1
|
Mondal I, Haick H. Smart Dust for Chemical Mapping. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2419052. [PMID: 40130762 PMCID: PMC12075923 DOI: 10.1002/adma.202419052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 03/05/2025] [Indexed: 03/26/2025]
Abstract
This review article explores the transformative potential of smart dust systems by examining how existing chemical sensing technologies can be adapted and advanced to realize their full capabilities. Smart dust, characterized by submillimeter-scale autonomous sensing platforms, offers unparalleled opportunities for real-time, spatiotemporal chemical mapping across diverse environments. This article introduces the technological advancements underpinning these systems, critically evaluates current limitations, and outlines new avenues for development. Key challenges, including multi-compound detection, system control, environmental impact, and cost, are discussed alongside potential solutions. By leveraging innovations in miniaturization, wireless communication, AI-driven data analysis, and sustainable materials, this review highlights the promise of smart dust to address critical challenges in environmental monitoring, healthcare, agriculture, and defense sectors. Through this lens, the article provides a strategic roadmap for advancing smart dust from concept to practical application, emphasizing its role in transforming the understanding and management of complex chemical systems.
Collapse
Affiliation(s)
- Indrajit Mondal
- Department of Chemical Engineering and Russell Berrie Nanotechnology InstituteTechnion – Israel Institute of TechnologyHaifa3200003Israel
| | - Hossam Haick
- Department of Chemical Engineering and Russell Berrie Nanotechnology InstituteTechnion – Israel Institute of TechnologyHaifa3200003Israel
- Life Science Technology (LiST) GroupDanube Private UniversityFakultät Medizin/Zahnmedizin, Steiner Landstraße 124
, Krems‐SteinÖSTERREICH3500Austria
| |
Collapse
|
2
|
Gkotsis G, Nika MC, Alygizakis N, Vasilatos K, Athanasopoulou A, Barber JL, Berbee R, Burgeot T, Oliveira SG, Gustafsson J, Campos AI, Kammann U, Kirchgeorg T, Koschorreck J, Mauffret A, Mil-Homens M, Larsen MM, Munch Chistensen A, Näslund J, Oswald P, Hjermann DØ, Parmentier K, Pirntke U, Power A, Soerensen AL, Van der Stap I, Viñas L, von der Ohe P, Webster L, Wilson S, Slobodnik J, Thomaidis NS, McHugh B. Assessing the chemical burden of the North-East Atlantic ecosystem through targeted and untargeted HRMS-based approaches. JOURNAL OF HAZARDOUS MATERIALS 2025; 493:138393. [PMID: 40300518 DOI: 10.1016/j.jhazmat.2025.138393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 04/16/2025] [Accepted: 04/22/2025] [Indexed: 05/01/2025]
Abstract
Human activities have introduced significant amounts of anthropogenic chemicals into marine ecosystems, posing threats to aquatic biodiversity and human health. Although, traditional marine monitoring focus primarily on legacy pollutants, the presence and potential risks associated with complex emerging chemical mixtures should not be neglected. In the context of the present study organized via OSPAR Commission and supported by NORMAN network, 52 marine samples were gathered from North-East Atlantic Ocean. State-of-the-art HRMS-based analytical workflows were employed to identify their chemical fingerprint. 132 organic pollutants were identified through wide-scope target screening of more than 2,400 environmentally relevant organic pollutants. The HRMS data were digitally stored in NORMAN DSFP and 134 additional chemicals were tentatively identified through suspect screening of more than 65,000 chemicals. The list included legacy pollutants, along with emerging pollutants, their metabolites and transformation products. A simplified environmental risk assessment was conducted, aiming to prioritize substances based on their potential risks to the marine ecosystem. This study provides a valuable snapshot of the marine pollution, offering insights into chemical occurrence and risks. The findings can support marine scientists, environmental managers and policymakers in identifying pollutant sources, understanding their impacts, and informing regulatory measures to mitigate threats to marine ecosystems.
Collapse
Affiliation(s)
- Georgios Gkotsis
- National and Kapodistrian University of Athens, Panepistimioupolis, Zographou, Athens 15771, Greece.
| | - Maria-Christina Nika
- National and Kapodistrian University of Athens, Panepistimioupolis, Zographou, Athens 15771, Greece.
| | - Nikiforos Alygizakis
- National and Kapodistrian University of Athens, Panepistimioupolis, Zographou, Athens 15771, Greece; Environmental Institute s.r.o., Okruzna 784/42, Kos 97241, Slovak Republic.
| | - Konstantinos Vasilatos
- National and Kapodistrian University of Athens, Panepistimioupolis, Zographou, Athens 15771, Greece.
| | - Antonia Athanasopoulou
- National and Kapodistrian University of Athens, Panepistimioupolis, Zographou, Athens 15771, Greece.
| | - Jonathan L Barber
- Centre for Environment, Fisheries and Aquaculture Science (CEFAS), Lowestoft, Suffolk NR33 0HT, United Kingdom.
| | - Rob Berbee
- Rijkswaterstaat, Ministry of Infrastructure and Water Management, Rijnstraat 8, The Hague 2515 XP, the Netherlands.
| | - Thierry Burgeot
- French Research Institute for Exploitation of the Sea (IFREMER), Chemical Contamination of Marine Ecosystems Unit (CCME) unit, Nantes, France.
| | - Susana Galante Oliveira
- Centre for Environmental and Marine Studies (CESAM), Biology Department, University of Aveiro, Campus de Santiago, Aveiro 3810-123, Portugal.
| | - Johan Gustafsson
- Swedish Institute for the Marine Environment, Seminariegatan 1F, Göteborg 413 13, Sweden.
| | | | - Ulrike Kammann
- Johann Heinrich von Thünen Institute, Bundesallee 50, Braunschweig 38116, Germany.
| | - Torben Kirchgeorg
- Federal Maritime and Hydrographic Agency (BSH), Wüstland 2, Hamburg 22589, Germany.
| | - Jan Koschorreck
- German Environment Agency (Umweltbundesamt), Colditzstrasse 34, Berlin 12099, Germany.
| | - Aourell Mauffret
- French Research Institute for Exploitation of the Sea (IFREMER), Chemical Contamination of Marine Ecosystems Unit (CCME) unit, Nantes, France.
| | - Mário Mil-Homens
- Portuguese Institute for Sea and Atmosphere, Rua C do Aeroporto, Lisboa 1749-077, Portugal.
| | | | | | - Johan Näslund
- Swedish Environmental Protection Agency, Naturvårdsverket, Stockholm 106 48, Sweden.
| | - Peter Oswald
- Environmental Institute s.r.o., Okruzna 784/42, Kos 97241, Slovak Republic.
| | | | - Koen Parmentier
- Royal Belgian Institute of Natural Sciences, Rue Vautier 29, Bruxelles 1000, Belgium.
| | - Ulrike Pirntke
- German Environment Agency (Umweltbundesamt), Colditzstrasse 34, Berlin 12099, Germany.
| | - Andrew Power
- Marine & Freshwater Research Centre, Department of Natural Sciences, Atlantic Technological University, Dublin Road H91 T8NW, Galway, Ireland.
| | - Anne L Soerensen
- Swedish Museum of Natural History, Frescativägen 40, Stockholm 114 18, Sweden.
| | - Irene Van der Stap
- Rijkswaterstaat, Ministry of Infrastructure and Water Management, Rijnstraat 8, The Hague 2515 XP, the Netherlands.
| | - Lucia Viñas
- Instituto Español de Oceanografía, Centro Oceanográfico de Vigo - Canido, Subida Radio Faro, 50-52, Vigo, Pontevedra 36390, Spain.
| | - Peter von der Ohe
- German Environment Agency (Umweltbundesamt), Colditzstrasse 34, Berlin 12099, Germany.
| | - Lynda Webster
- Marine Directorate, Scottish Government, Marine Laboratory, Aberdeen, Scotland AB11 9DB, UK.
| | - Simon Wilson
- Arctic Monitoring and Assessment Programme (AMAP), Hjalmar Johansens Gate 14, Tromsø 9007, Norway.
| | - Jaroslav Slobodnik
- Environmental Institute s.r.o., Okruzna 784/42, Kos 97241, Slovak Republic.
| | - Nikolaos S Thomaidis
- National and Kapodistrian University of Athens, Panepistimioupolis, Zographou, Athens 15771, Greece.
| | - Brendan McHugh
- Marine Institute, Co, Rinville, Oranmore, Galway H91 R673, Ireland.
| |
Collapse
|
3
|
Canchola A, Tran LN, Woo W, Tian L, Lin YH, Chou WC. Advancing non-target analysis of emerging environmental contaminants with machine learning: Current status and future implications. ENVIRONMENT INTERNATIONAL 2025; 198:109404. [PMID: 40139034 DOI: 10.1016/j.envint.2025.109404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 03/03/2025] [Accepted: 03/18/2025] [Indexed: 03/29/2025]
Abstract
Emerging environmental contaminants (EECs) such as pharmaceuticals, pesticides, and industrial chemicals pose significant challenges for detection and identification due to their structural diversity and lack of analytical standards. Traditional targeted screening methods often fail to detect these compounds, making non-target analysis (NTA) using high-resolution mass spectrometry (HRMS) essential for identifying unknown or suspected contaminants. However, interpreting the vast datasets generated by HRMS is complex and requires advanced data processing techniques. Recent advancements in machine learning (ML) models offer great potential for enhancing NTA applications. As such, we reviewed key developments, including optimizing workflows using computational tools, improved chemical structure identification, advanced quantification methods, and enhanced toxicity prediction capabilities. It also discusses challenges and future perspectives in the field, such as refining ML tools for complex mixtures, improving inter-laboratory validation, and further integrating computational models into environmental risk assessment frameworks. By addressing these challenges, ML-assisted NTA can significantly enhance the detection, quantification, and evaluation of EECs, ultimately contributing to more effective environmental monitoring and public health protection.
Collapse
Affiliation(s)
- Alexa Canchola
- Environmental Toxicology Graduate Program, University of California, Riverside, CA 92521, United States; Department of Environmental Sciences, College of Natural & Agricultural Sciences, University of California, Riverside, CA 92521, United States
| | - Lillian N Tran
- Environmental Toxicology Graduate Program, University of California, Riverside, CA 92521, United States
| | - Wonsik Woo
- Environmental Toxicology Graduate Program, University of California, Riverside, CA 92521, United States
| | - Linhui Tian
- Department of Environmental Sciences, College of Natural & Agricultural Sciences, University of California, Riverside, CA 92521, United States
| | - Ying-Hsuan Lin
- Environmental Toxicology Graduate Program, University of California, Riverside, CA 92521, United States; Department of Environmental Sciences, College of Natural & Agricultural Sciences, University of California, Riverside, CA 92521, United States.
| | - Wei-Chun Chou
- Environmental Toxicology Graduate Program, University of California, Riverside, CA 92521, United States; Department of Environmental Sciences, College of Natural & Agricultural Sciences, University of California, Riverside, CA 92521, United States.
| |
Collapse
|
4
|
Boinis N, Konomi A, Gkotsis G, Nika MC, Thomaidis NS. Trends in extraction techniques for the determination of organic micropollutants in liver tissues of vertebrates. Anal Bioanal Chem 2025; 417:535-553. [PMID: 39508914 DOI: 10.1007/s00216-024-05628-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 10/20/2024] [Accepted: 10/22/2024] [Indexed: 11/15/2024]
Abstract
Determining organic micropollutants in liver samples of apex species is of foremost importance for biomonitoring studies, as it can provide evidence of environmental pollution and exposure of living organisms to chemicals. This review aims to provide a 4-year overview and summarize the trends in the extraction methodologies to determine both polar and non-polar organic micropollutants in liver samples from organisms of higher trophic levels. The dominant extraction techniques including ultrasound-assisted extraction (UAE), pressurized liquid extraction (PLE), Soxhlet, and QuEChERS, as well as additional steps and/or modifications applied in the reviewed studies, are presented and critically discussed. The latest trends in these methods as well as a comparison between them considering elapsed time, robustness, cost, and environmental fingerprint are also provided.
Collapse
Affiliation(s)
- N Boinis
- National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771, Athens, Greece
| | - A Konomi
- National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771, Athens, Greece
| | - G Gkotsis
- National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771, Athens, Greece
| | - M-C Nika
- National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771, Athens, Greece
| | - N S Thomaidis
- National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771, Athens, Greece.
| |
Collapse
|
5
|
Malm L, Liigand J, Aalizadeh R, Alygizakis N, Ng K, Fro̷kjær EE, Nanusha MY, Hansen M, Plassmann M, Bieber S, Letzel T, Balest L, Abis PP, Mazzetti M, Kasprzyk-Hordern B, Ceolotto N, Kumari S, Hann S, Kochmann S, Steininger-Mairinger T, Soulier C, Mascolo G, Murgolo S, Garcia-Vara M, López de Alda M, Hollender J, Arturi K, Coppola G, Peruzzo M, Joerss H, van der Neut-Marchand C, Pieke EN, Gago-Ferrero P, Gil-Solsona R, Licul-Kucera V, Roscioli C, Valsecchi S, Luckute A, Christensen JH, Tisler S, Vughs D, Meekel N, Talavera Andújar B, Aurich D, Schymanski EL, Frigerio G, Macherius A, Kunkel U, Bader T, Rostkowski P, Gundersen H, Valdecanas B, Davis WC, Schulze B, Kaserzon S, Pijnappels M, Esperanza M, Fildier A, Vulliet E, Wiest L, Covaci A, Macan Schönleben A, Belova L, Celma A, Bijlsma L, Caupos E, Mebold E, Le Roux J, Troia E, de Rijke E, Helmus R, Leroy G, Haelewyck N, Chrastina D, Verwoert M, Thomaidis NS, Kruve A. Quantification Approaches in Non-Target LC/ESI/HRMS Analysis: An Interlaboratory Comparison. Anal Chem 2024; 96:16215-16226. [PMID: 39353203 PMCID: PMC11483430 DOI: 10.1021/acs.analchem.4c02902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/16/2024] [Accepted: 09/16/2024] [Indexed: 10/04/2024]
Abstract
Nontargeted screening (NTS) utilizing liquid chromatography electrospray ionization high-resolution mass spectrometry (LC/ESI/HRMS) is increasingly used to identify environmental contaminants. Major differences in the ionization efficiency of compounds in ESI/HRMS result in widely varying responses and complicate quantitative analysis. Despite an increasing number of methods for quantification without authentic standards in NTS, the approaches are evaluated on limited and diverse data sets with varying chemical coverage collected on different instruments, complicating an unbiased comparison. In this interlaboratory comparison, organized by the NORMAN Network, we evaluated the accuracy and performance variability of five quantification approaches across 41 NTS methods from 37 laboratories. Three approaches are based on surrogate standard quantification (parent-transformation product, structurally similar or close eluting) and two on predicted ionization efficiencies (RandFor-IE and MLR-IE). Shortly, HPLC grade water, tap water, and surface water spiked with 45 compounds at 2 concentration levels were analyzed together with 41 calibrants at 6 known concentrations by the laboratories using in-house NTS workflows. The accuracy of the approaches was evaluated by comparing the estimated and spiked concentrations across quantification approaches, instrumentation, and laboratories. The RandFor-IE approach performed best with a reported mean prediction error of 15× and over 83% of compounds quantified within 10× error. Despite different instrumentation and workflows, the performance was stable across laboratories and did not depend on the complexity of water matrices.
Collapse
Affiliation(s)
- Louise Malm
- Department
of Materials and Environmental Chemistry, Stockholm University, Svante Arrhenius väg 16, 11418 Stockholm, Sweden
| | | | - Reza Aalizadeh
- Laboratory
of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
- Department
of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, Connecticut 06510, United States
| | - Nikiforos Alygizakis
- Laboratory
of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
- Environmental
Institute, Okružná
784/42, 97241 Koš, Slovak Republic
| | - Kelsey Ng
- Environmental
Institute, Okružná
784/42, 97241 Koš, Slovak Republic
- RECETOX,
Faculty of Science, Masaryk University, Kamenice 753/5, Building D29, 62500 Brno, Czech Republic
| | - Emil Egede Fro̷kjær
- Environmental
Metabolomics Lab, Aarhus University, Frederiksborgsvej 399, 4000 Roskilde, Denmark
| | - Mulatu Yohannes Nanusha
- Environmental
Metabolomics Lab, Aarhus University, Frederiksborgsvej 399, 4000 Roskilde, Denmark
| | - Martin Hansen
- Environmental
Metabolomics Lab, Aarhus University, Frederiksborgsvej 399, 4000 Roskilde, Denmark
| | - Merle Plassmann
- Department
of Environmental Science, Stockholm University, Svante Arrhenius väg 8, 11418 Stockholm, Sweden
| | - Stefan Bieber
- Analytisches
Forschungsinstitut für Non-Target Screening GmbH (AFIN-TS), Am Mittleren Moos 48, 86167 Augsburg, Germany
| | - Thomas Letzel
- Analytisches
Forschungsinstitut für Non-Target Screening GmbH (AFIN-TS), Am Mittleren Moos 48, 86167 Augsburg, Germany
| | - Lydia Balest
- Acquedotto
Pugliese SpA - Direzione Laboratori e Controllo Igienico Sanitario
(DIRLC), 70123 Bari, Italy
| | - Pier Paolo Abis
- Acquedotto
Pugliese SpA - Direzione Laboratori e Controllo Igienico Sanitario
(DIRLC), 70123 Bari, Italy
| | - Michele Mazzetti
- Agenzia
Regionale per l’Ambiente Toscana, Via G. Marradi 114, 57126 Livorno, Italy
| | - Barbara Kasprzyk-Hordern
- Department
of Chemistry, University of Bath, Bath BA2 7AY, U.K.
- Institute
for Sustainability, Bath BA2 7AY, U.K.
| | - Nicola Ceolotto
- Department
of Chemistry, University of Bath, Bath BA2 7AY, U.K.
- Institute
for Sustainability, Bath BA2 7AY, U.K.
| | - Sangeeta Kumari
- Department
of Chemistry, Vienna, BOKU University, Muthgasse 18, 1190 Vienna, Austria
| | - Stephan Hann
- Department
of Chemistry, Vienna, BOKU University, Muthgasse 18, 1190 Vienna, Austria
| | - Sven Kochmann
- Department
of Chemistry, Vienna, BOKU University, Muthgasse 18, 1190 Vienna, Austria
| | | | - Coralie Soulier
- BRGM, 3 avenue Claude
Guillemin, BP36009, 45060 Orléans Cedex 2, France
| | - Giuseppe Mascolo
- Water Research
Institute (IRSA), National Research Council
(CNR), Via F. De Blasio,
5, 70132 Bari, Italy
- Research
Institute for Geo-Hydrological Protection (IRPI), National Research Council (CNR), Via Amendola, 122/I, 70126 Bari, Italy
| | - Sapia Murgolo
- Water Research
Institute (IRSA), National Research Council
(CNR), Via F. De Blasio,
5, 70132 Bari, Italy
| | - Manuel Garcia-Vara
- Water,
Environmental and Food Chemistry Unit, Institute
of Environmental Assessment and Water Research, C/Jordi Girona 18-26, ES 08034 Barcelona, Spain
| | - Miren López de Alda
- Water,
Environmental and Food Chemistry Unit, Institute
of Environmental Assessment and Water Research, C/Jordi Girona 18-26, ES 08034 Barcelona, Spain
| | - Juliane Hollender
- Eawag,
Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, 8600 Dübendorf, Switzerland
| | - Katarzyna Arturi
- Eawag,
Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, 8600 Dübendorf, Switzerland
| | - Gianluca Coppola
- White
Lab Srl, Via Mons. Rodolfi
22, 36022 San Giuseppe
de Cassola (VI), Italy
| | - Massimo Peruzzo
- White
Lab Srl, Via Mons. Rodolfi
22, 36022 San Giuseppe
de Cassola (VI), Italy
| | - Hanna Joerss
- Department
for Organic Environmental Chemistry, Helmholtz
Centre Hereon, Max-Planck-Str.
