1
|
Cheng Q, Cui Y, Leng D, Zhao D, Wu T, Wei Q. Smartphone-Controlled Portable Photoelectrochemical Biosensor Exploiting Chirality-Resolved Ratiometric Sensing Strategy: A Proof of Concept. Anal Chem 2025; 97:8923-8930. [PMID: 40234185 DOI: 10.1021/acs.analchem.5c00204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Integrating ratiometric photoelectrochemical (PEC) strategy with a smartphone-based portable biosensor to build a bioanalysis device is usually subject to large-volume space-resolved facilities and is picky about the polarity or excitation wavelength of the photoactive materials. Herein, a chirality-resolved ratiometric portable PEC biosensor on a platform rich in crystalline-amorphous interfaces addresses this issue. Concretely, the crystalline Bi2WO6 bulk phase/amorphous BiOBr surfaces with Bi2S3 nanoparticles attached (a-BWO-s) platform and the paired photoactive markers with specific chirality Fe3O4@Ag-l-(and d-)histidine are integrated on the portable biosensor. Since the crystalline-amorphous interfaces of a-BWO-s exhibit considerable photocurrent signals. In the meantime, with the increase of targeted analytes' NSE concentration, the PEC performance of the markers shows an opposite trend in different chiral electron donors. So that double photocurrent signals can be output to realize the ratiometric sensing strategy, which furnishes an innovative universal strategy for bioanalysis. Unlike the other typical ratiometric PEC sensing strategies, this research proposes the first ratiometric PEC biosensor based on diverse chiral chemical environments. Generally speaking, this paper provides direction for the design of a chirality-resolved ratiometric sensing strategy and brings a unique new perspective to explore in practical analysis.
Collapse
Affiliation(s)
- Qian Cheng
- School of Materials Science and Engineering, University of Jinan, Jinan 250022, China
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, University of Jinan, Jinan 250022, China
| | - Yan Cui
- School of Materials Science and Engineering, University of Jinan, Jinan 250022, China
| | - Dongquan Leng
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, University of Jinan, Jinan 250022, China
| | - Degang Zhao
- School of Materials Science and Engineering, University of Jinan, Jinan 250022, China
| | - Tingting Wu
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, University of Jinan, Jinan 250022, China
| | - Qin Wei
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, University of Jinan, Jinan 250022, China
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
2
|
Zhang LL, Dai HY, Peng T, Liu XY, Zhou ZC, Xu C, Yang B, Ying GG. Reactions of oxazepam with two typical water treatment oxidants in aqueous solutions: Results based on density functional theory. CHEMOSPHERE 2025; 373:144182. [PMID: 39914085 DOI: 10.1016/j.chemosphere.2025.144182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/22/2025] [Accepted: 01/30/2025] [Indexed: 02/16/2025]
Abstract
Pharmaceutical residues in the environment and their transformation mechanism are important challenges in environmental pollution research. The present study investigated the transformation mechanisms and reaction kinetics of oxazepam, a representative of benzodiazepine pharmaceutical, with two typical water treatment oxidants including HOCl and ∙OH in aqueous solution through theoretical calculations and experimental verification. The results showed that oxazepam is a chiral molecule with two enantiomers in equal proportions. The reactions between oxazepam and HOCl can be classified into Cl-substitution, OH-substitution, and bond-fission reactions. Among these substitutions, the Cl-substitution reaction at the N23 site was most likely to occur. The bond-fission reactions were predominated by the cleavage of the C27-N29 bond, which could lead to further bond cleavage reactions. The reactions between oxazepam and ∙OH involved the addition and H-abstraction pathways, with the addition reactions at the C5, C13, and C17 sites being the top three major reaction pathways. The kinetics rate constants obtained by the density functional theory (DFT) calculation were 0.16 and 1.78 × 1011 M-1 s-1 for the reactions of oxazepam with HOCl (kHOCl, M-1 s-1) and ∙OH (k·OH, M-1 s-1) respectively, which are basically consistent with the experimental results. This comprehensive understanding of the reaction mechanisms of oxazepam with HOCl and ∙OH based on quantum chemical calculations is crucial for exploring the chlorination and advanced oxidation of benzodiazepine pharmaceuticals.
