1
|
Hatamie A, He X, Ewing A, Rorsman P. From Insulin Measurement to Partial Exocytosis Model: Advances in Single Pancreatic Beta Cell Amperometry over Four Decades. ACS MEASUREMENT SCIENCE AU 2024; 4:629-637. [PMID: 39713028 PMCID: PMC11659994 DOI: 10.1021/acsmeasuresciau.4c00058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/02/2024] [Accepted: 10/03/2024] [Indexed: 12/24/2024]
Abstract
Single cell Amperometry (SCA) is a powerful, sensitive, high temporal resolution electrochemical technique used to quantify secreted molecular messengers from individual cells and vesicles. This technique has been extensively applied to study the process of exocytosis, and it has also been applied, albeit less frequently, to investigate insulin exocytosis from single pancreatic beta cells. Insufficient insulin release can lead to diabetes, a chronic lifestyle disorder that affects millions of people worldwide. This review aims to summarize and highlight electrochemical measurements of insulin via monitoring its secretion from beta cells by SCA with micro- and nanoelectrodes since the 1990s and to explain how and why serotonin is used as a proxy for monitoring insulin during exocytosis from single beta cells. Finally, we describe how the combination of SCA measurements with the intracellular vesicle impact electrochemical cytometry (IVIEC) technique has led to important findings regarding fractional release types in beta cells. These findings, reported recently, have opened a new window in the study of pore formation, exocytosis from single vesicles, and the mechanisms of insulin secretion. This sensitive cellular electroanalysis approach should help in the development of novel therapeutic strategies targeting diabetes in the future.
Collapse
Affiliation(s)
- Amir Hatamie
- Department
of Physiology, Sahlgrenska Academy, University
of Gothenburg, Medicinaregatan 11−13, 41390 Gothenburg, Sweden
- Department
of Chemistry and Molecular Biology, University
of Gothenburg, Kemivägen 10, 412 96, Gothenburg, Sweden
- Department
of Chemistry, Institute for Advanced Studies
in Basic Sciences (IASBS), Prof. Sobouti Boulevard, PO-Box 45195-1159, Zanjan, 45137-66731, Iran
| | - Xiulan He
- College
of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Andrew Ewing
- Department
of Physiology, Sahlgrenska Academy, University
of Gothenburg, Medicinaregatan 11−13, 41390 Gothenburg, Sweden
| | - Patrik Rorsman
- Department
of Physiology, Sahlgrenska Academy, University
of Gothenburg, Medicinaregatan 11−13, 41390 Gothenburg, Sweden
- Oxford
Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford OX3 7LJ, U.K.
| |
Collapse
|
2
|
Krishnan J, Lian Z, Oomen PE, Amir-Aref M, He X, Majdi S, Schuppert A, Ewing A. Spike by spike frequency analysis of amperometry traces provides statistical validation of observations in the time domain. Sci Rep 2024; 14:25142. [PMID: 39448745 PMCID: PMC11502658 DOI: 10.1038/s41598-024-76665-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 10/15/2024] [Indexed: 10/26/2024] Open
Abstract
Amperometry is a commonly used electrochemical method for studying the process of exocytosis in real-time. Given the high precision of recording that amperometry procedures offer, the volume of data generated can span over several hundreds of megabytes to a few gigabytes and therefore necessitates systematic and reproducible methods for analysis. Though the spike characteristics of amperometry traces in the time domain hold information about the dynamics of exocytosis, these biochemical signals are, more often than not, characterized by time-varying signal properties. Such signals with time-variant properties may occur at different frequencies and therefore analyzing them in the frequency domain may provide statistical validation for observations already established in the time domain. This necessitates the use of time-variant, frequency-selective signal processing methods as well, which can adeptly quantify the dominant or mean frequencies in the signal. The Fast Fourier Transform (FFT) is a well-established computational tool that is commonly used to find the frequency components of a signal buried in noise. In this work, we outline a method for spike-based frequency analysis of amperometry traces using FFT that also provides statistical validation of observations on spike characteristics in the time domain. We demonstrate the method by utilizing simulated signals and by subsequently testing it on diverse amperometry datasets generated from different experiments with various chemical stimulations. To our knowledge, this is the first fully automated open-source tool available dedicated to the analysis of spikes extracted from amperometry signals in the frequency domain.