1, 21502 Geesthacht, Germany
| | | | - Eelco N. Pieke
- Het Waterlaboratorium, J.W. Lucasweg 2, 2031 BE Haarlem, The Netherlands
| | - Pablo Gago-Ferrero
- Human Exposure
to Organic Pollutants Unit, Institute of
Environmental Assessment and Water Research, C/Jordi Girona 18-26, ES 08034 Barcelona, Spain
| | - Ruben Gil-Solsona
- Human Exposure
to Organic Pollutants Unit, Institute of
Environmental Assessment and Water Research, C/Jordi Girona 18-26, ES 08034 Barcelona, Spain
| | - Viktória Licul-Kucera
- Institute
for Analytical Research, Hochschulen Fresenius gem. Trägergesellschaft mbH, 65510 Idstein, Germany
- Institute
for Biodiversity and Ecosystem Dynamics, University of Amsterdam, 1012 WP Amsterdam, Netherlands
| | - Claudio Roscioli
- Water Research
Institute (IRSA), National Research Council
of Italy (CNR), via del
Mulino, 19, 20861 Brugherio, MB, Italy
| | - Sara Valsecchi
- Water Research
Institute (IRSA), National Research Council
of Italy (CNR), via del
Mulino, 19, 20861 Brugherio, MB, Italy
| | - Austeja Luckute
- Analytical
Chemistry Group, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsenvej 40, 1871 Frederiksberg, Denmark
| | - Jan H. Christensen
- Analytical
Chemistry Group, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsenvej 40, 1871 Frederiksberg, Denmark
| | - Selina Tisler
- Analytical
Chemistry Group, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsenvej 40, 1871 Frederiksberg, Denmark
| | - Dennis Vughs
- KWR Water
Research Institute, Groningenhaven 7, 3433 PE Nieuwegein, The Netherlands
| | - Nienke Meekel
- KWR Water
Research Institute, Groningenhaven 7, 3433 PE Nieuwegein, The Netherlands
| | - Begoña Talavera Andújar
- Luxembourg
Centre for Systems Biomedicine (LCSB), University
of Luxembourg, 6, Avenue
du Swing, L-4367 Belvaux, Luxembourg
| | - Dagny Aurich
- Luxembourg
Centre for Systems Biomedicine (LCSB), University
of Luxembourg, 6, Avenue
du Swing, L-4367 Belvaux, Luxembourg
| | - Emma L. Schymanski
- Luxembourg
Centre for Systems Biomedicine (LCSB), University
of Luxembourg, 6, Avenue
du Swing, L-4367 Belvaux, Luxembourg
| | - Gianfranco Frigerio
- Luxembourg
Centre for Systems Biomedicine (LCSB), University
of Luxembourg, 6, Avenue
du Swing, L-4367 Belvaux, Luxembourg
- Center
for Omics Sciences (COSR), IRCCS San Raffaele
Scientific Institute, 20132 Milan, Italy
| | - André Macherius
- Bavarian
Environment Agency, Bürgermeister-Ulrich-Str. 160, 86179 Augsburg, Germany
| | - Uwe Kunkel
- Bavarian
Environment Agency, Bürgermeister-Ulrich-Str. 160, 86179 Augsburg, Germany
| | - Tobias Bader
- Laboratory
for Operation Control and Research, Zweckverband
Landeswasserversorgung, Am Spitzigen Berg 1, 89129 Langenau, Germany
| | | | | | | | - W. Clay Davis
- US National
Institute of Standards and Technology, 331 Fort Johnson Rd, 29412 Charleston, South Carolina, United States
| | - Bastian Schulze
- Queensland
Alliance for Environmental Health Sciences, The University of Queensland, Woolloongabba, Queensland 4102, Australia
| | - Sarit Kaserzon
- Queensland
Alliance for Environmental Health Sciences, The University of Queensland, Woolloongabba, Queensland 4102, Australia
| | - Martijn Pijnappels
- Ministry
of Infrastructure and Water Management, Rijkswaterstaat Laboratory, Zuiderwagenplein 2, 8224 AD Lelystad, The Netherlands
| | - Mar Esperanza
- SUEZ-CIRSEE, 38 rue
du president Wilson, 78230 Le Pecq, France
| | - Aurélie Fildier
- Universite
Claude Bernard Lyon 1, CNRS, ISA, UMR5280, 5 rue de la Doua, F-69100 Villeurbanne, France
| | - Emmanuelle Vulliet
- Universite
Claude Bernard Lyon 1, CNRS, ISA, UMR5280, 5 rue de la Doua, F-69100 Villeurbanne, France
| | - Laure Wiest
- Universite
Claude Bernard Lyon 1, CNRS, ISA, UMR5280, 5 rue de la Doua, F-69100 Villeurbanne, France
| | - Adrian Covaci
- Toxicological
Centre, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium
| | | | - Lidia Belova
- Toxicological
Centre, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium
| | - Alberto Celma
- Environmental
and Public Health Analytical Chemistry, Research Institute for Pesticides and Water, University Jaume I, 12006 Castelló, Spain
- Department
of Aquatic Sciences and Assessment, Swedish
University of Agricultural Sciences, 75007 Uppsala, Sweden
| | - Lubertus Bijlsma
- Environmental
and Public Health Analytical Chemistry, Research Institute for Pesticides and Water, University Jaume I, 12006 Castelló, Spain
| | - Emilie Caupos
- LEESU, Univ Paris Est Creteil, Ecole des
Ponts, F-94010 Creteil, France
- Univ Paris
Est Creteil, CNRS, OSU-EFLUVE, F-94010 Creteil, France
| | | | - Julien Le Roux
- LEESU, Univ Paris Est Creteil, Ecole des
Ponts, F-94010 Creteil, France
| | - Eugenie Troia
- IBED Environmental
Chemistry and Mass Spectrometry Laboratories, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Eva de Rijke
- IBED Environmental
Chemistry and Mass Spectrometry Laboratories, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Rick Helmus
- IBED Environmental
Chemistry and Mass Spectrometry Laboratories, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Gaëla Leroy
- VEOLIA
Recherche et Innovation, Chemin de la Digue, 78600 Maisons-Laffitte, France
| | - Niels Haelewyck
- Vlaamse
Milieumaatschappij, Raymonde de Larochelaan 1, 9051 Gent, Sint-Denijs-Westerem, Belgium
| | - David Chrastina
- T. G.
Masaryk Water Research Institute, p. r. i., Macharova 5, 70200 Ostrava, Czech Republic
| | - Milan Verwoert
- WLN, Rijksstraatweg
85, 9756 AD Glimmen,
Groningen, The Netherlands
| | - Nikolaos S. Thomaidis
- Laboratory
of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Anneli Kruve
- Department
of Materials and Environmental Chemistry, Stockholm University, Svante Arrhenius väg 16, 11418 Stockholm, Sweden
- Department
of Environmental Science, Stockholm University, Svante Arrhenius väg 8, 11418 Stockholm, Sweden
| |
Collapse
|
6
|
Samanipour S, Barron LP, van Herwerden D, Praetorius A, Thomas KV, O’Brien JW. Exploring the Chemical Space of the Exposome: How Far Have We Gone? JACS AU 2024; 4:2412-2425. [PMID: 39055136 PMCID: PMC11267556 DOI: 10.1021/jacsau.4c00220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/29/2024] [Accepted: 05/31/2024] [Indexed: 07/27/2024]
Abstract
Around two-thirds of chronic human disease can not be explained by genetics alone. The Lancet Commission on Pollution and Health estimates that 16% of global premature deaths are linked to pollution. Additionally, it is now thought that humankind has surpassed the safe planetary operating space for introducing human-made chemicals into the Earth System. Direct and indirect exposure to a myriad of chemicals, known and unknown, poses a significant threat to biodiversity and human health, from vaccine efficacy to the rise of antimicrobial resistance as well as autoimmune diseases and mental health disorders. The exposome chemical space remains largely uncharted due to the sheer number of possible chemical structures, estimated at over 1060 unique forms. Conventional methods have cataloged only a fraction of the exposome, overlooking transformation products and often yielding uncertain results. In this Perspective, we have reviewed the latest efforts in mapping the exposome chemical space and its subspaces. We also provide our view on how the integration of data-driven approaches might be able to bridge the identified gaps.
Collapse
Affiliation(s)
- Saer Samanipour
- Van’t
Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Amsterdam 1090 GD, The Netherlands
- UvA
Data Science Center, University of Amsterdam, Amsterdam 1090 GD, The Netherlands
- Queensland
Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Cornwall Street, Woolloongabba, Queensland 4102, Australia
| | - Leon Patrick Barron
- Van’t
Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Amsterdam 1090 GD, The Netherlands
- MRC
Centre for Environment and Health, Environmental Research Group, School
of Public Health, Faculty of Medicine, Imperial
College London, London W12 0BZ, United Kingdom
| | - Denice van Herwerden
- Van’t
Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Amsterdam 1090 GD, The Netherlands
| | - Antonia Praetorius
- Institute
for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam 1090 GD, The Netherlands
| | - Kevin V. Thomas
- Queensland
Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Cornwall Street, Woolloongabba, Queensland 4102, Australia
| | - Jake William O’Brien
- Van’t
Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Amsterdam 1090 GD, The Netherlands
- Queensland
Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Cornwall Street, Woolloongabba, Queensland 4102, Australia
| |
Collapse
|
7
|
Ragland JM, Place BJ. A Portable and Reusable Database Infrastructure for Mass Spectrometry, and Its Associated Toolkit (The DIMSpec Project). JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:1282-1291. [PMID: 38704738 DOI: 10.1021/jasms.4c00073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
Nontargeted analysis (NTA) is a rapidly growing field of techniques that includes the identification of unknown chemical analytes in complex mixtures such as environmental, biological, and food matrices. The use of reference mass spectral databases is a key component of most NTA workflows, providing a high level of confidence for chemical identification when analytical standards are not available, yet effective interlaboratory sharing of research grade spectra remains challenging. The Database Infrastructure for Mass Spectrometry (DIMSpec) project focused on the creation of an open-source toolkit supporting storage and sharing of high-resolution mass spectra with attached sample and methodological metadata. As a demonstration of its utility, the DIMSpec toolkit was used to create a database of curated mass spectra for per- and polyfluoroalkyl substances (PFAS) generated from various sources. While the underlying toolkit is agnostic to analytical targets, this initial release (along with the database schema, mass spectral data, and database tools) should enable PFAS researchers to use these data for their own studies, including the identification of novel PFAS in the environment.
Collapse
Affiliation(s)
- Jared M Ragland
- National Institute of Standards and Technology, Material Measurement Laboratory, Chemical Sciences Division, Gaithersburg, Maryland 20899, United States
| | - Benjamin J Place
- National Institute of Standards and Technology, Material Measurement Laboratory, Chemical Sciences Division, Gaithersburg, Maryland 20899, United States
| |
Collapse
|
8
|
Bade R, van Herwerden D, Rousis N, Adhikari S, Allen D, Baduel C, Bijlsma L, Boogaerts T, Burgard D, Chappell A, Driver EM, Sodre FF, Fatta-Kassinos D, Gracia-Lor E, Gracia-Marín E, Halden RU, Heath E, Jaunay E, Krotulski A, Lai FY, Löve ASC, O'Brien JW, Oh JE, Pasin D, Castro MP, Psichoudaki M, Salgueiro-Gonzalez N, Gomes CS, Subedi B, Thomas KV, Thomaidis N, Wang D, Yargeau V, Samanipour S, Mueller J. Workflow to facilitate the detection of new psychoactive substances and drugs of abuse in influent urban wastewater. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133955. [PMID: 38457976 DOI: 10.1016/j.jhazmat.2024.133955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/22/2024] [Accepted: 03/03/2024] [Indexed: 03/10/2024]
Abstract
The complexity around the dynamic markets for new psychoactive substances (NPS) forces researchers to develop and apply innovative analytical strategies to detect and identify them in influent urban wastewater. In this work a comprehensive suspect screening workflow following liquid chromatography - high resolution mass spectrometry analysis was established utilising the open-source InSpectra data processing platform and the HighResNPS library. In total, 278 urban influent wastewater samples from 47 sites in 16 countries were collected to investigate the presence of NPS and other drugs of abuse. A total of 50 compounds were detected in samples from at least one site. Most compounds found were prescription drugs such as gabapentin (detection frequency 79%), codeine (40%) and pregabalin (15%). However, cocaine was the most found illicit drug (83%), in all countries where samples were collected apart from the Republic of Korea and China. Eight NPS were also identified with this protocol: 3-methylmethcathinone 11%), eutylone (6%), etizolam (2%), 3-chloromethcathinone (4%), mitragynine (6%), phenibut (2%), 25I-NBOH (2%) and trimethoxyamphetamine (2%). The latter three have not previously been reported in municipal wastewater samples. The workflow employed allowed the prioritisation of features to be further investigated, reducing processing time and gaining in confidence in their identification.
Collapse
Affiliation(s)
- Richard Bade
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, Queensland 4102, Australia.
| | - Denice van Herwerden
- Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, the Netherlands
| | - Nikolaos Rousis
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, Queensland 4102, Australia
| | - Sangeet Adhikari
- School of Sustainable Engineering and Built Environment, Arizona State University, Tempe, AZ 85281, United States; Biodesign Center for Environmental Health Engineering, Biodesign Institute, Arizona State University, 1001 S. McAllister Ave., Tempe, AZ 85281, United States
| | - Darren Allen
- Royal Brisbane and Women's Hospital, Herston, QLD 4029, Australia
| | - Christine Baduel
- Université Grenoble Alpes, CNRS, IRD, Grenoble INP, Institute of Environmental Geosciences (IGE), Grenoble, France
| | - Lubertus Bijlsma
- Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water, University Jaume I, Avda, Sos Baynat s/n, E-12071 Castellón, Spain
| | - Tim Boogaerts
- Toxicological Centre, Department of Pharmaceutical Sciences, University of Antwerp, 2610 Wilrijk, Belgium
| | - Dan Burgard
- Department of Chemistry and Biochemistry, University of Puget Sound, Tacoma, WA 98416, United States
| | - Andrew Chappell
- Institute of Environmental Science and Research Limited (ESR), Christchurch Science Centre, 27 Creyke Road, Ilam, Christchurch 8041, New Zealand
| | - Erin M Driver
- Biodesign Center for Environmental Health Engineering, Biodesign Institute, Arizona State University, 1001 S. McAllister Ave., Tempe, AZ 85281, United States
| | | | - Despo Fatta-Kassinos
- Nireas-International Water Research Centre and Department of Civil and Environmental Engineering, University of Cyprus, P.O. Box 20537, 1678 Nicosia, Cyprus
| | - Emma Gracia-Lor
- Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, Avenida Complutense s/n, 28040 Madrid, Spain
| | - Elisa Gracia-Marín
- Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water, University Jaume I, Avda, Sos Baynat s/n, E-12071 Castellón, Spain
| | - Rolf U Halden
- School of Sustainable Engineering and Built Environment, Arizona State University, Tempe, AZ 85281, United States; Biodesign Center for Environmental Health Engineering, Biodesign Institute, Arizona State University, 1001 S. McAllister Ave., Tempe, AZ 85281, United States; OneWaterOneHealth, Arizona State University Foundation, 1001 S. McAllister Avenue, Tempe, AZ 85287-8101, United States
| | - Ester Heath
- Jožef Stefan Institute and International Postgraduate School Jožef Stefan, Jamova 39, 1000 Ljubljana, Slovenia
| | - Emma Jaunay
- Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide 5001, South Australia, Australia
| | - Alex Krotulski
- Center for Forensic Science Research and Education, Fredric Rieders Family Foundation, Willow Grove, PA 19090, United States
| | - Foon Yin Lai
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), SE-75007 Uppsala, Sweden
| | - Arndís Sue Ching Löve
- University of Iceland, Department of Pharmacology and Toxicology, Hofsvallagata 53, 107 Reykjavik, Iceland; University of Iceland, Faculty of Pharmaceutical Sciences, Hofsvallagata 53, 107 Reykjavik, Iceland
| | - Jake W O'Brien
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, Queensland 4102, Australia; Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, the Netherlands
| | - Jeong-Eun Oh
- Department of Civil and Environmental Engineering, Pusan National University, Jangjeon-dong, Geumjeong-gu, Busan 46241, Republic of Korea
| | - Daniel Pasin
- Forensic Laboratory Division, San Francisco Office of the Chief Medical Examiner, 1 Newhall St, San Francisco, CA 94124, United States
| | | | - Magda Psichoudaki
- Nireas-International Water Research Centre and Department of Civil and Environmental Engineering, University of Cyprus, P.O. Box 20537, 1678 Nicosia, Cyprus
| | - Noelia Salgueiro-Gonzalez
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Department of Environmental Health Sciences, Via Mario Negri 2, 20156 Milan, Italy
| | | | - Bikram Subedi
- Department of Chemistry, Murray State University, Murray, KY 42071-3300, United States
| | - Kevin V Thomas
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, Queensland 4102, Australia
| | - Nikolaos Thomaidis
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Degao Wang
- College of Environmental Science and Engineering, Dalian Maritime University, No. 1 Linghai Road, Dalian 116026, PR China
| | - Viviane Yargeau
- Department of Chemical Engineering, McGill University, Montreal, QC, Canada
| | - Saer Samanipour
- Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, the Netherlands; UvA Data Science Center, University of Amsterdam, the Netherlands
| | - Jochen Mueller
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, Queensland 4102, Australia
| |
Collapse
|
9
|
Vosough M, Schmidt TC, Renner G. Non-target screening in water analysis: recent trends of data evaluation, quality assurance, and their future perspectives. Anal Bioanal Chem 2024; 416:2125-2136. [PMID: 38300263 PMCID: PMC10951028 DOI: 10.1007/s00216-024-05153-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/12/2024] [Accepted: 01/12/2024] [Indexed: 02/02/2024]
Abstract
This trend article provides an overview of recent advancements in Non-Target Screening (NTS) for water quality assessment, focusing on new methods in data evaluation, qualification, quantification, and quality assurance (QA/QC). It highlights the evolution in NTS data processing, where open-source platforms address challenges in result comparability and data complexity. Advanced chemometrics and machine learning (ML) are pivotal for trend identification and correlation analysis, with a growing emphasis on automated workflows and robust classification models. The article also discusses the rigorous QA/QC measures essential in NTS, such as internal standards, batch effect monitoring, and matrix effect assessment. It examines the progress in quantitative NTS (qNTS), noting advancements in ionization efficiency-based quantification and predictive modeling despite challenges in sample variability and analytical standards. Selected studies illustrate NTS's role in water analysis, combining high-resolution mass spectrometry with chromatographic techniques for enhanced chemical exposure assessment. The article addresses chemical identification and prioritization challenges, highlighting the integration of database searches and computational tools for efficiency. Finally, the article outlines the future research needs in NTS, including establishing comprehensive guidelines, improving QA/QC measures, and reporting results. It underscores the potential to integrate multivariate chemometrics, AI/ML tools, and multi-way methods into NTS workflows and combine various data sources to understand ecosystem health and protection comprehensively.
Collapse
Affiliation(s)
- Maryam Vosough
- Instrumental Analytical Chemistry, University of Duisburg-Essen, Universitätsstr. 5, Essen, 45141, North Rhine-Westphalia, Germany.
- Centre for Water and Environmental Research (ZWU), University of Duisburg-Essen, Universitätsstr. 2, Essen, 45141, North Rhine-Westphalia, Germany.
- Department of Clean Technologies, Chemistry and Chemical Engineering Research Center of Iran, P.O. Box 14335-186, Tehran, Iran.
| | - Torsten C Schmidt
- Instrumental Analytical Chemistry, University of Duisburg-Essen, Universitätsstr. 5, Essen, 45141, North Rhine-Westphalia, Germany
- Centre for Water and Environmental Research (ZWU), University of Duisburg-Essen, Universitätsstr. 2, Essen, 45141, North Rhine-Westphalia, Germany
- IWW Water Centre, Moritzstr. 26, Mülheim an der Ruhr, 45476, North Rhine-Westphalia, Germany
| | - Gerrit Renner
- Instrumental Analytical Chemistry, University of Duisburg-Essen, Universitätsstr. 5, Essen, 45141, North Rhine-Westphalia, Germany.
- Centre for Water and Environmental Research (ZWU), University of Duisburg-Essen, Universitätsstr. 2, Essen, 45141, North Rhine-Westphalia, Germany.
| |
Collapse
|
10
|
Castaño-Ortiz JM, Gago-Ferrero P, Barceló D, Rodríguez-Mozaz S, Gil-Solsona R. HRMS-based suspect screening of pharmaceuticals and their transformation products in multiple environmental compartments: An alternative to target analysis? JOURNAL OF HAZARDOUS MATERIALS 2024; 465:132974. [PMID: 38218030 DOI: 10.1016/j.jhazmat.2023.132974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/31/2023] [Accepted: 11/08/2023] [Indexed: 01/15/2024]
Abstract
The comprehensive monitoring of pharmaceutically active compounds (PhACs) in the environment is challenging given the myriad of substances continuously discharged, the increasing number of new compounds being produced (and released), or the variety of the associated human metabolites and transformation products (TPs). Approaches such as high-resolution mass spectrometry (HRMS)-based suspect analysis have emerged to overcome the drawbacks of classical target analytical methods, e.g., restricted chemical coverage. In this study, we assess the readiness of HRMS-based suspect screening to replace or rather complement target methodologies by comparing the performance of both approaches in terms of i) detection of PhACs in various environmental samples (water, sediments, biofilm, fish plasma, muscle and liver) in a field study; ii) PhACs (semi)quantification and iii) prediction of their environmental risks. Our findings revealed that target strategies alone significantly underestimate the variety of PhACs potentially impacting the environment. However, relying solely on suspect strategies can misjudge the presence and risk of low-level but potentially risky PhACs. Additionally, semiquantitative approaches, despite slightly overestimating concentrations, can provide a realistic overview of PhACs concentrations. Hence, it is recommended to adopt a combined strategy that first evaluates suspected threats and subsequently includes the relevant ones in the established target methodologies.
Collapse
Affiliation(s)
- Jose M Castaño-Ortiz
- Catalan Institute for Water Research (ICRA-CERCA), C/ Emili Grahit 101, 17003 Girona, Spain; University of Girona, Girona, Spain
| | - Pablo Gago-Ferrero
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC) Severo Ochoa Excellence Centre, Department of Environmental Chemistry, C/ Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Damià Barceló
- Catalan Institute for Water Research (ICRA-CERCA), C/ Emili Grahit 101, 17003 Girona, Spain; University of Girona, Girona, Spain; Institute of Environmental Assessment and Water Research (IDAEA-CSIC) Severo Ochoa Excellence Centre, Department of Environmental Chemistry, C/ Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Sara Rodríguez-Mozaz
- Catalan Institute for Water Research (ICRA-CERCA), C/ Emili Grahit 101, 17003 Girona, Spain; University of Girona, Girona, Spain.
| | - Ruben Gil-Solsona
- Catalan Institute for Water Research (ICRA-CERCA), C/ Emili Grahit 101, 17003 Girona, Spain; University of Girona, Girona, Spain; Institute of Environmental Assessment and Water Research (IDAEA-CSIC) Severo Ochoa Excellence Centre, Department of Environmental Chemistry, C/ Jordi Girona 18-26, 08034 Barcelona, Spain.
| |
Collapse
|
11
|
Murgolo S, De Giglio O, De Ceglie C, Triggiano F, Apollonio F, Calia C, Pousis C, Marzella A, Fasano F, Giordano ME, Lionetto MG, Santoro D, Santoro O, Mancini S, Di Iaconi C, De Sanctis M, Montagna MT, Mascolo G. Multi-target assessment of advanced oxidation processes-based strategies for indirect potable reuse of tertiary wastewater: Fate of compounds of emerging concerns, microbial and ecotoxicological parameters. ENVIRONMENTAL RESEARCH 2024; 241:117661. [PMID: 37980992 DOI: 10.1016/j.envres.2023.117661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/29/2023] [Accepted: 11/11/2023] [Indexed: 11/21/2023]
Abstract
Two advanced oxidation processes (AOPs), namely ozone/H2O2 and UV/H2O2, were tested at pilot scale as zero-liquid-discharge alternative treatments for the removal of microbiological (bacteria and viruses), chemical (compounds of emerging concern (CECs)) and genotoxic responses from tertiary municipal wastewater for indirect potable reuse (IPR). The AOP treated effluents were further subjected to granular activated carbon (GAC) adsorption and UV disinfection, following the concept of multiple treatment barriers. As a reference, a consolidated advanced wastewater treatment train consisting of ultrafiltration, UV disinfection, and reverse osmosis (RO) was also employed. The results showed that, for the same electrical energy applied, the ozone/H2O2 treatment was more effective than the UV/H2O2 treatment in removing CECs. Specifically, the ozone/H2O2 treatment, intensified by high pressure and high mixing, achieved an average CECs removal efficiency higher than UV/H2O2 (66.8% with respect to 18.4%). The subsequent GAC adsorption step, applied downstream the AOPs, further improved the removal efficiency of the whole treatment trains, achieving rates of 98.5% and 96.8% for the ozone/H2O2 and UV/H2O2 treatments, respectively. In contrast, the ultrafiltration step of the reference treatment train only achieved a removal percentage of 22.5%, which increased to 99% when reverse osmosis was used as the final step. Microbiological investigations showed that all three wastewater treatment lines displayed good performance in the complete removal of regulated and optional parameters according to both national and the European Directive 2020/2184. Only P. aeruginosa resulted resistant to all treatments with a higher removal by UV/H2O2 when higher UV dose was applied. In addition, E. coli STEC/VTEC and enteric viruses, were found to be completely removed in all tested treatments and no genotoxic activity was detected even after a 1000-fold concentration. The obtained results suggest that the investigated treatments are suitable for groundwater recharge to be used as a potable water source being such a procedure an IPR. The intensified ozone/H2O2 or UV/H2O2 treatments can be conveniently incorporated into a multi-barrier zero-liquid-discharge scheme, thus avoiding the management issues associated with the retentate of the conventional scheme that uses reverse osmosis. By including the chemical cost associated with using 11-12 mg/L of H2O2 in the cost calculations, the overall operational cost (energy plus chemical) required to achieve 50% average CECs removal in tertiary effluent for an hypothetical full-scale plant of 250 m3/h (or 25,000 inhabitants) was 0.183 €/m3 and 0.425 €/m3 for ozone/H2O2 and UV/H2O2 treatment train, respectively.
