1
|
Ondieki AM, Birech Z, Kaduki KA, Mwangi PW, Juma M, Chege BM. Chemometrics-aided surface-enhanced Raman spectrometric detection and quantification of GH and TE hormones in blood. PLoS One 2025; 20:e0323697. [PMID: 40408619 PMCID: PMC12101856 DOI: 10.1371/journal.pone.0323697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2025] [Accepted: 04/13/2025] [Indexed: 05/25/2025] Open
Abstract
Growth hormone (GH) and testosterone (TE) levels in blood are crucial indicators of human health and performance in clean sports. Deviations from normal levels can signal serious health issues, such as fertility problems, cancer, or pituitary tumors. Existing detection methods for these hormones are often costly, time-consuming, and lack portability. In this study, we explored the potential of Surface-Enhanced Raman Spectroscopy (SERS) in distinguishing blood samples from Sprague Dawley (SD) rats injected with exogenous GH, TE and both hormones from those not injected. Then, used artificial neural network (ANN) models trained, and validated in predicting levels of these hormones in blood. Blood samples from SD rats injected with GH, TE, both hormones, and non-injected rats were analyzed using the SERS method upon 785 nm laser excitation. The recorded Raman spectra from blood of GH and TE injected and non-injected rats displayed hormone-specific band intensity variations. Additionally, Principal Component Analysis (PCA) showed temporal changes in band intensities post-injection, suggesting hormone-induced biochemical alterations. In particular, Raman bands centered around 1378 cm⁻¹ for all groups, 658 cm⁻¹ for GH, and 798 cm⁻¹ for GH and TE displayed significant intensity variations. The ANN models, trained using PCA scores from blood samples with varied hormone concentrations, achieved high predictive accuracy with coefficients of determination (R² > 87.71%) and low root mean square error (RMSE < 0.6436). Elevated hormone levels were initially observed in injected rats, gradually declining over time, with results aligning closely to those obtained via ELISA kits. This work showed that the SERS method can provide rapid (~2 minutes), hormone-independent detection with minimal sample preparation. This approach demonstrated the SERS method's potential for rapid, reliable hormone detection and with customized calibration may be applied in sports doping control, clinical diagnostics, and broader biomedical research.
Collapse
Affiliation(s)
- Annah M. Ondieki
- Laser Physics and Spectroscopy Research Group, Department of Physics, University of Nairobi, Nairobi, Kenya
| | - Zephania Birech
- Laser Physics and Spectroscopy Research Group, Department of Physics, University of Nairobi, Nairobi, Kenya
| | - Kenneth A. Kaduki
- Laser Physics and Spectroscopy Research Group, Department of Physics, University of Nairobi, Nairobi, Kenya
| | - Peter W. Mwangi
- Department of Medical Physiology, University of Nairobi, Nairobi, Kenya
| | - Moses Juma
- Laser Physics and Spectroscopy Research Group, Department of Physics, University of Nairobi, Nairobi, Kenya
- UNESCO-UNISA Africa Chair in Nanoscience/Nanotechnology, College of Graduate Studies, University of South Africa (UNISA), Pretoria, South Africa
| | - Boniface M. Chege
- Department of Medical Physiology, University of Nairobi, Nairobi, Kenya
- School of Health Sciences, Dedan Kimathi University of Technology, Dedan Kimathi, Kenya
| |
Collapse
|
2
|
Yang Q, Xu W, Sun X, Chen Q, Niu B. The Application of Machine Learning in Doping Detection. J Chem Inf Model 2024; 64:8673-8683. [PMID: 39574320 DOI: 10.1021/acs.jcim.4c01234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2024]
Abstract
Detecting doping agents in sports poses a significant challenge due to the continuous emergence of new prohibited substances and methods. Traditional detection methods primarily rely on targeted analysis, which is often labor-intensive and is susceptible to errors. In response, machine learning offers a transformative approach to enhancing doping screening and detection. With its powerful data analysis capabilities, machine learning enables the rapid identification of patterns and features in complex compound data, increasing both the efficiency and the accuracy of detection. Moreover, when integrated with nontargeted metabolomics, machine learning can predict unknown metabolites, aiding the discovery of long-lasting biomarkers of doping. It also excels in classifying novel compounds, thereby reducing false-negative rates. As instrumental analysis and machine learning technologies continue to advance, the development of rapid, scalable, and highly efficient doping detection methods becomes increasingly feasible, supporting the pursuit of fairness and integrity in sports competitions.
Collapse
Affiliation(s)
- Qingqing Yang
- School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Wennuo Xu
- School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Xiaodong Sun
- School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Qin Chen
- School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Bing Niu
- School of Life Sciences, Shanghai University, Shanghai, 200444, China
| |
Collapse
|
3
|
Cheng T, Xie Z, Wang T, Jiang Y, Guo X, Liu X, Wen Y, Yang H, Wu Y. Ultrasensitive SERS Detection of Five β-Blockers Achieved Using Chemometrics with a Two-Dimensional Substrate Formed by Large-Sized Ag@SiO 2 Nanoparticles. Anal Chem 2024; 96:16379-16386. [PMID: 39360675 DOI: 10.1021/acs.analchem.4c03793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
We report on a surface-enhanced Raman scattering (SERS) platform for the detection of five beta-blockers (β-blockers): atenolol, esmolol, labetalol, sotalol, and propranolol. Key to this platform was a two-dimensional substrate formed by self-assembling large Ag@SiO2 nanoparticles (Ag@SiO2 NPs) on a silicon wafer. The close arrangement of these large nanoparticles on the surface generated a strong and uniform electromagnetic field, which enhanced SERS signal intensity for the detection of small amounts of the target molecules. The intensities of characteristic peaks of the five β-blocker drugs increased linearly with the increase of their concentrations in the range of 10-5 to 10-8 mol/L. The detection limits were 10-10 mol/L for propranolol, 10-9 mol/L for atenolol, labetalol, and sotalol, and 10-8 mol/L for esmolol. Determination of these five β-blocker drugs added to human urine samples, using a portable Raman spectroscopy instrument, showed quantitative recovery (93-101%). Principal component analysis (PCA) and hierarchical cluster analysis (HCA) of SERS spectral data improved the differentiation among these five β-blockers. This study highlights the potential of the developed SERS platform for rapid, on-site detection of illicit drugs and for antidoping screening.