Collapse
Affiliation(s)
- Jeyashree Krishnan
- Joint Research Center for Computational Biomedicine, RWTH Aachen University, Paulwelstrasse 19, 52074, Aachen, NRW, Germany.
| | - Zeyu Lian
- Joint Research Center for Computational Biomedicine, RWTH Aachen University, Paulwelstrasse 19, 52074, Aachen, NRW, Germany
| | - Pieter E Oomen
- Department of Chemistry and Molecular Biology, University of Gothenburg, Universitetsplatsen 1, 40530, Gothenburg, Sweden
| | - Mohaddeseh Amir-Aref
- Department of Chemistry and Molecular Biology, University of Gothenburg, Universitetsplatsen 1, 40530, Gothenburg, Sweden
| | - Xiulan He
- Department of Chemistry and Molecular Biology, University of Gothenburg, Universitetsplatsen 1, 40530, Gothenburg, Sweden
| | - Soodabeh Majdi
- Department of Chemistry and Molecular Biology, University of Gothenburg, Universitetsplatsen 1, 40530, Gothenburg, Sweden
| | - Andreas Schuppert
- Joint Research Center for Computational Biomedicine, RWTH Aachen University, Paulwelstrasse 19, 52074, Aachen, NRW, Germany
| | - Andrew Ewing
- Department of Chemistry and Molecular Biology, University of Gothenburg, Universitetsplatsen 1, 40530, Gothenburg, Sweden
| |
Collapse
|
3
|
Zhao R, Yan B, Li D, Guo Z, Huang Y, Wang D, Yao X. An Ultramicroelectrode Electrochemistry and Surface Plasmon Resonance Coupling Method for Cell Exocytosis Study. Anal Chem 2024; 96:10228-10236. [PMID: 38867346 DOI: 10.1021/acs.analchem.4c00680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Exocytosis of a single cell has been extensively researched in recent years due to its close association with numerous diseases. However, current methods only investigate exocytosis at either the single-cell or multiple-cell level, and a method for simultaneously studying exocytosis at both levels has yet to be established. In this study, a combined device incorporating ultramicroelectrode (UME) electrochemistry and surface plasmon resonance (SPR) was developed, enabling the simultaneous monitoring of single-cell and multiple-cell exocytosis. PC12 cells were cultured directly on the SPR sensing Au film, with a carboxylated carbon nanopipette (c-CNP) electrode employed for electrochemical detection in the SPR reaction cell. Upon exocytosis, the released dopamine diffuses onto the inner wall of c-CNP, undergoing an electrochemical reaction to generate a current peak. Concurrently, exocytosis can also induce changes in the refractive index of the Au film surface, leading to the SPR signal. Consequently, the device enables real-time monitoring of exocytosis from both single and multiple cells with a high spatiotemporal resolution. The c-CNP electrode exhibited excellent resistance to protein contamination, high sensitivity for dopamine detection, and the capability to continuously monitor dopamine exocytosis over an extended period. Analysis of both SPR and electrochemical signals revealed a positive correlation between changes in the SPR signal and the frequency of exocytosis. This study introduces a novel method and platform for the simultaneous investigation of single-cell and multiple-cell exocytosis.
Collapse
Affiliation(s)
- Ruihuan Zhao
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- School of Energy and Environmental Engineering, Hebei University of Engineering, Handan, Hebei 056038, P. R. China
| | - Bei Yan
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Dongxiao Li
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zhimin Guo
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yubiao Huang
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Dengchao Wang
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xin Yao
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- National Engineering Laboratory for VOCs Pollution Control Material & Technology Research Center for Environment Material and Pollution Control Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
4
|
Cho W, Jung M, Yoon SH, Jeon J, Oh MA, Kim JY, Park M, Kang CM, Chung TD. On-Site Formation of Functional Dopaminergic Presynaptic Terminals on Neuroligin-2-Modified Gold-Coated Microspheres. ACS APPLIED MATERIALS & INTERFACES 2024; 16:3082-3092. [PMID: 38206769 DOI: 10.1021/acsami.3c13829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Advancements in neural interface technologies have enabled the direct connection of neurons and electronics, facilitating chemical communication between neural systems and external devices. One promising approach is a synaptogenesis-involving method, which offers an opportunity for synaptic signaling between these systems. Janus synapses, one type of synaptic interface utilizing synaptic cell adhesion molecules for interface construction, possess unique features that enable the determination of location, direction of signal flow, and types of neurotransmitters involved, promoting directional and multifaceted communication. This study presents the first successful establishment of a Janus synapse between dopaminergic (DA) neurons and abiotic substrates by using a neuroligin-2 (NLG2)-mediated synapse-inducing method. NLG2 immobilized on gold-coated microspheres can induce synaptogenesis upon contact with spatially isolated DA axons. The induced DA Janus synapses exhibit stable synaptic activities comparable to that of native synapses over time, suggesting their suitability for application in neural interfaces. By calling for DA presynaptic organizations, the NLG2-immobilized abiotic substrate is a promising tool for the on-site detection of synaptic dopamine release.