Collapse
Affiliation(s)
- Ling-Ling Zhang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China; School of Environment, South China Normal University, Guangzhou, 510006, China
| | - Hong-Yu Dai
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China; School of Environment, South China Normal University, Guangzhou, 510006, China
| | - Tao Peng
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China; School of Environment, South China Normal University, Guangzhou, 510006, China.
| | - Xiao-Yuan Liu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China; School of Environment, South China Normal University, Guangzhou, 510006, China
| | - Zhi-Cheng Zhou
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China; School of Environment, South China Normal University, Guangzhou, 510006, China
| | - Chao Xu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China; School of Environment, South China Normal University, Guangzhou, 510006, China
| | - Bin Yang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China; School of Environment, South China Normal University, Guangzhou, 510006, China.
| | - Guang-Guo Ying
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China; School of Environment, South China Normal University, Guangzhou, 510006, China
| |
Collapse
|
3
|
Chu Y, LvZeng Z, Lu K, Chen Y, Shen Y, Jing K, Yang H, Tang W. Magnetic Porous Hydrogel-Enhanced Wearable Patch Sensor for Sweat Zinc Ion Monitoring. SENSORS (BASEL, SWITZERLAND) 2024; 24:5627. [PMID: 39275538 PMCID: PMC11398112 DOI: 10.3390/s24175627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 08/25/2024] [Accepted: 08/27/2024] [Indexed: 09/16/2024]
Abstract
Wearable sensors for sweat trace metal monitoring have the challenges of effective sweat collection and the real-time recording of detection signals. The existing detection technologies are implemented by generating enough sweat through exercise, which makes detecting trace metals in sweat cumbersome. Generally, it takes around 20 min to obtain enough sweat, resulting in dallied and prolonged detection signals that cannot reflect the endogenous fluctuations of the body. To solve these problems, we prepared a multifunctional hydrogel as an electrolyte and combined it with a flexible patch electrode to realize real-time monitoring of sweat Zn2+. Such hydrogel has magnetic and porous properties, and the porous structure of hydrogel enables a fast absorption of sweat, and the magnetic property of the addition of fabricated Fe3O4 NPs not only improves the conductivity but also ensures the adjustable internal structures of the hydrogel. Such a sensing platform for sweat Zn2+ monitoring shows a satisfied linear relationship in the concentration range of 0.16-16 µg/mL via differential pulsed anodic striping voltammetry (DPASV) and successfully detects the sweat Zn2+ of four volunteers during exercise and resting, displaying a promising path for commercial application.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Haifeng Yang
- College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China
| | - Wanxin Tang
- College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China
| |
Collapse
|
4
|
Hong T, Zhou Q, Liu Y, Guan J, Zhou W, Tan S, Cai Z. From individuals to families: design and application of self-similar chiral nanomaterials. MATERIALS HORIZONS 2024; 11:3975-3995. [PMID: 38957038 DOI: 10.1039/d4mh00496e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Establishing an intimate relationship between similar individuals is the beginning of self-extension. Various self-similar chiral nanomaterials can be designed using an individual-to-family approach, accomplishing self-extension. This self-similarity facilitates chiral communication, transmission, and amplification of synthons. We focus on describing the marriage of discrete cages to develop self-similar extended frameworks. The advantages of utilizing cage-based frameworks for chiral recognition, enantioseparation, chiral catalysis and sensing are highlighted. To further promote self-extension, fractal chiral nanomaterials with self-similar and iterated architectures have attracted tremendous attention. The beauty of a fractal family tree lies in its ability to capture the complexity and interconnectedness of a family's lineage. As a type of fractal material, nanoflowers possess an overarching importance in chiral amplification due to their large surface-to-volume ratio. This review summarizes the design and application of state-of-the-art self-similar chiral nanomaterials including cage-based extended frameworks, fractal nanomaterials, and nanoflowers. We hope this formation process from individuals to families will inherit and broaden this great chirality.
Collapse
Affiliation(s)
- Tingting Hong
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, China.
| | - Qi Zhou
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, China.
| | - Yilian Liu
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, China.
| | - Jiaqi Guan
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, China.
| | - Wenhu Zhou
- Xiangya School of Pharmaceutical Sciences, Central South University, 172 Tongzipo Road, Changsha, Hunan 410013, China
- Academician Workstation, Changsha Medical University, Changsha 410219, China
| | - Songwen Tan
- Monash Suzhou Research Institute, Monash University, Suzhou SIP 215000, China.
- Jiangsu Dawning Pharmaceutical Co., Ltd., Changzhou, Jiangsu 213100, China
| | - Zhiqiang Cai
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, China.