Collapse
Affiliation(s)
- S Murgolo
- Consiglio Nazionale delle Ricerche (CNR), Istituto di Ricerca Sulle Acque (IRSA), Via F. De Blasio 5, Bari, 70132, Italy
| | - O De Giglio
- Interdisciplinary Department of Medicine, Hygiene Section, University of Bari Aldo Moro, Piazza G. Cesare 11, 70124, Bari, Italy
| | - C De Ceglie
- Consiglio Nazionale delle Ricerche (CNR), Istituto di Ricerca Sulle Acque (IRSA), Via F. De Blasio 5, Bari, 70132, Italy
| | - F Triggiano
- Interdisciplinary Department of Medicine, Hygiene Section, University of Bari Aldo Moro, Piazza G. Cesare 11, 70124, Bari, Italy
| | - F Apollonio
- Interdisciplinary Department of Medicine, Hygiene Section, University of Bari Aldo Moro, Piazza G. Cesare 11, 70124, Bari, Italy
| | - C Calia
- Department of Biomedical Science and Human Oncology, University of Bari Aldo Moro, Piazza G. Cesare 11, 70124, Bari, Italy
| | - C Pousis
- Department of Biomedical Science and Human Oncology, University of Bari Aldo Moro, Piazza G. Cesare 11, 70124, Bari, Italy
| | - A Marzella
- Department of Biomedical Science and Human Oncology, University of Bari Aldo Moro, Piazza G. Cesare 11, 70124, Bari, Italy
| | - F Fasano
- Interdisciplinary Department of Medicine, Hygiene Section, University of Bari Aldo Moro, Piazza G. Cesare 11, 70124, Bari, Italy
| | - M E Giordano
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Provinciale Lecce-Monteroni, 73100, Lecce, Italy
| | - M G Lionetto
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Provinciale Lecce-Monteroni, 73100, Lecce, Italy; National Biodiversity Future Center (NBFC), Palermo, 90133, Italy
| | - D Santoro
- Department of Chemical and Biochemical Engineering, Western University, London, N6A 5B9, Ontario, Canada
| | - O Santoro
- AquaSoil S.r.l., Via del Calvario 35, 72015, Fasano, Brindisi, Italy
| | - S Mancini
- AquaSoil S.r.l., Via del Calvario 35, 72015, Fasano, Brindisi, Italy
| | - C Di Iaconi
- Consiglio Nazionale delle Ricerche (CNR), Istituto di Ricerca Sulle Acque (IRSA), Via F. De Blasio 5, Bari, 70132, Italy
| | - M De Sanctis
- Consiglio Nazionale delle Ricerche (CNR), Istituto di Ricerca Sulle Acque (IRSA), Via F. De Blasio 5, Bari, 70132, Italy
| | - M T Montagna
- Interdisciplinary Department of Medicine, Hygiene Section, University of Bari Aldo Moro, Piazza G. Cesare 11, 70124, Bari, Italy
| | - G Mascolo
- Consiglio Nazionale delle Ricerche (CNR), Istituto di Ricerca Sulle Acque (IRSA), Via F. De Blasio 5, Bari, 70132, Italy; Consiglio Nazionale delle Ricerche (CNR), Istituto di Ricerca per La Protezione Idrogeologica (IRPI), Via Amendola 122 I, Bari, 70126, Italy.
| |
Collapse
|
12
|
Schullehner J, Cserbik D, Gago-Ferrero P, Lundqvist J, Nuckols JR. Integrating different tools and technologies to advance drinking water quality exposure assessments. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2024; 34:108-114. [PMID: 37553410 DOI: 10.1038/s41370-023-00588-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 07/20/2023] [Accepted: 07/20/2023] [Indexed: 08/10/2023]
Abstract
Contaminants in drinking water are a major contributor to the human exposome and adverse health effects. Assessing drinking water exposure accurately in health studies is challenging, as several of the following study design domains should be addressed as adequately as possible. In this paper, we identify the domains Time, Space, Data Quality, Data Accessibility, economic considerations of Study Size, and Complex Mixtures. We present case studies for three approaches or technologies that address these domains differently in the context of exposure assessment of drinking water quality: regulated contaminants in monitoring databases, high-resolution mass spectrometry (HRMS)-based wide-scope chemical analysis, and effect-based bioassay methods. While none of these approaches address all the domains sufficiently, together they have the potential to carry out exposure assessments that would complement each other and could advance the state-of-science towards more accurate risk analysis. The aim of our study is to give researchers investigating health effects of drinking water quality the impetus to consider how their exposure assessments relate to the above-mentioned domains and whether it would be worthwhile to integrate the advanced technologies presented into planned risk analyses. We highly suggest this three-pronged approach should be further evaluated in health risk analyses, especially epidemiological studies concerning contaminants in drinking water. The state of the knowledge regarding potential benefits of these technologies, especially when applied in tandem, provides more than sufficient evidence to support future research to determine the implications of combining the approaches described in our case studies in terms of protection of public health.
Collapse
Affiliation(s)
- Jörg Schullehner
- Environment, Occupation and Health, Department of Public Health, Aarhus University, Aarhus, Denmark.
- Danish Big Data Centre for Environment and Health (BERTHA), Aarhus University, Aarhus, Denmark.
| | - Dora Cserbik
- Barcelona Institute for Global Health, Barcelona, Spain
| | - Pablo Gago-Ferrero
- Institute of Environmental Assessment and Water Research-Spanish Council of Scientific Research (IDAEA-CSIC), Barcelona, Spain
| | - Johan Lundqvist
- Department of Biomedicine and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - John R Nuckols
- Emeritus Professor of Environmental Health Sciences, Colorado State University, Fort Collins, CO, USA
- Principal, JRN Environmental Health Sciences, Ltd, North Bethesda, MD, USA
| |
Collapse
|
13
|
Creusot N, Huba K, Borel C, Ferrari BJD, Chèvre N, Hollender J. Identification of polar organic chemicals in the aquatic foodweb: Combining high-resolution mass spectrometry and trend analysis. ENVIRONMENT INTERNATIONAL 2024; 183:108403. [PMID: 38224651 DOI: 10.1016/j.envint.2023.108403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/30/2023] [Accepted: 12/20/2023] [Indexed: 01/17/2024]
Abstract
Environmental risk assessment of chemical contaminants requires prioritizing of substances taken up by biota as it is a starting point for potential adverse effects. Although knowledge about the occurrence of known chemical pollutants in aquatic organisms has significantly improved during the last decade, there is still a poor understanding for a broad range of more polar compounds. To tackle this issue, we proposed an approach that identifies bioaccumulative and biomagnifiable polar chemicals using liquid chromatography coupled with electrospray ionization to high resolution tandem mass spectrometry (LC-HRMS/MS) and combine it with trend analysis using hierarchical clustering. As a proof-of-concept, this approach was implemented on various organisms and compartments (sediment, litter leaves, periphytic biofilm, invertebrates and fish) collected from a small urban river. HRMS/MS data measured via data-independent acquisition mode were retrospectively analysed using two analytical strategies: (1) retrospective target and (2) suspect/non-target screening. In the retrospective target analysis, 56 of 361 substances spanning a broad range of contaminant classes were detected (i.e. 26 in fish, 18 in macroinvertebrates, 28 in leaves, 29 in periphyton and 32 in sediments, with only 7 common to all compartments), among which 49 could be quantified using reference standards. The suspect screening approach based on two suspect lists (in-house, Norman SusDat) led to the confirmation of 5 compounds with standards (three xenobiotics at level 1 and two lipids at level 2) and tentative identification of seven industrial or natural chemicals at level 2 and 3 through a mass spectra library match. Overall, this proof-of-concept study provided a more comprehensive picture of the exposure of biota to emerging contaminants (i.e., the internal chemical exposome) and potential bioaccumulation or biomagnification of polar compounds along the trophic chain.
Collapse
Affiliation(s)
- Nicolas Creusot
- Swiss Federal Institute of Aquatic Science and Technology (Eawag), 8600 Dübendorf, Switzerland; INRAE, EABX, Bordeaux Metabolome, MetaboHub, 50 avenue de Verdun, 33612 Gazinet-Cestas, France.
| | - Kristina Huba
- Swiss Federal Institute of Aquatic Science and Technology (Eawag), 8600 Dübendorf, Switzerland; Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, 8092 Zürich, Switzerland
| | | | - Benoit J D Ferrari
- Swiss Centre for Applied Ecotoxicology (Ecotox Centre), Lausanne/Dübendorf, Switzerland
| | | | - Juliane Hollender
- Swiss Federal Institute of Aquatic Science and Technology (Eawag), 8600 Dübendorf, Switzerland; Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, 8092 Zürich, Switzerland
| |
Collapse
|
14
|
Wu G, Zhu F, Zhang X, Ren H, Wang Y, Geng J, Liu H. PBT assessment of chemicals detected in effluent of wastewater treatment plants by suspected screening analysis. ENVIRONMENTAL RESEARCH 2023; 237:116892. [PMID: 37598848 DOI: 10.1016/j.envres.2023.116892] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 08/10/2023] [Accepted: 08/13/2023] [Indexed: 08/22/2023]
Abstract
Wastewater treatment plants (WWTPs) are the major sources of contaminants discharged into downstream water bodies. Profiling the contaminants in effluent of WWTPs is crucial to assess the potential eco-risks toward downstream organisms. To this end, this study investigated the contaminants in effluent of 10 WWTPs locating in 10 cities of Yangtze River delta region of China by suspected screening analysis. Further, the persistence, bioaccumulation, toxicity (PBT) and the characteristics sub-structures of PBT-like chemicals were analyzed. Totally, 704 chemicals including 155 chemical products, 31 food additives, 52 natural substances, 112 personal care products, 123 pesticides, 192 pharmaceuticals, 17 hormones and 22 others were found. The results of PBT analysis suggested that 42 chemicals (5.97% among the detected chemicals in WWTPs) were with PBT property. Among them, 31 contaminants were not reported previously. 9 characteristics sub-structures (N-methyleneisobutylamine, 1-naphthaldehyde, 2,3,3-trimethylcyclohexene, cyclohexanol, N-sec-butyl-n-propylamine, (5E)-2,6-dimethylocta-1,5-diene, 2-ethylphenol, pentadecane and 6-methoxyhexane) were found for PBT-like chemicals. The sub-structures of highly linear alkyl partially explained the significantly higher PBT score for personal care products. Present study provides fundamental information on PBT properties of contaminants in effluent of WWTPs, which will benefit to prioritize contaminants with high concerns in effluent of WWTPs.
Collapse
Affiliation(s)
- Gang Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China
| | - Feng Zhu
- Jiangsu Province Center for Disease Control and Prevention, Nanjing, Jiangsu, 210009, PR China
| | - Xuxiang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China
| | - Hongqiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China
| | - Yanru Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China
| | - Jinju Geng
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China; Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400044, PR China.
| | - Hualiang Liu
- Jiangsu Province Center for Disease Control and Prevention, Nanjing, Jiangsu, 210009, PR China.
| |
Collapse
|
15
|
García-Vara M, Orlando-Véliz D, Bonansea RI, Postigo C, López de Alda M. Prioritization of organic contaminants in a reclaimed water irrigation system using wide-scope LC-HRMS screening. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132119. [PMID: 37543020 DOI: 10.1016/j.jhazmat.2023.132119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 08/07/2023]
Abstract
A prioritization procedure was developed and implemented at the local level to identify the most relevant organic contaminants of emerging concern (CECs) in an agricultural area irrigated with reclaimed water. A wide-scope screening methodology based on UPLC-HRMS analysis was applied to holistically characterize the CEC footprint in water and its spatial and temporal variations. One hundred and fifty-eight CECs, including pharmaceuticals, industrial chemicals, and pesticides, among others, were identified with a confidence level of 2 in the water samples investigated. After water treatment in the reclamation plant and transport within the irrigation channel network, more than a hundred compounds were still detected at the location where water is abstracted for crop irrigation. Compound ecotoxicity and occurrence (semi-quantified concentrations or peak intensity) were the parameters used to prioritize CECs in the water used for irrigation. Results pointed at venlafaxine, O-desmethyl-venlafaxine, galaxolidone, theophylline/paraxanthine, oxybenzone, and N-phenyl-1-naphtylamine, among others, as CECs of concern in the investigated area. This study provides a simple and cost-effective approach to detecting site-specific priority pollutants that could otherwise be overlooked by national or European regulations. The prioritization tool provided contributes to rationally designing monitoring and attenuation programs and efficiently managing water resources, by ensuring the safety of reclaimed water applications.
Collapse
Affiliation(s)
- Manuel García-Vara
- Water, Environmental and Food Chemistry Unit (ENFOCHEM), Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), C/ Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Dana Orlando-Véliz
- Water, Environmental and Food Chemistry Unit (ENFOCHEM), Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), C/ Jordi Girona 18-26, 08034 Barcelona, Spain; PhD student in the Analytical and Environmental Chemistry PhD Program at the University of Barcelona, C/ Martí i Franquès, 08028 Barcelona, Spain
| | - Rocío Inés Bonansea
- Water, Environmental and Food Chemistry Unit (ENFOCHEM), Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), C/ Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Cristina Postigo
- Technologies for Water Management and Treatment Research Group, Department of Civil Engineering, University of Granada, Campus de Fuentenueva, Avda Severo Ocha s/n, Granada 18071, Spain; Institute for Water Research, University of Granada, C/ Ramón y Cajal 4, Granada 18071, Spain
| | - Miren López de Alda
- Water, Environmental and Food Chemistry Unit (ENFOCHEM), Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), C/ Jordi Girona 18-26, 08034 Barcelona, Spain.
| |
Collapse
|
16
|
Hulleman T, Turkina V, O’Brien JW, Chojnacka A, Thomas KV, Samanipour S. Critical Assessment of the Chemical Space Covered by LC-HRMS Non-Targeted Analysis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:14101-14112. [PMID: 37704971 PMCID: PMC10537454 DOI: 10.1021/acs.est.3c03606] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/15/2023]
Abstract
Non-targeted analysis (NTA) has emerged as a valuable approach for the comprehensive monitoring of chemicals of emerging concern (CECs) in the exposome. The NTA approach can theoretically identify compounds with diverse physicochemical properties and sources. Even though they are generic and have a wide scope, non-targeted analysis methods have been shown to have limitations in terms of their coverage of the chemical space, as the number of identified chemicals in each sample is very low (e.g., ≤5%). Investigating the chemical space that is covered by each NTA assay is crucial for understanding the limitations and challenges associated with the workflow, from the experimental methods to the data acquisition and data processing techniques. In this review, we examined recent NTA studies published between 2017 and 2023 that employed liquid chromatography-high-resolution mass spectrometry. The parameters used in each study were documented, and the reported chemicals at confidence levels 1 and 2 were retrieved. The chosen experimental setups and the quality of the reporting were critically evaluated and discussed. Our findings reveal that only around 2% of the estimated chemical space was covered by the NTA studies investigated for this review. Little to no trend was found between the experimental setup and the observed coverage due to the generic and wide scope of the NTA studies. The limited coverage of the chemical space by the reviewed NTA studies highlights the necessity for a more comprehensive approach in the experimental and data processing setups in order to enable the exploration of a broader range of chemical space, with the ultimate goal of protecting human and environmental health. Recommendations for further exploring a wider range of the chemical space are given.
Collapse
Affiliation(s)
- Tobias Hulleman
- Van
’t Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, 1090 GD Amsterdam, The Netherlands
| | - Viktoriia Turkina
- Van
’t Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, 1090 GD Amsterdam, The Netherlands
| | - Jake W. O’Brien
- Van
’t Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, 1090 GD Amsterdam, The Netherlands
- Queensland
Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, Queensland 4102, Australia
| | - Aleksandra Chojnacka
- Van
’t Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, 1090 GD Amsterdam, The Netherlands
| | - Kevin V. Thomas
- Queensland
Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, Queensland 4102, Australia
| | - Saer Samanipour
- Van
’t Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, 1090 GD Amsterdam, The Netherlands
- UvA
Data Science Center, University of Amsterdam, 1012 WP Amsterdam, The Netherlands
- Queensland
Alliance for Environmental Health Sciences (QAEHS), 20 Cornwall Street, Woolloongabba, Queensland 4102, Australia
| |
Collapse
|
17
|
Renner G, Reuschenbach M. Critical review on data processing algorithms in non-target screening: challenges and opportunities to improve result comparability. Anal Bioanal Chem 2023; 415:4111-4123. [PMID: 37380744 PMCID: PMC10328864 DOI: 10.1007/s00216-023-04776-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 04/23/2023] [Accepted: 05/15/2023] [Indexed: 06/30/2023]
Abstract
Non-target screening (NTS) is a powerful environmental and analytical chemistry approach for detecting and identifying unknown compounds in complex samples. High-resolution mass spectrometry has enhanced NTS capabilities but created challenges in data analysis, including data preprocessing, peak detection, and feature extraction. This review provides an in-depth understanding of NTS data processing methods, focusing on centroiding, extracted ion chromatogram (XIC) building, chromatographic peak characterization, alignment, componentization, and prioritization of features. We discuss the strengths and weaknesses of various algorithms, the influence of user input parameters on the results, and the need for automated parameter optimization. We address uncertainty and data quality issues, emphasizing the importance of incorporating confidence intervals and raw data quality assessment in data processing workflows. Furthermore, we highlight the need for cross-study comparability and propose potential solutions, such as utilizing standardized statistics and open-access data exchange platforms. In conclusion, we offer future perspectives and recommendations for developers and users of NTS data processing algorithms and workflows. By addressing these challenges and capitalizing on the opportunities presented, the NTS community can advance the field, improve the reliability of results, and enhance data comparability across different studies.
Collapse
Affiliation(s)
- Gerrit Renner
- Instrumental Analytical Chemistry, University of Duisburg-Essen, Universitätsstr. 5, Essen, D-45141, NRW, Germany.
- Centre for Water and Environmental Research (ZWU), University of Duisburg-Essen, Universitätsstr. 2, Essen, D-45141, NRW, Germany.
| | - Max Reuschenbach
- Instrumental Analytical Chemistry, University of Duisburg-Essen, Universitätsstr. 5, Essen, D-45141, NRW, Germany
- Centre for Water and Environmental Research (ZWU), University of Duisburg-Essen, Universitätsstr. 2, Essen, D-45141, NRW, Germany
| |
Collapse
|
18
|
Strynar M, McCord J, Newton S, Washington J, Barzen-Hanson K, Trier X, Liu Y, Dimzon IK, Bugsel B, Zwiener C, Munoz G. Practical application guide for the discovery of novel PFAS in environmental samples using high resolution mass spectrometry. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2023; 33:575-588. [PMID: 37516787 PMCID: PMC10561087 DOI: 10.1038/s41370-023-00578-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 06/16/2023] [Accepted: 06/19/2023] [Indexed: 07/31/2023]
Abstract
BACKGROUND The intersection of the topics of high-resolution mass spectrometry (HRMS) and per- and polyfluoroalkyl substances (PFAS) bring together two disparate and complex subjects. Recently non-targeted analysis (NTA) for the discovery of novel PFAS in environmental and biological media has been shown to be valuable in multiple applications. Classical targeted analysis for PFAS using LC-MS/MS, though growing in compound coverage, is still unable to inform a holistic understanding of the PFAS burden in most samples. NTA fills at least a portion of this data gap. OBJECTIVES Entrance into the study of novel PFAS discovery requires identification techniques such as HRMS (e.g., QTOF and Orbitrap) instrumentation. This requires practical knowledge of best approaches depending on the purpose of the analyses. The utility of HRMS applications for PFAS discovery is unquestioned and will likely play a significant role in many future environmental and human exposure studies. METHODS/RESULTS PFAS have some characteristics that make them standout from most other chemicals present in samples. Through a series of tell-tale PFAS characteristics (e.g., characteristic mass defect range, homologous series and characteristic fragmentation patterns), and case studies different approaches and remaining challenges are demonstrated. IMPACT STATEMENT The identification of novel PFAS via non-targeted analysis using high resolution mass spectrometry is an important and difficult endeavor. This synopsis document will hopefully make current and future efforts on this topic easier to perform for novice and experienced alike. The typical time devoted to NTA PFAS investigations (weeks to months or more) may benefit from these practical steps employed.