Collapse
Affiliation(s)
- Wonkyung Cho
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Minji Jung
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Sun-Heui Yoon
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Joohee Jeon
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Min-Ah Oh
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Ji Yong Kim
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Minjung Park
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Chung Mu Kang
- Advanced Institutes of Convergence Technology, Suwon-si 16229, Gyeonggi-do, Republic of Korea
| | - Taek Dong Chung
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
- Advanced Institutes of Convergence Technology, Suwon-si 16229, Gyeonggi-do, Republic of Korea
| |
Collapse
|
5
|
Xu P, Wang X, Shi J, Chen W, Lu ZJ, Jia H, Ye D, Li X. Functionally Collaborative Nanostructure for Direct Monitoring of Neurotransmitter Exocytosis in Living Cells. NANO LETTERS 2023; 23:2427-2435. [PMID: 36715488 DOI: 10.1021/acs.nanolett.2c04117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Neurotransmitter exocytosis of living cells plays a vital role in neuroscience. However, the available amperometric technique with carbon fiber electrodes typically measures exocytotic events from one cell during one procedure, which requires professional operations and takes time to produce statistical results of multiple cells. Here, we develop a functionally collaborative nanostructure to directly measure the neurotransmitter dopamine (DA) exocytosis from living rat pheochromocytoma (PC12) cells. The functionally collaborative nanostructure is constructed of metal-organic framework (MOF)-on-nanowires-on-graphene oxide, which is highly sensitive to DA molecules and enables direct detection of neurotransmitter exocytosis. Using the microsensor, the exocytosis from PC12 cells pretreated with the desired drugs (e.g., anticoronavirus drug, antiflu drug, or anti-inflammatory drug) has been successfully measured. Our achievements demonstrate the feasibility of the functionally collaborative nanostructure in the real-time detection of exocytosis and the potential applicability in the highly efficient assessment of the modulation effects of medications on exocytosis.
Collapse
Affiliation(s)
- Pengcheng Xu
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai200050, China
- School of Microelectronics, University of Chinese Academy of Sciences, Beijing100049, China
| | - Xuefeng Wang
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai200050, China
- School of Microelectronics, University of Chinese Academy of Sciences, Beijing100049, China
| | - Jiaci Shi
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai200050, China
| | - Wei Chen
- Department of Emergency, Tongji Hospital, Tongji University School of Medicine, Shanghai200065, China
| | - Zhan-Jun Lu
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai200080, China
| | - Hao Jia
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai200050, China
- School of Microelectronics, University of Chinese Academy of Sciences, Beijing100049, China
| | - Daixin Ye
- Department of Chemistry, Institute for Sustainable Energy, College of Sciences, Shanghai University, Shanghai200444, China
| | - Xinxin Li
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai200050, China
- School of Microelectronics, University of Chinese Academy of Sciences, Beijing100049, China
| |
Collapse
|
6
|
Hatamie A, He X, Zhang XW, Oomen PE, Ewing AG. Advances in nano/microscale electrochemical sensors and biosensors for analysis of single vesicles, a key nanoscale organelle in cellular communication. Biosens Bioelectron 2022; 220:114899. [DOI: 10.1016/j.bios.2022.114899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/03/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022]
|
7
|
Li S, Ma Q. Electrochemical nano-sensing interface for exosomes analysis and cancer diagnosis. Biosens Bioelectron 2022; 214:114554. [PMID: 35834978 DOI: 10.1016/j.bios.2022.114554] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/30/2022] [Accepted: 07/06/2022] [Indexed: 02/07/2023]
Abstract
Exosomes are a class of the nanosized extracellular vesicles, which have emerged as representative liquid biopsy biomarkers. To date, the electrochemical nanosensors are of great significance in the exosome detection with the advantages of easy operation, high accuracy and reliable repeatability. Especially, the growing field of nano interface has provided the electrochemical sensing platforms for the accurate exosomes analysis. The incorporation of multiple nanomaterials can take advantages and synergistic properties of functional units. So, based on the integration of with nanomaterial-based signal transduction and specific biorecognition, the nano-sensing interface provides excellent electrochemical features owing to rapid mass transport and excellent conductivity. The nano-sensing interface with a wide variety of morphologies and structure also provides the large active surface area for the immobilization of bio-capturing agents. Furthermore, through the design of nanostructured electrode array, the efficiency of transducer can be greatly improved. It should be noticed that the elaboration of a proper sensor requires the profound knowledge of the nano-sensing interface. Therefore, this article presents a review of the recent advance in exosomes detection based on the electrochemical nano-sensing interface, including electrochemical analysis principles, exosome sensing mechanisms, nano-interface construction strategies, as well as the typical diagnosis application. In particular, the article is focused on the exploration of the various electrochemical sensing performance of nano-interface in the exosome detection. We have also prospected the future trend and challenge of the electrochemical nano-sensing interface for exosomes analysis in clinical cancer diagnosis.