Collapse
Affiliation(s)
- Tao Cheng
- The Education Ministry Key Laboratory of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China
| | - Ziyue Xie
- The Education Ministry Key Laboratory of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China
| | - Tianrun Wang
- The Education Ministry Key Laboratory of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China
| | - Yuning Jiang
- The Education Ministry Key Laboratory of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China
| | - Xiaoyu Guo
- The Education Ministry Key Laboratory of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China
| | - Xinling Liu
- The Education Ministry Key Laboratory of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China
| | - Ying Wen
- The Education Ministry Key Laboratory of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China
| | - Haifeng Yang
- The Education Ministry Key Laboratory of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China
| | - Yiping Wu
- The Education Ministry Key Laboratory of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China
| |
Collapse
|
4
|
Anzar N, Suleman S, Singh Y, Kumari S, Parvez S, Pilloton R, Narang J. The Evolution of Illicit-Drug Detection: From Conventional Approaches to Cutting-Edge Immunosensors-A Comprehensive Review. BIOSENSORS 2024; 14:477. [PMID: 39451690 PMCID: PMC11506482 DOI: 10.3390/bios14100477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/26/2024] [Accepted: 09/29/2024] [Indexed: 10/26/2024]
Abstract
The increasing use of illicit drugs has become a major global concern. Illicit drugs interact with the brain and the body altering an individual's mood and behavior. As the substance-of-abuse (SOA) crisis continues to spread across the world, in order to reduce trafficking and unlawful activity, it is important to use point-of-care devices like biosensors. Currently, there are certain conventional detection methods, which include gas chromatography (GC), mass spectrometry (MS), surface ionization, surface-enhanced Raman spectroscopy (SERS), surface plasmon resonance (SPR), electrochemiluminescence (ECL), high-performance liquid chromatography (HPLC), etc., for the detection of abused drugs. These methods have the advantage of high accuracy and sensitivity but are generally laborious, expensive, and require trained operators, along with high sample requirements, and they are not suitable for on-site drug detection scenarios. As a result, there is an urgent need for point-of-care technologies for a variety of drugs that can replace conventional techniques, such as a biosensor, specifically an immunosensor. An immunosensor is an analytical device that integrates an antibody-based recognition element with a transducer to detect specific molecules (antigens). In an immunosensor, the highly selective antigen-antibody interaction is used to identify and quantify the target analyte. The binding event between the antibody and antigen is converted by the transducer into a measurable signal, such as electrical, optical, or electrochemical, which corresponds to the presence and concentration of the analyte in the sample. This paper provides a comprehensive overview of various illicit drugs, the conventional methods employed for their detection, and the advantages of immunosensors over conventional techniques. It highlights the critical need for on-site detection and explores emerging point-of-care testing methods. The paper also outlines future research goals in this field, emphasizing the potential of advanced technologies to enhance the accuracy, efficiency, and convenience of drug detection.
Collapse
Affiliation(s)
- Nigar Anzar
- Department of Biotechnology, School of Chemical and Life Science, Jamia Hamdard University, New Delhi 110062, India; (N.A.); (S.S.); (Y.S.); (S.K.)
| | - Shariq Suleman
- Department of Biotechnology, School of Chemical and Life Science, Jamia Hamdard University, New Delhi 110062, India; (N.A.); (S.S.); (Y.S.); (S.K.)
| | - Yashda Singh
- Department of Biotechnology, School of Chemical and Life Science, Jamia Hamdard University, New Delhi 110062, India; (N.A.); (S.S.); (Y.S.); (S.K.)
| | - Supriya Kumari
- Department of Biotechnology, School of Chemical and Life Science, Jamia Hamdard University, New Delhi 110062, India; (N.A.); (S.S.); (Y.S.); (S.K.)
| | - Suhel Parvez
- Department of Toxicology, School of Chemical and Life Science, Jamia Hamdard University, New Delhi 110062, India;
| | - Roberto Pilloton
- National Research Council, Department of Chemical Sciences and Materials Technology, Institute of Crystallography, 00015 Rome, Italy
| | - Jagriti Narang
- Department of Biotechnology, School of Chemical and Life Science, Jamia Hamdard University, New Delhi 110062, India; (N.A.); (S.S.); (Y.S.); (S.K.)
| |
Collapse
|
5
|
Saylan Y, Aliyeva N, Eroglu S, Denizli A. Nanomaterial-Based Sensors for Coumarin Detection. ACS OMEGA 2024; 9:30015-30034. [PMID: 39035881 PMCID: PMC11256117 DOI: 10.1021/acsomega.4c01945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/11/2024] [Accepted: 06/20/2024] [Indexed: 07/23/2024]
Abstract
Sensors are widely used owing to their advantages including excellent sensing performance, user-friendliness, portability, rapid response, high sensitivity, and specificity. Sensor technologies have been expanded rapidly in recent years to offer many applications in medicine, pharmaceuticals, the environment, food safety, and national security. Various nanomaterial-based sensors have been developed for their exciting features, such as a powerful absorption band in the visible region, excellent electrical conductivity, and good mechanical properties. Natural and synthetic coumarin derivatives are attracting attention in the development of functional polymers and polymeric networks for their unique biological, optical, and photochemical properties. They are the most abundant organic molecules in medicine because of their biological and pharmacological impacts. Furthermore, coumarin derivatives can modulate signaling pathways that affect various cellular processes. This review covers the discovery of coumarins and their derivatives, the integration of nanomaterial-based sensors, and recent advances in nanomaterial-based sensing for coumarins. This review also explains how sensors work, their types, their pros and cons, and sensor studies for coumarin detection in recent years.
Collapse
Affiliation(s)
- Yeşeren Saylan
- Department
of Chemistry, Hacettepe University, 06800 Ankara, Turkey
| | - Nilufer Aliyeva
- Department
of Chemistry, Hacettepe University, 06800 Ankara, Turkey
| | - Seckin Eroglu
- Department
of Biological Sciences, Middle East Technical
University, 06800 Ankara, Turkey
| | - Adil Denizli
- Department
of Chemistry, Hacettepe University, 06800 Ankara, Turkey
| |
Collapse
|
6
|
Juma MW, Birech Z, Mwenze NM, Ondieki AM, Maaza M, Mokhotjwa SD. Localized surface plasmon resonance sensing of Trenbolone acetate dopant using silver nanoparticles. Sci Rep 2024; 14:5721. [PMID: 38459089 PMCID: PMC10923944 DOI: 10.1038/s41598-024-56456-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 03/06/2024] [Indexed: 03/10/2024] Open
Abstract
In this work, localized surface plasmon resonance (LSPR) sensing as applicable in the detection of Trenbolone acetate dopant is demonstrated. We show that the LSPR of the Trenbolone acetate/silver nanoparticle (Tren Ac/AgNPs) complex is sensitive to changes in the adsorbent concentration. The results show an average redshift of + 18 nm in the LSPR peak with variations in intensity and broadening behavior of the LSPR band of the Tren Ac/AgNPs complex. AgNPs were synthesized using laser ablation in liquid (LAL) technique with water as the solvent. UV-Vis spectroscopy was used for absorbance measurements and particle size and morphology were monitored using scanning electron microscopy (SEM). The aggregation behavior of the Tren Ac/AgNPs complex was monitored using energy-dispersive X-ray spectroscopy (EDS). Molecular Electrostatic Potential (MEP) and the HOMO-LUMO orbitals of the optimized Trenbolone acetate structure were obtained using Density Function Theory (DFT). The molecule was optimized at the B3LYP level of theory using the 6-311 basis set carried out using the Gaussian 09 software package. The results showed that O2- is Trenbolone acetate's active site that would interact with Ag+ to form a complex that would influence the plasmon behavior. The results presented in this work demonstrate the feasibility of LSPR for anabolic androgenic steroid detection.
