1
|
Li C, Wang Q, Bai Z, Li Y, Cui S, Zeng L. Accessible high-performance GC×GC: A DIY flow modulator with transient pulse sampling strategy. Talanta 2025; 291:127846. [PMID: 40024135 DOI: 10.1016/j.talanta.2025.127846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/24/2025] [Accepted: 02/25/2025] [Indexed: 03/04/2025]
Abstract
Comprehensive two-dimensional gas chromatography (GC × GC) offers high separation capabilities for complex samples, but widespread adoption remains limited by instrumental costs. We present an integrated solution combining a cost-effective DIY flow modulator (main components <100 USD) with a transient pulse sampling (TPS) strategy. The TPS approach achieves superior separation efficiency through ultrashort sampling pulses (∼10 ms) while maintaining stable quantitative performance across diverse compound classes. Analysis of gasoline samples demonstrated accurate determination of benzene derivatives, oxygenates, and unconventional additives, with all results falling within the reproducibility tolerance specified by standard methods. The recovery rates for alcohols and unconventional additives ranged from 93.97 % to 109.3 %. Furthermore, cross-platform validation across three laboratories using four retrofitted 1D GC systems confirmed separation reproducibility, with inter-platform RSDs for aniline compounds ranging from 0.74 % to 2.77 % for trace additive analysis. The combination of cost-effective design, robust instrumentation, and validated quantitative performance makes this TPS-based modulation approach a practical solution for implementing GC × GC in both routine analysis and advanced research applications.
Collapse
Affiliation(s)
- Chenxi Li
- Chongqing Key Laboratory of Conservation and Utilization of Freshwater Fishes, Animal Biology Key Laboratory of Chongqing Education Commission, College of Life Science, Chongqing Normal University, Chongqing, 401331, China
| | - Qian Wang
- Luoyang R&D Center of Technology, SINOPEC Engineering (Group) Co., Ltd, Luoyang, 471003, China.
| | - Zhengwei Bai
- Luoyang R&D Center of Technology, SINOPEC Engineering (Group) Co., Ltd, Luoyang, 471003, China.
| | - Yi Li
- Luoyang R&D Center of Technology, SINOPEC Engineering (Group) Co., Ltd, Luoyang, 471003, China.
| | - Shuyang Cui
- Luoyang R&D Center of Technology, SINOPEC Engineering (Group) Co., Ltd, Luoyang, 471003, China.
| | - Lingyi Zeng
- Luoyang R&D Center of Technology, SINOPEC Engineering (Group) Co., Ltd, Luoyang, 471003, China.
| |
Collapse
|
2
|
Dobrecevich AD, Thornton JA, Synovec RE. Optimizing retention time and peak width reproducibility with high peak capacity in high-speed gas chromatography using dynamic pressure gradient injection. J Chromatogr A 2025; 1749:465889. [PMID: 40147254 DOI: 10.1016/j.chroma.2025.465889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 03/18/2025] [Accepted: 03/19/2025] [Indexed: 03/29/2025]
Abstract
We are developing high speed gas chromatographic (HSGC) instrumentation with an optimizable injection system, referred to herein as dynamic pressure gradient injection (DPGI). In the present study, we examine the effects of the DPGI pulse width and linear flow velocity on the resultant chromatographic peak widths and separation peak capacity. DPGI readily yields reproducible peak widths and retention times in a sub-second separation runtime regime over long periods of repeated injections. These repeated measurements facilitate a statistically rigorous analysis of the relationships between peak widths obtained and injection pulse width and/or linear flow velocity. Chromatographic performance was studied using a 1 m × 100 µm × 0.1 µm Rtx-5 chromatographic column at various linear flow velocities with hydrogen as the carrier gas, an isothermal temperature of 100 °C, with a test mixture of acetone, nonane, decane and undecane. At this column temperature, acetone is nominally unretained. For conditions where plate height is minimized (Hmin) at the so-called optimum linear flow velocity, uopt, and with the off-column band broadening approaching zero by optimizing DPGI performance, an Hmin of 77 µm was obtained. The chromatographic data corresponding to this Hmin included a minimum peak width-at-half height (w1/2) of 8±0.2ms for acetone, and a peak capacity (nc)of ∼30 for a separation runtime of 1.2 s. When all that is needed is the separation of a few key analytes as fast as possible, and if some peak capacity can be sacrificed, the fastest separation studied yielded a minimum peak width at half-height w1/2=5.5±0.09ms for acetone, and a nc of 10 with a separation runtime of 325ms.
Collapse
Affiliation(s)
- Austin D Dobrecevich
- Department of Chemistry, Box 351700, University of Washington, Seattle, WA 98195, USA
| | - Joel A Thornton
- Department of Atmospheric and Climate Sciences, Box 351640, University of Washington, Seattle, WA 98195, USA
| | - Robert E Synovec
- Department of Chemistry, Box 351700, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
3
|
Wittman IA, Jarvis T, Hearn MTW, Marriott PJ. A 3D printed cryogenic device for gas chromatography: Design, and performance demonstrated for multidimensional and enantioselective separations. J Chromatogr A 2025; 1754:466017. [PMID: 40367849 DOI: 10.1016/j.chroma.2025.466017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 04/30/2025] [Accepted: 05/01/2025] [Indexed: 05/16/2025]
Abstract
This paper describes the development of a device 3D printed using stainless steel that is intended to operate as a cold trapping assembly when cooled by liquid CO2, in a manner similar to a longitudinally modulated cryogenic system (LMCS). The cold trap enclosure design is detailed, and the system's performance is tested to assess its suitability for use as a collection and rapid re-mobilisation device for gas chromatography analysis of volatile organic compounds (VOC). Precision of modulation period timing was evaluated, showing a maximum error of 8 μs and an average variation of <1 ns across 10,000 successive modulations. The system's trapping capabilities were tested using an alkane series (C5-C9), successfully trapping all analytes and producing peaks with full width at half height (FWHH) as low as 65 ms. Maximum trapping time was assessed for hexane, with the modulator retaining the compound for up to 9 s in a 100 °C oven before breakthrough was observed. The modulator was then applied to investigate enantioselective separation of limonene. Whilst a single chiral column was used, various lengths (20 cm - 5.0 m) of column were drawn through the modulator, where these lengths effectively function as enantioselective second dimension (2D) columns. Injected (R,S)-limonene enantiomers were collected as a single entity, then rapidly released to the 2D column. Comprehensive two-dimensional gas chromatography was demonstrated to be viable using the 3D printed modulator for a tea tree oil sample.
Collapse
Affiliation(s)
- Ian A Wittman
- Australian Centre for Research on Separation Science, School of Chemistry, Monash University, Wellington Road, Clayton, VIC 3800, Australia
| | - Tom Jarvis
- Monash Centre for Additive Manufacturing, 15-17 Normanby Rd, Clayton, VIC 3800, Australia
| | - Milton T W Hearn
- Australian Centre for Research on Separation Science, School of Chemistry, Monash University, Wellington Road, Clayton, VIC 3800, Australia; Monash Centre for Additive Manufacturing, 15-17 Normanby Rd, Clayton, VIC 3800, Australia
| | - Philip J Marriott
- Australian Centre for Research on Separation Science, School of Chemistry, Monash University, Wellington Road, Clayton, VIC 3800, Australia.
| |
Collapse
|
4
|
Devers J, Pattison DI, Hansen AB, Christensen JH. Comprehensive two-dimensional gas chromatography as a tool for targeted and non-targeted analysis of contaminants of emerging concern in wastewater. Talanta 2025; 282:127032. [PMID: 39406094 DOI: 10.1016/j.talanta.2024.127032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 10/07/2024] [Accepted: 10/09/2024] [Indexed: 11/20/2024]
Abstract
Wastewater is a major reservoir for chemical contaminants, both anthropogenic and biogenic. Recent chemical and toxicological analysis reveals the abundance and impact of these compounds, often termed contaminants of emerging concern (CECs). Concurrently, incomplete removal of these compounds in wastewater treatment plants sets a precedent for detailed characterisation and monitoring of such substances. Although liquid chromatography (LC) is frequently used for analysis of CECs in wastewater, gas chromatography (GC) maintains its significance for non-polar to mid-polar analytes. GC offers advantages such as increased separation efficiency, fewer matrix effects, and greater availability and reliability of reference mass spectra compared to LC. Comprehensive two-dimensional gas chromatography (GC × GC) delivers unmatched peak capacity and separational capabilities, critical in the resolution of diverse compound groups present within wastewater. When coupled with high resolution mass spectrometry, it provides a powerful identification tool with spectral databases and both 1st and 2nd dimensional retention indices, and has allowed for the separation, reliable annotation and characterisation of diverse CECs within wastewater in recent years. Herein, on the basis of recent studies from the last fifteen years, we outline cutting-edge methodologies and strategies for wastewater analysis using GC × GC. This includes sample preparation, derivatization of polar analytes, instrumental setup, and data analysis, ultimately providing the reader a framework for future non-targeted analysis of wastewater and other complex environmental matrices.
Collapse
Affiliation(s)
- Jason Devers
- Analytical Chemistry Group, Department of Plant and Environmental Science, Faculty of Science, University of Copenhagen, 1871, Frederiksberg C, Denmark.
| | - David I Pattison
- Analytical Chemistry Group, Department of Plant and Environmental Science, Faculty of Science, University of Copenhagen, 1871, Frederiksberg C, Denmark.
| | - Asger B Hansen
- Analytical Chemistry Group, Department of Plant and Environmental Science, Faculty of Science, University of Copenhagen, 1871, Frederiksberg C, Denmark.
| | - Jan H Christensen
- Analytical Chemistry Group, Department of Plant and Environmental Science, Faculty of Science, University of Copenhagen, 1871, Frederiksberg C, Denmark.
| |
Collapse
|
5
|
Bräkling S, Vetter M, Kurtenbach R, Wiesen P, Campbell SJ, Moncur JH, Klee S. Performance Evaluation of an EI&CI Dual Ionization TOFMS Hyphenated with a Flow Modulated GC×GC System. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:2670-2679. [PMID: 39037387 DOI: 10.1021/jasms.4c00138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
The use and compatibility of a dual-ionization TOFMS operating an EI source and a CI source in parallel using a single TOF mass analyzer with flow modulated two-dimensional GC (GC×GC) is described. Important figures of merit of the mass spectrometer that are required for two-dimensional GC hyphenation such as acquisition speed, ion source response, EI/CI switching, the GC transfer, and data alignment are carefully investigated and addressed. Improved fast switching ion optics allow switching in a 100 Hz frequency between EI and CI spectra sampled from the same GC×GC effluent. The spectra quality also influenced by the preseparation, especially of the EI source, is compared to a standard setup operating a single quadrupole MS coupled to the same GC system. Further, two setups including and excluding an additional flame ionization detector are presented. High increments in CI sensitivities are achieved by utilizing the high pumping efficiencies of the CI stage of the used mass spectrometer. By leading high flow ratios of the GC×GC modulation flows toward the CI source, the intensity can be increased by factors of up to 37 while maintaining the pressure balance of the less robust EI source. Finally, thermal desorption GC×GC-EI&CI-TOFMS analyses of traffic emission samples from a federal highway in Germany are executed with the presented setup.
