several disorders including cancer. Therefore, two fluorescein functionalized compounds with catechol (probe 1) and 2-naphthyl (probe 2) as substituents were synthesized through Schiff base reaction to recognize ClO- in food items and industrial samples. While probe 2 exhibited turn-off fluorescent response towards ClO- with limit of detection (LOD) of 86.7 nM, structurally alike probe 1 showed excellent ratiometric response with low detection limit (36.3 nM), large Stokes shift (353 nm), and 'fast' response time (15 s). 1H NMR titration experiments favored spiroring opening of probe 1 upon the reaction with ClO-. Probe 1 was successfully utilized for the monitoring of exogenous ClO- in industrial samples. Further, fabrication of probe coated fluorescent paper strips and recognition of ClO- in sprouting potato show diverse practical applicability of our probes.
Collapse
Affiliation(s)
- Mohammed A Assiri
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, P. O. Box 9004, Abha 61514, Saudi Arabia; Department of Chemistry, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Muhammad Tahir Waseem
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, University Road, Abbottabad 22060, Pakistan
| | - Asad Hamad
- Faculty of Pharmacy, Grand Asian University Sialkot, 51310 Punjab, Pakistan
| | - Muhammad Imran
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, P. O. Box 9004, Abha 61514, Saudi Arabia; Department of Chemistry, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Umar Farooq
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, University Road, Abbottabad 22060, Pakistan
| | - Sohail Anjum Shahzad
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, University Road, Abbottabad 22060, Pakistan.
| |
Collapse
|
29
|
Rather IA, Ali R. A Facile Deep Eutectic Solvent (DES) Mediated Green Approach for the Synthesis of Fluorescein and Phenolphthalein Dyes. ChemistrySelect 2023. [DOI: 10.1002/slct.202300749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
30
|
Salavati R, Sarrafi Y, Tajbakhsh M. A Selective and ''Off-On'' Fluorescent Chemosensor Based on Fluorescein for Al 3+: Synthesis, Characterization, Spectroscopy Analyses, and DFT Calculation. J Fluoresc 2023; 33:639-651. [PMID: 36472774 DOI: 10.1007/s10895-022-03087-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/11/2022] [Indexed: 12/12/2022]
Abstract
An efficient fluorescent cation chemosensor based on fluorescein L4 was well prepared and identified with spectroscopy analyses. UV-vis and fluorescence measurements examined the analyte complexation of the L4 with various cations, demonstrating a clear tendency to Al3+ ion. In the Job plot study, a stoichiometry ratio of a complex between L4 and Al3+ ion was determined to be 1: 2 (L4: Al3+). A stoichiometry ratio of complex between L4 and Al3+ ion was determined to be 1: 2 (L4: Al3+) using the Job plot. The association constant (Ka) of the L4-Al3+ complex was found 2.8 × 107 M-2. The obtained limit of detection (LOD) value (1.37 × 10-6 M for Al3+) exhibited the considerable sensitivity of the chemosensor L4 to Al3+ ion. DFT/TD-DFT calculations have also been employed to support the binding mode and photophysical properties of the complexation of chemosensor L4 to Al3+ ion and also to investigate the enhancement of L4 fluorescence by Al3+ ion.
Collapse
Affiliation(s)
- Reza Salavati
- Department of Organic Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, 47416-95447, Iran
| | - Yaghoub Sarrafi
- Department of Organic Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, 47416-95447, Iran.
| | - Mahmood Tajbakhsh
- Department of Organic Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, 47416-95447, Iran
| |
Collapse
|
31
|
Zhang T, Yang Z, He X, Guo L, Wang J, Jiang X, Shen R, Lu X. A ratiometric fluorescent dye for detection of Lys and Arg and its bioimaging in live cells and zebrafish larvae. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:703-708. [PMID: 36691870 DOI: 10.1039/d2ay01740g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
A ratiometric and pH-sensitive fluorescent dye named IDE was applied to the detection of argine and lysine from common amino acids and exploited to monitor the Lys and Arg levels in living cells and zebrafish larvae successfully. IDE will be a useful fluorescence indicator of pH changes by Lys and Arg.
Collapse
Affiliation(s)
- Tongxin Zhang
- Shanghai Key Laboratory of Molecular Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai 201318, China.