Collapse
Affiliation(s)
- Moses Wabwile Juma
- UNESCO-UNISA Africa Chair in Nanoscience and Nanotechnology (U2ACN2), College of Graduate Studies, University of South Africa (UNISA), Pretoria, South Africa.
- NANOAFNET, iThemba LABS-National Research Foundation of South Africa, 1 Old Faure Road, Cape Town, 7129, Western Cape, South Africa.
- Department of Physics, University of South Africa, Muckleneuk Ridge, Pretoria, 0001, South Africa.
- Laser Physics and Spectroscopy Research Group, Department of Physics, University of Nairobi, P.O Box 30197-00100, Nairobi, Kenya.
| | - Zephania Birech
- Laser Physics and Spectroscopy Research Group, Department of Physics, University of Nairobi, P.O Box 30197-00100, Nairobi, Kenya
| | - Nancy Mwikali Mwenze
- UNESCO-UNISA Africa Chair in Nanoscience and Nanotechnology (U2ACN2), College of Graduate Studies, University of South Africa (UNISA), Pretoria, South Africa
- NANOAFNET, iThemba LABS-National Research Foundation of South Africa, 1 Old Faure Road, Cape Town, 7129, Western Cape, South Africa
- Department of Physics, University of South Africa, Muckleneuk Ridge, Pretoria, 0001, South Africa
- Laser Physics and Spectroscopy Research Group, Department of Physics, University of Nairobi, P.O Box 30197-00100, Nairobi, Kenya
| | - Annah Moraa Ondieki
- Laser Physics and Spectroscopy Research Group, Department of Physics, University of Nairobi, P.O Box 30197-00100, Nairobi, Kenya
| | - Malik Maaza
- UNESCO-UNISA Africa Chair in Nanoscience and Nanotechnology (U2ACN2), College of Graduate Studies, University of South Africa (UNISA), Pretoria, South Africa
- NANOAFNET, iThemba LABS-National Research Foundation of South Africa, 1 Old Faure Road, Cape Town, 7129, Western Cape, South Africa
- Department of Physics, University of South Africa, Muckleneuk Ridge, Pretoria, 0001, South Africa
| | - Simon Dhlamini Mokhotjwa
- Department of Physics, University of South Africa, Muckleneuk Ridge, Pretoria, 0001, South Africa
| |
Collapse
|
7
|
Hasan J, Bok S. Plasmonic Fluorescence Sensors in Diagnosis of Infectious Diseases. BIOSENSORS 2024; 14:130. [PMID: 38534237 DOI: 10.3390/bios14030130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/25/2024] [Accepted: 02/26/2024] [Indexed: 03/28/2024]
Abstract
The increasing demand for rapid, cost-effective, and reliable diagnostic tools in personalized and point-of-care medicine is driving scientists to enhance existing technology platforms and develop new methods for detecting and measuring clinically significant biomarkers. Humanity is confronted with growing risks from emerging and recurring infectious diseases, including the influenza virus, dengue virus (DENV), human immunodeficiency virus (HIV), Ebola virus, tuberculosis, cholera, and, most notably, SARS coronavirus-2 (SARS-CoV-2; COVID-19), among others. Timely diagnosis of infections and effective disease control have always been of paramount importance. Plasmonic-based biosensing holds the potential to address the threat posed by infectious diseases by enabling prompt disease monitoring. In recent years, numerous plasmonic platforms have risen to the challenge of offering on-site strategies to complement traditional diagnostic methods like polymerase chain reaction (PCR) and enzyme-linked immunosorbent assays (ELISA). Disease detection can be accomplished through the utilization of diverse plasmonic phenomena, such as propagating surface plasmon resonance (SPR), localized SPR (LSPR), surface-enhanced Raman scattering (SERS), surface-enhanced fluorescence (SEF), surface-enhanced infrared absorption spectroscopy, and plasmonic fluorescence sensors. This review focuses on diagnostic methods employing plasmonic fluorescence sensors, highlighting their pivotal role in swift disease detection with remarkable sensitivity. It underscores the necessity for continued research to expand the scope and capabilities of plasmonic fluorescence sensors in the field of diagnostics.
Collapse
Affiliation(s)
- Juiena Hasan
- Department of Electrical and Computer Engineering, Ritchie School of Engineering and Computer Science, University of Denver, Denver, CO 80208, USA
| | - Sangho Bok
- Department of Electrical and Computer Engineering, Ritchie School of Engineering and Computer Science, University of Denver, Denver, CO 80208, USA
| |
Collapse
|
8
|
Usman M, Baig Y, Nardiello D, Quinto M. How new nanotechnologies are changing the opioid analysis scenery? A comparison with classical analytical methods. Forensic Sci Res 2024; 9:owae001. [PMID: 38560581 PMCID: PMC10981550 DOI: 10.1093/fsr/owae001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 01/02/2024] [Indexed: 04/04/2024] Open
Abstract
Opioids such as heroin, fentanyl, raw opium, and morphine have become a serious threat to the world population in the recent past, due to their increasing use and abuse. The detection of these drugs in biological samples is usually carried out by spectroscopic and/or chromatographic techniques, but the need for quick, sensitive, selective, and low-cost new analytical tools has pushed the development of new methods based on selective nanosensors, able to meet these requirements. Modern sensors, which utilize "next-generation" technologies like nanotechnology, have revolutionized drug detection methods, due to easiness of use, their low cost, and their high sensitivity and reliability, allowing the detection of opioids at trace levels in raw, pharmaceutical, and biological samples (e.g. blood, urine, saliva, and other biological fluids). The peculiar characteristics of these sensors not only have allowed on-site analyses (in the field, at the crime scene, etc.) but also they are nowadays replacing the gold standard analytical methods in the laboratory, even if a proper method validation is still required. This paper reviews advances in the field of nanotechnology and nanosensors for the detection of commonly abused opioids both prescribed (i.e. codeine and morphine) and illegal narcotics (i.e. heroin and fentanyl analogues).
Collapse
Affiliation(s)
- Muhammad Usman
- Narcotic Unit, Punjab Forensic Science Agency, Home Department, Government of The Punjab, Lahore-54000, Pakistan
- Department of Sciences of Agriculture, Food, Natural Resources and Engineering (DAFNE), University of Foggia, I-71122 Foggia, Italy
| | - Yawar Baig
- Narcotic Unit, Punjab Forensic Science Agency, Home Department, Government of The Punjab, Lahore-54000, Pakistan
| | - Donatella Nardiello
- Department of Sciences of Agriculture, Food, Natural Resources and Engineering (DAFNE), University of Foggia, I-71122 Foggia, Italy
| | - Maurizio Quinto
- Department of Sciences of Agriculture, Food, Natural Resources and Engineering (DAFNE), University of Foggia, I-71122 Foggia, Italy
| |
Collapse
|
9
|
Lu Y, Yan J, Ou G, Fu L. A Review of Recent Progress in Drug Doping and Gene Doping Control Analysis. Molecules 2023; 28:5483. [PMID: 37513354 PMCID: PMC10386588 DOI: 10.3390/molecules28145483] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/11/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
The illicit utilization of performance-enhancing substances, commonly referred to as doping, not only infringes upon the principles of fair competition within athletic pursuits but also poses significant health hazards to athletes. Doping control analysis has emerged as a conventional approach to ensuring equity and integrity in sports. Over the past few decades, extensive advancements have been made in doping control analysis methods, catering to the escalating need for qualitative and quantitative analysis of numerous banned substances exhibiting diverse chemical and biological characteristics. Progress in science, technology, and instrumentation has facilitated the proliferation of varied techniques for detecting doping. In this comprehensive review, we present a succinct overview of recent research developments within the last ten years pertaining to these doping detection methodologies. We undertake a comparative analysis, evaluating the merits and limitations of each technique, and offer insights into the prospective future advancements in doping detection methods. It is noteworthy that the continual design and synthesis of novel synthetic doping agents have compelled researchers to constantly refine and innovate doping detection methods in order to address the ever-expanding range of covertly employed doping agents. Overall, we remain in a passive position for doping detection and are always on the road to doping control.