Collapse
Affiliation(s)
| | | | - Ralf Kurtenbach
- Physical & Theoretical Chemistry Department, University of Wuppertal, 42119 Wuppertal, Germany
| | - Peter Wiesen
- Physical & Theoretical Chemistry Department, University of Wuppertal, 42119 Wuppertal, Germany
| | | | | | | |
Collapse
|
6
|
Sahu SS, Mishra R, Joshi RK. Comprehensive analysis of metabolites in Pleurolobus gangeticus using the two-dimensional gas-chromatography and time-of-flight mass spectrometry. Nat Prod Res 2024:1-6. [PMID: 39222477 DOI: 10.1080/14786419.2024.2398722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/13/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Pleurolobus gangeticus, also known as 'Salparni', is a valuable herb with significant medicinal properties. Previous studies on the plant have only used conventional GC-MS to analyse its metabolites. In this study, we utilised two-dimensional gas chromatography and time-of-flight mass spectrometry to precisely characterise the shoot and root volatiles of Pleurolobus gangeticus. The ethyl acetate extract of both tissues revealed 50 prominent volatile phytoconstituents in each, accounting for 99.9% and 100.1% of the total volatiles, respectively. The most abundant chemicals found in the root were alcohols (19%) and fatty acids (17%), while the shoot primarily contained organic compounds (24%) and esters (20%). The major phytoconstituents in the root were hexadecanoic acid, 2-hydroxy-1ethyl ester (16.1%), octadecanoic acid, and 2,3-dihydroxypropyl ester (10.5%). Conversely, the shoot was dominated by n-hexadecanoic acid (9.1%), linoleic acid (7.4%), and neophytadiene (5.6%). These findings highlight the potential of Pleurolobus gangeticus for further research and development in medicinal applications.
Collapse
Affiliation(s)
| | - Rukmini Mishra
- School of Applied Sciences, Centurion University of Technology and Management, Bhubaneswar, India
| | - Raj Kumar Joshi
- Department of Biotechnology, Rama Devi Women's University, Bhubaneswar, India
| |
Collapse
|
7
|
Leppert J, Brehmer T, Boeker P, Wüst M. Generalized flow calculation of the gas flow in a network of capillaries used in gas chromatography. J Sep Sci 2024; 47:e2400419. [PMID: 39178022 DOI: 10.1002/jssc.202400419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/22/2024] [Accepted: 08/01/2024] [Indexed: 08/24/2024]
Abstract
A general method for the calculation of the flow and pressure of a gas in a network of cylindrical capillaries is presented. This method is used specifically for gas chromatographic systems in this work. With this approach, it is possible to easily calculate flow and pressures in complex gas chromatographic systems, like flow-modulated or thermal-modulated multidimensional gas chromatographic systems, or systems with multiple outlets at different pressures. A mathematic abstraction using graph theory is used to represent the system of capillaries. With this graph, the flow balance equations at the connections of the capillaries can easily be set up. Using a computer algebra system, the system of flow balance equations can be solved for the pressures at the connection points. For simple systems, this approach is presented, and calculated flows, pressures, and hold-up times are compared with measured values. In addition, two complex systems (4-Way-Splitter, Deans Switch system) of capillaries are presented with calculations only. For these systems, certain conditions were formulated, that is, a certain difference in hold-up times and a defined split ratio between different paths of these systems. Using a numeric non-linear solver, configurations of these systems were found, that fulfill these conditions.
Collapse
Affiliation(s)
- Jan Leppert
- Department Fast GC, Institute of Nutritional and Food Sciences, Chair of Food Chemistry, University of Bonn, Bonn, Germany
| | - Tillman Brehmer
- Department Fast GC, Institute of Nutritional and Food Sciences, Chair of Food Chemistry, University of Bonn, Bonn, Germany
| | - Peter Boeker
- Department Fast GC, Institute of Nutritional and Food Sciences, Chair of Food Chemistry, University of Bonn, Bonn, Germany
- Hyperchrom GmbH Germany, Alfter, Germany
| | - Matthias Wüst
- Department Fast GC, Institute of Nutritional and Food Sciences, Chair of Food Chemistry, University of Bonn, Bonn, Germany
| |
Collapse
|
8
|
Zhang Y, Ren H, Tang X, Liu Q, Xiao W, Zhang Z, Tian Y. A GC×GC-MS method based on solid-state modulator for non-targeted metabolomics: Comparison with traditional GC-MS method. J Pharm Biomed Anal 2024; 243:116068. [PMID: 38428247 DOI: 10.1016/j.jpba.2024.116068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/21/2024] [Accepted: 02/21/2024] [Indexed: 03/03/2024]
Abstract
The formidable challenge posed by the presence of extremely high amounts of compounds and large differences in concentrations in plasma significantly complicates non-targeted metabolomics analyses. In this study, a comprehensive two-dimensional gas chromatography-quadrupole mass spectrometry (GC×GC-qMS) method with a solid-state modulator (SSM) for non-targeted metabolomics in beagle plasma was first established based on a GC-MS method, and the qualitative and quantitative performance of the two platforms were compared. Identification of detected compounds was accomplished utilizing NIST database match scores, retention indices (RIs) and standards. Semi-quantification involved the calculation of peak area ratios to internal standards. Metabolite identification sheets were generated for plasma samples on both analytical platforms, featuring 22 representative metabolites chosen for validating qualitative accuracy, and for conducting comparisons of linearity, accuracy, precision, and sensitivity. The outcomes revealed a threefold increase in the number of identifiable metabolites on the GC×GC-MS platform, with lower limits of quantitation (LLOQs) reduced to 0.5-0.05 times those achieved on the GC-MS platform. Accuracy in quantification for both GC×GC-MS and GC-MS fell within the range of 85-115%, and the vast majority of intra- and inter-day precisions were within the range of 20%. These findings underscore that relative to the conventional GC-MS method, the GC×GC-MS method developed in this study, combined with SSM, exhibits enhanced qualitative capabilities, heightened sensitivity, and comparable accuracy and precision, rendering it more suitable for non-targeted metabolomics analyses.
Collapse
Affiliation(s)
- Yueyi Zhang
- Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Ministry of Education, Nanjing 210009, PR China
| | - Haihui Ren
- Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Ministry of Education, Nanjing 210009, PR China
| | - Xiao Tang
- Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Ministry of Education, Nanjing 210009, PR China
| | - Qiaorong Liu
- Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Ministry of Education, Nanjing 210009, PR China
| | - Wen Xiao
- Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Ministry of Education, Nanjing 210009, PR China
| | - Zunjian Zhang
- Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Ministry of Education, Nanjing 210009, PR China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, PR China.
| | - Yuan Tian
- Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Ministry of Education, Nanjing 210009, PR China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, PR China.
| |
Collapse
|
9
|
Alhassan M, Jalil AA, Owgi AHK, Hamid MYS, Bahari MB, Van Tran T, Nabgan W, Hatta AH, Khusnun NFB, Amusa AA, Nyakuma BB. Emerging trends in hydrogen and synfuel generation: a state-of-the-art review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:42640-42671. [PMID: 38902444 DOI: 10.1007/s11356-024-34021-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 06/13/2024] [Indexed: 06/22/2024]
Abstract
The current work investigated emerging fields for generating and consuming hydrogen and synthetic Fischer-Tropsch (FT) fuels, especially from detrimental greenhouse gases, CO2 and CH4. Technologies for syngas generation ranging from partial oxidation, auto-thermal, dry, photothermal and wet or steam reforming of methane were adequately reviewed alongside biomass valorisation for hydrogen generation, water electrolysis and climate challenges due to methane flaring, production, storage, transportation, challenges and opportunities in CO2 and CH4 utilisation. Under the same conditions, dry reforming produces more coke than steam reforming. However, combining the two techniques produces syngas with a high H2/CO ratio, which is suitable for producing long-chain hydrocarbons. Although the steam methane reforming (SMR) process has been industrialised, it is well known to consume significant energy. However, coke production via catalytic methane decomposition, the prime hindrance to large-scale implementation of these techniques for hydrogen production, could be addressed by coupling CO with CO2 conversion to alter the H2/CO ratio of syngas, increasing the reaction temperatures in dry reforming, or increasing the steam content fed in steam reforming. Optimised hydrogen production and generation of green fuels from CO2 and CH4 can be achieved by implementing these strategies.
Collapse
Affiliation(s)
- Mansur Alhassan
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
- Department of Chemistry, Sokoto State University, P. M. B 2134, Airport Road, Sokoto, Nigeria
| | - Aishah Abdul Jalil
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia.