- Jiangsu Dawning Pharmaceutical Co., Ltd., Changzhou, Jiangsu 213100, China
| |
Collapse
|
5
|
Pang Y, Tao X, Qin Z, Jiang M, Song E, Song Y. Chiral silver nanoparticles with surface-anchored L(D)-Cys exhibit dissimilar biological characteristics in vitro but not in vivo. Toxicol Lett 2024; 398:28-37. [PMID: 38851367 DOI: 10.1016/j.toxlet.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/16/2024] [Accepted: 06/06/2024] [Indexed: 06/10/2024]
Abstract
This work investigated the influence of surface chirality on cellular internalization, cytotoxicity, and tissue distribution of silver nanoparticles (AgNPs). D-cysteine and L-cysteine are chiral forms of the amino acid cysteine. These enantiomers exhibit distinct spatial arrangements, with D-cysteine having a different configuration from L-cysteine. This structural dissimilarity can lead to variations in how these forms interact with biological systems, potentially impacting their cytotoxic responses. Four distinct types of AgNPs were synthesized, each possessing a unique surface coating: pristine AgNPs (pAgNPs), L-cysteine coated AgNPs (AgNPs@L-Cys), D-cysteine coated AgNPs (AgNPs@D-Cys), and racemic AgNPs coated with both L-Cys and D-Cys (AgNPs@L/D-Cys). We found chiral-dependent cytotoxicity of AgNPs on J774A.1 cells. Specifically, AgNPs@L-Cys exhibited the highest toxicity, and AgNPs@D-Cys exhibited the lowest toxicity. Meanwhile, the cellular uptake of the AgNPs correlated nicely with their cytotoxicity, with AgNPs@L-Cys being internalized to the greatest extent while AgNPs@D-Cys displays the least internalization. Scavenger receptors and clathrin predominantly mediate the cellular internalization of these AgNPs. Strikingly, the dissimilar cellular internalization and cytotoxicity of AgNPs with different chirality were eliminated upon protein corona coverage. Notably, following intravenous injection in mice, these four types of AgNPs showed similar patterns among various organs due to the inevitable protein adsorption in the bloodstream. These findings underscored the pivotal role of surface chirality in governing the biological interactions and toxicity of AgNPs.
Collapse
Affiliation(s)
- Yingxin Pang
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Food Science, Southwest University, China
| | - Xiaoqi Tao
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Food Science, Southwest University, China; Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, China.
| | - Zongmin Qin
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Food Science, Southwest University, China
| | - Muran Jiang
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Food Science, Southwest University, China
| | - Erqun Song
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, China
| | - Yang Song
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences.
| |
Collapse
|
6
|
Jiang X, Wang M, Lou Z, Han H, Yan N, Guan Q, Xu L. Selective and Controlled Release Responsive Nanoparticles with Adsorption-Pairing Synergy for Anthocyanin Extraction. ACS NANO 2024; 18:2290-2301. [PMID: 38207222 DOI: 10.1021/acsnano.3c10131] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Anthocyanins with different structures have different anti-inflammatory and anti-cancer properties. Precise structural use can improve the chemopreventive effects of anthocyanins and enhance treatment outcomes because the anthocyanin structure influences its functional sites and activities. However, owing to the available variety of anthocyanins and their complex structures, the low matching of intermolecular forces between existing adsorbents and anthocyanins limits the targeted separation of anthocyanin monomers. Short-range and efficient selective binding, which is difficult to achieve, is the current focus in the extraction field. We here developed self-assembled Fe3O4-based nano adsorbers with different surface modifications based on adsorption-pairing synergy. The electrostatic force, coordination bond, hydrogen bond, and π-π* bond together induced selective adsorption between Fe3O4 nanoparticles and anthocyanin molecules. An acid-release solution disrupted the polarity balance in the aforementioned association system, thereby promoting the controlled release of anthocyanins. Among the candidates, the effects of morphology, particle size, surface charge, and functional group on adsorption performance were analyzed. The polyacrylamide-modified magnetic Fe3O4 nanoparticles were found to be favorable for selectively extracting anthocyanin, with an adsorption capacity of 19.74 ± 0.07 mg g-1. The release percentage of cyanidin-3-O-glucoside reached up to 98.6% ± 1.4%. This study offers a scientific basis for developing feasible nanotechniques to extract anthocyanins and plant active substances.