- College of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
| | - Zhengfei Yang
- Shanghai Laboratory Animal Research Center, Shanghai 201203, China.
| | - Xiaoyan He
- Shanghai Key Laboratory of Molecular Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai 201318, China.
| | - Luxin Guo
- Shanghai Key Laboratory of Molecular Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai 201318, China.
| | - Jincheng Wang
- Shanghai Key Laboratory of Molecular Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai 201318, China.
| | - Xuewen Jiang
- Department of Nuclear Medicine, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai 264000, Shandong, China.
| | - Ruling Shen
- Shanghai Laboratory Animal Research Center, Shanghai 201203, China.
| | - Xiuhong Lu
- Shanghai Key Laboratory of Molecular Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai 201318, China.
- College of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
| |
Collapse
|
32
|
In vivo monitoring an important plant immune signaling molecule salicylic acid by rhodamine-engineered probes and their density functional theory (DFT) calculations. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2022.104476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
33
|
Moon H, Sultana T, Lee J, Huh J, Lee HD, Choi MS. Biomimetic lipid-fluorescein probe for cellular bioimaging. Front Chem 2023; 11:1151526. [PMID: 37153532 PMCID: PMC10160471 DOI: 10.3389/fchem.2023.1151526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 04/10/2023] [Indexed: 05/09/2023] Open
Abstract
Fluorescence probe is one of the most powerful tools for cellular imaging. Here, three phospholipid-mimicking fluorescent probes (FP1-FP3) comprising fluorescein and two lipophilic groups of saturated and/or unsaturated C18 fatty acids were synthesized, and their optical properties were investigated. Like in biological phospholipids, the fluorescein group acts as a hydrophilic polar headgroup and the lipid groups act as hydrophobic non-polar tail groups. Laser confocal microscope images illustrated that FP3, which contains both saturated and unsaturated lipid tails, showed great uptake into the canine adipose-derived mesenchymal stem cells.
Collapse
Affiliation(s)
- Hyungkyu Moon
- Department of Materials Chemistry and Engineering, Konkuk University, Seoul, Republic of Korea
| | - Tania Sultana
- Regenerative Medicine Laboratory, Center for Stem Cell Research, Department of Biomedical Science and Technology, Institute of Biomedical Science and Technology, Konkuk University, Seoul, Republic of Korea
| | - JeongIk Lee
- Department of Veterinary Obstetrics and Theriogenology, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
- *Correspondence: Myung-Seok Choi, ; JeongIk Lee,
| | - Jungrim Huh
- Social Eco-Tech Research Institute, Konkuk University, Seoul, Republic of Korea
| | - Hae Dong Lee
- Department of Materials Chemistry and Engineering, Konkuk University, Seoul, Republic of Korea
| | - Myung-Seok Choi
- Department of Materials Chemistry and Engineering, Konkuk University, Seoul, Republic of Korea
- *Correspondence: Myung-Seok Choi, ; JeongIk Lee,
| |
Collapse
|
34
|
Carbon dots modified/prepared by supramolecular host molecules and their potential applications: A review. Anal Chim Acta 2022; 1232:340475. [DOI: 10.1016/j.aca.2022.340475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/28/2022] [Accepted: 09/29/2022] [Indexed: 11/18/2022]
|
35
|
Intelligent biogenic amine-responsive fluorescent label for visual and real-time monitoring of seafood freshness. Food Chem 2022; 388:132963. [DOI: 10.1016/j.foodchem.2022.132963] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 03/27/2022] [Accepted: 04/10/2022] [Indexed: 01/07/2023]
|
36
|
Zeng K, Han L, Chen Y. Endogenous Proteins Modulation in Live Cells with Small Molecules and Light. Chembiochem 2022; 23:e202200244. [PMID: 35822393 DOI: 10.1002/cbic.202200244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/23/2022] [Indexed: 11/05/2022]
Abstract
The protein modulation by light illumination enables the biological role investigation in high spatiotemporal precision. Compared to genetic methods, the small molecules approach is uniquely suited for modulating endogenous proteins. The endogenous protein modulation in live cells with small molecules and light has recently advanced on three distinctive frontiers: i) the infrared-light-induced or localized decaging of small molecules by photolysis, ii) the visible-light-induced photocatalytic releasing of small molecules, and iii) the small-molecule-ligand-directed caging for photo-modulation of proteins. Together, these methods provide powerful chemical biology tool kits for spatiotemporal modulation of endogenous proteins with potential therapeutic applications. This Concept aims to inspire organic chemists and chemical biologists to delve into this burgeoning endogenous protein modulation field for new biological discoveries.