- Centre of Hydrogen Energy, Institute of Future Energy, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia.
| | | | - Muhamed Yusuf Shahul Hamid
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Mahadi Bin Bahari
- Faculty of Science, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Thuan Van Tran
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
- Institute of Applied Technology & Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, HCMC, 755414, Viet Nam
| | - Walid Nabgan
- Departament d'Enginyeria Química, Universitat Rovira i Virgili, Av Països Catalans 26, 43007, Tarragona, Spain
| | - Abdul Hakim Hatta
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Nur Farahain Binti Khusnun
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Abiodun Abdulhameed Amusa
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
- Centre of Hydrogen Energy, Institute of Future Energy, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Bemgba Bevan Nyakuma
- Department of Chemical Sciences, Faculty of Science and Computing, Pen Resource University, P.M.B 0198, Gombe, Gombe State, Nigeria
| |
Collapse
|
10
|
Aspromonte J, Mascrez S, Eggermont D, Purcaro G. Solid-phase microextraction coupled to comprehensive multidimensional gas chromatography for food analysis. Anal Bioanal Chem 2024; 416:2221-2246. [PMID: 37999723 DOI: 10.1007/s00216-023-05048-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/22/2023] [Accepted: 11/09/2023] [Indexed: 11/25/2023]
Abstract
Solid-phase microextraction and comprehensive multidimensional gas chromatography represent two milestone innovations that occurred in the field of separation science in the 1990s. They have a common root in their introduction and have found a perfect coupling in their evolution and applications. This review will focus on food analysis, where the paradigm has changed significantly over time, moving from a targeted analysis, focusing on a limited number of analytes at the time, to a more holistic approach for assessing quality in a larger sense. Indeed, not only some major markers or contaminants are considered, but a large variety of compounds and their possible interaction, giving rise to the field of foodomics. In order to obtain such detailed information and to answer more sophisticated questions related to food quality and authenticity, the use of SPME-GC × GC-MS has become essential for the comprehensive analysis of volatile and semi-volatile analytes. This article provides a critical review of the various applications of SPME-GC × GC in food analysis, emphasizing the crucial role this coupling plays in this field. Additionally, this review dwells on the importance of appropriate data treatment to fully harness the results obtained to draw accurate and meaningful conclusions.
Collapse
Affiliation(s)
- Juan Aspromonte
- Laboratorio de Investigación y Desarrollo de Métodos Analíticos, LIDMA, Facultad de Ciencias Exactas (Universidad Nacional de La Plata, CIC-PBA, CONICET), Calle 47 Esq. 115, 1900, La Plata, Argentina
| | - Steven Mascrez
- Gembloux Agro-Bio Tech, University of Liège, Passage Des Déportés, 2, B-5030, Gembloux, Belgium
| | - Damien Eggermont
- Gembloux Agro-Bio Tech, University of Liège, Passage Des Déportés, 2, B-5030, Gembloux, Belgium
| | - Giorgia Purcaro
- Gembloux Agro-Bio Tech, University of Liège, Passage Des Déportés, 2, B-5030, Gembloux, Belgium.
| |
Collapse
|
11
|
Caceres-Martinez LE, Kilaz G. Kinematic viscosity prediction of jet fuels and alternative blending components via comprehensive two-dimensional gas chromatography, partial least squares, and Yeo-Johnson transformation. J Sep Sci 2024; 47:e2300816. [PMID: 38471968 DOI: 10.1002/jssc.202300816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 01/28/2024] [Accepted: 01/30/2024] [Indexed: 03/14/2024]
Abstract
This work presents an accurate yet simplified partial least squares model to predict the kinematic viscosity of conventional and alternative jet fuels at -20°C using comprehensive two-dimensional gas chromatography coupled to a flame ionization detector (GC × GC/FID). Three different normalization methods (mean-centering, logarithmic, and Yeo-Johnson) were evaluated to identify their impact in the prediction of middle distillates' physical properties. Results using Yeo-Johnson transformation exhibited improved viscosity prediction capabilities over the validation set with a mean absolute percentage error of 5.3%, a root-mean-squared error of 0.23, and a coefficient of determination (R2 ) of 0.9404 using only 10 latent variables. Unlike previously reported correlations, this model allowed the identification of specific hydrocarbon groups and carbon numbers that drive jet fuel viscosity at low temperatures. The presence of even small amounts of large branched-alkanes (C15 -C17 ), dicyclic-alkanes (C10 ), and cycloaromatics (C11 ) have the potential to strongly increase the kinematic viscosity of jet fuels. Contrastingly, light monocycloalkanes and branched-alkanes (≤ C10 ) were associated with lower viscosity values. Novelly, this model suggests the implementation of Yeo-Johnson transformations to predict the physical properties of middle distillates to further improve the performance metrics of partial least squares models based on GC data.
Collapse
Affiliation(s)
| | - Gozdem Kilaz
- School of Engineering Technology, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
12
|
Schena T, von Mühlen C. Chromatographic speed classification for liquid chromatography using average theoretical peak time (ATPT). Anal Chim Acta 2024; 1287:342092. [PMID: 38182344 DOI: 10.1016/j.aca.2023.342092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/19/2023] [Accepted: 11/29/2023] [Indexed: 01/07/2024]
Abstract
BACKGROUND The development of analytical techniques in the field of liquid chromatography has brought new frontiers in performance and analytical speed for the technique. The proper evaluation of the analytical boundaries achieved with those developments was not addressed in the literature, since different liquid chromatography (LC) techniques have not yet received any classification regarding their chromatographic speed. Defining chromatographic analysis speed based simply on analysis time is an outdated concept since it is sample and analyte-dependent. In this context, the application of the Average Theoretical Peak Time concept (ATPT) is proposed as a unified metric for chromatographic speed classification. RESULTS This metric was evaluated using PCA analysis in a group of more than 50 publications, which generated the classification of LC methods in normal, high, hyper, and ultra-high-speed separations using ATPT. Normal speed (ATPT values greater than 18000 ms/peak) was found in HPLC, nano-LC, SFC, and CEC methods. Therefore, high-speed methods (ATPT values between 4000 and 18000 ms/peak) were found in UHPLC techniques, while LC × LC methods presented higher ATPT values between 1000 and 4000 ms/peak being classified as hyper-speed separations. ATPT can also be used as an optimization parameter, since older methods show higher ATPT values, while recent published papers show lower values of this metric. This behavior is justified due to the improvement of the LC methods over the years. SIGNIFICANCE This work fulfills the gap in chromatographic definitions and metrics, regarding analytical speed in one-dimensional and multidimensional liquid chromatographic techniques and shows that ATPT metrics is a robust parameter that can be used to classify the separation speed as well as a metric to evaluate the LC Method optimization. It also corrects the historical application of separation time as a metric for chromatographic speed.
Collapse
Affiliation(s)
- Tiago Schena
- Faculty of Technology, Universidade Estadual do Rio de Janeiro (UERJ), Presidente Dutra highway, km 298, Resende, (RJ), 27537-000, Brazil; LECO Instruments, Av. Das Nações Unidas, 12399 - Cj121B, São Paulo, (SP), 04578-000, Brazil.
| | - Carin von Mühlen
- Faculty of Technology, Universidade Estadual do Rio de Janeiro (UERJ), Presidente Dutra highway, km 298, Resende, (RJ), 27537-000, Brazil.
| |
Collapse
|
13
|
Milani NBL, van Gilst E, Pirok BWJ, Schoenmakers PJ. Comprehensive two-dimensional gas chromatography- A discussion on recent innovations. J Sep Sci 2023; 46:e2300304. [PMID: 37654057 DOI: 10.1002/jssc.202300304] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 08/16/2023] [Accepted: 08/19/2023] [Indexed: 09/02/2023]
Abstract
Although comprehensive 2-D GC is an established and often applied analytical method, the field is still highly dynamic thanks to a remarkable number of innovations. In this review, we discuss a number of recent developments in comprehensive 2-D GC technology. A variety of modulation methods are still being actively investigated and many exciting improvements are discussed in this review. We also review interesting developments in detection methods, retention modeling, and data analysis.
Collapse
Affiliation(s)
- Nino B L Milani
- Van't Hoff Institute for Molecular Science (HIMS), University of Amsterdam, Amsterdam, the Netherlands
| | - Eric van Gilst
- Van't Hoff Institute for Molecular Science (HIMS), University of Amsterdam, Amsterdam, the Netherlands
| | - Bob W J Pirok
- Van't Hoff Institute for Molecular Science (HIMS), University of Amsterdam, Amsterdam, the Netherlands
| | - Peter J Schoenmakers
- Van't Hoff Institute for Molecular Science (HIMS), University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
14
|
Schöneich S, Cain CN, Sudol PE, Synovec RE. Enabling cuboid-based fisher ratio analysis using total-transfer comprehensive three-dimensional gas chromatography with time-of-flight mass spectrometry. J Chromatogr A 2023; 1708:464341. [PMID: 37660566 DOI: 10.1016/j.chroma.2023.464341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/24/2023] [Accepted: 08/28/2023] [Indexed: 09/05/2023]
Abstract
Comprehensive three-dimensional (3D) gas chromatography with time-of-flight mass spectrometry (GC3-TOFMS) is a promising instrumental platform for the separation of volatiles and semi-volatiles due to its increased peak capacity and selectivity relative to comprehensive two-dimensional gas chromatography with TOFMS (GC×GC-TOFMS). Given the recent advances in GC3-TOFMS instrumentation, new data analysis methods are now required to analyze its complex data structure efficiently and effectively. This report highlights the development of a cuboid-based Fisher ratio (F-ratio) analysis for supervised, non-targeted studies. This approach builds upon the previously reported tile-based F-ratio software for GC×GC-TOFMS data. Cuboid-based F-ratio analysis is enabled by constructing 3D cuboids within the GC3-TOFMS chromatogram and calculating F-ratios for every cuboid on a per-mass channel basis. This methodology is evaluated using a GC3-TOFMS data set of jet fuel spiked with both non-native and native components. The neat and spiked jet fuels were collected on a total-transfer (100 % duty cycle) GC3-TOFMS instrument, employing thermal modulation between the first (1D) and second dimension (2D) columns and dynamic pressure gradient modulation between the 2D and third dimension (3D) columns. In total, cuboid-based F-ratio analysis discovered 32 spiked analytes in the top 50 hits at concentration ratios as low as 1.1. In contrast, tile-based F-ratio analysis of the corresponding GC×GC-TOFMS data only discovered 28 of the spiked analytes total, with only 25 of them in the top 50 hits. Along with discovering more analytes, cuboid-based F-ratio analysis of GC3-TOFMS data resulted in fewer false positives. The increased discoverability is due to the added peak capacity and selectivity provided by the 3D column with GC3-TOFMS resulting in improved chromatographic resolution.