Collapse
Affiliation(s)
- Xizhi Jiang
- Key Laboratory for Protected Agricultural Engineering in the Middle and Lower Reaches of Yangtze River, Ministry of Agriculture and Rural Affairs, Nanjing 210014, Jiangsu, China
- Jiangsu Engineering Technology Research Center of Biomass Composites and Addictive Manufacturing, Institute of Agricultural Facilities and Equipment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu, China
| | - Min Wang
- Key Laboratory for Protected Agricultural Engineering in the Middle and Lower Reaches of Yangtze River, Ministry of Agriculture and Rural Affairs, Nanjing 210014, Jiangsu, China
- Jiangsu Engineering Technology Research Center of Biomass Composites and Addictive Manufacturing, Institute of Agricultural Facilities and Equipment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu, China
| | - Zhichao Lou
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - He Han
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Nina Yan
- Key Laboratory for Protected Agricultural Engineering in the Middle and Lower Reaches of Yangtze River, Ministry of Agriculture and Rural Affairs, Nanjing 210014, Jiangsu, China
- Jiangsu Engineering Technology Research Center of Biomass Composites and Addictive Manufacturing, Institute of Agricultural Facilities and Equipment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu, China
| | - Qingbao Guan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, International Joint Laboratory for Advanced Fiber and Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Lei Xu
- Key Laboratory for Protected Agricultural Engineering in the Middle and Lower Reaches of Yangtze River, Ministry of Agriculture and Rural Affairs, Nanjing 210014, Jiangsu, China
- Jiangsu Engineering Technology Research Center of Biomass Composites and Addictive Manufacturing, Institute of Agricultural Facilities and Equipment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu, China
| |
Collapse
|
7
|
Zhakina AK, Rakhimova BB, Vassilets YP, Arnt OV, Muldakhmetov Z. Synthesis and Modification of a Natural Polymer with the Participation of Metal Nanoparticles, Study of Their Composition and Properties. Polymers (Basel) 2024; 16:264. [PMID: 38257065 PMCID: PMC10818389 DOI: 10.3390/polym16020264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/09/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024] Open
Abstract
A magnetic polymer material based on natural polymers-humic acids and magnetite, pre-configured for the sorption of a metal ion-was obtained. The magnetic polymer material was obtained via the interaction of a natural polymer, magnetite nanoparticles and sorbed metal ions that were used as a template. Moreover, the formation of a pre-polymerization complex was followed by copolycondensation with an amine in the presence of a crosslinking agent and further removal of metal ions from the crosslinked copolymer. The physicochemical properties of the resulting materials were determined using various physical methods. The composition of the resulting magnetic polymer materials was characterized by elemental analysis using an Elementar Unicube elemental analyzer. It was found that the carbon content increases by 8.28% and nitrogen by 0.42% for the polymer material Fe3O4:HA:T:AA; for the polymer material Fe3O4:HA:AA, the carbon content increases by 14.61% and nitrogen by 3.01%. Based on the IR spectra data, it is clear that magnetic polymer materials have much in common before hydrolysis (Fe3O4:HA:T:AA) and after hydrolysis (Fe3O4:HA:AA). The structure of the resulting polymer materials was studied using electron microscopy. Micrographs show the presence of pores in magnetic polymer materials after acid hydrolysis, indicating the formation of imprints. The results of the study of the sorption properties of magnetic polymer materials showed that after acid hydrolysis, the sorption capacity of a customized magnetic polymer material increases two times and it can act as a magnetic sorption material.
Collapse
Affiliation(s)
- Alma Khasenovna Zhakina
- Institute of Organic Synthesis and Coal Chemistry of the Republic of Kazakhstan, Llp., Karaganda 100008, Kazakhstan; (Y.P.V.); (O.V.A.); (Z.M.)
| | - Bibigul B. Rakhimova
- Non-Commercial Joint Stock Company, Department of Biomedicine, Karaganda Medical University, Karaganda 100008, Kazakhstan;
| | - Yevgeniy P. Vassilets
- Institute of Organic Synthesis and Coal Chemistry of the Republic of Kazakhstan, Llp., Karaganda 100008, Kazakhstan; (Y.P.V.); (O.V.A.); (Z.M.)
| | - Oxana V. Arnt
- Institute of Organic Synthesis and Coal Chemistry of the Republic of Kazakhstan, Llp., Karaganda 100008, Kazakhstan; (Y.P.V.); (O.V.A.); (Z.M.)