Collapse
Affiliation(s)
- Mark Strynar
- USEPA Office of Research and Development Center for Environmental Measurement and Modeling, Durham, NC and Athens, GA, USA.
| | - James McCord
- USEPA Office of Research and Development Center for Environmental Measurement and Modeling, Durham, NC and Athens, GA, USA
| | - Seth Newton
- USEPA Office of Research and Development Center for Environmental Measurement and Modeling, Durham, NC and Athens, GA, USA
| | - John Washington
- USEPA Office of Research and Development Center for Environmental Measurement and Modeling, Durham, NC and Athens, GA, USA
| | | | - Xenia Trier
- Section of Environmental Chemistry and Physics, Department of Plant and Environmental Sciences (PLEN), University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg, Denmark
| | - Yanna Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085, Beijing, China
| | - Ian Ken Dimzon
- Ateneo de Manila University, Loyola Heights, Quezon City, Philippines
| | - Boris Bugsel
- Environmental Analytical Chemistry, Department of Geosciences, University of Tübingen, Schnarrenbergstr. 94-96, 72076, Tübingen, Germany
| | - Christian Zwiener
- Environmental Analytical Chemistry, Department of Geosciences, University of Tübingen, Schnarrenbergstr. 94-96, 72076, Tübingen, Germany
| | - Gabriel Munoz
- Université de Montréal, Montreal, QC, H3C 3J7, Canada
| |
Collapse
|
19
|
Ebinghaus R, Barbaro E, Bengtson Nash S, de Avila C, de Wit CA, Dulio V, Felden J, Franco A, Gandrass J, Grotti M, Herata H, Hughes KA, Jartun M, Joerss H, Kallenborn R, Koschorreck J, Küster A, Lohmann R, Wang Z, MacLeod M, Pugh R, Rauert C, Slobodnik J, Sühring R, Vorkamp K, Xie Z. Berlin statement on legacy and emerging contaminants in polar regions. CHEMOSPHERE 2023; 327:138530. [PMID: 37001758 DOI: 10.1016/j.chemosphere.2023.138530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/23/2023] [Accepted: 03/26/2023] [Indexed: 06/19/2023]
Abstract
Polar regions should be given greater consideration with respect to the monitoring, risk assessment, and management of potentially harmful chemicals, consistent with requirements of the precautionary principle. Protecting the vulnerable polar environments requires (i) raising political and public awareness and (ii) restricting and preventing global emissions of harmful chemicals at their sources. The Berlin Statement is the outcome of an international workshop with representatives of the European Commission, the Arctic Council, the Antarctic Treaty Consultative Meeting, the Stockholm Convention on Persistent Organic Pollutants (POPs), environmental specimen banks, and data centers, as well as scientists from various international research institutions. The statement addresses urgent chemical pollution issues in the polar regions and provides recommendations for improving screening, monitoring, risk assessment, research cooperation, and open data sharing to provide environmental policy makers and chemicals management decision-makers with relevant and reliable contaminant data to better protect the polar environments. The consensus reached at the workshop can be summarized in just two words: "Act now!" Specifically, "Act now!" to reduce the presence and impact of anthropogenic chemical pollution in polar regions by. •Establishing participatory co-development frameworks in a permanent multi-disciplinary platform for Arctic-Antarctic collaborations and establishing exchanges between the Arctic Monitoring and Assessment Program (AMAP) of the Arctic Council and the Antarctic Monitoring and Assessment Program (AnMAP) of the Scientific Committee on Antarctic Research (SCAR) to increase the visibility and exchange of contaminant data and to support the development of harmonized monitoring programs. •Integrating environmental specimen banking, innovative screening approaches and archiving systems, to provide opportunities for improved assessment of contaminants to protect polar regions.
Collapse
Affiliation(s)
- Ralf Ebinghaus
- Helmholtz-Zentrum Hereon, Institute of Coastal Environmental Chemistry, Germany.
| | - Elena Barbaro
- Institute of Polar Sciences, National Research Council, Italy
| | - Susan Bengtson Nash
- Griffith University, Centre of Planetary Health and Food Security, Australia
| | - Cristina de Avila
- European Commission, Safe and Sustainable Chemicals, DG Environment, Belgium
| | - Cynthia A de Wit
- Stockholm University, Department of Environmental Science, Sweden
| | | | - Janine Felden
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, PANGAEA, Germany
| | - Antonio Franco
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Juergen Gandrass
- Helmholtz-Zentrum Hereon, Institute of Coastal Environmental Chemistry, Germany
| | - Marco Grotti
- University of Genova, Department of Chemistry and Industrial Chemistry, Italy
| | | | | | - Morten Jartun
- NIVA - Norwegian Institute for Water Research, Norway
| | - Hanna Joerss
- Helmholtz-Zentrum Hereon, Institute of Coastal Environmental Chemistry, Germany
| | - Roland Kallenborn
- Faculty of Chemistry, Biotechnology and Food Sciences (KBM), Norwegian University of Life Science, Norway (NMBU), Norway; University of the Arctic Oulo, Finland
| | | | | | - Rainer Lohmann
- University of Rhode Island, Graduate School of Oceanography, USA
| | - Zhanyun Wang
- Empa - Swiss Federal Laboratories for Materials Science and Technology, Technology and Society Laboratory, 9014, St. Gallen, Switzerland
| | - Matthew MacLeod
- Stockholm University, Department of Environmental Science, Sweden
| | - Rebecca Pugh
- National Institute of Standards and Technology, USA
| | | | | | - Roxana Sühring
- Department of Chemistry and Biology, Toronto Metropolitan University, 350 Victoria St, Toronto, ON M5B 2K3, Canada
| | - Katrin Vorkamp
- Aarhus University, Department of Environmental Science, Roskilde, Denmark
| | - Zhiyong Xie
- Helmholtz-Zentrum Hereon, Institute of Coastal Environmental Chemistry, Germany
| |
Collapse
|
20
|
Wang Y, Zhou L, Chen T, You L, Shi X, Liu X, Zheng S, Jiang J, Ke Y, Xu G. Screening strategy for 1210 exogenous chemicals in serum by two-dimensional liquid chromatography-mass spectrometry. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023:121914. [PMID: 37257806 DOI: 10.1016/j.envpol.2023.121914] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/24/2023] [Accepted: 05/26/2023] [Indexed: 06/02/2023]
Abstract
Humans are at risk of exogenous exposure to exogenous chemicals. Challenges exist for the comprehensive monitoring of residues with different physical and chemical properties in serum. Here, an on-line two-dimensional liquid chromatography (2D-LC) - high resolution mass spectrometry system (HRMS) was developed, expanding the range of the partition coefficient in octanol/water of the residue analysis from -8 to 12. A high-coverage serum residue screening strategy was further designed by integrating 2D-LC system with HRMS full MS/data independent acquisition and automatic spectral library searching. This strategy enables to simultaneously screen 1210 pesticides, veterinary/human drugs, other chemical pollutants and their metabolites in serum with a single analysis. Method validation showed 92% and 81% of 1022 residues spiked in serum could be detected at 50 ng/mL and 5 ng/mL, respectively. The developed method was applied to the analysis of 24 separately pooled serum samples, 58 suspect residues were found, some of them were detected at high frequencies over than 50%. Among them, 4,6-Dinitro-O-cresol and probable carcinogenic folpet are highly toxic, and cimaterol is banned in China. Collectively, this study developed a 2D-LC-HRMS -based screening strategy for screening pesticides, veterinary/human drugs, and other chemical pollutants in serum, it is helpful for studying the effect of exogenous exposures on human health.
Collapse
Affiliation(s)
- Yuting Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Lina Zhou
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; Liaoning Province Key Laboratory of Metabolomics, Dalian, China.
| | - Tiantian Chen
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Lei You
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Xianzhe Shi
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; Liaoning Province Key Laboratory of Metabolomics, Dalian, China.
| | - Xinyu Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; Liaoning Province Key Laboratory of Metabolomics, Dalian, China.
| | - Sijia Zheng
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Jie Jiang
- Chemical Analysis & Physical Testing Institute, Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China.
| | - Yuebin Ke
- Key Laboratory of Molecular Epidemiology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China.
| | - Guowang Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Liaoning Province Key Laboratory of Metabolomics, Dalian, China.
| |
Collapse
|
21
|
Feraud M, O'Brien JW, Samanipour S, Dewapriya P, van Herwerden D, Kaserzon S, Wood I, Rauert C, Thomas KV. InSpectra - A platform for identifying emerging chemical threats. JOURNAL OF HAZARDOUS MATERIALS 2023; 455:131486. [PMID: 37172382 DOI: 10.1016/j.jhazmat.2023.131486] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 04/20/2023] [Accepted: 04/23/2023] [Indexed: 05/14/2023]
Abstract
Non-target analysis (NTA) employing high-resolution mass spectrometry (HRMS) coupled with liquid chromatography is increasingly being used to identify chemicals of biological relevance. HRMS datasets are large and complex making the identification of potentially relevant chemicals extremely challenging. As they are recorded in vendor-specific formats, interpreting them is often reliant on vendor-specific software that may not accommodate advancements in data processing. Here we present InSpectra, a vendor independent automated platform for the systematic detection of newly identified emerging chemical threats. InSpectra is web-based, open-source/access and modular providing highly flexible and extensible NTA and suspect screening workflows. As a cloud-based platform, InSpectra exploits parallel computing and big data archiving capabilities with a focus for sharing and community curation of HRMS data. InSpectra offers a reproducible and transparent approach for the identification, tracking and prioritisation of emerging chemical threats.
Collapse
Affiliation(s)
- Mathieu Feraud
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Australia
| | - Jake W O'Brien
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Australia; Van 't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Netherlands.
| | - Saer Samanipour
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Australia; Van 't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Netherlands; UvA Data Science Center, University of Amsterdam, Netherlands.
| | - Pradeep Dewapriya
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Australia
| | - Denice van Herwerden
- Van 't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Netherlands
| | - Sarit Kaserzon
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Australia
| | - Ian Wood
- School of Mathematics and Physics, The University of Queensland, Australia
| | - Cassandra Rauert
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Australia
| | - Kevin V Thomas
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Australia
| |
Collapse
|
22
|
Movalli P, Biesmeijer K, Gkotsis G, Alygizakis N, Nika MC, Vasilatos K, Kostakis M, Thomaidis NS, Oswald P, Oswaldova M, Slobodnik J, Glowacka N, Hooijmeijer JCEW, Howison RA, Dekker RWRJ, van den Brink N, Piersma T. High resolution mass spectrometric suspect screening, wide-scope target analysis of emerging contaminants and determination of legacy pollutants in adult black-tailed godwit Limosa limosa limosa in the Netherlands - A pilot study. CHEMOSPHERE 2023; 321:138145. [PMID: 36791819 DOI: 10.1016/j.chemosphere.2023.138145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 01/22/2023] [Accepted: 02/12/2023] [Indexed: 06/18/2023]
Abstract
The Dutch breeding population of the black-tailed godwit Limosa limosa limosa has declined substantially over recent decades; the role of contaminants is unknown. We analysed liver samples from 11 adult birds found dead on their breeding grounds in SW Friesland 2016-2020, six from extensive, herb-rich grasslands, five from intensive grasslands. We carried out LC and GC wide-scope target analysis of more than 2400 substances, LC suspect screening for more than 60,000 substances, target analysis for Cd, Hg, Ni and Pb, organo-phosphate flame retardants (OPFRs), dechlorane plus compounds and selected polybrominated diphenyl ether flame retardants (PBDEs), and bioassay for polybrominated dibenzo-p-dioxins and dibenzofurans (PBDDs/PDBFs) and dioxin-like polychlorinated biphenyls (dl-PCBs). Residues of 29 emerging contaminants (ECs) were determined through wide-scope target analysis. Another 20 were tentatively identified through suspect screening. These contaminants include industrial chemicals (personal care products, surfactants, PAHs and others), plant protection products (PPPs) and pharmaceuticals and their transformation products. Total contaminant load detected by wide-scope target analysis ranged from c. 155 to c. 1400 ng g-1 and was generally lower in birds from extensive grasslands. Heatmaps suggest that birds from intensive grasslands have a greater mix and higher residue concentrations of PPPs, while birds from extensive grasslands have a greater mix and higher residue concentrations of per- and polyfluoroalkyl substances (PFAS). All four metals and two OPFRs were detected. All tested PBDEs were below the respective LODs. Bioassay revealed presence of PBDDs, PBDFs and dl-PCBs. Further research is required to elucidate potential health risks to godwits and contaminant sources.
Collapse
Affiliation(s)
- P Movalli
- Naturalis Biodiversity Center, P.O. Box 9517, 2300 RA, Leiden, the Netherlands.
| | - K Biesmeijer
- Laboratory of Analytical Chemistry, Department of Chemistry, University of Athens, Panepistimiopolis Zografou, 15771, Athens, Greece
| | - G Gkotsis
- Laboratory of Analytical Chemistry, Department of Chemistry, University of Athens, Panepistimiopolis Zografou, 15771, Athens, Greece
| | - N Alygizakis
- Laboratory of Analytical Chemistry, Department of Chemistry, University of Athens, Panepistimiopolis Zografou, 15771, Athens, Greece; Environmental Institute, Okružná 784/42, 97241, Koš, Slovak Republic
| | - M C Nika
- Laboratory of Analytical Chemistry, Department of Chemistry, University of Athens, Panepistimiopolis Zografou, 15771, Athens, Greece
| | - K Vasilatos
- Laboratory of Analytical Chemistry, Department of Chemistry, University of Athens, Panepistimiopolis Zografou, 15771, Athens, Greece
| | - M Kostakis
- Laboratory of Analytical Chemistry, Department of Chemistry, University of Athens, Panepistimiopolis Zografou, 15771, Athens, Greece
| | - N S Thomaidis
- Laboratory of Analytical Chemistry, Department of Chemistry, University of Athens, Panepistimiopolis Zografou, 15771, Athens, Greece
| | - P Oswald
- Environmental Institute, Okružná 784/42, 97241, Koš, Slovak Republic
| | - M Oswaldova
- Environmental Institute, Okružná 784/42, 97241, Koš, Slovak Republic
| | - J Slobodnik
- Environmental Institute, Okružná 784/42, 97241, Koš, Slovak Republic
| | - N Glowacka
- Environmental Institute, Okružná 784/42, 97241, Koš, Slovak Republic
| | - J C E W Hooijmeijer
- Conservation Ecology Group, Groningen Institute for Evolutionary Science (GELIFES), University of Groningen, PO Box 11103, 9700 CC, Groningen, the Netherlands
| | - R A Howison
- Knowledge Infrastructures Department, Campus Fryslân, University of Groningen, Wirdumerdijk 34, 8911 CE Leeuwarden, The Netherlands
| | - R W R J Dekker
- Naturalis Biodiversity Center, P.O. Box 9517, 2300 RA, Leiden, the Netherlands
| | - N van den Brink
- Wageningen University, Division of Toxicology, Box 8000, NL6700 EA, Wageningen, the Netherlands
| | - T Piersma
- Conservation Ecology Group, Groningen Institute for Evolutionary Science (GELIFES), University of Groningen, PO Box 11103, 9700 CC, Groningen, the Netherlands; NIOZ Royal Netherlands Institute for Sea Research, Department of Coastal Systems, PO Box 59, 1790 AB Den Burg, Texel, the Netherlands
| |
Collapse
|
23
|
Sunyer-Caldú A, Peiró A, Díaz M, Ibáñez L, Gil-Solsona R, Gago-Ferrero P, Silvia Diaz-Cruz M. Target analysis and suspect screening of UV filters, parabens and other chemicals used in personal care products in human cord blood: Prenatal exposure by mother-fetus transfer. ENVIRONMENT INTERNATIONAL 2023; 173:107834. [PMID: 36893631 DOI: 10.1016/j.envint.2023.107834] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 02/15/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
Prenatal exposure to certain organic chemicals like pesticides and phenols has been lifelong associated with birth outcomes and health disorders. Many personal care product (PCP) ingredients have similar properties or structures to those chemicals. Previous studies have documented the occurrence of UV filters (UVFs) and paraben preservatives (PBs) in the placenta, but observational studies concerning PCPs chemicals and foetal exposure are particularly scarce. Thus, this work aimed to assess the presence of a wide range of PCPs chemicals using target and suspect screening in the umbilical cord blood of new born babies to evaluate their potential transfer to the fetus. To do so, we analysed 69 umbilical cord blood plasma samples from a mother-child cohort from Barcelona (Spain). We quantified 8 benzophenone-type UVFs and their metabolites, and 4 PBs using validated analytical methodologies based on target screening using liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). Then, we screened for additional 3246 substances using high-resolution mass spectrometry (HRMS) and advanced suspect analysis strategies. Six UVFs and three parabens were detected in the plasma with frequencies between 1.4% and 17.4% and concentrations up to 53.3 ng/mL (benzophenone-2). Thirteen additional chemicals were tentatively identified in the suspect screening, and ten were further confirmed with the corresponding standards. Among them, we found the organic solvent N-methyl-2-pyrrolidone, the chelating agent 8-hydroxyquinoline, and the antioxidant 2,2'-methylenebis(4-methyl-6-tert-butylphenol), which have been demonstrated to display reproductive toxicity. UVFs and PBs presence in the umbilical cord blood demonstrates mother-fetus transfer through the placental barrier and prenatal exposure to these PCPs chemicals, which may lead to adverse effects in the early stages of fetal development. Considering the small cohort used in this study, the reported results should be interpreted as a preliminary reference for the background umbilical cord transfer levels of the target PCPs chemicals. Further research is needed to determine the long-term consequences of prenatal exposure to PCPs chemicals.
Collapse
Affiliation(s)
- Adrià Sunyer-Caldú
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research - Severo Ochoa Excellence Center (IDAEA), Spanish Council of Scientific Research (CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Amelia Peiró
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research - Severo Ochoa Excellence Center (IDAEA), Spanish Council of Scientific Research (CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Marta Díaz
- Endocrinology, Institut de Recerca Pediàtrica Sant Joan de Déu, University of Barcelona, Pg. Sant Joan de Déu, 2, E-08950 Esplugues (Barcelona), Spain; CIBERDEM, Instituto de Salud Carlos III, Madrid, Spain
| | - Lourdes Ibáñez
- Endocrinology, Institut de Recerca Pediàtrica Sant Joan de Déu, University of Barcelona, Pg. Sant Joan de Déu, 2, E-08950 Esplugues (Barcelona), Spain; CIBERDEM, Instituto de Salud Carlos III, Madrid, Spain
| | - Ruben Gil-Solsona
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research - Severo Ochoa Excellence Center (IDAEA), Spanish Council of Scientific Research (CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Pablo Gago-Ferrero
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research - Severo Ochoa Excellence Center (IDAEA), Spanish Council of Scientific Research (CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain
| | - M Silvia Diaz-Cruz
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research - Severo Ochoa Excellence Center (IDAEA), Spanish Council of Scientific Research (CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain.
| |
Collapse
|
24
|
Boelrijk J, van Herwerden D, Ensing B, Forré P, Samanipour S. Predicting RP-LC retention indices of structurally unknown chemicals from mass spectrometry data. J Cheminform 2023; 15:28. [PMID: 36829215 PMCID: PMC9960388 DOI: 10.1186/s13321-023-00699-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 02/13/2023] [Indexed: 02/26/2023] Open
Abstract
Non-target analysis combined with liquid chromatography high resolution mass spectrometry is considered one of the most comprehensive strategies for the detection and identification of known and unknown chemicals in complex samples. However, many compounds remain unidentified due to data complexity and limited number structures in chemical databases. In this work, we have developed and validated a novel machine learning algorithm to predict the retention index (r[Formula: see text]) values for structurally (un)known chemicals based on their measured fragmentation pattern. The developed model, for the first time, enabled the predication of r[Formula: see text] values without the need for the exact structure of the chemicals, with an [Formula: see text] of 0.91 and 0.77 and root mean squared error (RMSE) of 47 and 67 r[Formula: see text] units for the NORMAN ([Formula: see text]) and amide ([Formula: see text]) test sets, respectively. This fragment based model showed comparable accuracy in r[Formula: see text] prediction compared to conventional descriptor-based models that rely on known chemical structure, which obtained an [Formula: see text] of 0.85 with an RMSE of 67.
Collapse
Affiliation(s)
- Jim Boelrijk
- AI4Science Lab, University of Amsterdam, Amsterdam, The Netherlands. .,Institute for Informatics, University of Amsterdam, Amsterdam, The Netherlands.
| | - Denice van Herwerden
- grid.7177.60000000084992262Van’t Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Amsterdam, The Netherlands
| | - Bernd Ensing
- grid.7177.60000000084992262AI4Science Lab, University of Amsterdam, Amsterdam, The Netherlands ,Computational Chemistry Group, Van’t Hoff Institute for Molecular Sciences (HIMS), Amsterdam, The Netherlands
| | - Patrick Forré
- grid.7177.60000000084992262AI4Science Lab, University of Amsterdam, Amsterdam, The Netherlands ,grid.7177.60000000084992262Institute for Informatics, University of Amsterdam, Amsterdam, The Netherlands
| | - Saer Samanipour
- Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Amsterdam, The Netherlands. .,UvA Data Science Center, University of Amsterdam, Amsterdam, The Netherlands. .,Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Woolloongabba, Australia.
| |
Collapse
|
25
|
Arvaniti OS, Arvaniti ES, Gyparakis S, Sabathianakis I, Karagiannis E, Pettas E, Gkotsis G, Nika MC, Thomaidis NS, Manios T, Fountoulakis MS, Stasinakis AS. Occurrence of pharmaceuticals in the wastewater of a Greek hospital: Combining consumption data collection and LC-QTOF-MS analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:160153. [PMID: 36379345 DOI: 10.1016/j.scitotenv.2022.160153] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/22/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
In this article we applied drug consumption approach and chemical analysis in parallel to investigate the concentrations of a large number of pharmaceuticals in different streams of a General Hospital. Drugs consumption data was collected during two periods (Period 1, 2) and the predicted environmental concentrations (PECs) were estimated for the wastewater of a building housing specific medical services (Point A) and for the entire hospital (Point B). Hospital wastewater samples (HWW) samples were also collected from these points and periods and the measured environmental concentrations (MEC) were determined using UHPLC-ESI-QTOF-MS/MS. According to consumption data, the highest number of drugs was consumed in the departments of Hematology, Intensive Care Unit, Cardiology, Internal Medicine, and Oncology, while the number of active substances used in the hospital was 413 (Period 1) and 362 (Period 2). For most substances, much higher PEC and MEC values were found at the HWW of Point A indicating that on-site treatment of this stream could be examined in the future. The application of wide-scope target analysis allowed the quantification of 122 compounds, while 21 additional substances were identified using suspect screening. The highest mean concentrations in Period 1 were found for acetaminophen (1100 μg/L) and rifaximin (723 μg/L), while in Period 2 for iopromide (458 μg/L) and acyclovir (408 μg/L). Among the detected compounds, 19 metabolites were determined. Atenolol acid, 1-hydroxy-midazolam and clopidogrel carboxylic acid were quantified at concentrations much higher than parent compounds indicating the importance of metabolites' monitoring in HWW. Calculation of PEC/MEC ratio for 36 pharmaceuticals showed sufficient correlation of these values for 19 % to 33 % of the substances depending on the examined period and sampling point. The parallel collection of drugs consumption data and chemical analysis give a thorough picture of the substances present in HWW and their main sources, facilitating decision-making for their better management.