Collapse
Affiliation(s)
- Yuze Lu
- Laboratory of Biochemistry, School of Physical Education, China University of Geosciences, Wuhan 430074, China
| | - Jiayu Yan
- Laboratory of Biochemistry, School of Physical Education, China University of Geosciences, Wuhan 430074, China
| | - Gaozhi Ou
- Laboratory of Biochemistry, School of Physical Education, China University of Geosciences, Wuhan 430074, China
| | - Li Fu
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| |
Collapse
|
10
|
Vetrivel C, Sivarasan G, Durairaj K, Ragavendran C, Kamaraj C, Karthika S, Lo HM. MoS 2-ZnO Nanocomposite Mediated Immunosensor for Non-Invasive Electrochemical Detection of IL8 Oral Tumor Biomarker. Diagnostics (Basel) 2023; 13:diagnostics13081464. [PMID: 37189565 DOI: 10.3390/diagnostics13081464] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/07/2023] [Accepted: 04/13/2023] [Indexed: 05/17/2023] Open
Abstract
In order to support biomolecule attachment, an effective electrochemical transducer matrix for biosensing devices needs to have many specialized properties, including quick electron transfer, stability, high surface area, biocompatibility, and the presence of particular functional groups. Enzyme-linked immunosorbent assays, gel electrophoresis, mass spectrometry, fluorescence spectroscopy, and surface-enhanced Raman spectroscopy are common techniques used to assess biomarkers. Even though these techniques provide precise and trustworthy results, they cannot replace clinical applications because of factors such as detection time, sample amount, sensitivity, equipment expense, and the need for highly skilled individuals. For the very sensitive and targeted electrochemical detection of the salivary oral cancer biomarker IL8, we have created a flower-structured molybdenum disulfide-decorated zinc oxide composite on GCE (interleu-kin-8). This immunosensor shows very fast detection; the limit of detection (LOD) for interleukin-8 (IL8) detection in a 0.1 M phosphate buffer solution (PBS) was discovered to be 11.6 fM, while the MoS2/ZnO nanocomposite modified glassy carbon electrode (GCE) demonstrated a high catalytic current linearly from 500 pg to 4500 pg mL-1 interleukin-8 (IL8). Therefore, the proposed biosensor exhibits excellent stability, high accuracy sensitivity, repeatability, and reproducibility and shows the acceptable fabrication of the electrochemical biosensors to detect the ACh in real sample analysis.
Collapse
Affiliation(s)
- Cittrarasu Vetrivel
- Carbon Capture Lab, Department of Chemical Engineering, SSN College of Engineering Kalavakkam, Chennai 603110, Tamil Nadu, India
- Department of Anatomy, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai 600077, Tamil Nadu, India
| | - Ganesan Sivarasan
- Department of Environmental Engineering and Management, Chaoyang University of Technology, Taichung 41349, Taiwan
| | - Kaliannan Durairaj
- Zoonosis Research Center, Department of Infection Biology, School of Medicine, Wonkwang University, Iksan 54538, Republic of Korea
| | - Chinnasamy Ragavendran
- Department of Conservative Dentistry and Endodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai 600077, Tamil Nadu, India
| | - Chinnaperumal Kamaraj
- Interdisciplinary Institute of Indian System of Medicine (IIISM), Directorate of Research and Virtual Education, SRM Institute of Science and Technology (SRMIST), Kattankulathur 603203, Tamil Nadu, India
| | - Sankar Karthika
- Department of Biotechnology, Mahendra Arts and Science College (Autonomous), Namakkal 637501, Tamil Nadu, India
| | - Huang-Mu Lo
- Department of Environmental Engineering and Management, Chaoyang University of Technology, Taichung 41349, Taiwan
| |
Collapse
|
11
|
Costanzo H, Gooch J, Frascione N. Nanomaterials for optical biosensors in forensic analysis. Talanta 2023; 253:123945. [PMID: 36191514 DOI: 10.1016/j.talanta.2022.123945] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 09/02/2022] [Accepted: 09/14/2022] [Indexed: 12/13/2022]
Abstract
Biosensors are compact analytical devices capable of transducing a biological interaction event into a measurable signal outcome in real-time. They can provide sensitive and affordable analysis of samples without the need for additional laboratory equipment or complex preparation steps. Biosensors may be beneficial for forensic analysis as they can facilitate large-scale high-throughput, sensitive screening of forensic samples to detect target molecules that are of high evidential value. Nanomaterials are gaining attention as desirable components of biosensors that can enhance detection and signal efficiency. Biosensors that incorporate nanomaterials within their design have been widely reported and developed for medical purposes but are yet to find routine employment within forensic science despite their proven potential. In this article, key examples of the use of nanomaterials within optical biosensors designed for forensic analysis are outlined. Their design and mechanism of detection are both considered throughout, discussing how nanomaterials can enhance the detection of the target analyte. The critical evaluation of the optical biosensors detailed within this review article should help to guide future optical biosensor design via the incorporation of nanomaterials, for not only forensic analysis but alternative analytical fields where such biosensors may prove a valuable addition to current workflows.
Collapse
Affiliation(s)
- Hayley Costanzo
- Department of Analytical, Environmental & Forensic Sciences, King's College London, 150 Stamford Street, London, SE1 9NH, UK
| | - James Gooch
- Department of Analytical, Environmental & Forensic Sciences, King's College London, 150 Stamford Street, London, SE1 9NH, UK
| | - Nunzianda Frascione
- Department of Analytical, Environmental & Forensic Sciences, King's College London, 150 Stamford Street, London, SE1 9NH, UK.
| |
Collapse
|
12
|
Ahmadi S, Rabiee N, Fatahi Y, Hooshmand SE, Bagherzadeh M, Rabiee M, Jajarmi V, Dinarvand R, Habibzadeh S, Saeb MR, Varma RS, Shokouhimehr M, Hamblin MR. Green chemistry and coronavirus. SUSTAINABLE CHEMISTRY AND PHARMACY 2021; 21:100415. [PMID: 33686371 PMCID: PMC7927595 DOI: 10.1016/j.scp.2021.100415] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 02/11/2021] [Accepted: 02/17/2021] [Indexed: 05/05/2023]
Abstract
The novel coronavirus pandemic has rapidly spread around the world since December 2019. Various techniques have been applied in identification of SARS-CoV-2 or COVID-19 infection including computed tomography imaging, whole genome sequencing, and molecular methods such as reverse transcription polymerase chain reaction (RT-PCR). This review article discusses the diagnostic methods currently being deployed for the SARS-CoV-2 identification including optical biosensors and point-of-care diagnostics that are on the horizon. These innovative technologies may provide a more accurate, sensitive and rapid diagnosis of SARS-CoV-2 to manage the present novel coronavirus outbreak, and could be beneficial in preventing any future epidemics. Furthermore, the use of green synthesized nanomaterials in the optical biosensor devices could leads to sustainable and environmentally-friendly approaches for addressing this crisis.