Collapse
Affiliation(s)
- Sonia Schöneich
- Department of Chemistry, University of Washington, Box 351700, Seattle, WA 98195, USA
| | - Caitlin N Cain
- Department of Chemistry, University of Washington, Box 351700, Seattle, WA 98195, USA
| | - Paige E Sudol
- Department of Chemistry, University of Washington, Box 351700, Seattle, WA 98195, USA
| | - Robert E Synovec
- Department of Chemistry, University of Washington, Box 351700, Seattle, WA 98195, USA.
| |
Collapse
|
15
|
Chow HYJ, Górecki T. Second-Dimension Temperature Programming System for Comprehensive Two-Dimensional Gas Chromatography. Part 2: Technical Improvements and Compatibility with Flow Modulation and Time-of-Flight Mass Spectrometry. Anal Chem 2023; 95:8164-8171. [PMID: 37201205 DOI: 10.1021/acs.analchem.3c00093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The second-dimension (2D) temperature programming system (2DTPS) for comprehensive two-dimensional gas chromatography (GC × GC) described in Part 1 was updated and tested with the time-of-flight mass spectrometer (TOFMS) and flow modulator. Addition of a real-time clock and remote port allowed the 2DTPS to be a truly standalone system to be used with any GC × GC instrument. GC × GC reproducibility with the 2DTPS was tested with thermal and flow modulation, coupled with the TOFMS and/or FID to demonstrate compatibility with all typical GC × GC setups. An improvement in the match factor, reverse match factor, and signal-to-noise ratio was found when performing 2D temperature programming. Within-day and day-to-day reproducibility of the 2DTPS for the 1D retention time (≤0.04 and ≤0.05%), 2D retention time (≤0.36 and ≤0.52%), and peak area (≤2.47 and ≤3.37%) were acceptable, while providing flexibility in 2D optimization and improved peak capacity.
Collapse
Affiliation(s)
- Hei Yin J Chow
- Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Tadeusz Górecki
- Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
16
|
Chow HYJ, Górecki T. Second-Dimension Temperature Programming System for Comprehensive Two-Dimensional Gas Chromatography. Part 1: Precise Temperature Control Based on Column Electrical Resistance. Anal Chem 2023; 95:8156-8163. [PMID: 37201201 DOI: 10.1021/acs.analchem.3c00092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
A second-dimension temperature programming system (2DTPS) for comprehensive two-dimensional gas chromatography (GC × GC) is introduced, and its performance is characterized. In the system, a commercial stainless-steel capillary column was used for the separation, as a heating element, and as a temperature sensor. The second dimension (2D) column was resistively heated and controlled using an Arduino Uno R3 microcontroller. Temperature measurement was accomplished by measuring the overall 2D column's electrical resistance. A diesel sample was used to compare the 2D peak capacity (2nc) and resolution (2Rs), while a perfume sample was used to compare the reproducibility of the system for within-day (n = 5) and day-to-day (n = 5) results. The 2nc improved by 52% with the 2DTPS compared to the secondary oven. The GC × GC system utilizing the 2DTPS had an average within-day and day-to-day relative standard deviation (RSD) of 0.02 and 0.12% for the 1D retention time (1tR), 0.56 and 0.58% for the 2D retention time (2tR), and 1.18 and 1.53% for the peak area, respectively.
Collapse
Affiliation(s)
- Hei Yin J Chow
- Department of Chemistry, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Tadeusz Górecki
- Department of Chemistry, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| |
Collapse
|
17
|
Ayala-Cabrera JF, Montero L, Sahlabji T, Schmitz OJ. Comprehensive two-dimensional gas chromatography with flow modulator coupled via tube plasma ionization to an atmospheric pressure high-resolution mass spectrometer for the analysis of vermouth volatile profile. Anal Bioanal Chem 2023; 415:2561-2573. [PMID: 37059842 PMCID: PMC10149472 DOI: 10.1007/s00216-023-04688-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 04/03/2023] [Accepted: 04/03/2023] [Indexed: 04/16/2023]
Abstract
The analysis of complex samples is a big analytical challenge due to the vast number of compounds present in these samples as well as the influence matrix components could cause in the methodology. In this way, comprehensive two-dimensional gas chromatography coupled to mass spectrometry (GC × GC-MS) is a very powerful tool to achieve the characterization of complex samples. Nevertheless, due to possible coelutions occurring in these matrices, mixed spectra are generally obtained with electron ionization (EI) which could extremely complicate the identification of the analytes. Thereby, new methodology setups are required to improve the confidence on the identification in non-targeted determinations. Here, we present a high-throughput methodology consisting of GC × GC with flow modulation coupled to high-resolution atmospheric pressure mass spectrometry (HRMS) via a novel tube plasma ion source (TPI). The flow modulator allows to easily automate the GC × GC method compared to traditional cryo-modulators, while the soft ionization provided by TPI helps to preserve the [M]+• or [M+H]+ ions, thus increasing the confidence in the identification. Additionally, the combination of a flow modulation with an atmospheric pressure mass spectrometer significantly improves the sensitivity over flow modulated GC × GC-EI-MS methods because no split is required. This methodology was applied to the analysis of a complex sample such as vermouth where the volatile profile is usually considered by consumers as a product quality indicator since it raises the first sensations produced during its consumption. Using this approach, different classes of compounds were tentatively identified in the sample, including monoterpenes, terpenoids, sesquiterpenoids and carboxylic acid, and carboxylate esters among others, showing the great potential of a GC × GC-TPI-qTOF-MS platform for improving the confidence of the identifications in non-targeted applications.
Collapse
Affiliation(s)
- Juan F Ayala-Cabrera
- Applied Analytical Chemistry, University of Duisburg-Essen, Universitatsstr. 5, D-45141, Essen, Germany
- Teaching and Research Center for Separation, University of Duisburg-Essen, Universitatsstr. 5, 45141, Essen, Germany
| | - Lidia Montero
- Applied Analytical Chemistry, University of Duisburg-Essen, Universitatsstr. 5, D-45141, Essen, Germany
- Teaching and Research Center for Separation, University of Duisburg-Essen, Universitatsstr. 5, 45141, Essen, Germany
| | - Taher Sahlabji
- Department of Chemistry, College of Science, King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
| | - Oliver J Schmitz
- Applied Analytical Chemistry, University of Duisburg-Essen, Universitatsstr. 5, D-45141, Essen, Germany.
- Teaching and Research Center for Separation, University of Duisburg-Essen, Universitatsstr. 5, 45141, Essen, Germany.
| |
Collapse
|
18
|
Sorochan Armstrong MD, Hinrich JL, de la Mata AP, Harynuk JJ. PARAFAC2×N: Coupled decomposition of multi-modal data with drift in N modes. Anal Chim Acta 2023; 1249:340909. [PMID: 36868765 DOI: 10.1016/j.aca.2023.340909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 01/23/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023]
Abstract
Analysis of GC×GC-TOFMS data for large numbers of poorly-resolved peaks, and for large numbers of samples remains an enduring problem that hinders the widespread application of the technique. For multiple samples, GC×GC-TOFMS data for specific chromatographic regions manifests as a 4th order tensor of I mass spectral acquisitions, J mass channels, K modulations, and L samples. Chromatographic drift is common along both the first-dimension (modulations), and along the second-dimension (mass spectral acquisitions), while drift along the mass channel is for all practical purposes nonexistent. A number of solutions to handling GC×GC-TOFMS data have been proposed: these involve reshaping the data to make it amenable to either 2nd order decomposition techniques based on Multivariate Curve Resolution (MCR), or 3rd order decomposition techniques such as Parallel Factor Analysis 2 (PARAFAC2). PARAFAC2 has been utilised to model chromatographic drift along one mode, which has enabled its use for robust decomposition of multiple GC-MS experiments. Although extensible, it is not straightforward to implement a PARAFAC2 model that accounts for drift along multiple modes. In this submission, we demonstrate a new approach and a general theory for modelling data with drift along multiple modes, for applications in multidimensional chromatography with multivariate detection. The proposed model captures over 99.9% of variance for a synthetic data set, presenting an extreme example of peak drift and co-elution across two modes of separation.
Collapse
Affiliation(s)
| | - Jesper Løve Hinrich
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, Copenhagen, DK-1958, Denmark
| | - A Paulina de la Mata
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Dr NW, Edmonton, T6G 2G2, Alberta, Canada
| | - James J Harynuk
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Dr NW, Edmonton, T6G 2G2, Alberta, Canada.
| |
Collapse
|
19
|
Spadafora ND, Eggermont D, Křešťáková V, Chenet T, Van Rossum F, Purcaro G. Comprehensive analysis of floral scent and fatty acids in nectar of Silene nutans through modern analytical gas chromatography techniques. J Chromatogr A 2023; 1696:463977. [PMID: 37054636 DOI: 10.1016/j.chroma.2023.463977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/31/2023] [Accepted: 04/06/2023] [Indexed: 04/15/2023]
Abstract
The aim of this work was to show the potential of multidimensional gas chromatography combined with mass spectrometry and suitable chemometrics means based on untargeted and profiling data analysis to strengthen the information provided by floral scent and nectar fatty acids of four genetically differentiated lineages (E1, W1, W2, and W3) of the nocturnal moth-pollinated herb Silene nutans. Volatile organic compounds emitted by flowers were trapped for a total of 42 samples by in-vivo sampling dynamic head space for analysing floral scent by untargeted approach, while 37 samples of nectar were collected for analysing fatty acids through profiling analysis. The resulting data from floral scent analysis were aligned and compared using a tile-based methodology followed by data mining to access high-level information. Based on floral scent and nectar fatty acid results, it was possible to distinguish E1 from the W lineages, and W3 from W1 and W2. This work puts the bases for a larger study aiming to clarify the existence of prezygotic barriers involved in speciation among lineages of S. nutans, and thus the possible implication of different flower scents and nectar compositions in this phenomenon.