Collapse
Affiliation(s)
- O S Arvaniti
- Water and Air Quality Laboratory, Department of Environment, University of the Aegean, University Hill, Mytilene 81100, Greece; Department of Agricultural Development, Agrofood and Management of Natural Resources, National and Kapodistrian University of Athens, Psachna 34400, Greece.
| | - E S Arvaniti
- Water and Air Quality Laboratory, Department of Environment, University of the Aegean, University Hill, Mytilene 81100, Greece
| | - S Gyparakis
- Department of Agriculture, Hellenic Mediterranean University, Estavromenos, Heraklion 71410, Crete, Greece
| | - I Sabathianakis
- Department of Agriculture, Hellenic Mediterranean University, Estavromenos, Heraklion 71410, Crete, Greece
| | - E Karagiannis
- Medical Waste SA, Heraklion Industrial Area, Heraklion 71601, Greece
| | - E Pettas
- Medical Waste SA, Heraklion Industrial Area, Heraklion 71601, Greece
| | - G Gkotsis
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens 15771, Greece
| | - M C Nika
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens 15771, Greece
| | - N S Thomaidis
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens 15771, Greece
| | - T Manios
- Department of Agriculture, Hellenic Mediterranean University, Estavromenos, Heraklion 71410, Crete, Greece
| | - M S Fountoulakis
- Water and Air Quality Laboratory, Department of Environment, University of the Aegean, University Hill, Mytilene 81100, Greece
| | - A S Stasinakis
- Water and Air Quality Laboratory, Department of Environment, University of the Aegean, University Hill, Mytilene 81100, Greece.
| |
Collapse
|
26
|
Ng K, Alygizakis NA, Thomaidis NS, Slobodnik J. Wide-Scope Target and Suspect Screening of Antibiotics in Effluent Wastewater from Wastewater Treatment Plants in Europe. Antibiotics (Basel) 2023; 12:antibiotics12010100. [PMID: 36671300 PMCID: PMC9854574 DOI: 10.3390/antibiotics12010100] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/02/2023] [Accepted: 01/04/2023] [Indexed: 01/09/2023] Open
Abstract
The occurrence of antibiotics in the environment could result in the development of antibiotic-resistant bacteria, which could result in a public health crisis. The occurrence of 676 antibiotics and the main transformation products (TPs) was investigated in the 48 wastewater treatment plants (WWTPs) from 11 countries (Germany, Romania, Serbia, Croatia, Slovenia, Hungary, Slovakia, Czechia, Austria, Cyprus, and Greece) by target and suspect screening. Target screening involved the investigation of antibiotics with reference standards (40 antibiotics). Suspect screening covered 676 antibiotics retrieved from the NORMAN Substance Database (antibiotic list on NORMAN network). Forty-seven antibiotics were detected in effluent wastewater samples: thirty-two by target screening and fifteen additional ones by suspect screening. An ecotoxicological risk assessment was performed based on occurrence data and predicted no effect concentration (PNEC), which involved the derivation of frequency of appearance (FoA), frequency of PNEC exceedance (FoE), and extent of PNEC exceedance (EoE). Azithromycin, erythromycin, clarithromycin, ofloxacin, and ciprofloxacin were prioritized as the calculated risk score was above 1. The median of antibiotics' load to freshwater ecosystems was 0.59 g/day/WWTP. The detection of antibiotics across countries indicates the presence of antibiotics in the ecosystems of Europe, which may trigger unwanted responses from the ecosystem, including antibiotic resistance.
Collapse
Affiliation(s)
- Kelsey Ng
- Environmental Institute, Okružná 784/42, 97241 Koš, Slovakia
- RECETOX, Faculty of Science, Masaryk University, Kotlářská 2, 60200 Brno, Czech Republic
| | - Nikiforos A. Alygizakis
- Environmental Institute, Okružná 784/42, 97241 Koš, Slovakia
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
- Correspondence:
| | - Nikolaos S. Thomaidis
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | | |
Collapse
|
27
|
Cocozza C, Di Iaconi C, Murgolo S, Traversa A, De Mastro F, De Sanctis M, Altieri VG, Cacace C, Brunetti G, Mascolo G. Use of constructed wetlands to prevent overloading of wastewater treatment plants. CHEMOSPHERE 2023; 311:137126. [PMID: 36334739 DOI: 10.1016/j.chemosphere.2022.137126] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/14/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
The fluctuation in the number of people in tourist areas affects the wastewater quality and quantity. Constructed wetlands (CWs) aim to simulate physical, chemical, and biological processes occurring in natural environments for wastewater treatment and are considered a sustainable system. The current study aimed at evaluating the effectiveness of in-vessel CWs for supporting the wastewaters treatment plants in periods of overloading. Such approach can be quickly implementable, economic, and the CWs can be fast regenerated in the framework of sustainable good practices. Three pilot scale CWs were prepared in as many containers layering 10 cm of gravel, 60 cm of sand and 10 cm of gravel, and placing pieces of giant reed rhizomes in the upper layers. The bottom of each CW had a tap, and CWs were irrigated with a real municipal sewage three times a week. Before each new irrigation, the tap was opened, and the effluent collected for determining gross parameters, elemental composition, and contaminants of emerging concern (CECs). CWs significantly reduced almost all gross parameters considered and half the CECs, except for a couple of metabolites of corresponding parental compounds. With regards to the potentially toxic elements, all reduced their concentration from the influents to the effluents. The results of this study were promising and highlighted good efficiency of constructed wetlands as pre-treatment of real municipal sewage to reduce the overloading of the wastewater treatment plant.
Collapse
Affiliation(s)
- Claudio Cocozza
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, University of Bari, Via Amendola 165/A, 70126, Bari, Italy
| | - Claudio Di Iaconi
- CNR, Istituto di Ricerca Sulle Acque, Via F. De Blasio 5, Bari, 70132, Italy
| | - Sapia Murgolo
- CNR, Istituto di Ricerca Sulle Acque, Via F. De Blasio 5, Bari, 70132, Italy
| | - Andreina Traversa
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, University of Bari, Via Amendola 165/A, 70126, Bari, Italy.
| | - Francesco De Mastro
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, University of Bari, Via Amendola 165/A, 70126, Bari, Italy
| | - Marco De Sanctis
- CNR, Istituto di Ricerca Sulle Acque, Via F. De Blasio 5, Bari, 70132, Italy
| | | | - Claudio Cacace
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, University of Bari, Via Amendola 165/A, 70126, Bari, Italy
| | - Gennaro Brunetti
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, University of Bari, Via Amendola 165/A, 70126, Bari, Italy
| | - Giuseppe Mascolo
- CNR, Istituto di Ricerca Sulle Acque, Via F. De Blasio 5, Bari, 70132, Italy; CNR, Istituto di Ricerca per la Protezione Idrogeologica, Via Amendola 122 I, Bari, 70126, Italy
| |
Collapse
|
28
|
Towards a harmonized identification scoring system in LC-HRMS/MS based non-target screening (NTS) of emerging contaminants. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.116944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
29
|
Gkotsis G, Nika MC, Athanasopoulou AI, Vasilatos K, Alygizakis N, Boschert M, Osterauer R, Höpker KA, Thomaidis NS. Advanced throughput analytical strategies for the comprehensive HRMS screening of organic micropollutants in eggs of different bird species. CHEMOSPHERE 2023; 312:137092. [PMID: 36332731 DOI: 10.1016/j.chemosphere.2022.137092] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 10/11/2022] [Accepted: 10/30/2022] [Indexed: 06/16/2023]
Abstract
Raptors are ideal indicators for biomonitoring studies using wildlife in order to assess the environmental pollution in the terrestrial ecosystem, since they are placed in the highest trophic position in the food webs and their life expectancy is relatively long. In this study, 26 eggs of 4 bird species (Peregrine falcon, Eurasian curlew, Little owl and Eagle owl) collected in Germany, were investigated for the presence of persistent organic pollutants (POPs) and thousands of contaminants of emerging concern (CECs). Generic sample preparation protocols were followed for the extraction of the analytes and the purification of the extracts, and the samples were analyzed both by liquid (LC) and gas chromatography (GC) coupled to high resolution mass spectrometry (HRMS), for capturing a wide range of organic micropollutants with different physicochemical properties. State-of-the-art screening methodologies were applied in the acquired HRMS data, including wide-scope target analysis of 2448 known pollutants and suspect screening of over 65,000 environmentally relevant compounds. Overall, 58 pollutants from different chemical classes, such as plant protection products, per- and polyfluoroalkyl substances and medicinal products, as well as their transformation products, were determined through target analysis. Most of the detected compounds were lipophilic (logP>2), although the presence of (semi)polar contaminants should not be overlooked, underlying the need for holistic analytical approaches in environmental monitoring studies. p,p'-DDE, PCB 153 and PCB138, PFOS and methylparaben were the most frequently detected compounds. 50 additional substances were identified and semi-quantified through suspect screening workflows, including mainly compounds of industrial use with high production volume.
Collapse
Affiliation(s)
- Georgios Gkotsis
- National and Kapodistrian University of Athens, Panepistimiopolis Zographou, 15771, Athens, Greece
| | - Maria-Christina Nika
- National and Kapodistrian University of Athens, Panepistimiopolis Zographou, 15771, Athens, Greece.
| | - Antonia I Athanasopoulou
- National and Kapodistrian University of Athens, Panepistimiopolis Zographou, 15771, Athens, Greece
| | - Konstantinos Vasilatos
- National and Kapodistrian University of Athens, Panepistimiopolis Zographou, 15771, Athens, Greece
| | - Nikiforos Alygizakis
- National and Kapodistrian University of Athens, Panepistimiopolis Zographou, 15771, Athens, Greece; Environmental Institute s.r.o., Okruzna 784/42, 97241, Kos, Slovak Republic
| | | | - Raphaela Osterauer
- State Institute for Environment Baden-Wuerttemberg (LUBW), Griesbachstr. 1, 76185 Karlsruhe, Germany
| | - Kai-Achim Höpker
- State Institute for Environment Baden-Wuerttemberg (LUBW), Griesbachstr. 1, 76185 Karlsruhe, Germany
| | - Nikolaos S Thomaidis
- National and Kapodistrian University of Athens, Panepistimiopolis Zographou, 15771, Athens, Greece.
| |
Collapse
|
30
|
Badry A, Rüdel H, Göckener B, Nika MC, Alygizakis N, Gkotsis G, Thomaidis NS, Treu G, Dekker RWRJ, Movalli P, Walker LA, Potter ED, Cincinelli A, Martellini T, Duke G, Slobodnik J, Koschorreck J. Making use of apex predator sample collections: an integrated workflow for quality assured sample processing, analysis and digital sample freezing of archived samples. CHEMOSPHERE 2022; 309:136603. [PMID: 36174727 DOI: 10.1016/j.chemosphere.2022.136603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/21/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
Using monitoring data from apex predators for chemicals risk assessment can provide important information on bioaccumulating as well as biomagnifying chemicals in food webs. A survey among European institutions involved in chemical risk assessment on their experiences with apex predator data in chemical risk assessment revealed great interest in using such data. However, the respondents indicated that constraints were related to expected high costs, lack of standardisation and harmonised quality criteria for exposure assessment, data access, and regulatory acceptance/application. During the Life APEX project, we demonstrated that European sample collections (i.e. environmental specimen banks (ESBs), research collection (RCs), natural history museums (NHMs)) archive a large variety of biological samples that can be readily used for chemical analysis once appropriate quality assurance/control (QA/QC) measures have been developed and implemented. We therefore issued a second survey on sampling, processing and archiving procedures in European sample collections to derive key quality QA/QC criteria for chemical analysis. The survey revealed great differences in QA/QC measures between ESBs, NHMs and RCs. Whereas basic information such as sampling location, date and biometric data were mostly available across institutions, protocols to accompany the sampling strategy with respect to chemical analysis were only available for ESBs. For RCs, the applied QA/QC measures vary with the respective research question, whereas NHMs are generally less aware of e.g. chemical cross-contamination issues. Based on the survey we derived key indicators for assessing the quality of biota samples that can be easily implemented in online databases. Furthermore, we provide a QA/QC workflow not only for sampling and processing but also for the chemical analysis of biota samples. We focussed on comprehensive analytical techniques such as non-target screening and provided insights into subsequent storage of high-resolution chromatograms in online databases (i.e. digital sample freezing platform) to ultimately support chemicals risk assessment.
Collapse
Affiliation(s)
- Alexander Badry
- German Environment Agency (Umweltbundesamt), 06813, Dessau-Roßlau, Germany.
| | - Heinz Rüdel
- Fraunhofer Institute for Molecular Biology and Applied Ecology (Fraunhofer IME), 57392, Schmallenberg, Germany
| | - Bernd Göckener
- Fraunhofer Institute for Molecular Biology and Applied Ecology (Fraunhofer IME), 57392, Schmallenberg, Germany
| | - Maria-Christina Nika
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771, Athens, Greece
| | - Nikiforos Alygizakis
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771, Athens, Greece; Environmental Institute, Okružná 784/42, 97241, Koš, Slovak Republic
| | - Georgios Gkotsis
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771, Athens, Greece
| | - Nikolaos S Thomaidis
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771, Athens, Greece
| | - Gabriele Treu
- German Environment Agency (Umweltbundesamt), 06813, Dessau-Roßlau, Germany
| | - Rene W R J Dekker
- Naturalis Biodiversity Center, Darwinweg 2, 2333, CR, Leiden, the Netherlands
| | - Paola Movalli
- Naturalis Biodiversity Center, Darwinweg 2, 2333, CR, Leiden, the Netherlands
| | - Lee A Walker
- UK Centre for Ecology & Hydrology, Lancaster Environment Centre, Lancaster, LA1 4PQ, United Kingdom
| | - Elaine D Potter
- UK Centre for Ecology & Hydrology, Lancaster Environment Centre, Lancaster, LA1 4PQ, United Kingdom
| | - Alessandra Cincinelli
- Department of Chemistry "Ugo Schiff", University of Florence, 50019, Sesto Fiorentino, Italy
| | - Tania Martellini
- Department of Chemistry "Ugo Schiff", University of Florence, 50019, Sesto Fiorentino, Italy
| | - Guy Duke
- UK Centre for Ecology & Hydrology, MacLean Bldg, Benson Ln, Crowmarsh Gifford, Wallingford, OX10 8BB, United Kingdom
| | | | - Jan Koschorreck
- German Environment Agency (Umweltbundesamt), 06813, Dessau-Roßlau, Germany
| |
Collapse
|
31
|
Gkotsis G, Nika MC, Nikolopoulou V, Alygizakis N, Bizani E, Aalizadeh R, Badry A, Chadwick E, Cincinelli A, Claßen D, Danielsson S, Dekker R, Duke G, Drost W, Glowacka N, Göckener B, Jansman HAH, Juergens M, Knopf B, Koschorreck J, Krone O, Martellini T, Movalli P, Persson S, Potter ED, Rohner S, Roos A, O' Rourke E, Siebert U, Treu G, van den Brink NW, Walker LA, Williams R, Slobodnik J, Thomaidis NS. Assessment of contaminants of emerging concern in European apex predators and their prey by LC-QToF MS wide-scope target analysis. ENVIRONMENT INTERNATIONAL 2022; 170:107623. [PMID: 36379200 DOI: 10.1016/j.envint.2022.107623] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 10/23/2022] [Accepted: 11/07/2022] [Indexed: 06/16/2023]
Abstract
Apex predators are good indicators of environmental pollution since they are relatively long-lived and their high trophic position and spatiotemporal exposure to chemicals provides insights into the persistent, bioaccumulative and toxic (PBT) properties of chemicals. Although monitoring data from apex predators can considerably support chemicals' management, there is a lack of pan-European studies, and longer-term monitoring of chemicals in organisms from higher trophic levels. The present study investigated the occurrence of contaminants of emerging concern (CECs) in 67 freshwater, marine and terrestrial apex predators and in freshwater and marine prey, gathered from four European countries. Generic sample preparation protocols for the extraction of CECs with a broad range of physicochemical properties and the purification of the extracts were used. The analysis was performed utilizing liquid (LC) chromatography coupled to high resolution mass spectrometry (HRMS), while the acquired chromatograms were screened for the presence of more than 2,200 CECs through wide-scope target analysis. In total, 145 CECs were determined in the apex predator and their prey samples belonging in different categories, such as pharmaceuticals, plant protection products, per- and polyfluoroalkyl substances, their metabolites and transformation products. Higher concentration levels were measured in predators compared to prey, suggesting that biomagnification of chemicals through the food chain occurs. The compounds were prioritized for further regulatory risk assessment based on their frequency of detection and their concentration levels. The majority of the prioritized CECs were lipophilic, although the presence of more polar contaminants should not be neglected. This indicates that holistic analytical approaches are required to fully characterize the chemical universe of biota samples. Therefore, the present survey is an attempt to systematically investigate the presence of thousands of chemicals at a European level, aiming to use these data for better chemicals management and contribute to EU Zero Pollution Ambition.
Collapse
Affiliation(s)
- Georgios Gkotsis
- National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Maria-Christina Nika
- National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece.
| | - Varvara Nikolopoulou
- National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Nikiforos Alygizakis
- National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; Environmental Institute, s.r.o., Okružná 784/42, 972 41 Koš, Slovak Republic
| | - Erasmia Bizani
- National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Reza Aalizadeh
- National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Alexander Badry
- German Environment Agency (Umweltbundesamt), Wörlitzer Pl. 1, 06844 Dessau-Roßlau, Germany
| | - Elizabeth Chadwick
- Cardiff University, Biomedical Science Building, Museum Avenue, Postal Code: CF10 3AX Cardiff, United Kingdom
| | - Alessandra Cincinelli
- University of Florence, Department of Chemistry, Via della Lastruccia 3, 50019 Sesto Fiorentino (Firenze), Italy
| | - Daniela Claßen
- German Environment Agency (Umweltbundesamt), Wörlitzer Pl. 1, 06844 Dessau-Roßlau, Germany
| | - Sara Danielsson
- Swedish Museum of Natural History, Frescativägen 40, 114 18 Stockholm, Sweden
| | - René Dekker
- Naturalis Biodiversity Center, Darwinweg 2, 2333 CR Leiden, Netherlands
| | - Guy Duke
- Environmental Change Institute, University of Oxford, University of Oxford, 3 S Parks Rd, OX1 3QY Oxford, United Kingdom; UK Centre for Ecology & Hydrology, Maclean Building, Benson Lane, Crowmarsh Gifford, Wallingford, Oxfordshire OX10 8BB, United Kingdom
| | - Wiebke Drost
- German Environment Agency (Umweltbundesamt), Wörlitzer Pl. 1, 06844 Dessau-Roßlau, Germany
| | - Natalia Glowacka
- Environmental Institute, s.r.o., Okružná 784/42, 972 41 Koš, Slovak Republic
| | - Bernd Göckener
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Auf dem Aberg 1, 57392 Schmallenberg, Germany
| | - Hugh A H Jansman
- Wageningen University & Research, Wageningen Environmental Research, Droevendaalsesteeg 3-3 A, 6708 PB Wageningen, the Netherlands
| | - Monika Juergens
- Center for Ecology and Hydrology, Library Ave, Bailrigg, LA1 4AP Lancaster, United Kingdom
| | - Burkhard Knopf
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Auf dem Aberg 1, 57392 Schmallenberg, Germany
| | - Jan Koschorreck
- German Environment Agency (Umweltbundesamt), Wörlitzer Pl. 1, 06844 Dessau-Roßlau, Germany
| | - Oliver Krone
- Leibniz Institute for Zoo and Wildlife Research, Department of Wildlife Diseases, Alfred-Kowalke-Strasse 17, 10315 Berlin, Germany
| | - Tania Martellini
- University of Florence, Department of Chemistry, Via della Lastruccia 3, 50019 Sesto Fiorentino (Firenze), Italy
| | - Paola Movalli
- Naturalis Biodiversity Center, Darwinweg 2, 2333 CR Leiden, Netherlands
| | - Sara Persson
- Swedish Museum of Natural History, Frescativägen 40, 114 18 Stockholm, Sweden
| | - Elaine D Potter
- Center for Ecology and Hydrology, Library Ave, Bailrigg, LA1 4AP Lancaster, United Kingdom
| | - Simon Rohner
- University of Veterinary Medicine Hannover, Foundation, Bünteweg 9, 30559 Hannover, Germany
| | - Anna Roos
- Swedish Museum of Natural History, Frescativägen 40, 114 18 Stockholm, Sweden
| | - Emily O' Rourke
- Cardiff University, Biomedical Science Building, Museum Avenue, Postal Code: CF10 3AX Cardiff, United Kingdom
| | - Ursula Siebert
- University of Veterinary Medicine Hannover, Foundation, Bünteweg 9, 30559 Hannover, Germany
| | - Gabriele Treu
- German Environment Agency (Umweltbundesamt), Wörlitzer Pl. 1, 06844 Dessau-Roßlau, Germany
| | - Nico W van den Brink
- Wageningen University & Research, Division of Toxicology, Stippeneng 4, 6700EA Wageningen, the Netherlands
| | - Lee A Walker
- Center for Ecology and Hydrology, Library Ave, Bailrigg, LA1 4AP Lancaster, United Kingdom
| | - Rosie Williams
- Zoological Society of London, Institute of Zoology, Regent's Park, NW1 4RY London, United Kingdom
| | - Jaroslav Slobodnik
- Environmental Institute, s.r.o., Okružná 784/42, 972 41 Koš, Slovak Republic
| | - Nikolaos S Thomaidis
- National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece.
| |
Collapse
|
32
|
Celma A, Bade R, Sancho JV, Hernandez F, Humphries M, Bijlsma L. Prediction of Retention Time and Collision Cross Section (CCS H+, CCS H-, and CCS Na+) of Emerging Contaminants Using Multiple Adaptive Regression Splines. J Chem Inf Model 2022; 62:5425-5434. [PMID: 36280383 PMCID: PMC9709913 DOI: 10.1021/acs.jcim.2c00847] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Ultra-high performance liquid chromatography coupled to ion mobility separation and high-resolution mass spectrometry instruments have proven very valuable for screening of emerging contaminants in the aquatic environment. However, when applying suspect or nontarget approaches (i.e., when no reference standards are available), there is no information on retention time (RT) and collision cross-section (CCS) values to facilitate identification. In silico prediction tools of RT and CCS can therefore be of great utility to decrease the number of candidates to investigate. In this work, Multiple Adaptive Regression Splines (MARS) were evaluated for the prediction of both RT and CCS. MARS prediction models were developed and validated using a database of 477 protonated molecules, 169 deprotonated molecules, and 249 sodium adducts. Multivariate and univariate models were evaluated showing a better fit for univariate models to the experimental data. The RT model (R2 = 0.855) showed a deviation between predicted and experimental data of ±2.32 min (95% confidence intervals). The deviation observed for CCS data of protonated molecules using the CCSH model (R2 = 0.966) was ±4.05% with 95% confidence intervals. The CCSH model was also tested for the prediction of deprotonated molecules, resulting in deviations below ±5.86% for the 95% of the cases. Finally, a third model was developed for sodium adducts (CCSNa, R2 = 0.954) with deviation below ±5.25% for 95% of the cases. The developed models have been incorporated in an open-access and user-friendly online platform which represents a great advantage for third-party research laboratories for predicting both RT and CCS data.