Collapse
Affiliation(s)
- Kaixing Zeng
- Shanghai Institute Of Organic Chemistry State Key Laboratory of Bioorganic Chemistry, BNPC, CHINA
| | - Lili Han
- Shanghai Institute Of Organic Chemistry State Key Laboratory of Bioorganic Chemistry, BNPC, CHINA
| | - Yiyun Chen
- Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, BNPC, 345 Lingling Road, 200032, Shanghai, CHINA
| |
Collapse
|
37
|
Ai Y, Zhu Z, Ding H, Fan C, Liu G, Pu S. A dual-responsive fluorescent probe for detection of H2S and Cu2+ based on rhodamine-naphthalimide and cell imaging. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.113801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
38
|
Rojas-Montoya SM, Vonlanthen M, Martínez-Serrano RD, Cuétara-Guadarrama F, Burillo G, Rivera E. “New photoluminescent polyethylene films grafted with a fluorescein derivative using gamma radiation”. Radiat Phys Chem Oxf Engl 1993 2022. [DOI: 10.1016/j.radphyschem.2022.110018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
39
|
Zhang H, Wirth T. Oxidation of BINOLs by Hypervalent Iodine Reagents: Facile Synthesis of Xanthenes and Lactones. Chemistry 2022; 28:e202200181. [PMID: 35225370 PMCID: PMC9311707 DOI: 10.1002/chem.202200181] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Indexed: 12/13/2022]
Abstract
Xanthene derivatives have broad applications in medicines, fluorescent probes, dyes, food additives, etc. Therefore, much attention was focused on developing the synthetic methods to prepare these compounds. Binaphthyl‐based xanthene derivatives were prepared through the oxidation of BINOLs promoted by the hypervalent iodine reagent iodosylbenzene (PhIO). Nine‐membered lactones were obtained through a similar oxidative reaction when iodoxybenzene (PhIO2) was used. Additionally, one‐pot reactions of BINOLs, PhIO and nucleophiles such as alcohols and amines were also investigated to provide alkoxylated products and amides in good to excellent yields.
Collapse
Affiliation(s)
- Huaiyuan Zhang
- School of Chemistry, Cardiff University, Park Place, Main Building, Cardiff, CF10 3AT, UK.,Lanzhou Petrochemical University of Vocational Technology, Lanzhou, 730060, P. R. China
| | - Thomas Wirth
- School of Chemistry, Cardiff University, Park Place, Main Building, Cardiff, CF10 3AT, UK
| |
Collapse
|
40
|
Yang X, Zhang D, Ye Y, Zhao Y. Recent advances in multifunctional fluorescent probes for viscosity and analytes. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214336] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
41
|
An efficiently ratiometric fluorescent probe based on bis-dihydroxyboron fluorescein complexes for detection of pyrethroid residues in fruit juices. Microchem J 2022. [DOI: 10.1016/j.microc.2021.106954] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
42
|
Li J, Wang Y, Jiang X, Wu P. An Aqueous Room-Temperature Phosphorescent Probe for Gd3+. Chem Commun (Camb) 2022; 58:2686-2689. [DOI: 10.1039/d1cc06229h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An aqueous room-temperature phosphorescent (RTP) probe for Gd3+ is reported, based on Gd3+-induced intersystem promoting and the oxygen-shielding property of the Gd3+/AMP/fluorescein coordination polymer nanoparticles (CPNs). Besides selective Gd3+ detection,...
Collapse
|
43
|
Liu BK, Teng KX, Niu LY, Yang QZ. Progress in the Synthesis of Boron Dipyrromethene (BODIPY) Fluorescent Dyes. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202111001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
44
|
Visible light-mediated, high-efficiency oxidation of benzyl to acetophenone catalyzed by fluorescein. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2021.153570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
45
|
Kamzabek D, Le Dé B, Coche-Guérente L, Miomandre F, Dubacheva GV. Thermoresponsive Fluorescence Switches Based on Au@pNIPAM Nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:10971-10978. [PMID: 34478305 DOI: 10.1021/acs.langmuir.1c01397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Despite numerous studies emphasizing the plasmonic impact on fluorescence, the design of a dynamic system allowing on-demand fluorescence switching in a single nanostructure remains challenging. The reversibility of fluorescence switching and the versatility of the approach, in particular its compatibility with a wide range of nanoparticles and fluorophores, are among the main experimental difficulties. In this work, we achieve reversible fluorescence switching by coupling metal nanoparticles with fluorophores through stimuli-responsive organic linkers. As a proof of concept, we link gold nanoparticles with fluorescein through thermoresponsive poly(N-isopropylacrylamide) at a tunable grafting density and characterize their size and optical response by dynamic light scattering, absorption, and fluorescence spectroscopies. We show that the fluorescence emission of these hybrid nanostructures can be switched on-demand using the thermoresponsive properties of poly(N-isopropylacrylamide). The described system presents a general strategy for the design of nanointerfaces, exhibiting reversible fluorescence switching via external control of metal nanoparticle/fluorophore distance.