Collapse
Affiliation(s)
- Natasha Damiana Spadafora
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121, Ferrara, Italy
| | - Damien Eggermont
- Gembloux Agro-Bio Tech, University of Liège, Passage des Déportés 2, Gembloux, 5030, Belgium
| | - Veronika Křešťáková
- Gembloux Agro-Bio Tech, University of Liège, Passage des Déportés 2, Gembloux, 5030, Belgium; Department of Biochemistry, Faculty of Science, Masaryk University, 32500, Brno, Czech Republic
| | - Tatiana Chenet
- Department of Environment and Prevention Sciences, University of Ferrara, 44121, Ferrara, Italy
| | - Fabienne Van Rossum
- Meise Botanic Garden, Nieuwelaan 38, 1860, Meise, Belgium; Service général de l'Enseignement supérieur et de la Recherche scientifique, Fédération Wallonie-Bruxelles, rue A. Lavallée 1, 1080, Brussels, Belgium
| | - Giorgia Purcaro
- Gembloux Agro-Bio Tech, University of Liège, Passage des Déportés 2, Gembloux, 5030, Belgium.
| |
Collapse
|
20
|
Zaid A, Hassan NH, Marriott PJ, Wong YF. Comprehensive Two-Dimensional Gas Chromatography as a Bioanalytical Platform for Drug Discovery and Analysis. Pharmaceutics 2023; 15:1121. [PMID: 37111606 PMCID: PMC10140985 DOI: 10.3390/pharmaceutics15041121] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/26/2023] [Accepted: 03/27/2023] [Indexed: 04/05/2023] Open
Abstract
Over the last decades, comprehensive two-dimensional gas chromatography (GC×GC) has emerged as a significant separation tool for high-resolution analysis of disease-associated metabolites and pharmaceutically relevant molecules. This review highlights recent advances of GC×GC with different detection modalities for drug discovery and analysis, which ideally improve the screening and identification of disease biomarkers, as well as monitoring of therapeutic responses to treatment in complex biological matrixes. Selected recent GC×GC applications that focus on such biomarkers and metabolite profiling of the effects of drug administration are covered. In particular, the technical overview of recent GC×GC implementation with hyphenation to the key mass spectrometry (MS) technologies that provide the benefit of enhanced separation dimension analysis with MS domain differentiation is discussed. We conclude by highlighting the challenges in GC×GC for drug discovery and development with perspectives on future trends.
Collapse
Affiliation(s)
- Atiqah Zaid
- Centre for Research on Multidimensional Separation Science, School of Chemical Sciences, Universiti Sains Malaysia, Penang 11800, Malaysia
| | - Norfarizah Hanim Hassan
- Centre for Research on Multidimensional Separation Science, School of Chemical Sciences, Universiti Sains Malaysia, Penang 11800, Malaysia
| | - Philip J. Marriott
- Australian Centre for Research on Separation Science, School of Chemistry, Monash University, Wellington Road, Clayton, Melbourne, VIC 3800, Australia
| | - Yong Foo Wong
- Centre for Research on Multidimensional Separation Science, School of Chemical Sciences, Universiti Sains Malaysia, Penang 11800, Malaysia
| |
Collapse
|
21
|
Trinklein TJ, Cain CN, Ochoa GS, Schöneich S, Mikaliunaite L, Synovec RE. Recent Advances in GC×GC and Chemometrics to Address Emerging Challenges in Nontargeted Analysis. Anal Chem 2023; 95:264-286. [PMID: 36625122 DOI: 10.1021/acs.analchem.2c04235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Timothy J Trinklein
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195-1700, United States
| | - Caitlin N Cain
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195-1700, United States
| | - Grant S Ochoa
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195-1700, United States
| | - Sonia Schöneich
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195-1700, United States
| | - Lina Mikaliunaite
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195-1700, United States
| | - Robert E Synovec
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195-1700, United States
| |
Collapse
|
22
|
Xiang H, Xu P, Qiu H, Wen W, Zhang A, Tong S. Two-dimensional chromatography in screening of bioactive components from natural products. PHYTOCHEMICAL ANALYSIS : PCA 2022; 33:1161-1176. [PMID: 35934878 DOI: 10.1002/pca.3168] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
INTRODUCTION Screening and analysis of bioactive components from natural products is a fundamental part of new drug development and innovation. Two-dimensional (2D) chromatography has been demonstrated to be an effective method for screening and preparation of specific bioactive components from complex natural products. OBJECTIVE To collect details of application of 2D chromatography in screening of natural product bioactive components and to outline the research progress of different separation mechanisms and strategies. METHODOLOGY Three screening strategies based on 2D chromatography are reviewed, including traditional separation-based screening, bioactivity-guided screening and affinity chromatography-based screening. Meanwhile, in order to cover these aspects, selections of different separation mechanisms and modes are also presented. RESULTS Compared with traditional one-dimensional (1D) chromatography, 2D chromatography has unique advantages in terms of peak capacity and resolution, and it is more effective for screening and identifying bioactive components of complex natural products. CONCLUSION Screening of natural bioactive components using 2D chromatography helps separation and analysis of complex samples with greater targeting and relevance, which is very important for development of innovative drug leads.
Collapse
Affiliation(s)
- Haiping Xiang
- College of Pharmaceutical Science, Zhejiang University of Technology, Huzhou, China
| | - Ping Xu
- College of Pharmaceutical Science, Zhejiang University of Technology, Huzhou, China
| | - Huiyun Qiu
- College of Pharmaceutical Science, Zhejiang University of Technology, Huzhou, China
| | - Weiyi Wen
- College of Pharmaceutical Science, Zhejiang University of Technology, Huzhou, China
| | - Ailian Zhang
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou, China
| | - Shengqiang Tong
- College of Pharmaceutical Science, Zhejiang University of Technology, Huzhou, China
| |
Collapse
|
23
|
Authentication of fish oil (omega-3) supplements using class-oriented chemometrics and comprehensive two-dimensional gas chromatography coupled to mass spectrometry. Anal Bioanal Chem 2022; 415:2601-2611. [PMID: 36374319 DOI: 10.1007/s00216-022-04428-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 10/31/2022] [Accepted: 11/04/2022] [Indexed: 11/16/2022]
Abstract
Food supplement authentication is an important concern worldwide due to the ascending consumption related to health benefits and its lack of effective regulation in underdeveloped countries, making it a target of fraudulent activities. In this context, this study evaluated fish oil supplements by comprehensive two-dimensional gas chromatography coupled to mass spectrometry (GC×GC-MS) to obtain fingerprints, which were used to build predictive models for automated authentication of the most popular products sold in Brazil. The authentication process relied on a one-class classifier model using data-driven soft independent modeling of class analogy (DD-SIMCA). The output of the model was a binary classifier: certified IFOS fish oils and non-certified ones - regardless of the source of adulteration. The compositional analysis showed a significant variation in the samples, which validated the need for reliable statistical models. The DD-SIMCA algorithm is still incipient in GC×GC studies, but it proved to be an excellent tool for authenticity purposes, achieving a chemometric model with a sensitivity of 100%, specificity of 98.6%, and accuracy of 99.0% for fish oil authentication. Finally, orthogonalized partial least square discriminant analysis (OPLS-DA) was used to identify the features that distinguished the groups, which ascertained the results of the DD-SIMCA model that IFOS-certified oils are positively correlated to omega-3 fatty acids, including eicosapentaenoic acid (EPA, C20:5 n-3) and docosahexaenoic acid (DHA, C22:6 n-3).
Collapse
|
24
|
Seeley JV, Schimmel NE, Seeley SK. Influence of modulator injection width on comprehensive two-dimensional gas chromatography peak dimensions. Anal Bioanal Chem 2022; 415:2399-2409. [PMID: 36301331 DOI: 10.1007/s00216-022-04387-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/10/2022] [Accepted: 10/13/2022] [Indexed: 11/24/2022]
Abstract
This study examines how the height and width of peaks exiting the secondary column of a comprehensive two-dimensional gas chromatography (GC × GC) separation are affected by the width of the pulse introduced to the secondary column. A flow-modulated GC × GC apparatus was assembled that allowed input pulse widths to be controlled precisely over a range of 10 to 70 ms. GC × GC chromatograms were obtained using secondary columns containing a polyethylene glycol stationary phase with internal diameters of 0.25 and 0.32 mm. The area, height, and width of peaks emerging from the secondary column were found to be accurately modeled by the convolution of a rectangular function with a Gaussian distribution. The rectangular function represents the input pulse, and the Gaussian distribution represents the broadening that occurs in the secondary column. The minimum peak width that could be produced by the secondary column was determined for a wide range of compounds. Injection pulse widths that matched a compound's minimum peak width produced peaks that were 25% wider than the minimum width and had heights that were 76% of the maximum possible peak height. Increasing the injection width significantly above the minimum width yielded substantially broader peaks with only a modest increase (< 25%) in peak height.
Collapse
Affiliation(s)
- John V Seeley
- Department of Chemistry, Oakland University, Rochester, MI, 48309, USA.
| | | | - Stacy K Seeley
- Division of Arts and Sciences, Mott Community College, Flint, MI, 48504, USA
| |
Collapse
|
25
|
Janta P, Wongla B, Phayoonhong W, Intarapanich O, Kokpol S, Mahatheeranont S, Kulsing C. Analysis of low-volatility pesticides in cabbage by high temperature comprehensive two-dimensional gas chromatography. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:3180-3187. [PMID: 35929731 DOI: 10.1039/d2ay00998f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
High-temperature comprehensive two-dimensional gas chromatography (HTGC × GC) using a longitudinally modulated cryogenic system (LMCS) was developed for the analysis of low-volatility pesticides in cabbage. The method applied DB-17HT and DB-5HT as the first and second dimensional (1D and 2D) columns, respectively. Twelve pesticides, namely 6 organochlorines (4,4'-DDT, β-endosulfan, endosulfan sulfate, endrin, heptachlor, and dicofol), 4 carbamates (metolcarb, isoprocarb, methiocarb, and carbofuran), 1 organophosphate (chlorpyrifos), and 1 pyrethroid (permethrin), were spiked into cabbage samples and prepared using QuEChERS. The applied oven temperature was up to 340 °C, enabling the elution of all the target pesticides and the matrix. The effects of initial oven temperature program, temperature ramp rate, LMCS trap temperature, and modulation period (PM) on the separation results were investigated, leading to the suitable conditions of 80 °C, 15 °C min-1, 10 °C, and 12 s, respectively. The method detection limits, signal-to-noise ratio, and recoveries of the compounds were within the ranges of 0.01-0.09 mg kg-1, 4.26-32.7, and 78-104%, respectively. Good linearity ranges within the concentration range of 0.1-1 ppm with R2 > 0.9134 were also obtained with the intra and interday precisions of the peak areas of 0.4-9.8% and 1.0-10.2%, respectively.