Collapse
Affiliation(s)
- Alberto Celma
- Environmental
and Public Health Analytical
Chemistry, Research Institute for Pesticides
and Water, University Jaume I, E-12071Castelló, Spain,Department
of Aquatic Sciences and Assessment, Swedish
University of Agricultural Sciences (SLU), SE-750 07Uppsala, Sweden
| | - Richard Bade
- University
of South Australia, Adelaide, UniSA: Clinical and Health Sciences,
Health and Biomedical Innovation, AdelaideSA-5000, South
Australia, Australia,Queensland
Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, WoolloongabbaAUS-4102, Queensland, Australia
| | - Juan Vicente Sancho
- Environmental
and Public Health Analytical
Chemistry, Research Institute for Pesticides
and Water, University Jaume I, E-12071Castelló, Spain
| | - Félix Hernandez
- Environmental
and Public Health Analytical
Chemistry, Research Institute for Pesticides
and Water, University Jaume I, E-12071Castelló, Spain
| | - Melissa Humphries
- School
of Mathematical Sciences, University of
Adelaide, Ingkarni Wardli Building, North Terrace Campus, SA-5005Adelaide, Australia,
| | - Lubertus Bijlsma
- Environmental
and Public Health Analytical
Chemistry, Research Institute for Pesticides
and Water, University Jaume I, E-12071Castelló, Spain,
| |
Collapse
|
33
|
Pistocchi A, Alygizakis NA, Brack W, Boxall A, Cousins IT, Drewes JE, Finckh S, Gallé T, Launay MA, McLachlan MS, Petrovic M, Schulze T, Slobodnik J, Ternes T, Van Wezel A, Verlicchi P, Whalley C. European scale assessment of the potential of ozonation and activated carbon treatment to reduce micropollutant emissions with wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 848:157124. [PMID: 35792263 DOI: 10.1016/j.scitotenv.2022.157124] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
Micropollutants (MPs) in wastewater pose a growing concern for their potential adverse effects on the receiving aquatic environment, and some countries have started requiring that wastewater treatment plants remove them to a certain extent. Broad spectrum advanced treatment processes, such as ozonation, activated carbon or their combination, are expected to yield a significant reduction in the toxicity of effluents. Here we quantify the reduction of effluent toxicity potentially achieved by implementing these advanced treatment solutions in a selection of European wastewater treatment plants. To this end, we refer to a list of "total pollution proxy substances" (TPPS) composed of 1337 chemicals commonly found in wastewater effluents according to a compilation of datasets of measured concentrations. We consider these substances as an approximation of the "chemical universe" impinging on the European wastewater system. We evaluate the fate of the TPPS in conventional and advanced treatment plants using a compilation of experimental physicochemical properties that describe their sorption, volatilization and biodegradation during activated sludge treatment, as well as known removal efficiency in ozonation and activated carbon treatment, while filling the gaps through in silico prediction models. We estimate that the discharge of micropollutants with wastewater effluents in the European Union has a cumulative MP toxicity to the environment equal to the discharge of untreated wastewater of ca. 160 million population equivalents (PE), i.e. about 30 % of the generated wastewater in the EU. If all plants above a capacity of 100,000 PE were equipped with advanced treatment, we show that this load would be reduced to about 95 million PE. In addition, implementing advanced treatment in wastewater plants above 10,000 PE discharging to water bodies with an average dilution ratio smaller than 10 would yield a widespread improvement in terms of exposure of freshwater ecosystems to micropollutants, almost halving the part of the stream network exposed to the highest toxic risks. Our analysis provides background for a cost-effectiveness appraisal of advanced treatment "at the end of the pipe", which could lead to optimized interventions. This should not be regarded as a stand-alone solution, but as a complement to policies for the control of emissions at the source for the most problematic MPs.
Collapse
Affiliation(s)
| | | | - Werner Brack
- Helmholtz Centre for Environmental Research - UFZ, Department of Effect-Directed Analysis, Permoserstr. 15, 04318 Leipzig, Germany; Department of Evolutionary Ecology and Environmental Toxicology, Faculty of Biological Sciences, Goethe University Frankfurt, Frankfurt/Main, Germany
| | - Alistair Boxall
- Environment and Geography Department, University of York, Heslington York YO10 5NG, UK
| | - Ian T Cousins
- Department of Environmental Science, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Jörg E Drewes
- Urban Water Systems Engineering, Technical University of Munich, D-85748 Garching, Germany
| | - Saskia Finckh
- Helmholtz Centre for Environmental Research - UFZ, Department of Effect-Directed Analysis, Permoserstr. 15, 04318 Leipzig, Germany
| | - Tom Gallé
- LIST, Environmental Research and Innovation Dept., 41 rue du Brill, L-4422 Belvaux, Luxembourg
| | - Marie A Launay
- Micropollutants Competence Centre Baden-Württemberg, Institute of Sanitary Engineering, Water Quality and Solid Waste Management, University of Stuttgart, Bandtaele 2, 70569 Stuttgart, Germany
| | - Michael S McLachlan
- Department of Environmental Science, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Mira Petrovic
- Catalan Institute for Water Research (ICRA), Girona, and Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Tobias Schulze
- Helmholtz Centre for Environmental Research - UFZ, Department of Effect-Directed Analysis, Permoserstr. 15, 04318 Leipzig, Germany
| | | | | | - Annemarie Van Wezel
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - Paola Verlicchi
- Department of Engineering, University of Ferrara, Ferrara, Italy
| | | |
Collapse
|
34
|
Mohammed Taha H, Aalizadeh R, Alygizakis N, Antignac JP, Arp HPH, Bade R, Baker N, Belova L, Bijlsma L, Bolton EE, Brack W, Celma A, Chen WL, Cheng T, Chirsir P, Čirka Ľ, D’Agostino LA, Djoumbou Feunang Y, Dulio V, Fischer S, Gago-Ferrero P, Galani A, Geueke B, Głowacka N, Glüge J, Groh K, Grosse S, Haglund P, Hakkinen PJ, Hale SE, Hernandez F, Janssen EML, Jonkers T, Kiefer K, Kirchner M, Koschorreck J, Krauss M, Krier J, Lamoree MH, Letzel M, Letzel T, Li Q, Little J, Liu Y, Lunderberg DM, Martin JW, McEachran AD, McLean JA, Meier C, Meijer J, Menger F, Merino C, Muncke J, Muschket M, Neumann M, Neveu V, Ng K, Oberacher H, O’Brien J, Oswald P, Oswaldova M, Picache JA, Postigo C, Ramirez N, Reemtsma T, Renaud J, Rostkowski P, Rüdel H, Salek RM, Samanipour S, Scheringer M, Schliebner I, Schulz W, Schulze T, Sengl M, Shoemaker BA, Sims K, Singer H, Singh RR, Sumarah M, Thiessen PA, Thomas KV, Torres S, Trier X, van Wezel AP, Vermeulen RCH, Vlaanderen JJ, von der Ohe PC, Wang Z, Williams AJ, Willighagen EL, Wishart DS, Zhang J, Thomaidis NS, Hollender J, Slobodnik J, Schymanski EL. The NORMAN Suspect List Exchange (NORMAN-SLE): facilitating European and worldwide collaboration on suspect screening in high resolution mass spectrometry. ENVIRONMENTAL SCIENCES EUROPE 2022; 34:104. [PMID: 36284750 PMCID: PMC9587084 DOI: 10.1186/s12302-022-00680-6] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/24/2022] [Indexed: 06/16/2023]
Abstract
Background The NORMAN Association (https://www.norman-network.com/) initiated the NORMAN Suspect List Exchange (NORMAN-SLE; https://www.norman-network.com/nds/SLE/) in 2015, following the NORMAN collaborative trial on non-target screening of environmental water samples by mass spectrometry. Since then, this exchange of information on chemicals that are expected to occur in the environment, along with the accompanying expert knowledge and references, has become a valuable knowledge base for "suspect screening" lists. The NORMAN-SLE now serves as a FAIR (Findable, Accessible, Interoperable, Reusable) chemical information resource worldwide. Results The NORMAN-SLE contains 99 separate suspect list collections (as of May 2022) from over 70 contributors around the world, totalling over 100,000 unique substances. The substance classes include per- and polyfluoroalkyl substances (PFAS), pharmaceuticals, pesticides, natural toxins, high production volume substances covered under the European REACH regulation (EC: 1272/2008), priority contaminants of emerging concern (CECs) and regulatory lists from NORMAN partners. Several lists focus on transformation products (TPs) and complex features detected in the environment with various levels of provenance and structural information. Each list is available for separate download. The merged, curated collection is also available as the NORMAN Substance Database (NORMAN SusDat). Both the NORMAN-SLE and NORMAN SusDat are integrated within the NORMAN Database System (NDS). The individual NORMAN-SLE lists receive digital object identifiers (DOIs) and traceable versioning via a Zenodo community (https://zenodo.org/communities/norman-sle), with a total of > 40,000 unique views, > 50,000 unique downloads and 40 citations (May 2022). NORMAN-SLE content is progressively integrated into large open chemical databases such as PubChem (https://pubchem.ncbi.nlm.nih.gov/) and the US EPA's CompTox Chemicals Dashboard (https://comptox.epa.gov/dashboard/), enabling further access to these lists, along with the additional functionality and calculated properties these resources offer. PubChem has also integrated significant annotation content from the NORMAN-SLE, including a classification browser (https://pubchem.ncbi.nlm.nih.gov/classification/#hid=101). Conclusions The NORMAN-SLE offers a specialized service for hosting suspect screening lists of relevance for the environmental community in an open, FAIR manner that allows integration with other major chemical resources. These efforts foster the exchange of information between scientists and regulators, supporting the paradigm shift to the "one substance, one assessment" approach. New submissions are welcome via the contacts provided on the NORMAN-SLE website (https://www.norman-network.com/nds/SLE/). Supplementary Information The online version contains supplementary material available at 10.1186/s12302-022-00680-6.
Collapse
Affiliation(s)
- Hiba Mohammed Taha
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 6 Avenue du Swing, 4367 Belvaux, Luxembourg
| | - Reza Aalizadeh
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Nikiforos Alygizakis
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
- Environmental Institute, Okružná 784/42, 972 41 Koš, Slovak Republic
| | | | - Hans Peter H. Arp
- Norwegian Geotechnical Institute (NGI), Ullevål Stadion, P.O. Box 3930, 0806 Oslo, Norway
- Department of Chemistry, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
| | - Richard Bade
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Woolloongabba, QLD 4102 Australia
| | | | - Lidia Belova
- Toxicological Centre, University of Antwerp, Antwerp, Belgium
| | - Lubertus Bijlsma
- Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water, University Jaume I, Castelló, Spain
| | - Evan E. Bolton
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 8600 Rockville Pike, Bethesda, MD 20894 USA
| | - Werner Brack
- UFZ, Helmholtz Centre for Environmental Research, Leipzig, Germany
- Institute of Ecology, Evolution and Diversity, Goethe University, Frankfurt Am Main, Germany
| | - Alberto Celma
- Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water, University Jaume I, Castelló, Spain
- Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden
| | - Wen-Ling Chen
- Institute of Food Safety and Health, College of Public Health, National Taiwan University, 17 Xuzhou Rd., Zhongzheng Dist., Taipei, Taiwan
| | - Tiejun Cheng
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 8600 Rockville Pike, Bethesda, MD 20894 USA
| | - Parviel Chirsir
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 6 Avenue du Swing, 4367 Belvaux, Luxembourg
| | - Ľuboš Čirka
- Environmental Institute, Okružná 784/42, 972 41 Koš, Slovak Republic
- Faculty of Chemical and Food Technology, Institute of Information Engineering, Automation, and Mathematics, Slovak University of Technology in Bratislava (STU), Radlinského 9, 812 37 Bratislava, Slovak Republic
| | - Lisa A. D’Agostino
- Science for Life Laboratory, Department of Environmental Science, Stockholm University, 10691 Stockholm, Sweden
| | | | - Valeria Dulio
- INERIS, National Institute for Environment and Industrial Risks, Verneuil en Halatte, France
| | - Stellan Fischer
- Swedish Chemicals Agency (KEMI), P.O. Box 2, 172 13 Sundbyberg, Sweden
| | - Pablo Gago-Ferrero
- Institute of Environmental Assessment and Water Research-Severo Ochoa Excellence Center (IDAEA), Spanish Council of Scientific Research (CSIC), Barcelona, Spain
| | - Aikaterini Galani
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Birgit Geueke
- Food Packaging Forum Foundation, Staffelstrasse 10, 8045 Zurich, Switzerland
| | - Natalia Głowacka
- Environmental Institute, Okružná 784/42, 972 41 Koš, Slovak Republic
| | - Juliane Glüge
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, 8092 Zurich, Switzerland
| | - Ksenia Groh
- Eawag, Swiss Federal Institute for Aquatic Science and Technology, Überlandstrasse 133, 8600 Dübendorf, Switzerland
| | - Sylvia Grosse
- Thermo Fisher Scientific, Dornierstrasse 4, 82110 Germering, Germany
| | - Peter Haglund
- Department of Chemistry, Chemical Biological Centre (KBC), Umeå University, Linnaeus Väg 6, 901 87 Umeå, Sweden
| | - Pertti J. Hakkinen
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 8600 Rockville Pike, Bethesda, MD 20894 USA
| | - Sarah E. Hale
- Norwegian Geotechnical Institute (NGI), Ullevål Stadion, P.O. Box 3930, 0806 Oslo, Norway
| | - Felix Hernandez
- Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water, University Jaume I, Castelló, Spain
| | - Elisabeth M.-L. Janssen
- Eawag, Swiss Federal Institute for Aquatic Science and Technology, Überlandstrasse 133, 8600 Dübendorf, Switzerland
| | - Tim Jonkers
- Department Environment and Health, Amsterdam Institute for Life and Environment, Vrije Universiteit, Amsterdam, The Netherlands
| | - Karin Kiefer
- Eawag, Swiss Federal Institute for Aquatic Science and Technology, Überlandstrasse 133, 8600 Dübendorf, Switzerland
| | - Michal Kirchner
- Water Research Institute (WRI), Nábr. Arm. Gen. L. Svobodu 5, 81249 Bratislava, Slovak Republic
| | - Jan Koschorreck
- German Environment Agency (UBA), Wörlitzer Platz 1, Dessau-Roßlau, Germany
| | - Martin Krauss
- UFZ, Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Jessy Krier
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 6 Avenue du Swing, 4367 Belvaux, Luxembourg
| | - Marja H. Lamoree
- Department Environment and Health, Amsterdam Institute for Life and Environment, Vrije Universiteit, Amsterdam, The Netherlands
| | - Marion Letzel
- Bavarian Environment Agency, 86179 Augsburg, Germany
| | - Thomas Letzel
- Analytisches Forschungsinstitut Für Non-Target Screening GmbH (AFIN-TS), Am Mittleren Moos 48, 86167 Augsburg, Germany
| | - Qingliang Li
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 8600 Rockville Pike, Bethesda, MD 20894 USA
| | - James Little
- Mass Spec Interpretation Services, 3612 Hemlock Park Drive, Kingsport, TN 37663 USA
| | - Yanna Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences (SKLECE, RCEES, CAS), No. 18 Shuangqing Road, Haidian District, Beijing, 100086 China
| | - David M. Lunderberg
- Hope College, Holland, MI 49422 USA
- University of California, Berkeley, CA USA
| | - Jonathan W. Martin
- Science for Life Laboratory, Department of Environmental Science, Stockholm University, 10691 Stockholm, Sweden
| | - Andrew D. McEachran
- Agilent Technologies, Inc., 5301 Stevens Creek Blvd, Santa Clara, CA 95051 USA
| | - John A. McLean
- Department of Chemistry, Center for Innovative Technology, Vanderbilt-Ingram Cancer Center, Vanderbilt Institute of Chemical Biology, Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, Nashville, TN 37235 USA
| | - Christiane Meier
- German Environment Agency (UBA), Wörlitzer Platz 1, Dessau-Roßlau, Germany
| | - Jeroen Meijer
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, The Netherlands
| | - Frank Menger
- Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden
| | - Carla Merino
- University Rovira i Virgili, Tarragona, Spain
- Biosfer Teslab, Reus, Spain
| | - Jane Muncke
- Food Packaging Forum Foundation, Staffelstrasse 10, 8045 Zurich, Switzerland
| | | | - Michael Neumann
- German Environment Agency (UBA), Wörlitzer Platz 1, Dessau-Roßlau, Germany
| | - Vanessa Neveu
- Nutrition and Metabolism Branch, International Agency for Research On Cancer (IARC), 150 Cours Albert Thomas, 69372 Lyon Cedex 08, France
| | - Kelsey Ng
- Environmental Institute, Okružná 784/42, 972 41 Koš, Slovak Republic
- RECETOX, Faculty of Science, Masaryk University, Kotlářská 2, Brno, Czech Republic
| | - Herbert Oberacher
- Institute of Legal Medicine and Core Facility Metabolomics, Medical University of Innsbruck, Muellerstrasse 44, Innsbruck, Austria
| | - Jake O’Brien
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Woolloongabba, QLD 4102 Australia
| | - Peter Oswald
- Environmental Institute, Okružná 784/42, 972 41 Koš, Slovak Republic
| | - Martina Oswaldova
- Environmental Institute, Okružná 784/42, 972 41 Koš, Slovak Republic
| | - Jaqueline A. Picache
- Department of Chemistry, Center for Innovative Technology, Vanderbilt-Ingram Cancer Center, Vanderbilt Institute of Chemical Biology, Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, Nashville, TN 37235 USA
| | - Cristina Postigo
- Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden
- Technologies for Water Management and Treatment Research Group, Department of Civil Engineering, University of Granada, Campus de Fuentenueva S/N, 18071 Granada, Spain
| | - Noelia Ramirez
- University Rovira i Virgili, Tarragona, Spain
- Institute of Health Research Pere Virgili, Tarragona, Spain
| | | | - Justin Renaud
- Agriculture and Agri-Food Canada/Agriculture et Agroalimentaire Canada, 1391 Sandford Street, London, ON N5V 4T3 Canada
| | | | - Heinz Rüdel
- Fraunhofer Institute for Molecular Biology and Applied Ecology (Fraunhofer IME), Schmallenberg, Germany
| | - Reza M. Salek
- Nutrition and Metabolism Branch, International Agency for Research On Cancer (IARC), 150 Cours Albert Thomas, 69372 Lyon Cedex 08, France
| | - Saer Samanipour
- Van’t Hoff Institute for Molecular Sciences, University of Amsterdam, P.O. Box 94157, Amsterdam, 1090 GD The Netherlands
| | - Martin Scheringer
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, 8092 Zurich, Switzerland
- RECETOX, Faculty of Science, Masaryk University, Kotlářská 2, Brno, Czech Republic
| | - Ivo Schliebner
- German Environment Agency (UBA), Wörlitzer Platz 1, Dessau-Roßlau, Germany
| | - Wolfgang Schulz
- Laboratory for Operation Control and Research, Zweckverband Landeswasserversorgung, Am Spitzigen Berg 1, 89129 Langenau, Germany
| | - Tobias Schulze
- UFZ, Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Manfred Sengl
- Bavarian Environment Agency, 86179 Augsburg, Germany
| | - Benjamin A. Shoemaker
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 8600 Rockville Pike, Bethesda, MD 20894 USA
| | - Kerry Sims
- Environment Agency, Horizon House, Deanery Road, Bristol, BS1 5AH UK
| | - Heinz Singer
- Eawag, Swiss Federal Institute for Aquatic Science and Technology, Überlandstrasse 133, 8600 Dübendorf, Switzerland
| | - Randolph R. Singh
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 6 Avenue du Swing, 4367 Belvaux, Luxembourg
- Chemical Contamination of Marine Ecosystems (CCEM) Unit, Institut Français de Recherche pour l’Exploitation de la Mer (IFREMER), Rue de l’Ile d’Yeu, BP 21105, 44311 Cedex 3, Nantes France
| | - Mark Sumarah
- Agriculture and Agri-Food Canada/Agriculture et Agroalimentaire Canada, 1391 Sandford Street, London, ON N5V 4T3 Canada
| | - Paul A. Thiessen
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 8600 Rockville Pike, Bethesda, MD 20894 USA
| | - Kevin V. Thomas
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Woolloongabba, QLD 4102 Australia
| | | | - Xenia Trier
- Section for Environmental Chemistry and Physics, Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Annemarie P. van Wezel
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - Roel C. H. Vermeulen
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, The Netherlands
| | - Jelle J. Vlaanderen
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, The Netherlands
| | | | - Zhanyun Wang
- Technology and Society Laboratory, Empa-Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| | - Antony J. Williams
- Computational Chemistry and Cheminformatics Branch (CCCB), Chemical Characterization and Exposure Division (CCED), Center for Computational Toxicology and Exposure (CCTE), United States Environmental Protection Agency, 109 T.W. Alexander Drive, Research Triangle Park, NC 27711 USA
| | - Egon L. Willighagen
- Department of Bioinformatics-BiGCaT, NUTRIM, Maastricht University, Maastricht, The Netherlands
| | | | - Jian Zhang
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 8600 Rockville Pike, Bethesda, MD 20894 USA
| | - Nikolaos S. Thomaidis
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Juliane Hollender
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, 8092 Zurich, Switzerland
- Eawag, Swiss Federal Institute for Aquatic Science and Technology, Überlandstrasse 133, 8600 Dübendorf, Switzerland
| | | | - Emma L. Schymanski
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 6 Avenue du Swing, 4367 Belvaux, Luxembourg
| |
Collapse
|
35
|
Ng K, Alygizakis N, Androulakakis A, Galani A, Aalizadeh R, Thomaidis NS, Slobodnik J. Target and suspect screening of 4777 per- and polyfluoroalkyl substances (PFAS) in river water, wastewater, groundwater and biota samples in the Danube River Basin. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129276. [PMID: 35739789 DOI: 10.1016/j.jhazmat.2022.129276] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/20/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are under regulatory scrutiny since some of them are persistent, bioaccumulative, and toxic. The occurrence of 4777 PFAS was investigated in the Danube River Basin (DRB; 11 countries) using target and suspect screening. Target screening involved investigation of PFAS with 56 commercially available reference standards. Suspect screening covered 4777 PFAS retrieved from the NORMAN Substance Database, including all individual PFAS lists submitted to the NORMAN Suspect List Exchange Database. Mass spectrometry fragmentation patterns and retention time index predictions of the studied PFAS were established for their screening by liquid chromatography - high resolution mass spectrometry using NORMAN Digital Sample Freezing Platform (DSFP). In total, 82 PFAS were detected in the studied 95 samples of river water, wastewater, groundwater, biota and sediments. Suspect screening detected 72 PFAS that were missed by target screening. Predicted no effect concentrations (PNECs) were derived for each PFAS via a quantitative structure-toxicity relationship (QSTR)-based approach and used for assessment of their environmental risk. Risk characterization revealed 18 PFAS of environmental concern in at least one matrix. The presence of PFAS in all studied environmental compartments across the DRB indicates a potentially large-scale migration of PFAS in Europe, which might require their further systematic regulatory monitoring.