Collapse
Affiliation(s)
- Dana Kamzabek
- PPSM, CNRS, Ecole Normale Supérieure Paris-Saclay, Université Paris-Saclay, 61 Avenue Président Wilson, 94235 Cachan, France
| | - Brieuc Le Dé
- PPSM, CNRS, Ecole Normale Supérieure Paris-Saclay, Université Paris-Saclay, 61 Avenue Président Wilson, 94235 Cachan, France
| | - Liliane Coche-Guérente
- Department of Molecular Chemistry, Université Grenoble Alpes, CNRS UMR 5250, 570 rue de la chimie, CS 40700, Grenoble 38000, France
| | - Fabien Miomandre
- PPSM, CNRS, Ecole Normale Supérieure Paris-Saclay, Université Paris-Saclay, 61 Avenue Président Wilson, 94235 Cachan, France
| | - Galina V Dubacheva
- PPSM, CNRS, Ecole Normale Supérieure Paris-Saclay, Université Paris-Saclay, 61 Avenue Président Wilson, 94235 Cachan, France
- Department of Molecular Chemistry, Université Grenoble Alpes, CNRS UMR 5250, 570 rue de la chimie, CS 40700, Grenoble 38000, France
| |
Collapse
|
46
|
S K, Sam B, George L, N SY, Varghese A. Fluorescein Based Fluorescence Sensors for the Selective Sensing of Various Analytes. J Fluoresc 2021; 31:1251-1276. [PMID: 34255257 DOI: 10.1007/s10895-021-02770-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 06/30/2021] [Indexed: 12/18/2022]
Abstract
Fluorescein molecules are extensively used to develop fluorescent probes for various analytes due to their excellent photophysical properties and the spirocyclic structure. The main structural modification of fluorescein occurs at the carboxyl group where different groups can be easily introduced to produce the spirolactam structure which is non-fluorescent. The spirolactam ring opening accounts for the fluorescence and the dual sensing of analytes using fluorescent sensors is still a topic of high interest. There is an increase in the number of dual sensors developed in the past five years and quite a good number of fluorescein derivatives were also reported based on reversible mechanisms. This review analyses environmentally and biologically important cations such as Cu2+, Hg2+, Fe3+, Pd2+, Zn2+, Cd2+, and Mg2+; anions (F-, OCl-) and small molecules (thiols, CO and H2S). Structural modifications, binding mechanisms, different strategies and a comparative study for selected cations, anions and molecules are outlined in the article.
Collapse
Affiliation(s)
- Keerthana S
- Department of Chemistry, CHRIST (Deemed To Be University), Hosur Road, Bengaluru, 560029, India
| | - Bincy Sam
- Department of Chemistry, CHRIST (Deemed To Be University), Hosur Road, Bengaluru, 560029, India
| | - Louis George
- Department of Chemistry, CHRIST (Deemed To Be University), Hosur Road, Bengaluru, 560029, India
| | - Sudhakar Y N
- Department of Chemistry, CHRIST (Deemed To Be University), Hosur Road, Bengaluru, 560029, India
| | - Anitha Varghese
- Department of Chemistry, CHRIST (Deemed To Be University), Hosur Road, Bengaluru, 560029, India.
| |
Collapse
|
47
|
Fluorescein Based Three-channel Probe for the Selective and Sensitive Detection of CO 32- Ions in an Aqueous Environment and Real Water Samples. J Fluoresc 2021; 31:1617-1625. [PMID: 34357494 DOI: 10.1007/s10895-021-02779-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 07/05/2021] [Indexed: 12/27/2022]
Abstract
We have constructed a novel fluorescein-based fluorescent chemosensor, FL-In, functionalised with an indole moiety and capable of sensing by both the optical "turn-on" and electrochemical detection of carbonate ions (CO32-) in aqueous media. The probe exhibits excellent selectivity and a low detection limit (0.27 µM) regarding carbonate ions by a possible coordination and hydrolysis reaction mechanism. The developed probe successfully detected CO32- ions in different samples of water. Also, in a simple filter paper experiment, we documented its ability to allow the monitoring of CO32- with the naked eye.