Collapse
Affiliation(s)
- Shijie Li
- Division of Thyroid Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
| | - Qiang Ma
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China.
| |
Collapse
|
8
|
Zhang X, Ewing AG. Pore-Opening Dynamics of Single Nanometer Biovesicles at an Electrified Interface. ACS NANO 2022; 16:9852-9858. [PMID: 35647887 PMCID: PMC9245343 DOI: 10.1021/acsnano.2c03929] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Release from nanobiovesicles via a pore generated by membrane electroporation at an electrified interface can be monitored by vesicle impact electrochemical cytometry (VIEC) and provides rich information about the various vesicular content transfer processes, including content homeostasis, intraphase content transfer, or the transient fusion of vesicles. These processes are primarily influenced by the vesicular pore-opening dynamics at the electrified interface which has not been disclosed at the single nanobiovesicle level yet. In this work, after simultaneously measuring the size and release dynamics of individual vesicles, we employed a moving mesh-finite element simulation algorithm to reconstruct the accurate pore-opening dynamics of individual vesicles with different sizes during VIEC. We investigated the expansion times and maximal pore sizes as two characteristics of different vesicles. The pore expansion times between nanobiovesicles and pure lipid liposomes were compared, and that of the nanobiovesicles is much longer than that for the liposomes, 2.1 ms vs 0.18 ms, respectively, which reflects the membrane proteins limiting the electroporation process. For the vesicles with different sizes, a positive relationship of pore size (Rp,max) with the vesicle size (Rves) and also their ratio (Rp,max/Rves) versus the vesicle sizes is observed. The mechanism of the pore size determination is discussed and related to the membrane proteins and the vesicle size. This work accurately describes the dynamic pore-opening process of individual vesicles which discloses the heterogeneity in electroporation of different sized vesicles. This should allow us to examine the more complicated vesicular content transfer process between intravesicular compartments.
Collapse
|
9
|
Miao BA, Meng L, Tian B. Biology-guided engineering of bioelectrical interfaces. NANOSCALE HORIZONS 2022; 7:94-111. [PMID: 34904138 DOI: 10.1039/d1nh00538c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Bioelectrical interfaces that bridge biotic and abiotic systems have heightened the ability to monitor, understand, and manipulate biological systems and are catalyzing profound progress in neuroscience research, treatments for heart failure, and microbial energy systems. With advances in nanotechnology, bifunctional and high-density devices with tailored structural designs are being developed to enable multiplexed recording or stimulation across multiple spatial and temporal scales with resolution down to millisecond-nanometer interfaces, enabling efficient and effective communication with intracellular electrical activities in a relatively noninvasive and biocompatible manner. This review provides an overview of how biological systems guide the design, engineering, and implementation of bioelectrical interfaces for biomedical applications. We investigate recent advances in bioelectrical interfaces for applications in nervous, cardiac, and microbial systems, and we also discuss the outlook of state-of-the-art biology-guided bioelectrical interfaces with high biocompatibility, extended long-term stability, and integrated system functionality for potential clinical usage.
Collapse
Affiliation(s)
- Bernadette A Miao
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA.
| | - Lingyuan Meng
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL 60637, USA.
| | - Bozhi Tian
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA.
- The James Franck Institute, The University of Chicago, Chicago, IL 60637, USA
- The Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
10
|
Bouret Y, Guille-Collignon M, Lemaître F. Simulations of amperometric monitoring of exocytosis: moderate pH variations within the cell-electrode cleft with the buffer diffusion. Anal Bioanal Chem 2021; 413:6769-6776. [PMID: 34120197 DOI: 10.1007/s00216-021-03443-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 05/28/2021] [Indexed: 10/21/2022]
Abstract
Amperometry with ultramicroelectrodes is nowadays a routine technique to investigate neurotransmitter secretion by vesicular exocytosis at the single-cell level. This electroanalytical tool allows one to understand many aspects of the vesicular release in terms of mechanisms. However, the electrochemical detection relies on the oxidation of released neurotransmitters that produce 2H+ and thus the possible acidification of the cell-electrode cleft. In a previous work, we considered a model involving the H+ diffusion or/and its reaction with buffer species. In this article, we report a more general model which takes into account the ability of buffer species to move and to be regenerated within the cell-electrode cleft. As a consequence, the pH within the cleft is still equal to its physiological value regardless of the electrochemical detection of the vesicular release for usual exocytotic cell frequencies. This confirms that amperometry at the single-cell level is a very robust technique for investigating vesicular exocytosis.