Collapse
Affiliation(s)
- Kelsey Ng
- Environmental Institute, Okružná 784/42, 97241 Koš, Slovak Republic; RECETOX, Faculty of Science, Masaryk University, Kotlářská 2, Brno, Czech Republic
| | - Nikiforos Alygizakis
- Environmental Institute, Okružná 784/42, 97241 Koš, Slovak Republic; Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece.
| | - Andreas Androulakakis
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Aikaterini Galani
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Reza Aalizadeh
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Nikolaos S Thomaidis
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece.
| | | |
Collapse
|
36
|
Bruinen de Bruin Y, Franco A, Ahrens A, Morris A, Verhagen H, Kephalopoulos S, Dulio V, Slobodnik J, Sijm DTHM, Vermeire T, Ito T, Takaki K, De Mello J, Bessems J, Zare Jeddi M, Tanarro Gozalo C, Pollard K, McCourt J, Fantke P. Enhancing the use of exposure science across EU chemical policies as part of the European Exposure Science Strategy 2020-2030. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2022; 32:513-525. [PMID: 34697409 PMCID: PMC9349036 DOI: 10.1038/s41370-021-00388-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 09/08/2021] [Accepted: 09/14/2021] [Indexed: 05/26/2023]
Abstract
BACKGROUND A scientific framework on exposure science will boost the multiuse of exposure knowledge across EU chemicals-related policies and improve risk assessment, risk management and communication across EU safety, security and sustainability domains. OBJECTIVE To stimulate public and private actors to align and strengthen the cross-policy adoption of exposure assessment data, methods and tools across EU legislation. METHODS By mapping and analysing the EU regulatory landscape making use of exposure information, policy and research challenges and key areas of action are identified and translated into opportunities enhancing policy and scientific efficiency. RESULTS Identified key areas of actions are to develop a common scientific exposure assessment framework, supported by baseline acceptance criteria and a shared knowledge base enhancing exchangeability and acceptability of exposure knowledge within and across EU chemicals-related policies. Furthermore, such framework will improve communication and management across EU chemical safety, security and sustainability policies comprising sourcing, manufacturing and global trade of goods and waste management. In support of building such a common framework and its effective use in policy and industry, exposure science innovation needs to be better embedded along the whole policymaking cycle, and be integrated into companies' safety and sustainability management systems. This will help to systemically improve regulatory risk management practices. SIGNIFICANCE This paper constitutes an important step towards the implementation of the EU Green Deal and its underlying policy strategies, such as the Chemicals Strategy for Sustainability.
Collapse
Affiliation(s)
- Yuri Bruinen de Bruin
- European Commission, Joint Research Centre, Directorate for Space, Security and Migration, Geel, Belgium.
- European Chemical Industry Council (Cefic), Brussels, Belgium.
| | - Antonio Franco
- European Commission, Joint Research Centre, Directorate on Health, Consumer and Reference Materials, Ispra, Italy
| | | | - Alick Morris
- European Commission, Directorate General Employment, Luxembourg, Luxembourg
| | - Hans Verhagen
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
- University of Ulster, Coleraine, Northern Ireland
| | - Stylianos Kephalopoulos
- European Commission, Joint Research Centre, Directorate on Health, Consumer and Reference Materials, Ispra, Italy
| | - Valeria Dulio
- INERIS - National Institute for Environment and Industrial Risks, Verneuil en Halatte, France
| | | | - Dick T H M Sijm
- Dutch Food and Consumer Product Safety Authority, Utrecht, The Netherlands
- University College Venlo, Campus Venlo, Maastricht University, Maastricht, The Netherlands
| | - Theo Vermeire
- RIVM - National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Takaaki Ito
- Organisation for Economic Co-operation and Development, Paris, France
| | - Koki Takaki
- Organisation for Economic Co-operation and Development, Paris, France
| | | | - Jos Bessems
- Flemish Institute for Technological Research, Mol, Belgium
| | - Maryam Zare Jeddi
- RIVM - National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | | | | | - Josephine McCourt
- European Commission, Joint Research Centre, Directorate for Space, Security and Migration, Geel, Belgium
| | - Peter Fantke
- Quantitative Sustainability Assessment, Department of Technology, Management and Economics, Technical University of Denmark, Kgs. Lyngby, Denmark
| |
Collapse
|
37
|
van Dijk J, Flerlage H, Beijer S, Slootweg JC, van Wezel AP. Safe and sustainable by design: A computer-based approach to redesign chemicals for reduced environmental hazards. CHEMOSPHERE 2022; 296:134050. [PMID: 35189194 DOI: 10.1016/j.chemosphere.2022.134050] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 02/03/2022] [Accepted: 02/16/2022] [Indexed: 06/14/2023]
Abstract
Persistency of chemicals in the environment is seen a pressing issue as it results in accumulation of chemicals over time. Persistent chemicals can be an asset in a well-functioning circular economy where products are more durable and can be reused or recycled. This objective can however not always be fulfilled as release of chemicals from products into the environment can be inherently coupled to their use. In these situations, chemicals should be designed for degradation. In this study, a systematic and computer-aided workflow was developed to facilitate the chemical redesign for reduced persistency. The approach includes elements of Essential Use, Alternatives Assessment and Green and Circular Chemistry and ties into goals recently formulated in the context of the EU Green Deal. The organophosphate chemical triisobutylphosphate (TiBP) was used as a case study for exploration of the approach, as its emission to the environment was expected to be inevitable when used as a flame retardant. Over 6.3 million alternative structures were created in silico and filtered based on QSAR outputs to remove potentially non-readily biodegradable structures. With a multi-criteria analysis based on predicted properties and synthesizability a top 500 of most desirable structures was identified. The target structure (di-n-butyl (2-hydroxyethyl) phosphate) was manually selected and synthesized. The approach can be expanded and further verified to reach its full potential in the mitigation of chemical pollution and to help enable a safe circular economy.
Collapse
Affiliation(s)
- Joanke van Dijk
- Copernicus Institute of Sustainable Development, Utrecht University, 3584, CB, Utrecht, the Netherlands; Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, PO Box 94240, GE, 1090, Amsterdam, the Netherlands.
| | - Hannah Flerlage
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, PO Box 94240, GE, 1090, Amsterdam, the Netherlands; Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, PO Box 94157, GD, 1090, Amsterdam, the Netherlands.
| | - Steven Beijer
- Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, PO Box 94157, GD, 1090, Amsterdam, the Netherlands.
| | - J Chris Slootweg
- Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, PO Box 94157, GD, 1090, Amsterdam, the Netherlands.
| | - Annemarie P van Wezel
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, PO Box 94240, GE, 1090, Amsterdam, the Netherlands.
| |
Collapse
|
38
|
Vitale CM, Lommen A, Huber C, Wagner K, Garlito Molina B, Nijssen R, Price EJ, Blokland M, van Tricht F, Mol HGJ, Krauss M, Debrauwer L, Pardo O, Leon N, Klanova J, Antignac JP. Harmonized Quality Assurance/Quality Control Provisions for Nontargeted Measurement of Urinary Pesticide Biomarkers in the HBM4EU Multisite SPECIMEn Study. Anal Chem 2022; 94:7833-7843. [PMID: 35616234 DOI: 10.1021/acs.analchem.2c00061] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A set of quality assurance/quality control (QA/QC) criteria for nontargeted measurement of pesticide exposure markers in a large-scale study of human urine has been proposed and applied across five laboratories within the HBM4EU project. Quality control material, including reference standards and fortified pooled urine samples (QC urine) were prepared in a centralized way and distributed across participants to monitor analytical performance and consistency of the liquid chromatography coupled to high-resolution mass spectrometry data generated with a harmonized workflow. Signal intensities, mass accuracy, and retention times of selected QA/QC markers covering a broad range of physicochemical properties were monitored across QC solvent standards, QC urine samples, study urine samples, and procedural blanks, setting acceptance thresholds for repeatability and accuracy. Overall, results showed high repeatability of the collected data. The RSDs of the signal intensities were typically below 20-30% in QC and study samples, with good stability of the chromatographic separation (retention time drift within 2-4 s intrabatch and 5 s interbatch) and excellent mass accuracy (average error < 2 ppm). The use of the proposed criteria allowed for the identification of handling errors, instrumental issues, and potential batch effects. This is the first elaboration of harmonized QA/QC criteria applied across multiple laboratories to assess the quality of data generated by nontargeted analysis of human samples.
Collapse
Affiliation(s)
| | - Arjen Lommen
- Wageningen Food Safety Research, Wageningen University & Research, Wageningen 6708 WB, The Netherlands
| | - Carolin Huber
- Department of Effect-Directed Analysis, Helmholtz Centre for Environmental Research-UFZ, Leipzig 04318, Germany.,Institute of Ecology, Diversity and Evolution, Goethe University Frankfurt Biologicum, Campus Riedberg, Frankfurt am Main 60438, Germany
| | | | - Borja Garlito Molina
- FISABIO (Foundation for the Promotion of Health and Biomedical Research of the Valencia Region), Valencia 46020, Spain
| | - Rosalie Nijssen
- Wageningen Food Safety Research, Wageningen University & Research, Wageningen 6708 WB, The Netherlands
| | | | - Marco Blokland
- Wageningen Food Safety Research, Wageningen University & Research, Wageningen 6708 WB, The Netherlands
| | - Frederike van Tricht
- Wageningen Food Safety Research, Wageningen University & Research, Wageningen 6708 WB, The Netherlands
| | - Hans G J Mol
- Wageningen Food Safety Research, Wageningen University & Research, Wageningen 6708 WB, The Netherlands
| | - Martin Krauss
- Department of Effect-Directed Analysis, Helmholtz Centre for Environmental Research-UFZ, Leipzig 04318, Germany
| | | | - Olga Pardo
- FISABIO (Foundation for the Promotion of Health and Biomedical Research of the Valencia Region), Valencia 46020, Spain
| | - Nuria Leon
- FISABIO (Foundation for the Promotion of Health and Biomedical Research of the Valencia Region), Valencia 46020, Spain
| | - Jana Klanova
- RECETOX, Faculty of Science, Masaryk University, Brno 60200, Czech Republic
| | | |
Collapse
|
39
|
Haglund P, Rebryk A. Biomagnification and Temporal Trends of New and Emerging Dechloranes and Related Transformation Products in Baltic Sea Biota. ENVIRONMENTAL SCIENCE & TECHNOLOGY LETTERS 2022; 9:406-412. [PMID: 35573270 PMCID: PMC9097483 DOI: 10.1021/acs.estlett.2c00171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/07/2022] [Accepted: 04/07/2022] [Indexed: 05/26/2023]
Abstract
To enhance knowledge of the environmental distribution and temporal trends of dechloranes and their transformation products (TPs) we performed suspect screening of Baltic Sea biota (eelpout, herring, harbor porpoise, guillemot and white-tailed sea eagle). Evaluation of new and "digitally frozen" gas chromatography/high-resolution mass spectrometry data revealed 31 compounds: five dechloranes (Dechlorane [Mirex], Dechlorane 602, Dechlorane 603, and syn-/anti-Dechlorane Plus [DP]), three isomers, and 23 TPs. Six new Dechlorane 603 TPs and two new DP TPs were detected, including one hydroxy-TP. Some TPs occurred at much higher concentrations than the parent compounds (e.g., Dechlorane 603 TPs were >10-fold more abundant than their parent). Concentrations of contaminants in the most contaminated species (white-tailed sea eagle) changed little over the period 1965-2017. Slow declines were detected for most compounds (median, 2% per year), although concentrations of DP and DP-TPs increased by 1% per year. Ten contaminants biomagnify, and the trophic magnification factors for TPs of Mirex, Dechlorane 602 and Dechlorane 603 (8.2 to 17.8) were similar to the parent compounds (6.6 to 12.4) and higher than that of DP (2.4, nonsignificant). The results are discussed in relation to the current review of DP for potential listing under the Stockholm Convention on POPs.
Collapse
|
40
|
From monitoring to treatment, how to improve water quality: The pharmaceuticals case. CHEMICAL ENGINEERING JOURNAL ADVANCES 2022. [DOI: 10.1016/j.ceja.2022.100245] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
41
|
Dürig W, Alygizakis NA, Wiberg K, Ahrens L. Application of a novel prioritisation strategy using non-target screening for evaluation of temporal trends (1969-2017) of contaminants of emerging concern (CECs) in archived lynx muscle tissue samples. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 817:153035. [PMID: 35026275 DOI: 10.1016/j.scitotenv.2022.153035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/20/2021] [Accepted: 01/06/2022] [Indexed: 06/14/2023]
Abstract
Most environmental monitoring studies of contaminants of emerging concern (CECs) focus on aquatic species and target specific classes of CECs. Even with wide-scope target screening methods, relevant CECs may be missed. In this study, non-target screening (NTS) was used for tentative identification of potential CECs in muscle tissue of the terrestrial top predator Eurasian lynx (Lynx lynx). Temporal trend analysis was applied as a prioritisation tool for archived samples, using univariate statistical tests (Mann-Kendall and Spearman rank). Pooled lynx muscle tissue collected from 1969 to 2017 was analysed with an eight-point time series using a previously validated screening workflow. Following peak detection, peak alignment, and blank subtraction, 12,941 features were considered for statistical analysis. Prioritisation by time-trend analysis detected 104 and 61 features with statistically significant increasing and decreasing trends, respectively. Following probable molecular formula assignment and elucidation with MetFrag, two compounds with increasing trends, and one with a decreasing trend, were tentatively identified. These results show that, despite low expected concentration levels and high matrix effects in terrestrial species, it is possible to prioritise CECs in archived lynx samples using NTS and univariate statistical approaches.
Collapse
Affiliation(s)
- Wiebke Dürig
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), Box 7050, SE-750 07 Uppsala, Sweden.
| | - Nikiforos A Alygizakis
- Environmental Institute, Okruzná 784/42, 97241 Koš, Slovak Republic; Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Greece.
| | - Karin Wiberg
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), Box 7050, SE-750 07 Uppsala, Sweden.
| | - Lutz Ahrens
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), Box 7050, SE-750 07 Uppsala, Sweden.
| |
Collapse
|
42
|
Wang Z, Adu-Kumi S, Diamond ML, Guardans R, Harner T, Harte A, Kajiwara N, Klánová J, Liu J, Moreira EG, Muir DCG, Suzuki N, Pinas V, Seppälä T, Weber R, Yuan B. Enhancing Scientific Support for the Stockholm Convention's Implementation: An Analysis of Policy Needs for Scientific Evidence. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:2936-2949. [PMID: 35167273 DOI: 10.1021/acs.est.1c06120] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The Stockholm Convention is key to addressing the global threats of persistent organic pollutants (POPs) to humanity and the environment. It has been successful in identifying new POPs, but its national implementation remains challenging, particularly by low- and middle-income Parties. Concerted action is needed to assist Parties in implementing the Convention's obligations. This analysis aims to identify and recommend research and scientific support needed for timely implementation of the Convention. We aim this analysis at scientists and experts from a variety of natural and social sciences and from all sectors (academia, civil society, industry, and government institutions), as well as research funding agencies. Further, we provide practical guidance to scientists and experts to promote the visibility and accessibility of their work for the Convention's implementation, followed by recommendations for sustaining scientific support to the Convention. This study is the first of a series on analyzing policy needs for scientific evidence under global governance on chemicals and waste.
Collapse
Affiliation(s)
- Zhanyun Wang
- Institute of Environmental Engineering, ETH Zürich, 8093 Zürich, Switzerland
- Empa - Swiss Federal Laboratories for Materials Science and Technology, Technology and Society Laboratory, CH-9014 St. Gallen, Switzerland
| | - Sam Adu-Kumi
- Chemicals Control and Management Centre, Environmental Protection Agency, Ministries, P.O. Box MB 326, Accra GR, Ghana
| | - Miriam L Diamond
- Department of Earth Sciences and School of the Environment, University of Toronto, Toronto, Ontario M5S 3B1, Canada
| | - Ramon Guardans
- WEOG Region Representative for the Global Monitoring Plan of the Stockholm Convention on POPs, Adviser on POPs, Ministry for the Ecological Transition and Demographic Challenge (MITECO), 28046 Madrid, Spain
| | - Tom Harner
- WEOG Region Representative for the Global Monitoring Plan of the Stockholm Convention on POPs, Air Quality Processes Research Section, Environment and Climate Change Canada, Toronto, Ontario M3H 5T4, Canada
| | - Agustín Harte
- National Chemicals and Hazardous Waste Directorate, Secretariat of Environmental Control and Monitoring, Ministry of Environment and Sustainable Development, San Martin 451, Autonomous City of Buenos Aires C1004AAI, Argentina
| | - Natsuko Kajiwara
- Material Cycles Division, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| | - Jana Klánová
- RECETOX Centre of Masaryk University, the Stockholm Convention Regional Centre for Capacity Building and the Transfer of Technology in Central and Eastern Europe, 611 37 Brno, Czech Republic
| | - Jianguo Liu
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | | | - Derek C G Muir
- Environment and Climate Change Canada, Canada Centre for Inland Waters, Burlington, Ontario L7S 1A1, Canada
| | - Noriyuki Suzuki
- Planning Division, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| | - Victorine Pinas
- Institute for Graduate Studies and Research, Anton de Kom University of Suriname, P.O.B: 9212, Paramaribo, Suriname
| | - Timo Seppälä
- Finnish Environment Institute, Contaminants Unit, 00790, Helsinki, Finland
| | - Roland Weber
- POPs Environmental Consulting, 73527, Schwäbisch Gmünd Germany
| | - Bo Yuan
- Department of Environmental Science, Stockholm University, 106 91 Stockholm, Sweden
- Department of Chemistry, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| |
Collapse
|
43
|
A Multi-Label Classifier for Predicting the Most Appropriate Instrumental Method for the Analysis of Contaminants of Emerging Concern. Metabolites 2022; 12:metabo12030199. [PMID: 35323641 PMCID: PMC8949148 DOI: 10.3390/metabo12030199] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/19/2022] [Accepted: 02/21/2022] [Indexed: 02/04/2023] Open
Abstract
Liquid chromatography-high resolution mass spectrometry (LC-HRMS) and gas chromatography-high resolution mass spectrometry (GC-HRMS) have revolutionized analytical chemistry among many other disciplines. These advanced instrumentations allow to theoretically capture the whole chemical universe that is contained in samples, giving unimaginable opportunities to the scientific community. Laboratories equipped with these instruments produce a lot of data daily that can be digitally archived. Digital storage of data opens up the opportunity for retrospective suspect screening investigations for the occurrence of chemicals in the stored chromatograms. The first step of this approach involves the prediction of which data is more appropriate to be searched. In this study, we built an optimized multi-label classifier for predicting the most appropriate instrumental method (LC-HRMS or GC-HRMS or both) for the analysis of chemicals in digital specimens. The approach involved the generation of a baseline model based on the knowledge that an expert would use and the generation of an optimized machine learning model. A multi-step feature selection approach, a model selection strategy, and optimization of the classifier’s hyperparameters led to a model with accuracy that outperformed the baseline implementation. The models were used to predict the most appropriate instrumental technique for new substances. The scripts are available at GitHub and the dataset at Zenodo.
Collapse
|
44
|
Dürig W, Alygizakis NA, Menger F, Golovko O, Wiberg K, Ahrens L. Novel prioritisation strategies for evaluation of temporal trends in archived white-tailed sea eagle muscle tissue in non-target screening. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127331. [PMID: 34879552 DOI: 10.1016/j.jhazmat.2021.127331] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/20/2021] [Accepted: 09/21/2021] [Indexed: 06/13/2023]
Abstract
Environmental monitoring studies based on target analysis capture only a small fraction of contaminants of emerging concern (CECs) and miss pollutants potentially harmful to wildlife. Environmental specimen banks, with their archived samples, provide opportunities to identify new CECs by temporal trend analysis and non-target screening. In this study, archived white-tailed sea eagle (Haliaeetus albicilla) muscle tissue was analysed by non-targeted high-resolution mass spectrometry. Univariate statistical tests (Mann-Kendall and Spearman rank) for temporal trend analysis were applied as prioritisation methods. A workflow for non-target data was developed and validated using an artificial time series spiked at five levels with gradient concentrations of selected CECs (n = 243). Pooled eagle muscle tissues collected 1965-2017 were then investigated with an eight-point time series using the validated screening workflow. Following peak detection, peak alignment, and blank subtraction, 14 409 features were considered for statistical analysis. Prioritisation by time-trend analysis detected 207 features with increasing trends. Following unequivocal molecular formula assignment to prioritised features and further elucidation with MetFrag and EU Massbank, 13 compounds were tentatively identified, of which four were of anthropogenic origin. These results show that it is possible to prioritise new CECs in archived biological samples using univariate statistical approaches.