Collapse
|
48
|
Lyu X, Tang W, Sasaki Y, Zhao J, Zheng T, Tian Y, Minami T. Toward Food Freshness Monitoring: Coordination Binding-Based Colorimetric Sensor Array for Sulfur-Containing Amino Acids. Front Chem 2021; 9:685783. [PMID: 34222197 PMCID: PMC8248799 DOI: 10.3389/fchem.2021.685783] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 05/31/2021] [Indexed: 11/13/2022] Open
Abstract
Herein, a self-assembled colorimetric chemosensor array composed of off-the-shelf catechol dyes and a metal ion (i.e., Zn2+) has been used for the sulfur-containing amino acids (SCAAs; i.e., glutathione, glutathione disulfide, L-cysteine, DL-homocysteine, and L-cystine). The coordination binding-based chemosensor array (CBSA) fabricated by a competitive assay among SCAAs, Zn2+ ions, and catechol dyes [i.e., pyrocatechol violet (PV), bromopyrogallol red (BPR), pyrogallol red (PR), and alizarin red S (ARS)] yielded fingerprint-like colorimetric changes. We succeeded in the qualification of SCAAs based on pattern recognition [i.e., a linear discrimination analysis (LDA)] with 100% correct classification accuracy. The semiquantification of reduced/oxidized forms of SCAAs was also performed based on LDA. Furthermore, we carried out a spike test of glutathione in food samples using the proposed chemosensor array with regression analysis. It is worth mentioning that we achieved a 91-110% recovery rate in real sample tests, which confirmed the accuracy of the constructed model. Thus, this study represents a step forward in assessing food freshness based on supramolecular analytical methods.
Collapse
Affiliation(s)
- Xiaojun Lyu
- Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
| | - Wei Tang
- Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
| | - Yui Sasaki
- Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
| | - Jie Zhao
- Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Tingting Zheng
- Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Yang Tian
- Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Tsuyoshi Minami
- Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
49
|
Development of a colorimetric and fluorescence dual-mode immunoassay for the precise identification of Alicyclobacillus acidoterrestris in apple juice. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.107898] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
50
|
Cetin S, Elmazoglu Z, Karaman O, Gunduz H, Gunbas G, Kolemen S. Balanced Intersystem Crossing in Iodinated Silicon-Fluoresceins Allows New Class of Red Shifted Theranostic Agents. ACS Med Chem Lett 2021; 12:752-757. [PMID: 34055222 PMCID: PMC8155232 DOI: 10.1021/acsmedchemlett.1c00018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 02/22/2021] [Indexed: 12/12/2022] Open
Abstract
Iodination of the silicon-fluorescein core revealed a new class of highly cytotoxic, red-shifted and water-soluble photosensitizer (SF-I) which is also fairly emissive to serve as a theranostic agent. Singlet oxygen generation capacity of SF-I was evaluated chemically, and up to 45% singlet oxygen quantum yield was reported in aqueous solutions. SF-I was further tested in triple negative breast (MDA MB-231) and colon (HCT-116) cancer cell lines, which are known to have limited chemotherapy options as well as very poor prognosis. SF-I induced efficient singlet oxygen generation and consequent photocytotoxicity in both cell lines upon light irradiation with a negligible dark toxicity while allowing cell imaging at the same time. SF-I marks the first ever example of a silicon xanthene-based photosensitizer and holds a lot of promise as a small-molecule-based theranostic scaffold.
Collapse
Affiliation(s)
- Sultan Cetin
- Department
of Chemistry, Koc University, Rumelifeneri Yolu, 34450 Istanbul, Turkey
| | - Zubeyir Elmazoglu
- Department
of Chemistry, Middle East Technical University, 06800 Ankara, Turkey
| | - Osman Karaman
- Department
of Chemistry, Middle East Technical University, 06800 Ankara, Turkey
| | - Hande Gunduz
- Department
of Chemistry, Koc University, Rumelifeneri Yolu, 34450 Istanbul, Turkey
| | - Gorkem Gunbas
- Department
of Chemistry, Middle East Technical University, 06800 Ankara, Turkey
| | - Safacan Kolemen
- Department
of Chemistry, Koc University, Rumelifeneri Yolu, 34450 Istanbul, Turkey
- Surface
Science and Technology Center (KUYTAM), Koc University, 34450 Istanbul, Turkey
- Boron
and Advanced Materials Application and Research Center, Koc University, 34450 Istanbul, Turkey
- TUPRAS
Energy Center (KUTEM), Koc University, 34450 Istanbul, Turkey
| |
Collapse
|