Collapse
Affiliation(s)
- Pannipa Janta
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Bussaba Wongla
- Food Research and Testing Laboratory, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Wilai Phayoonhong
- Food Research and Testing Laboratory, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Oraphan Intarapanich
- Food Research and Testing Laboratory, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Sirirat Kokpol
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
- Food Research and Testing Laboratory, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Sugunya Mahatheeranont
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand.
| | - Chadin Kulsing
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
- Food Research and Testing Laboratory, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
- Special Task Force for Activating Research (STAR) in Flavor Science, Chulalongkorn University, Phayatai Rd., Wangmai, Pathumwan, Bangkok 10330, Thailand
| |
Collapse
|
26
|
von Mühlen C, Mangelli LN, Marriott PJ. Average theoretical peak time as a metric to analytical speed in one dimensional and multidimensional gas chromatographic separations. J Chromatogr A 2022; 1667:462887. [DOI: 10.1016/j.chroma.2022.462887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/21/2022] [Accepted: 02/06/2022] [Indexed: 11/25/2022]
|
27
|
Rocha SM, Costa CP, Martins C. Aroma Clouds of Foods: A Step Forward to Unveil Food Aroma Complexity Using GC × GC. Front Chem 2022; 10:820749. [PMID: 35300387 PMCID: PMC8921485 DOI: 10.3389/fchem.2022.820749] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 01/24/2022] [Indexed: 12/05/2022] Open
Abstract
The human senses shape the life in several aspects, namely well-being, socialization, health status, and diet, among others. However, only recently, the understanding of this highly sophisticated sensory neuronal pathway has gained new advances. Also, it is known that each olfactory receptor cell expresses only one type of odorant receptor, and each receptor can detect a limited number of odorant substances. Odorant substances are typically volatile or semi-volatile in nature, exhibit low relative molecular weight, and represent a wide variety of chemical families. These molecules may be released from foods, constituting clouds surrounding them, and are responsible for their aroma properties. A single natural aroma may contain a huge number of volatile components, and some of them are present in trace amounts, which make their study especially difficult. Understanding the components of food aromas has become more important than ever with the transformation of food systems and the increased innovation in the food industry. Two-dimensional gas chromatography and time-of-flight mass spectrometry (GC × GC-ToFMS) seems to be a powerful technique for the analytical coverage of the food aromas. Thus, the main purpose of this review is to critically discuss the potential of the GC × GC-based methodologies, combined with a headspace solvent-free microextraction technique, in tandem with data processing and data analysis, as a useful tool to the analysis of the chemical aroma clouds of foods. Due to the broad and complex nature of the aroma chemistry subject, some concepts and challenges related to the characterization of volatile molecules and the perception of aromas will be presented in advance. All topics covered in this review will be elucidated, as much as possible, with examples reported in recent publications, to make the interpretation of the fascinating world of food aroma chemistry more attractive and perceptive.
Collapse
Affiliation(s)
- Sílvia M. Rocha
- LAQV-REQUIMTE and Departamento de Química, Universidade de Aveiro, Campus Universitário Santiago, Aveiro, Portugal
| | | | | |
Collapse
|
28
|
Zaid A, Khan MS, Yan D, Marriott PJ, Wong YF. Comprehensive two-dimensional gas chromatography with mass spectrometry: an advanced bioanalytical technique for clinical metabolomics studies. Analyst 2022; 147:3974-3992. [DOI: 10.1039/d2an00584k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review highlights the current state of knowledge in the development of GC × GC-MS for the analysis of clinical metabolites. Selected applications are described as well as our perspectives on current challenges and potential future directions.
Collapse
Affiliation(s)
- Atiqah Zaid
- Centre for Research on Multidimensional Separation Science, School of Chemical Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Mohammad Sharif Khan
- Cargill Research and Development Center, Cargill, 14800 28th Ave N, Plymouth, MN 55447, USA
| | - Dandan Yan
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Philip J. Marriott
- Australian Centre for Research on Separation Science, School of Chemistry, Monash University, Wellington Road, Clayton, VIC 3800, Australia
| | - Yong Foo Wong
- Centre for Research on Multidimensional Separation Science, School of Chemical Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia
| |
Collapse
|
29
|
Moreira de Oliveira A, Alberto Teixeira C, Wang Hantao L. Evaluation of the retention profile in flow-modulated comprehensive two-dimensional gas chromatography and independent component analysis of weathered heavy oils. Microchem J 2022. [DOI: 10.1016/j.microc.2021.106978] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
30
|
Abdulhussain N, Nawada S, Schoenmakers P. Latest Trends on the Future of Three-Dimensional Separations in Chromatography. Chem Rev 2021; 121:12016-12034. [PMID: 33878259 PMCID: PMC8517953 DOI: 10.1021/acs.chemrev.0c01244] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Indexed: 12/26/2022]
Abstract
Separation and characterization of complex mixtures are of crucial importance in many fields, where extremely high separation power is required. Three-dimensional separation techniques can offer a path toward achieving high peak capacities. In this Review, online three-dimensional separation systems are discussed, including three-dimensional gas chromatography, and hyphenated combinations of two-dimensional gas chromatography with liquid chromatography or supercritical-fluid chromatography. Online comprehensive two-dimensional liquid chromatography provides detailed information on complex samples and the need for higher peak capacities is pushing researchers toward online three-dimensional liquid chromatography. In this review, an overview of the various combinations are provided and we discuss and compare their potential performance, advantages, perspectives, and results obtained during the most recent 10-15 years. Finally, the Review will discuss a novel approach of spatial three-dimensional liquid separation to increase peak capacity.
Collapse
Affiliation(s)
- Noor Abdulhussain
- Van’t
Hoff Institute for Molecular Sciences, University
of Amsterdam, Science Park, 1098 XH, Amsterdam, The Netherlands
- The
Centre for Analytical Sciences Amsterdam (CASA), University of Amsterdam, 1098 XH, Amsterdam, The Netherlands
| | - Suhas Nawada
- Van’t
Hoff Institute for Molecular Sciences, University
of Amsterdam, Science Park, 1098 XH, Amsterdam, The Netherlands
- The
Centre for Analytical Sciences Amsterdam (CASA), University of Amsterdam, 1098 XH, Amsterdam, The Netherlands
| | - Peter Schoenmakers
- Van’t
Hoff Institute for Molecular Sciences, University
of Amsterdam, Science Park, 1098 XH, Amsterdam, The Netherlands
- The
Centre for Analytical Sciences Amsterdam (CASA), University of Amsterdam, 1098 XH, Amsterdam, The Netherlands
| |
Collapse
|
31
|
Low Quantity but Critical Contribution to Flavor: Review of The Current Understanding of Volatile Sulfur-containing Compounds in Baijiu. J Food Compost Anal 2021. [DOI: 10.1016/j.jfca.2021.104079] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
32
|
de Alvarenga JFR, Genaro B, Costa BL, Purgatto E, Manach C, Fiamoncini J. Monoterpenes: current knowledge on food source, metabolism, and health effects. Crit Rev Food Sci Nutr 2021; 63:1352-1389. [PMID: 34387521 DOI: 10.1080/10408398.2021.1963945] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Monoterpenes, volatile metabolites produced by plants, are involved in the taste and aroma perception of fruits and vegetables and have been used for centuries in gastronomy, as food preservatives and for therapeutic purposes. Biological activities such as antimicrobial, analgesic and anti-inflammatory are well-established for some of these molecules. More recently, the ability of monoterpenes to regulate energy metabolism, and exert antidiabetic, anti-obesity and gut microbiota modulation activities have been described. Despite their promising health effects, the lack of reliable quantification of monoterpenes in food, hindered the investigation of their role as dietary bioactive compounds in epidemiological studies. Moreover, only few studies have documented the biotransformation of these compounds and identified the monoterpene metabolites with biological activity. This review presents up-to-date knowledge about the occurrence of monoterpenes in food, their bioavailability and potential role in the modulation of intermediate metabolism and inflammation, focusing on novel findings of molecular mechanisms, underlining research gaps and new avenues to be explored.
Collapse
Affiliation(s)
- José Fernando Rinaldi de Alvarenga
- Department of Food and Experimental Nutrition. Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil.,Food Research Center (FoRC), University of São Paulo, São Paulo, Brazil
| | - Brunna Genaro
- Department of Food and Experimental Nutrition. Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Bruna Lamesa Costa
- Department of Food and Experimental Nutrition. Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Eduardo Purgatto
- Department of Food and Experimental Nutrition. Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil.,Food Research Center (FoRC), University of São Paulo, São Paulo, Brazil
| | - Claudine Manach
- Université Clermont Auvergne, INRAE, UNH, Clermont-Ferrand, France
| | - Jarlei Fiamoncini
- Department of Food and Experimental Nutrition. Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil.,Food Research Center (FoRC), University of São Paulo, São Paulo, Brazil
| |
Collapse
|
33
|
Mikaliunaite L, Sudol PE, Cain CN, Synovec RE. Baseline correction method for dynamic pressure gradient modulated comprehensive two-dimensional gas chromatography with flame ionization detection. J Chromatogr A 2021; 1652:462358. [PMID: 34237483 DOI: 10.1016/j.chroma.2021.462358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 11/18/2022]
Abstract
A baseline correction method is developed for comprehensive two-dimensional (2D) chromatography (GC × GC) with flame-ionization detection (FID) using dynamic pressure gradient modulation (DPGM). The DPGM-GC × GC-FID utilized porous layer open tubular (PLOT) columns in both dimensions to focus on light hydrocarbon separations. Since DPGM is nominally a stop-flow modulation technique, a rhythmic baseline disturbance is observed in the FID signal that cycles with the modulation period (PM). This baseline disturbance needs to be corrected to optimize trace analysis. The baseline correction method has three steps: collection of a background "blank" chromatogram and multiplying it by an optimized normalization factor, subtraction of the normalization-optimized background chromatogram from a sample chromatogram, and application of Savitzky-Golay smoothing. An alkane standard solution, containing pentane, hexane and heptane was used for method development, producing linear calibration curves (r2 > 0.991) over a broad concentration range (7.8 ppm - 4000 ppm). Further, the limit-of-detection (LOD) and limit-of-quantification (LOQ) were determined for pentane (LOD = 2.5 ppm, LOQ = 8.2 ppm), hexane (LOD = 0.9 ppm, LOQ = 3.0 ppm), and heptane (LOD = 1.9 ppm, LOQ = 6.4 ppm). A natural gas sample separation illustrated method applicability, whereby the DPGM produced a signal enhancement (SE) of 30 for isopentane, where SE is defined as the height of the tallest 2D peak in the modulated chromatogram for the analyte divided by the height of the unmodulated 1D peak. The 30-fold SE resulted in about a 10-fold improvement in the signal-to-noise ratio (S/N) for isopentane. Additional versatility of the baseline correction method for more complicated samples was demonstrated for an unleaded gasoline sample, which enabled the detection (and visual appearance) of trace components.