Collapse
Affiliation(s)
- Sepideh Ahmadi
- Student Research Committee, Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Navid Rabiee
- Department of Chemistry, Sharif University of Technology, Tehran, Iran
| | - Yousef Fatahi
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Universal Scientific Education and Research Center (USERN), Tehran, Iran
| | - Seyyed Emad Hooshmand
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Mohammad Rabiee
- Biomaterial Group, Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Vahid Jajarmi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Rassoul Dinarvand
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Sajjad Habibzadeh
- Department of Chemical Engineering, Amirkabir University of Technology, Tehran, Iran
| | | | - Rajender S Varma
- Regional Centre of Advanced Technologies and Materials, Palacky University, Šlechtitelů 27, 783 71, Olomouc, Czech Republic
| | - Mohammadreza Shokouhimehr
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, 2028, South Africa
| |
Collapse
|
13
|
Gholami MD, Theiss F, Sonar P, Ayoko GA, Izake EL. Rapid and selective detection of recombinant human erythropoietin in human blood plasma by a sensitive optical sensor. Analyst 2021; 145:5508-5515. [PMID: 32598413 DOI: 10.1039/d0an00972e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Recombinant human erythropoietin (rHuEPO) is an important hormone drug that is used to treat several medical conditions. It is also frequently abused by athletes as a performance enhancing agent at sporting events. The time window of the rHuEPO in blood is short. Therefore, the rapid detection of rHuEPO use/abuse at points of care and in sports requires a selective analytical method and a sensitive sensor. Herein, we present a highly selective method for the rapid detection of rHuEPO in human blood plasma by a sensitive optical sensor. rHuEPO is selectively extracted from human blood plasma by a target-specific extractor chip and converted into a biothiol by reducing its disulfide bond structure. The formed biothiol reacts with a water soluble (E)-1-((6-methoxybenzo[d]thiazole-2-yl)diazenyl)naphthalene-2,6-diolHg(ii) (BAN-Hg) optical sensor and causes its rapid decomposition. This leads to a rapid change in the sensor color from blue to pink that can be observed by the naked eye. The optical sensor was used to quantify rHuEPO in the concentration range 1 × 10-8 M to 1 × 10-12 M by UV-Vis spectroscopy. For the screening of blood plasma, an EPO-specific extractor chip was synthesized and used to selectively extract the protein from the biological matrix prior to its conversion into biothiol and quantification by the optical sensor. Since many proteins have a disulfide bond structure, the new method has strong potential for their rapid sensitive and selective detection by the BAN-Hg sensor and UV-Vis spectroscopy.
Collapse
Affiliation(s)
- Mahnaz D Gholami
- Queensland University of Technology (QUT), School of Chemistry and Physics, 2 George street QLD, 4000, Australia.
| | - Frederick Theiss
- Queensland University of Technology (QUT), School of Chemistry and Physics, 2 George street QLD, 4000, Australia.
| | - Prashant Sonar
- Queensland University of Technology (QUT), School of Chemistry and Physics, 2 George street QLD, 4000, Australia. and Centre for Material Science, Queensland University of Technology (QUT), 2 George street QLD, 4000, Australia
| | - Godwin A Ayoko
- Queensland University of Technology (QUT), School of Chemistry and Physics, 2 George street QLD, 4000, Australia. and Centre for Material Science, Queensland University of Technology (QUT), 2 George street QLD, 4000, Australia
| | - Emad L Izake
- Queensland University of Technology (QUT), School of Chemistry and Physics, 2 George street QLD, 4000, Australia. and Centre for Material Science, Queensland University of Technology (QUT), 2 George street QLD, 4000, Australia
| |
Collapse
|
14
|
Tian X, Zong J, Zhou Y, Chen D, Jia J, Li S, Dong X, Feng Y, Chen H. Designing caps for colloidal Au nanoparticles. Chem Sci 2021; 12:3644-3650. [PMID: 34163638 PMCID: PMC8179445 DOI: 10.1039/d0sc05780k] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 01/20/2021] [Indexed: 11/29/2022] Open
Abstract
The plasmonic property of a nanostructure is highly dependent on its morphology, but there are few methods for appending a domain as the "functional group" or modifier. As a means of modulating plasmonic properties, we create and modulate Au hats on Au nanoparticles, including mortarboards, beret hats, helmets, crowns, antler hats and antenna hats. The structural control arises from the active surface growth as a result of dynamic competition between ligand absorption and metal deposition. It allows the continuous tuning of hat morphologies, from the facet-controlled growth of mortarboards, to the spreading-favored growth of beret hats and helmets, and to the vertical growth of pillars in crowns, antler hats and antenna hats. Among these plasmonic nanostructures, the mortarboards show excellent SERS enhancement of 8.1 × 105, which is among the best in colloidal nanostructures; and the antler hats show the photothermal conversion efficiency of 66.2%, which compares favorably with the literature reports.