Collapse
Affiliation(s)
- Yann Bouret
- CNRS-UMR 7010 Institut de Physique de Nice, Université Nice Côte d'Azur, Av. Joseph Vallot, 06100, Nice, France
| | - Manon Guille-Collignon
- PASTEUR, Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, 75005, Paris, France
| | - Frédéric Lemaître
- PASTEUR, Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, 75005, Paris, France.
| |
Collapse
|
11
|
Guille-Collignon M, Lemaître F. Overview and outlook of the strategies devoted to electrofluorescence surveys: Application to single cell secretion analysis. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.116055] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
12
|
Lebègue E, Barrière F, Bard AJ. Lipid Membrane Permeability of Synthetic Redox DMPC Liposomes Investigated by Single Electrochemical Collisions. Anal Chem 2020; 92:2401-2408. [DOI: 10.1021/acs.analchem.9b02809] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Estelle Lebègue
- Université de Nantes, CNRS, CEISAM UMR 6230, F-44000 Nantes, France
| | - Frédéric Barrière
- Univ Rennes, CNRS, Institut des Sciences Chimiques de Rennes - UMR 6226, F-35000 Rennes, France
| | - Allen J. Bard
- Center for Electrochemistry, Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
13
|
Defnet PA, Zhang B. Detection of Transient Nanoparticle Collision Events Using Electrochemiluminescence on a Closed Bipolar Microelectrode. ChemElectroChem 2020. [DOI: 10.1002/celc.201901734] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Peter A. Defnet
- Department of Chemistry University of Washington Seattle, Washington 98195 United States
| | - Bo Zhang
- Department of Chemistry University of Washington Seattle, Washington 98195 United States
| |
Collapse
|
14
|
Tavakolian-Ardakani Z, Hosu O, Cristea C, Mazloum-Ardakani M, Marrazza G. Latest Trends in Electrochemical Sensors for Neurotransmitters: A Review. SENSORS (BASEL, SWITZERLAND) 2019; 19:E2037. [PMID: 31052309 PMCID: PMC6539656 DOI: 10.3390/s19092037] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 04/07/2019] [Accepted: 04/25/2019] [Indexed: 01/19/2023]
Abstract
Neurotransmitters are endogenous chemical messengers which play an important role in many of the brain functions, abnormal levels being correlated with physical, psychotic and neurodegenerative diseases such as Alzheimer's, Parkinson's, and Huntington's disease. Therefore, their sensitive and robust detection is of great clinical significance. Electrochemical methods have been intensively used in the last decades for neurotransmitter detection, outclassing more complicated analytical techniques such as conventional spectrophotometry, chromatography, fluorescence, flow injection, and capillary electrophoresis. In this manuscript, the most successful and promising electrochemical enzyme-free and enzymatic sensors for neurotransmitter detection are reviewed. Focusing on the activity of worldwide researchers mainly during the last ten years (2010-2019), without pretending to be exhaustive, we present an overview of the progress made in sensing strategies during this time. Particular emphasis is placed on nanostructured-based sensors, which show a substantial improvement of the analytical performances. This review also examines the progress made in biosensors for neurotransmitter measurements in vitro, in vivo and ex vivo.
Collapse
Affiliation(s)
- Zahra Tavakolian-Ardakani
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino (Fi), Italy.
- Department of Chemistry, Faculty of Science, Yazd University, Yazd 89195-741, Iran.
| | - Oana Hosu
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino (Fi), Italy.
- Department of Analytical Chemistry, Faculty of Pharmacy, "Iuliu Haţieganu" University of Medicine and Pharmacy, 400349 Pasteur 4 Cluj-Napoca, Romania.
| | - Cecilia Cristea
- Department of Analytical Chemistry, Faculty of Pharmacy, "Iuliu Haţieganu" University of Medicine and Pharmacy, 400349 Pasteur 4 Cluj-Napoca, Romania.
| | | | - Giovanna Marrazza
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino (Fi), Italy.
- Instituto Nazionale Biostrutture e Biosistemi (INBB), Unit of Florence, Viale delle Medaglie d'Oro 305, 00136 Roma, Italy.
| |
Collapse
|