Collapse
Affiliation(s)
- Lina Mikaliunaite
- Department of Chemistry, University of Washington, Box 351700, Seattle, WA 98195, USA
| | - Paige E Sudol
- Department of Chemistry, University of Washington, Box 351700, Seattle, WA 98195, USA
| | - Caitlin N Cain
- Department of Chemistry, University of Washington, Box 351700, Seattle, WA 98195, USA
| | - Robert E Synovec
- Department of Chemistry, University of Washington, Box 351700, Seattle, WA 98195, USA.
| |
Collapse
|
34
|
Stefanuto PH, Smolinska A, Focant JF. Advanced chemometric and data handling tools for GC×GC-TOF-MS. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116251] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
35
|
Ferracane A, Zoccali M, Cacciola F, Salerno TMG, Tranchida PQ, Mondello L. Determination of multi-pesticide residues in vegetable products using a "reduced-scale" Quechers method and flow-modulated comprehensive two-dimensional gas chromatography-triple quadrupole mass spectrometry. J Chromatogr A 2021; 1645:462126. [PMID: 33848657 DOI: 10.1016/j.chroma.2021.462126] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 03/23/2021] [Accepted: 03/25/2021] [Indexed: 01/25/2023]
Abstract
The aim of the present research was the development of an analytical method for the determination of multi-pesticide residues (88 target analytes) in four vegetable products (tomatoes, cucumbers, sweet red peppers and iceberg lettuce) using a "reduced-scale" QuEChERS (quick, easy, cheap, effective, rugged, and safe) extraction method and flow-modulated comprehensive two-dimensional gas chromatography-triple quadrupole mass spectrometry. In particular, the suitability of flow modulation [with relatively high second-dimension gas flow conditions (8 mL min-1)] for trace analyte determination was evaluated. The samples were prepared according to the QuEChERS procedure as reported by the official European Union method, namely EN 15662:2018, based on the use of 3 g of vegetable product. Matrix-matched calibration processes were carried out for all the samples. The figures-of-merit determined were recovery, linearity, precision, limits of detection (LoDs), and limits of quantification (LoQs). Specifically, recoveries were in the 53-160% range, regression coefficients were between 0.9156 and 0.9999, the LoDs were in the 0.1-6.3 μg kg-1 range, the LoQs were in the 3.0-21.0 μg kg-1 range, and coefficients of variation were between 1 and 28% (at the 50 μg kg-1 level).
Collapse
Affiliation(s)
- Antonio Ferracane
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Mariosimone Zoccali
- Department of Mathematical and Computer Science, Physical Sciences and Earth Sciences, University of Messina, Messina, Italy.
| | - Francesco Cacciola
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, Messina, Italy
| | - Tania Maria Grazia Salerno
- BeSep s.r.l., c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Peter Q Tranchida
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Luigi Mondello
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy; BeSep s.r.l., c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy; Chromaleont s.r.l., c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy; Department of Sciences and Technologies for Human and Environment, University Campus Bio-Medico of Rome, Rome, Italy
| |
Collapse
|
36
|
Aloisi I, Giocastro B, Ferracane A, Salerno TMG, Zoccali M, Tranchida PQ, Mondello L. Preliminary observations on the use of a novel low duty cycle flow modulator for comprehensive two-dimensional gas chromatography. J Chromatogr A 2021; 1643:462076. [PMID: 33789193 DOI: 10.1016/j.chroma.2021.462076] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/11/2021] [Accepted: 03/15/2021] [Indexed: 11/16/2022]
Abstract
The present research is focused on the preliminary evaluation, in particular in relation to the advisable operational conditions, of a novel low duty cycle flow modulator. In such a respect, a fast comprehensive two-dimensional gas chromatography-mass spectrometry method is herein proposed. Applications on a C7-C30 series of alkanes, 64 fragrance allergens (plus 2 internal standards), and 5 perfumes, were carried out by using two different column sets, low-polarity + medium-polarity and low-polarity + low-polarity. In both cases, the first column was of dimensions 10 m × 0.25 mm ID × 0.25 µm df, while the second one was of dimensions 1 m × 0.10 mm ID × 0.10 µm df. A modulation period of 700 ms, with a re-injection period of 80 ms, was used in order to obtain a higher duty cycle (measured to be approx. 0.04). Absolute quantification of the allergens was carried out by using two internal standards, namely 1,4-dibromobenzene and 4,4'-dibromobiphenyl. In terms of limits of quantification the instrumental response was characterized by a wide variability, ranging between 9 ppb and 5.4 ppm for both column sets. A total number of 97 fragrance allergens were identified and quantified in five commercial perfumes.
Collapse
Affiliation(s)
- Ivan Aloisi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Barbara Giocastro
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Antonio Ferracane
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Tania M G Salerno
- BeSep s.r.l., c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Mariosimone Zoccali
- Department of Mathematical and Computer Science, Physical Sciences and Earth Sciences, University of Messina, Messina, Italy
| | - Peter Q Tranchida
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy.
| | - Luigi Mondello
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy; BeSep s.r.l., c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy; Chromaleont s.r.l., c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy; Unit of Food Science and Nutrition, Department of Medicine, University Campus Bio-Medico of Rome, Rome, Italy
| |
Collapse
|
37
|
Giocastro B, Zoccali M, Tranchida PQ, Mondello L. Evaluation of different internal diameter coated modulation columns within the context of solid-state modulation. J Sep Sci 2021; 44:1923-1930. [PMID: 33594784 DOI: 10.1002/jssc.202001031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 01/17/2021] [Accepted: 02/13/2021] [Indexed: 11/08/2022]
Abstract
The solid-state-modulator is a consumable-free thermal modulator, used within the context of comprehensive two-dimensional gas chromatography. Its consumable-free nature is guaranteed by the presence of a thermal-electric cooler device located between two heated chambers, everything located outside the gas chrpmatograph oven. The aim of the present research is to evaluate the solid-state-modulator modulation performance in relationship to different modulation capillary geometries. For this purpose, two coated modulation capillaries with the same length, but with different internal diameters (0.25 and 0.18 mm) were used. The effects of gas linear velocity, modulator temperature, and modulation period were evaluated in several applications involving standard alkanes and a sample of diesel fuel. Fundamental gas chromatography parameters (peaks widths, resolution) were measured under the different experimental conditions. Detailed information is provided on gas flow optimization, with particular emphasis on the efficiency of chromatography band reinjection onto the second-dimension column. The results obtained from the present investigation highlight how the modulation capillary characteristics have a great impact on the overall comprehensive two-dimensional gas chromatography separation. Specifically, considering the results herein attained, the use of a 0.18 mm ID × 0.18 μm df modulation column is advisable compared to a 0.25 mm ID × 0.25 μm df one.
Collapse
Affiliation(s)
- Barbara Giocastro
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, Messina, Italy
| | - Mariosimone Zoccali
- Department of Mathematical and Computer Science, Physical Sciences and Earth Sciences, University of Messina, Messina, Italy
| | - Peter Q Tranchida
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, Messina, Italy
| | - Luigi Mondello
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, Messina, Italy.,Chromaleont s.r.l., c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy.,BeSep s.r.l., c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy.,Unit of Food Science and Nutrition, Department of Medicine, University Campus Bio-Medico of Rome, Rome, Italy
| |
Collapse
|
38
|
Rasheed DM, Serag A, Abdel Shakour ZT, Farag M. Novel trends and applications of multidimensional chromatography in the analysis of food, cosmetics and medicine bearing essential oils. Talanta 2021; 223:121710. [DOI: 10.1016/j.talanta.2020.121710] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/22/2020] [Accepted: 09/24/2020] [Indexed: 12/17/2022]
|
39
|
Pollo BJ, Teixeira CA, Belinato JR, Furlan MF, Cunha ICDM, Vaz CR, Volpato GV, Augusto F. Chemometrics, Comprehensive Two-Dimensional gas chromatography and “omics” sciences: Basic tools and recent applications. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2020.116111] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
40
|
Janta P, Pinyo D, Yodta Y, Vasasiri P, Weidenbach M, Pursch M, Yang X(G, Kulsing C. Strategies towards simpler configuration and higher peak capacity with comprehensive multidimensional gas chromatography. RSC Adv 2021; 11:7946-7953. [PMID: 35423345 PMCID: PMC8695086 DOI: 10.1039/d0ra10495g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 02/07/2021] [Indexed: 11/21/2022] Open
Abstract
Experimental and data analysis approaches in multidimensional gas chromatography (MDGC) comprising comprehensive multiple heart-cut (H/C) and comprehensive two dimensional GC (GC × GC) were developed with an example application illustrated for analysis of a technical glycol precursor sample. The GC × GC system employed a long 1D (30 m) and a short 2D (5 m) column with a flow modulator and a Deans switch (DS) as a splitter; meanwhile. The H/C system was applied solely as a DS located between long 1D (30 m) and 2D (60 m) columns without use of cryogenic trapping devices. The effects of injection time and 2D column flow in GC × GC and the impacts of H/C window and number of injections (total analysis time) in H/C analysis were investigated. The analysis performance for each condition was evaluated according to peak capacity and number of separated compounds. The continuum between the two techniques was then established via the relationship between analysis time and analysis performance. The separation performances were improved with longer analysis time so that the suitable condition was selected within this compromise. Under the selected conditions, volatile compounds in the technical glycol precursor sample were identified according to the match between the experimental MS spectra and first dimensional retention indices (1I) with that from the NIST2014 database and literature. An hour analysis with GC × GC resulted in a total peak capacity of 798, number of separated peaks of 61 and average MS match score of 887 ± 35; meanwhile, the corresponding numbers were improved to be 9198, 107 and 898 ± 24, respectively, with the 25 h comprehensive H/C analysis. Experimental and data analysis approaches in MDGC comprising comprehensive H/C and GC × GC were developed with an example application illustrated for analysis of a technical glycol precursor sample.![]()
Collapse
Affiliation(s)
- Pannipa Janta
- Department of Chemistry
- Faculty of Science
- Chulalongkorn University
- Bangkok 10330
- Thailand
| | - Duangkamol Pinyo
- The Center for Advanced Analytical Technology
- Dow Chemical Thailand Ltd
- Rayong 21150
- Thailand
| | - Yamonporn Yodta
- The Center for Advanced Analytical Technology
- Dow Chemical Thailand Ltd
- Rayong 21150
- Thailand
| | - Porames Vasasiri
- The Center for Advanced Analytical Technology
- Dow Chemical Thailand Ltd
- Rayong 21150
- Thailand
| | | | - Matthias Pursch
- Analytical Science
- Dow Deutschland Anlagen GmbH
- 21677 Stade
- Germany
| | | | - Chadin Kulsing
- Department of Chemistry
- Faculty of Science
- Chulalongkorn University
- Bangkok 10330
- Thailand
| |
Collapse
|
41
|
Comprehensive Two-Dimensional Gas Chromatography Mass Spectrometry-Based Metabolomics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1280:57-67. [PMID: 33791974 DOI: 10.1007/978-3-030-51652-9_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Compared to one-dimensional gas chromatography with mass spectrometry (GC-MS), GC × GC-MS provides significantly increased peak capacity, resolution, and sensitivity for analysis of complex biological samples. In the last decade, GC × GC-MS has been increasingly applied to the discovery of metabolite biomarkers and elucidation of metabolic mechanisms in human diseases. The recent development of coupling GC × GC with a high-resolution mass spectrometer further accelerates these metabolomic applications. In this chapter, we will briefly review the instrumentation, sample preparation, data analysis, and applications of GC × GC-MS-based metabolomic analysis.