Collapse
Affiliation(s)
- Xiaoli Tian
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Centre for Advanced Materials, Nanjing Tech University Nanjing 211816 China
| | - Jianpeng Zong
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Centre for Advanced Materials, Nanjing Tech University Nanjing 211816 China
| | - Yusai Zhou
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Centre for Advanced Materials, Nanjing Tech University Nanjing 211816 China
| | - Dapeng Chen
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Institution School of Physical and Mathematical Sciences, Nanjing Tech University Nanjing 211800 China
| | - Jia Jia
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Centre for Advanced Materials, Nanjing Tech University Nanjing 211816 China
| | - Shuaibin Li
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Centre for Advanced Materials, Nanjing Tech University Nanjing 211816 China
| | - Xiaochen Dong
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Institution School of Physical and Mathematical Sciences, Nanjing Tech University Nanjing 211800 China
- School of Chemistry and Materials Science, Nanjing University of Information Science & Technology Nanjing 210044 China
| | - Yuhua Feng
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Centre for Advanced Materials, Nanjing Tech University Nanjing 211816 China
| | - Hongyu Chen
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Centre for Advanced Materials, Nanjing Tech University Nanjing 211816 China
| |
Collapse
|
15
|
Screen printed ion selective electrodes based on self-assembled thiol surfactant-gold-nanoparticles for determination of Cu(II) in different water samples. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105693] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
16
|
Fattahi Z, Khosroushahi AY, Hasanzadeh M. Recent progress on developing of plasmon biosensing of tumor biomarkers: Efficient method towards early stage recognition of cancer. Biomed Pharmacother 2020; 132:110850. [PMID: 33068930 DOI: 10.1016/j.biopha.2020.110850] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 09/21/2020] [Accepted: 10/04/2020] [Indexed: 12/18/2022] Open
Abstract
Cancer is the second most extended disease with an improved death rate over the past several time. Due to the restrictions of cancer analysis methods, the patient's real survival rate is unknown. Therefore, early stage diagnosis of cancer is crucial for its strong detection. Bio-analysis based on biomarkers may help to overcome the problem Biosensors with high sensitivity and specificity, low-cost, high analysis speed and minimum limit of detection are practical alternatives for laboratory tests. Surface plasmon resonance (SPR) is reaching a maturity level sufficient for their application in detection and determination cancer biomarkers in clinical samples. This review discusses main concepts and performance characteristics of SPR biosensor. Mainly, it focuses on newly emerged enhanced SPR biosensors towards high-throughput and ultrasensitive screening of cancer biomarkers such as PSA, α-fetoprotein, CEA, CA125, CA 15-3, HER2, ctDNA, ALCAM, hCG, VEGF, TNF, Interleukin, IFN-γ, CD24, CD44, Ferritin, COLIV using labeling processes with focusing on the future application in biomedical research and clinical diagnosis. This article reviews current status of the field, showcasing a series of early successes in the application of SPR for clinical bioanalysis of cancer related biomolecules and detailing a series of considerations regarding sensing schemes, exposing issues with analysis in biofluids, while providing an outlook of the challenges currently associated with plasmonic materials, bioreceptor selection, microfluidics, and validation of a clinical bioassay for applying SPR biosensors to clinical samples. Research opportunities are proposed to further advance the field and transition SPR biosensors from research proof-of-concept stage to actual clinical usage.
Collapse
Affiliation(s)
- Zahra Fattahi
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahmad Yari Khosroushahi
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mohammad Hasanzadeh
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
17
|
Wang Y, Gao D, Zhou D, Li Y, Wang X, He P, Zhang Y. Multifunctional Ag/polymer composite nanospheres for drug delivery and cell imaging. JOURNAL OF MATERIALS SCIENCE 2020; 55:13995-14007. [DOI: 10.1007/s10853-020-04912-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 06/02/2020] [Indexed: 01/06/2025]
|
18
|
Controlled synthesis of dendritic ruthenium nanostructures under microwave irradiation and their catalytic properties for p-chloronitrobenzene hydrogenation. TRANSIT METAL CHEM 2020. [DOI: 10.1007/s11243-020-00419-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
19
|
Tarttelin Hernández P, Hailes SMV, Parkin IP. Cocaine by-product detection with metal oxide semiconductor sensor arrays. RSC Adv 2020; 10:28464-28477. [PMID: 35519130 PMCID: PMC9055647 DOI: 10.1039/d0ra03687k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 07/19/2020] [Indexed: 12/03/2022] Open
Abstract
A range of n-type and p-type metal oxide semiconductor gas sensors based on SnO2 and Cr2O3 materials have been modified with zeolites H-ZSM-5, Na-A and H–Y to create a gas sensor array able to successfully detect a cocaine by-product, methyl benzoate, which is commonly targeted by detection dogs. Exposure to vapours was carried out with eleven sensors. Upon data analysis, four of these that offered promising qualities for detection were subsequently selected to understand whether machine learning methods would enable successful and accurate classification of gases. The capability of discrimination of the four sensor array was assessed against nine different vapours of interest; methyl benzoate, ethane, ethanol, nitrogen dioxide, ammonia, acetone, propane, butane, and toluene. When using the polykernel function (C = 200) in the Weka software – and just five seconds into the gas injection – the model was 94.1% accurate in successfully classifying the data. Although further work is necessary to bring the sensors to a standard of detection that is competitive with that of dogs, these results are very encouraging because they show the potential of metal oxide semiconductor sensors to rapidly detect a cocaine by-product in an inexpensive way. Metal oxide semiconductor gas sensors based on SnO2 and Cr2O3 were modified with zeolites H-ZSM-5, Na-A and H–Y to create a gas sensor array to detect cocaine by-product, methyl benzoate. SVMs were later used with a 4 sensor array to classify 9 gases of interest.![]()
Collapse
Affiliation(s)
| | - Stephen M V Hailes
- Department of Computer Science, University College of London 66-72 Gower Street London WC1E 6BT UK
| | - Ivan P Parkin
- Department of Chemistry, University College London 20 Gordon St London WC1H 0AJ UK
| |
Collapse
|
20
|
Simões MF, Ottoni CA, Antunes A. Biogenic Metal Nanoparticles: A New Approach to Detect Life on Mars? Life (Basel) 2020; 10:E28. [PMID: 32245046 PMCID: PMC7151574 DOI: 10.3390/life10030028] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 03/13/2020] [Accepted: 03/19/2020] [Indexed: 01/02/2023] Open
Abstract
Metal nanoparticles (MNPs) have been extensively studied. They can be produced via different methods (physical, chemical, or biogenic), but biogenic synthesis has become more relevant, mainly for being referred by many as eco-friendly and more advantageous than others. Biogenic MNPs have been largely used in a wide variety of applications, from industry, to agriculture, to health sectors, among others. Even though they are increasingly researched and used, there is still space for exploring further applications and increasing their functionality and our understanding of their synthesis process. Here, we provide an overview of MNPs and biogenic MNPs, and we analyze the potential application of their formation process to astrobiology and the detection of life on Mars and other worlds. According to current knowledge, we suggest that they can be used as potential biosignatures in extra-terrestrial samples. We present the advantages and disadvantages of this approach, suggest further research, and propose its potential use for the search for life in future space exploration.