Collapse
Affiliation(s)
- Wiebke Dürig
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), Box 7050, SE-750 07 Uppsala, Sweden.
| | - Nikiforos A Alygizakis
- Environmental Institute, Okruzná 784/42, 97241 Koš, Slovak Republic; Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Greece.
| | - Frank Menger
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), Box 7050, SE-750 07 Uppsala, Sweden.
| | - Oksana Golovko
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), Box 7050, SE-750 07 Uppsala, Sweden.
| | - Karin Wiberg
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), Box 7050, SE-750 07 Uppsala, Sweden.
| | - Lutz Ahrens
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), Box 7050, SE-750 07 Uppsala, Sweden.
| |
Collapse
|
45
|
Nikolopoulou V, Alygizakis NA, Nika MC, Oswaldova M, Oswald P, Kostakis M, Koupa A, Thomaidis NS, Slobodnik J. Screening of legacy and emerging substances in surface water, sediment, biota and groundwater samples collected in the Siverskyi Donets River Basin employing wide-scope target and suspect screening. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 805:150253. [PMID: 34818787 DOI: 10.1016/j.scitotenv.2021.150253] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 09/05/2021] [Accepted: 09/06/2021] [Indexed: 06/13/2023]
Abstract
Siverskyi Donets is the fourth longest river in Ukraine and its ecosystem is heavily affected by numerous agricultural and industrial activities. An impact of the on-going armed military conflicts in the Eastern Ukraine to the overall pollution by the chemicals has been studied. Considering the uncontrolled activities in the catchment due to the conflict, there is a high demand to assess the contamination status of the Siverskyi Donets basin. In this study, the occurrence of the EU Water Framework Directive priority substances, selected physicochemical parameters and wide-range emerging contaminants were investigated in surface water, groundwater, biota and river sediments samples from 13 sampling sites in the river basin. The study included metals, inorganic, non-polar and polar organic contaminants. The wide-scope target screening of 2316 substances and suspect screening of 2219 substances revealed occurrence of 83 compounds in the studied samples. A few industrial chemicals such as plasticizers bisphenol A and DEHP, as well as flame retardant brominated diphenylethers were found to be potentially hazardous to the ecosystem, exceeding the established legacy environmental quality standards (EQS) or the provisional no-effect concentration (PNEC) values. River sediment samples contained traces of long-term banned chemicals such as polychlorinated biphenyls (PCBs) and degradation products of DDT (p,p'-DDD and p,p'-DDE). A simplified risk assessment based on comparison of measured concentration of the detected compounds against their (eco)toxicity threshold values from the NORMAN Ecotoxicology Database has been performed to aid their prioritization in future monitoring and, eventually, establishing the list of Siverskyi Donets River Basin Specific Pollutants. A comparison with the recent similar studies in the Dniester and Dnieper river basins in Ukraine has shown that the overall pollution by chemicals in the Siverskyi Donets basin is significantly lower.
Collapse
Affiliation(s)
- Varvara Nikolopoulou
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Nikiforos A Alygizakis
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; Environmental Institute, Okružná 784/42, 97241 Koš, Slovak Republic
| | - Maria-Christina Nika
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | | | - Peter Oswald
- Environmental Institute, Okružná 784/42, 97241 Koš, Slovak Republic
| | - Marios Kostakis
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Anastasia Koupa
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Nikolaos S Thomaidis
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece.
| | | |
Collapse
|
46
|
Brack W, Barcelo Culleres D, Boxall ABA, Budzinski H, Castiglioni S, Covaci A, Dulio V, Escher BI, Fantke P, Kandie F, Fatta-Kassinos D, Hernández FJ, Hilscherová K, Hollender J, Hollert H, Jahnke A, Kasprzyk-Hordern B, Khan SJ, Kortenkamp A, Kümmerer K, Lalonde B, Lamoree MH, Levi Y, Lara Martín PA, Montagner CC, Mougin C, Msagati T, Oehlmann J, Posthuma L, Reid M, Reinhard M, Richardson SD, Rostkowski P, Schymanski E, Schneider F, Slobodnik J, Shibata Y, Snyder SA, Fabriz Sodré F, Teodorovic I, Thomas KV, Umbuzeiro GA, Viet PH, Yew-Hoong KG, Zhang X, Zuccato E. One planet: one health. A call to support the initiative on a global science-policy body on chemicals and waste. ENVIRONMENTAL SCIENCES EUROPE 2022; 34:21. [PMID: 35281760 PMCID: PMC8902847 DOI: 10.1186/s12302-022-00602-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 02/25/2022] [Indexed: 05/08/2023]
Abstract
The chemical pollution crisis severely threatens human and environmental health globally. To tackle this challenge the establishment of an overarching international science-policy body has recently been suggested. We strongly support this initiative based on the awareness that humanity has already likely left the safe operating space within planetary boundaries for novel entities including chemical pollution. Immediate action is essential and needs to be informed by sound scientific knowledge and data compiled and critically evaluated by an overarching science-policy interface body. Major challenges for such a body are (i) to foster global knowledge production on exposure, impacts and governance going beyond data-rich regions (e.g., Europe and North America), (ii) to cover the entirety of hazardous chemicals, mixtures and wastes, (iii) to follow a one-health perspective considering the risks posed by chemicals and waste on ecosystem and human health, and (iv) to strive for solution-oriented assessments based on systems thinking. Based on multiple evidence on urgent action on a global scale, we call scientists and practitioners to mobilize their scientific networks and to intensify science-policy interaction with national governments to support the negotiations on the establishment of an intergovernmental body based on scientific knowledge explaining the anticipated benefit for human and environmental health.
Collapse
Affiliation(s)
- Werner Brack
- UFZ Helmholtz Centre for Environmental Research, Permoserstraße 15, 04318 Leipzig, Germany
- Faculty Biological Sciences, Goethe University Frankfurt, Max-von-der-Laue-Straße 13, 60438 Frankfurt, Germany
| | - Damia Barcelo Culleres
- Catalan Institute of Water Research, Carrer Emili Grahit 101, 17003 Girona, Spain
- Spanish National Research Council, Institute for Environmental Assessment & Water Research, Water & Soil Quality Research Group, Jordi Girona 18-26, 08034 Barcelona, Spain
| | | | - Hélène Budzinski
- Université de Bordeaux, 351 crs de la Libération, 33405 Talence, France
| | - Sara Castiglioni
- Department of Environmental Sciences, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milan, Italy
| | - Adrian Covaci
- Toxicological Center, University of Antwerp, Universiteitsplen 1, 2610 Wilrijk, Belgium
| | - Valeria Dulio
- INERIS - Direction Milieu et Impacts sur le Vivant (MIV), Parc technologique ALATA, 60550 Verneuil-en-Halatte, France
| | - Beate I. Escher
- UFZ Helmholtz Centre for Environmental Research, Permoserstraße 15, 04318 Leipzig, Germany
- Center for Applied Geoscience, Eberhard Karls University of Tübingen, 72076 Tübingen, Germany
| | - Peter Fantke
- Quantitative Sustainability Assessment, Department of Technology, Management and Economics, Technical University of Denmark, Produktionstorvet 424, 2800 Kgs. Lyngby, Denmark
| | - Faith Kandie
- Department of Biological Sciences, Moi University, 3900-30100 Eldoret, Kenya
| | - Despo Fatta-Kassinos
- Department of Civil and Environmental Engineering and Nireas-International Water Research Center, University of Cyprus, P.O. Box 20537, 1678 Nicosia, Cyprus
| | - Félix J. Hernández
- Research Institute for Pesticides and Water, University Jaume I, 12006 Castellon, Spain
| | - Klara Hilscherová
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic
| | - Juliane Hollender
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, 8092 Zurich, Switzerland
| | - Henner Hollert
- Faculty Biological Sciences, Goethe University Frankfurt, Max-von-der-Laue-Straße 13, 60438 Frankfurt, Germany
| | - Annika Jahnke
- UFZ Helmholtz Centre for Environmental Research, Permoserstraße 15, 04318 Leipzig, Germany
- RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | | | - Stuart J. Khan
- School of Civil & Environmental Engineering, University of New South Wales, Sydney, NSW 2052 Australia
| | - Andreas Kortenkamp
- Centre for Pollution Research and Policy, Department of Life Sciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, UB8 3PH UK
| | - Klaus Kümmerer
- Institute for Sustainable Chemistry, Leuphana University Lüneburg, Universitätsallee 1, 21335 Lüneburg, Germany
| | - Brice Lalonde
- The French Water Academy, 51 rue Salvador-Allende, 92027 Nanterre, France
| | - Marja H. Lamoree
- Department Environment & Health, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| | - Yves Levi
- The French Water Academy, 51 rue Salvador-Allende, 92027 Nanterre, France
| | - Pablo Antonio Lara Martín
- Departamento de Química Física, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz – European Universities of the Seas, Campus Río San Pedro, 11510 Puerto Real, Cádiz Spain
| | | | - Christian Mougin
- Université Paris-Saclay, INRAE, AgroParisTech, UMR ECOSYS, 78026 Versailles, France
| | - Titus Msagati
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology (CSET), University of South Africa, Pretoria, South Africa
| | - Jörg Oehlmann
- Faculty Biological Sciences, Goethe University Frankfurt, Max-von-der-Laue-Straße 13, 60438 Frankfurt, Germany
| | - Leo Posthuma
- RIVM-National Institute for Public Health and the Environment, PO Box 1, 3720 BA Bilthoven, The Netherlands
- Department of Environmental Science, Radbound University Nijmegen, Nijmegen, The Netherlands
| | - Malcolm Reid
- Norwegian Institute for Water Research, Environmental Chemistry and Technology, Oslo, Norway
| | | | - Susan D. Richardson
- Department of Chemistry & Biochemistry, University of South Carolina, Columbia, SC 29208 USA
| | - Pawel Rostkowski
- NILU-Norwegian Institute for Air Research, P.O. Box 100, 2027 Kjeller, Norway
| | - Emma Schymanski
- University of Luxembourg, 6 avenue du Swing, 4367 Belvaux, Luxembourg
| | - Flurina Schneider
- Faculty Biological Sciences, Goethe University Frankfurt, Max-von-der-Laue-Straße 13, 60438 Frankfurt, Germany
- Institute for Social-Ecological Research (ISOE), Hamburger Alee 45, 60486 Frankfurt, Germany
| | | | - Yasuyuki Shibata
- Environmental Safety Center, Tokyo University of Science, 12-1 Ichigaya-Funagawara, Shinjuku, Tokyo 162-0826 Japan
| | - Shane Allen Snyder
- Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore, Singapore
| | | | | | - Kevin V. Thomas
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, QLD 4102 Australia
| | | | - Pham Hung Viet
- VNU Key Laboratory of Analytical Technology for Environmental Quality, Vietnam National University, 334 Nguyen Trai, Hanoi, Vietnam
| | - Karina Gin Yew-Hoong
- Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, Singapore, Singapore
| | - Xiaowei Zhang
- Centre of Chemical Safety and Risks, School of the Environment, Nanjing University, Nanjing, China
| | - Ettore Zuccato
- Department of Environmental Sciences, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milan, Italy
| |
Collapse
|
47
|
Gonçalves NPF, Iezzi L, Belay MH, Dulio V, Alygizakis N, Dal Bello F, Medana C, Calza P. Elucidation of the photoinduced transformations of Aliskiren in river water using liquid chromatography high-resolution mass spectrometry. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 800:149547. [PMID: 34391152 DOI: 10.1016/j.scitotenv.2021.149547] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/16/2021] [Accepted: 08/05/2021] [Indexed: 06/13/2023]
Abstract
Aliskiren was selected as a compound of potential concern among a suspect screening list of more than 40,000 substances on a basis of high occurrence, potential risk and the absence of information about its environmental fate. This study investigated the photoinduced degradation of aliskiren in river water samples spiked at trace levels exposed to simulated sunlight. A half-life time of 24 h was observed with both direct and indirect photolysis playing a role on pollutant degradation. Its photo-induced transformation involved the formation of six transformation products (TPs), elucidated by LC-HRMS - resulted from the drug hydroxylation, oxidation and moieties loss with subsequent cyclization structurally. The retrospective suspected analysis performed on a total of 754 environmental matrices evidenced the environmental occurrence of aliskiren and two TPs in surface waters (river and seawater), fresh water, sediments and biota. In silico bioassays suggested that aliskiren degradation undergoes thought the formation of TPs with distinct toxicity comparing with the parent compound.
Collapse
Affiliation(s)
| | - Lucia Iezzi
- Department of Chemistry, University of Turin, Torino, Italy
| | - Masho H Belay
- Department of Science and Technological Innovation, University of Piemonte Orientale, Alessandria, Italy
| | - Valeria Dulio
- INERIS, National Institute for Environment and Industrial Risks, Verneuil en Halatte, France
| | - Nikiforos Alygizakis
- Laboratory of Analytical Chemistry, Department of Chemistry, University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; Environmental Institute, Okružná 784/42, 97241 Koš, Slovak Republic
| | - Federica Dal Bello
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Torino, Italy
| | - Claudio Medana
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Torino, Italy
| | - Paola Calza
- Department of Chemistry, University of Turin, Torino, Italy.
| |
Collapse
|
48
|
Gil-Solsona R, Nika MC, Bustamante M, Villanueva CM, Foraster M, Cosin-Tomás M, Alygizakis N, Gómez-Roig MD, Llurba-Olive E, Sunyer J, Thomaidis NS, Dadvand P, Gago-Ferrero P. The Potential of Sewage Sludge to Predict and Evaluate the Human Chemical Exposome. ENVIRONMENTAL SCIENCE & TECHNOLOGY LETTERS 2021; 8:1077-1084. [PMID: 35647215 PMCID: PMC9132361 DOI: 10.1021/acs.estlett.1c00848] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/05/2021] [Accepted: 11/08/2021] [Indexed: 05/25/2023]
Abstract
Chemicals are part of our daily lives, and we are exposed to numerous chemicals through multiple pathways. Relevant scientific evidence contributing to the regulation of hazardous chemicals require a holistic approach to assess simultaneous exposure to multiple compounds. Biomonitoring provides an accurate estimation of exposure to chemicals through very complex and costly sampling campaigns. Finding efficient proxies to predict the risk of chemical exposure in humans is an urgent need to cover large areas and populations at a reasonable cost. We conducted an exploratory study to characterize the human chemical exposome in maternal blood and placenta samples of a population-based birth cohort in Barcelona (2018-2021). Ultimate HRMS-based approaches were applied including wide-scope target, suspect, and nontarget screening. Forty-two chemicals were identified including pesticides, personal care products, or industrial compounds, among others, in the range of ng/mL and ng/g. In parallel, sewage sludge from the wastewater treatment plants serving the residence areas of the studied population were also screened, showing correlations with the type and concentrations of chemicals found in humans. Our findings were suggestive for the potential use of sewage sludge as a proxy of the human exposure and its application in early warning systems to prevent bioaccumulation of hazardous chemicals.
Collapse
Affiliation(s)
- Ruben Gil-Solsona
- Department
of Environmental Chemistry, Institute of
Environmental Assessment and Water Research − Severo Ochoa
Excellence Center (IDAEA), Spanish Council of Scientific Research
(CSIC), Jordi Girona 18-26, Barcelona 08034, Spain
| | - Maria-Christina Nika
- Laboratory
of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, Athens 15771, Greece
| | - Mariona Bustamante
- ISGlobal, Barcelona 08003, Spain
- Universitat
Pompeu Fabra (UPF), Barcelona 08003, Spain
- CIBER
Epidemiología y Salud Pública (CIBERESP), Madrid 28029, Spain
| | - Cristina M. Villanueva
- ISGlobal, Barcelona 08003, Spain
- Universitat
Pompeu Fabra (UPF), Barcelona 08003, Spain
- CIBER
Epidemiología y Salud Pública (CIBERESP), Madrid 28029, Spain
- IMIM (Hospital
del Mar Medical Research Institute), Doctor Aiguader 88, Barcelona 08003, Spain
| | - Maria Foraster
- ISGlobal, Barcelona 08003, Spain
- Universitat
Pompeu Fabra (UPF), Barcelona 08003, Spain
- CIBER
Epidemiología y Salud Pública (CIBERESP), Madrid 28029, Spain
- PHAGEX
Research Group, Blanquerna School of Health Science, Universitat Ramon Llull (URL), Carrer de Padilla, 326, Barcelona 08025, Spain
| | - Marta Cosin-Tomás
- Department
of Human Genetics, Research Institute of the McGill University Health
Center, McGill University, 845 Sherbrooke St W, Montreal,
Quebec H3A 0G4, Canada
| | - Nikiforos Alygizakis
- Laboratory
of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, Athens 15771, Greece
| | - Maria Dolores Gómez-Roig
- BCNatal
− Barcelona Center for Maternal Fetal and Neonatal Medicine
(Hospital Sant Joan de Déu and Hospital Clínic), University of Barcelona, Esplugues de Llobregat, Passeig de Sant Joan de
Déu, 2, Barcelona 08950, Spain
| | - Elisa Llurba-Olive
- Maternal
and Fetal Medicine Unit, Obstetrics and Gynecology Department, Sant Pau University Hospital, C. de Villarroel, 170, Barcelona 08036, Spain
- Development
Network (SAMID), RD16/0022/0015, Instituto
de Salud Carlos III, Av. de Monforte de Lemos, 5, Madrid 28029, Spain
| | - Jordi Sunyer
- ISGlobal, Barcelona 08003, Spain
- Universitat
Pompeu Fabra (UPF), Barcelona 08003, Spain
- CIBER
Epidemiología y Salud Pública (CIBERESP), Madrid 28029, Spain
| | - Nikolaos S. Thomaidis
- Laboratory
of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, Athens 15771, Greece
| | - Payam Dadvand
- ISGlobal, Barcelona 08003, Spain
- Universitat
Pompeu Fabra (UPF), Barcelona 08003, Spain
- CIBER
Epidemiología y Salud Pública (CIBERESP), Madrid 28029, Spain
| | - Pablo Gago-Ferrero
- Department
of Environmental Chemistry, Institute of
Environmental Assessment and Water Research − Severo Ochoa
Excellence Center (IDAEA), Spanish Council of Scientific Research
(CSIC), Jordi Girona 18-26, Barcelona 08034, Spain
| |
Collapse
|
49
|
Alygizakis N, Galani A, Rousis NI, Aalizadeh R, Dimopoulos MA, Thomaidis NS. Change in the chemical content of untreated wastewater of Athens, Greece under COVID-19 pandemic. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 799:149230. [PMID: 34364275 PMCID: PMC8321698 DOI: 10.1016/j.scitotenv.2021.149230] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 04/14/2023]
Abstract
COVID-19 pandemic spread rapidly worldwide with unanticipated effects on mental health, lifestyle, stability of economies and societies. Although many research groups have already reported SARS-CoV-2 surveillance in untreated wastewater, only few studies evaluated the implications of the pandemic on the use of chemicals by influent wastewater analysis. Wide-scope target and suspect screening were used to monitor the effects of the pandemic on the Greek population through wastewater-based epidemiology. Composite 24 h influent wastewater samples were collected from the wastewater treatment plant of Athens during the first lockdown and analyzed by liquid chromatography mass spectrometry. A wide range of compounds was investigated (11,286), including antipsychotic drugs, illicit drugs, tobacco compounds, food additives, pesticides, biocides, surfactants and industrial chemicals. Mass loads of chemical markers were estimated and compared with the data obtained under non-COVID-19 conditions (campaign 2019). The findings revealed increases in surfactants (+196%), biocides (+152%), cationic quaternary ammonium surfactants (used as surfactants and biocides) (+331%), whereas the most important decreases were estimated for tobacco (-33%) and industrial chemicals (-52%). The introduction of social-restriction measures by the government affected all aspects of life.
Collapse
Affiliation(s)
- Nikiforos Alygizakis
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece.
| | - Aikaterini Galani
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Nikolaos I Rousis
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Reza Aalizadeh
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Meletios-Athanasios Dimopoulos
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, 15528 Athens, Greece
| | - Nikolaos S Thomaidis
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece.
| |
Collapse
|
50
|
Galani A, Alygizakis N, Aalizadeh R, Kastritis E, Dimopoulos MA, Thomaidis NS. Patterns of pharmaceuticals use during the first wave of COVID-19 pandemic in Athens, Greece as revealed by wastewater-based epidemiology. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 798:149014. [PMID: 34325143 PMCID: PMC8294694 DOI: 10.1016/j.scitotenv.2021.149014] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 07/08/2021] [Accepted: 07/09/2021] [Indexed: 05/04/2023]
Abstract
Since 2019, Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), impaired public health with considerable morbidity and mortality due to the lack of vaccines and effective treatment. The severe disease mainly harmed adults with predisposing medical comorbidities (such as heart disease, hypertension, chronic lung disease), while it can occur in healthy individuals that may be asymptomatic. Wastewater-based Epidemiology (WBE), a non-invasive, objective, chemical tool was used to monitor and estimate the changes in drug's consumption and prescription patterns under normal conditions (2019) and under COVID-19 pandemic conditions (2020). NSAIDs, antihypertensives, diuretics, antiepileptics, antilipidemics, antibiotics, analgesics, antivirals, anticancer drugs, contrast iodinated drugs, antidiabetics, antiallergic drugs, antiulcers and other pharmaceuticals were studied in wastewater and revealed the application of various treatments during the first wave of the pandemic in Athens, Greece. Data were correlated with COVID-19 infection therapeutical plans. The result of the analysis revealed a remarkable increase for antiviral drugs (170%), hydroxychloroquine (387%), and antibiotics (57%), which were the most applied treatments against COVID-19 during the first wave in Greece. In agreement with related authorities urge, NSAIDs presented decrease (27%) during the first lockdown, while paracetamol demonstrated a remarkable increase (198%). The use levels for Angiotensin II receptor blockers such as valsartan, and co-administrated diuretics, such as hydrochlorothiazide, were reduced during 2020, by 32% and 26% respectively.
Collapse
Affiliation(s)
- Aikaterini Galani
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Nikiforos Alygizakis
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Reza Aalizadeh
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Efstathios Kastritis
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, 15528 Athens, Greece
| | - Meletios-Athanasios Dimopoulos
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, 15528 Athens, Greece
| | - Nikolaos S Thomaidis
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece.
| |
Collapse
|