Collapse
|
42
|
Practical Considerations in Method Development for Gas Chromatography-Based Metabolomic Profiling. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1336:139-157. [PMID: 34628631 DOI: 10.1007/978-3-030-77252-9_8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This chapter discusses the fundamentals of gas chromatography (GC) to improve method development for metabolic profiling of complex biological samples. The selection of column geometry and phase ratio impacts analyte mass transfer, which must be carefully optimized for fast analysis. Stationary phase selection is critical to obtain baseline resolution of critical pairs, but such selection must consider important aspects of metabolomic protocols, such as derivatization and dependence of analyte identification on existing databases. Sample preparation methods are also addressed depending on the sample matrix, including liquid-liquid extraction and solid-phase microextraction.
Collapse
|
43
|
Comparison of Thermal and Flow-Based Modulation in Comprehensive Two-Dimensional Gas Chromatography—Time-of-Flight Mass Spectrometry (GC × GC-TOFMS) for the Analysis of Base Oils. SEPARATIONS 2020. [DOI: 10.3390/separations7040070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Base oils are produced by refining crude oil or through chemical synthesis. They are a key component of engine oils. With an immense range of carbon numbers and boiling points, analyzing such complex mixtures is very difficult. The need to monitor industrial petroleum processing steps, as well as to identify petrochemical environmental pollutants, drives the search for improved characterization methods. Comprehensive two-dimensional gas chromatography (GC × GC) is one of the best tools for that. The modulator used in GC × GC is responsible for trapping/sampling the first dimension (1D) column analytes, then reinjecting them in the form of narrow bands onto the second dimension (2D) column for further separation. Modulators used today generally fall into two categories, thermal and flow ones. Heater-based thermal modulators trap the 1D column effluent at or above ambient temperatures. Flow-based modulators utilize storage loop(s) to collect the 1D effluent, which is subsequently flushed into the second-dimension column for further separation. A single-stage, consumable-free thermal modulator and a reverse fill/flush flow modulator were compared for the characterization of base oils. Both were evaluated on their ability to achieve separation of several conventional and synthetic engine oils components. A reverse column set, polar 1D and nonpolar 2D, allowed group-type analysis of all classes, including linear, branched, and aromatic species. The results show the ability to achieve a comprehensive separation of specific compound classes and the differentiation of engine oil types and manufacturers. Soft ionization assisted in tentative identification of two alkylated diphenylamines in each sample. The advantages and limitations of both thermal and flow modulation are presented.
Collapse
|
44
|
Wilde MJ, Zhao B, Cordell RL, Ibrahim W, Singapuri A, Greening NJ, Brightling CE, Siddiqui S, Monks PS, Free RC. Automating and Extending Comprehensive Two-Dimensional Gas Chromatography Data Processing by Interfacing Open-Source and Commercial Software. Anal Chem 2020; 92:13953-13960. [PMID: 32985172 PMCID: PMC7644112 DOI: 10.1021/acs.analchem.0c02844] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Comprehensive
two-dimensional gas chromatography (GC×GC) is
a powerful analytical tool for both nontargeted and targeted analyses.
However, there is a need for more integrated workflows for processing
and managing the resultant high-complexity datasets. End-to-end workflows
for processing GC×GC data are challenging and often require multiple
tools or software to process a single dataset. We describe a new approach,
which uses an existing underutilized interface within commercial software
to integrate free and open-source/external scripts and tools, tailoring
the workflow to the needs of the individual researcher within a single
software environment. To demonstrate the concept, the interface was
successfully used to complete a first-pass alignment on a large-scale
GC×GC metabolomics dataset. The analysis was performed by interfacing
bespoke and published external algorithms within a commercial software
environment to automatically correct the variation in retention times
captured by a routine reference standard. Variation in 1tR and 2tR was reduced on average
from 8 and 16% CV prealignment to less than 1 and 2% post alignment,
respectively. The interface enables automation and creation of new
functions and increases the interconnectivity between chemometric
tools, providing a window for integrating data-processing software
with larger informatics-based data management platforms.
Collapse
Affiliation(s)
- Michael J Wilde
- School of Chemistry, University of Leicester, University Road, Leicester LE1 7RH, U.K.,Department of Respiratory Sciences, University of Leicester, University Road, Leicester LE1 7RH, U.K
| | - Bo Zhao
- Leicester NIHR Biomedical Research Centre, Glenfield Hospital, Groby Road, Leicester LE3 9QP, U.K
| | - Rebecca L Cordell
- School of Chemistry, University of Leicester, University Road, Leicester LE1 7RH, U.K
| | - Wadah Ibrahim
- Department of Respiratory Sciences, University of Leicester, University Road, Leicester LE1 7RH, U.K.,Leicester NIHR Biomedical Research Centre, Glenfield Hospital, Groby Road, Leicester LE3 9QP, U.K
| | - Amisha Singapuri
- Department of Respiratory Sciences, University of Leicester, University Road, Leicester LE1 7RH, U.K.,Leicester NIHR Biomedical Research Centre, Glenfield Hospital, Groby Road, Leicester LE3 9QP, U.K
| | - Neil J Greening
- Department of Respiratory Sciences, University of Leicester, University Road, Leicester LE1 7RH, U.K.,Leicester NIHR Biomedical Research Centre, Glenfield Hospital, Groby Road, Leicester LE3 9QP, U.K
| | - Chris E Brightling
- Department of Respiratory Sciences, University of Leicester, University Road, Leicester LE1 7RH, U.K.,Leicester NIHR Biomedical Research Centre, Glenfield Hospital, Groby Road, Leicester LE3 9QP, U.K
| | - Salman Siddiqui
- Department of Respiratory Sciences, University of Leicester, University Road, Leicester LE1 7RH, U.K.,Leicester NIHR Biomedical Research Centre, Glenfield Hospital, Groby Road, Leicester LE3 9QP, U.K
| | - Paul S Monks
- School of Chemistry, University of Leicester, University Road, Leicester LE1 7RH, U.K
| | - Robert C Free
- Leicester NIHR Biomedical Research Centre, Glenfield Hospital, Groby Road, Leicester LE3 9QP, U.K
| |
Collapse
|
45
|
Development of gas chromatographic pattern recognition and classification tools for compliance and forensic analyses of fuels: A review. Anal Chim Acta 2020; 1132:157-186. [DOI: 10.1016/j.aca.2020.07.027] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 06/12/2020] [Accepted: 07/14/2020] [Indexed: 01/29/2023]
|
46
|
Cain CN, Schöneich S, Synovec RE. Development of an Enhanced Total Ion Current Chromatogram Algorithm to Improve Untargeted Peak Detection. Anal Chem 2020; 92:11365-11373. [DOI: 10.1021/acs.analchem.0c02136] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Caitlin N. Cain
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195-1700, United States
| | - Sonia Schöneich
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195-1700, United States
| | - Robert E. Synovec
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195-1700, United States
| |
Collapse
|
47
|
Schöneich S, Gough DV, Trinklein TJ, Synovec RE. Dynamic pressure gradient modulation for comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry detection. J Chromatogr A 2020; 1620:460982. [DOI: 10.1016/j.chroma.2020.460982] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/13/2020] [Accepted: 02/17/2020] [Indexed: 10/25/2022]
|
48
|
Characterization of volatile sulfur compounds in soy sauce aroma type Baijiu and changes during fermentation by GC × GC-TOFMS, organoleptic impact evaluation, and multivariate data analysis. Food Res Int 2020; 131:109043. [DOI: 10.1016/j.foodres.2020.109043] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 01/13/2020] [Accepted: 01/27/2020] [Indexed: 11/20/2022]
|
49
|
Towards the determination of an equivalent standard column set between cryogenic and flow-modulated comprehensive two-dimensional gas chromatography. Anal Chim Acta 2020; 1105:231-236. [DOI: 10.1016/j.aca.2020.01.040] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/14/2020] [Accepted: 01/17/2020] [Indexed: 11/18/2022]
|
50
|
Gough DV, Schӧneich S, Synovec RE. Chemometric decomposition of comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry data employing partial modulation in the negative pulse mode. Talanta 2020; 210:120670. [DOI: 10.1016/j.talanta.2019.120670] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 12/20/2019] [Accepted: 12/21/2019] [Indexed: 01/07/2023]
|