Collapse
Affiliation(s)
- Marta Filipa Simões
- State Key Laboratory of Lunar and Planetary Sciences, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau SAR, Hong Kong, China
| | | | - André Antunes
- State Key Laboratory of Lunar and Planetary Sciences, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau SAR, Hong Kong, China
| |
Collapse
|
21
|
Ye Y, Ji J, Sun Z, Shen P, Sun X. Recent advances in electrochemical biosensors for antioxidant analysis in foodstuff. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2019.115718] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
22
|
Rawtani D, Tharmavaram M, Pandey G, Hussain CM. Functionalized nanomaterial for forensic sample analysis. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.115661] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
23
|
Balaban S, Durmus C, Aydindogan E, Gumus ZP, Timur S. An Electrochemical Biosensor Platform for Testing of Dehydroepiandrosterone 3‐Sulfate (DHEA−S) as a Model for Doping Materials. ELECTROANAL 2019. [DOI: 10.1002/elan.201900413] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Simge Balaban
- Department of Biochemistry, Faculty of Science DepartmentEge University 35100 Bornova, Izmir Turkey
| | - Ceren Durmus
- Department of Biochemistry, Faculty of Science DepartmentEge University 35100 Bornova, Izmir Turkey
| | - Eda Aydindogan
- Department of Biochemistry, Faculty of Science DepartmentEge University 35100 Bornova, Izmir Turkey
| | - Zinar Pinar Gumus
- Central Research Test and Analysis Laboratory Application and Research CenterEge University 35100 Bornova Izmir Turkey
| | - Suna Timur
- Department of Biochemistry, Faculty of Science DepartmentEge University 35100 Bornova, Izmir Turkey
- Central Research Test and Analysis Laboratory Application and Research CenterEge University 35100 Bornova Izmir Turkey
| |
Collapse
|
24
|
Sato RH, Kosaka PM, Omori ÁT, Ferreira EA, Petri DFS, Malvar Ó, Domínguez CM, Pini V, Ahumada Ó, Tamayo J, Calleja M, Cunha RLOR, Fiorito PA. Development of a methodology for reversible chemical modification of silicon surfaces with application in nanomechanical biosensors. Biosens Bioelectron 2019; 137:287-293. [PMID: 31125818 DOI: 10.1016/j.bios.2019.04.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 04/09/2019] [Accepted: 04/14/2019] [Indexed: 10/26/2022]
Abstract
Hypervalent tellurium compounds have a particular reactivity towards thiol compounds which are related to their biological properties. In this work, this property was assembled to tellurium-functionalized surfaces. These compounds were used as linkers in the immobilization process of thiolated biomolecules (such as DNA) on microcantilever surfaces. The telluride derivatives acted as reversible binding agents due to their redox properties, providing the regeneration of microcantilever surfaces and allowing their reuse for further biomolecules immobilizations, recycling the functional surface. Initially, we started from the synthesis of 4-((3-((4-methoxyphenyl) tellanyl) phenyl) amino)-4-oxobutanoic acid, a new compound, which was immobilized on a silicon surface. In nanomechanical systems, the detection involved a hybridization study of thiolated DNA sequences. Fluorescence microscopy technique was used to confirm the immobilization and removal of the telluride-DNA system and provided revealing results about the potentiality of applying redox properties to chalcogen derivatives at surfaces.
Collapse
Affiliation(s)
- Roseli H Sato
- CCNH, Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, UFABC, Avenida dos Estados, 5001, 09210-580, Santo André, São Paulo, Brazil
| | - Priscila M Kosaka
- Instituto Micro y Nanotecnología (IMN-CNM), CSIC, Isaac Newton 8 (PTM), Tres Cantos, Madrid, Spain
| | - Álvaro T Omori
- CCNH, Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, UFABC, Avenida dos Estados, 5001, 09210-580, Santo André, São Paulo, Brazil
| | - Edgard A Ferreira
- Escola de Engenharia, Universidade Presbiteriana Mackenzie, 01302-907, São Paulo, SP, Brazil
| | - Denise F S Petri
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, P.O. Box 26077, São Paulo, SP, 05513-970, Brazil
| | - Óscar Malvar
- Instituto Micro y Nanotecnología (IMN-CNM), CSIC, Isaac Newton 8 (PTM), Tres Cantos, Madrid, Spain
| | - Carmen M Domínguez
- Instituto Micro y Nanotecnología (IMN-CNM), CSIC, Isaac Newton 8 (PTM), Tres Cantos, Madrid, Spain
| | - Valerio Pini
- Instituto Micro y Nanotecnología (IMN-CNM), CSIC, Isaac Newton 8 (PTM), Tres Cantos, Madrid, Spain
| | - Óscar Ahumada
- Mecwins S.A, Plaza de la Encina 10-11, Núcleo 5, 2 B, 28760, Tres Cantos, Madrid, Spain
| | - Javier Tamayo
- Instituto Micro y Nanotecnología (IMN-CNM), CSIC, Isaac Newton 8 (PTM), Tres Cantos, Madrid, Spain
| | - Montserrat Calleja
- Instituto Micro y Nanotecnología (IMN-CNM), CSIC, Isaac Newton 8 (PTM), Tres Cantos, Madrid, Spain
| | - Rodrigo L O R Cunha
- CCNH, Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, UFABC, Avenida dos Estados, 5001, 09210-580, Santo André, São Paulo, Brazil
| | - Pablo A Fiorito
- Centro de Investigaciones y Transferencia Villa María (CIT VM - CONICET), Instituto de Ciencias Básicas y Aplicadas, Universidad Nacional de Villa María, Av. Arturo Jauretche 1555, Villa María, C.P, 5900, Córdoba, Argentina.
| |
Collapse
|
25
|
Celentano M, Jakhmola A, Netti PA, Vecchione R. Irreversible photo-Fenton-like triggered agglomeration of ultra-small gold nanoparticles capped with crosslinkable materials. NANOSCALE ADVANCES 2019; 1:2146-2150. [PMID: 36131978 PMCID: PMC9418340 DOI: 10.1039/c8na00353j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 04/08/2019] [Indexed: 06/15/2023]
Abstract
A photo-Fenton-like process can promote the agglomeration and LSPR red-shifting of ultra-small gold nanoparticles by triggering a crosslink-degradation pathway that involves the surface coating, Fe(iii)-citrate and hydrogen peroxide. Applications may range from controlled photo-deposition of active materials to asynchronous sensing technologies to light-focused microfabrication.
Collapse
Affiliation(s)
- Maurizio Celentano
- Istituto Italiano di Tecnologia, IIT@CRIB Largo Barsanti e Matteucci 53 80125 Napoli Italy
| | - Anshuman Jakhmola
- Istituto Italiano di Tecnologia, IIT@CRIB Largo Barsanti e Matteucci 53 80125 Napoli Italy
| | - Paolo Antonio Netti
- Istituto Italiano di Tecnologia, IIT@CRIB Largo Barsanti e Matteucci 53 80125 Napoli Italy
- Centro di Ricerca Interdipartimentale sui Biomateriali CRIB, Universitã di Napoli Federico II Piazzale Tecchio 80 80125 Napoli Italy
| | - Raffaele Vecchione
- Istituto Italiano di Tecnologia, IIT@CRIB Largo Barsanti e Matteucci 53 80125 Napoli Italy
- Centro di Ricerca Interdipartimentale sui Biomateriali CRIB, Universitã di Napoli Federico II Piazzale Tecchio 80 80125 Napoli Italy
| |
Collapse
|
26
|
Hasanzadeh A, Radmanesh F, Kiani J, Bayandori M, Fatahi Y, Aref AR, Karimi M. Photoluminescent functionalized carbon dots for CRISPR delivery: synthesis, optimization and cellular investigation. NANOTECHNOLOGY 2019; 30:135101. [PMID: 30609415 DOI: 10.1088/1361-6528/aafbf9] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Gene therapy using clustered regularly interspaced short palindromic repeat plasmids (pCRISPR) reduces mistakes in gene editing and prevents engendering integrational mutagenesis that has been seen in available genome engineering technologies. Developing an ideal and traceable nanocarrier, which can accurately and efficiently transfer this complex into the cytosol and which facilitates the journey towards the nucleus, is a fascinating area of research. Polyethylenimine (PEI) functionalized carbon dots (CD-PEI) were fabricated by one-step microwave assisted pyrolysis with an average size around 3 nm. This CD-PEI showed good potential for intracellular delivery of genetic materials (∼70%). Also, this CD-PEI with passive surface modification with low molecular PEI (2 kDa) has a very high quantum yield, as high as 40% with low cytotoxicity. The expression rate of the pCRISPR was around 15% in the HEK-293 cell which is comparable with the pristine PEI. Furthermore, the CD-PEI demonstrated good properties, such as high quantum yield, biocompatibility and tunable emission wavelengths, suggesting the potential application of photoluminescent functionalized CDs as a suitable, traceable nanocarrier for CRISPR delivery.
Collapse
Affiliation(s)
- Akbar Hasanzadeh
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran. Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran. Advances Nanobiotechnology and Nanomedicine Research Group (ANNRG), Iran University of Medical Sciences, Tehran, Iran
| | | | | | | | | | | | | |
Collapse
|
27
|
Biological synthesis of silver nanoparticles in Tribulus terrestris L. extract and evaluation of their photocatalyst, antibacterial, and cytotoxicity effects. RESEARCH ON CHEMICAL INTERMEDIATES 2019. [DOI: 10.1007/s11164-019-03770-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
28
|
Keçili R, Büyüktiryaki S, Hussain CM. Advancement in bioanalytical science through nanotechnology: Past, present and future. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2018.11.012] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
29
|
Shimoga G, Shin EJ, Kim SY. Silver nanoparticles incorporated PVC films: evaluation of structural, thermal, dielectric and catalytic properties. POLIMEROS 2019. [DOI: 10.1590/0104-1428.08218] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Ganesh Shimoga
- Korea University of Technology and Education, South Korea
| | - Eun-Jae Shin
- Korea University of Technology and Education, South Korea
| | - Sang-Youn Kim
- Korea University of Technology and Education, South Korea
| |
Collapse
|
30
|
Affiliation(s)
- Teresa L. Mako
- Department of Chemistry, University of Rhode Island, 140 Flagg Road, Kingston, Rhode Island 02881, United States
| | - Joan M. Racicot
- Department of Chemistry, University of Rhode Island, 140 Flagg Road, Kingston, Rhode Island 02881, United States
| | - Mindy Levine
- Department of Chemistry, University of Rhode Island, 140 Flagg Road, Kingston, Rhode Island 02881, United States
| |
Collapse
|
31
|
Kant K, Abalde-Cela S. Surface-Enhanced Raman Scattering Spectroscopy and Microfluidics: Towards Ultrasensitive Label-Free Sensing. BIOSENSORS-BASEL 2018; 8:bios8030062. [PMID: 29966248 PMCID: PMC6163938 DOI: 10.3390/bios8030062] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 06/25/2018] [Accepted: 06/28/2018] [Indexed: 01/03/2023]
Abstract
Raman scattering and surface-enhanced Raman scattering (SERS) spectroscopy have demonstrated their potential as ultrasensitive detection techniques in the past decades. Specifically, and as a result of the flourishing of nanotechnology, SERS is nowadays one of the most powerful sensing techniques, not only because of the low detection limits that it can achieve, but also for the structural information that it offers and its capability of multiplexing. Similarly, microfluidics technology is having an increased presence not only in fundamental research, but also in the industry. The latter is because of the intrinsic characteristics of microfluidics, being automation, high-throughput, and miniaturization. However, despite miniaturization being an advantage, it comes together with the need to use ultrasensitive techniques for the interrogation of events happening in extremely small volumes. The combination of SERS with microfluidics can overcome bottlenecks present in both technologies. As a consequence, the integration of Raman and SERS in microfluidics is being investigated for the label-free biosensing of relevant research challenges.
Collapse
Affiliation(s)
- Krishna Kant
- International Iberian Nanotechnology Laboratory (INL), Avda Mestre José Veiga, 4715-310 Braga, Portugal.
| | - Sara Abalde-Cela
- International Iberian Nanotechnology Laboratory (INL), Avda Mestre José Veiga, 4715-310 Braga, Portugal.
| |
Collapse
|
32
|
Kozitsina AN, Svalova TS, Malysheva NN, Okhokhonin AV, Vidrevich MB, Brainina KZ. Sensors Based on Bio and Biomimetic Receptors in Medical Diagnostic, Environment, and Food Analysis. BIOSENSORS 2018; 8:E35. [PMID: 29614784 PMCID: PMC6022999 DOI: 10.3390/bios8020035] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 03/29/2018] [Accepted: 03/29/2018] [Indexed: 01/09/2023]
Abstract
Analytical chemistry is now developing mainly in two areas: automation and the creation of complexes that allow, on the one hand, for simultaneously analyzing a large number of samples without the participation of an operator, and on the other, the development of portable miniature devices for personalized medicine and the monitoring of a human habitat. The sensor devices, the great majority of which are biosensors and chemical sensors, perform the role of the latter. That last line is considered in the proposed review. Attention is paid to transducers, receptors, techniques of immobilization of the receptor layer on the transducer surface, processes of signal generation and detection, and methods for increasing sensitivity and accuracy. The features of sensors based on synthetic receptors and additional components (aptamers, molecular imprinted polymers, biomimetics) are discussed. Examples of bio- and chemical sensors' application are given. Miniaturization paths, new power supply means, and wearable and printed sensors are described. Progress in this area opens a revolutionary era in the development of methods of on-site and in-situ monitoring, that is, paving the way from the "test-tube to the smartphone".
Collapse
Affiliation(s)
- Alisa N Kozitsina
- Department of Analytical Chemistry, Institute of Chemical Engineering, Ural Federal University named after the first President of Russia B.N. Yeltsin, 620002 Yekaterinburg, Russia.
| | - Tatiana S Svalova
- Department of Analytical Chemistry, Institute of Chemical Engineering, Ural Federal University named after the first President of Russia B.N. Yeltsin, 620002 Yekaterinburg, Russia.
| | - Natalia N Malysheva
- Department of Analytical Chemistry, Institute of Chemical Engineering, Ural Federal University named after the first President of Russia B.N. Yeltsin, 620002 Yekaterinburg, Russia.
| | - Andrei V Okhokhonin
- Department of Analytical Chemistry, Institute of Chemical Engineering, Ural Federal University named after the first President of Russia B.N. Yeltsin, 620002 Yekaterinburg, Russia.
| | - Marina B Vidrevich
- Scientific and Innovation Center for Sensory Technologies, Ural State University of Economics, 620144 Yekaterinburg, Russia.
| | - Khiena Z Brainina
- Department of Analytical Chemistry, Institute of Chemical Engineering, Ural Federal University named after the first President of Russia B.N. Yeltsin, 620002 Yekaterinburg, Russia.
- Scientific and Innovation Center for Sensory Technologies, Ural State University of Economics, 620144 Yekaterinburg, Russia.
| |
Collapse
|