| | - Zeinulla Muldakhmetov
- Institute of Organic Synthesis and Coal Chemistry of the Republic of Kazakhstan, Llp., Karaganda 100008, Kazakhstan; (Y.P.V.); (O.V.A.); (Z.M.)
| |
Collapse
|
8
|
Susanti, Riswoko A, Laksmono JA, Widiyarti G, Hermawan D. Surface modified nanoparticles and their applications for enantioselective detection, analysis, and separation of various chiral compounds. RSC Adv 2023; 13:18070-18089. [PMID: 37323439 PMCID: PMC10267673 DOI: 10.1039/d3ra02399k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 05/30/2023] [Indexed: 06/17/2023] Open
Abstract
The development of efficient enantioselective detection, analysis, and separation relies significantly on molecular interaction. In the scale of molecular interaction, nanomaterials have a significant influence on the performance of enantioselective recognitions. The use of nanomaterials for enantioselective recognition involved synthesizing new materials and immobilization techniques to produce various surface-modified nanoparticles that are either encapsulated or attached to surfaces, as well as layers and coatings. The combination of surface-modified nanomaterials and chiral selectors can improve enantioselective recognition. This review aims to offer engagement insights into the production and application of surface-modified nanomaterials to achieve sensitive and selective detection, better chiral analysis, and separation of numerous chiral compounds.
Collapse
Affiliation(s)
- Susanti
- Research Center for Polymer Technology - National Research and Innovation Agency (BRIN) KST BJ. Habibie, Kawasan Puspiptek Building 460 Tangerang Selatan 15314 Indonesia
| | - Asep Riswoko
- Research Center for Polymer Technology - National Research and Innovation Agency (BRIN) KST BJ. Habibie, Kawasan Puspiptek Building 460 Tangerang Selatan 15314 Indonesia
| | - Joddy Arya Laksmono
- Research Center for Polymer Technology - National Research and Innovation Agency (BRIN) KST BJ. Habibie, Kawasan Puspiptek Building 460 Tangerang Selatan 15314 Indonesia
| | - Galuh Widiyarti
- Research Center for Pharmaceutical Ingredients and Traditional Medicine - National Research and Innovation Agency (BRIN) KST BJ Habibie, Kawasan Puspiptek Building 452 Tangerang Selatan 15314 Indonesia
| | - Dadan Hermawan
- Department of Chemistry, Faculty of Mathematics and Natural Science, Jenderal Soedirman University (UNSOED) Indonesia
| |
Collapse
|
9
|
Daneshvar Tarigh G. Enantioseparation/Recognition based on nano techniques/materials. J Sep Sci 2023:e2201065. [PMID: 37043692 DOI: 10.1002/jssc.202201065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/15/2023] [Accepted: 03/18/2023] [Indexed: 04/14/2023]
Abstract
Enantiomers show different behaviors in interaction with the chiral environment. Due to their identical chemical structure and their wide application in various industries, such as agriculture, medicine, pesticide, food, and so forth, their separation is of great importance. Today, the term "nano" is frequently encountered in all fields. Technology and measuring devices are moving towards miniaturization, and the usage of nanomaterials in all sectors is expanding substantially. Given that scientists have recently attempted to apply miniaturized techniques known as nano-liquid chromatography/capillary-liquid chromatography, which were originally accomplished in 1988, as well as the widespread usage of nanomaterials for chiral resolution (back in 1989), this comprehensive study was developed. Searching the terms "nano" and "enantiomer separation" on scientific websites such as Scopus, Google Scholar, and Web of Science yields articles that either use miniaturized instruments or apply nanomaterials as chiral selectors with a variety of chemical and electrochemical detection techniques, which are discussed in this article.
Collapse
Affiliation(s)
- Ghazale Daneshvar Tarigh
- Department of Analytical Chemistry, University College of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
10
|
Xiao Y, Helal AS, Mazario E, Mayoral A, Chevillot-Biraud A, Decorse P, Losno R, Maurel F, Ammar S, Lomas JS, Hémadi M. Functionalized maghemite nanoparticles for enhanced adsorption of uranium from simulated wastewater and magnetic harvesting. ENVIRONMENTAL RESEARCH 2023; 216:114569. [PMID: 36244439 DOI: 10.1016/j.envres.2022.114569] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/05/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Maghemite (γ-Fe2O3) nanoparticles (MNPs) were functionalized with 3-aminopropyltriethoxysilane (APTES) to give APTES@Fe2O3 (AMNP) which was then reacted with diethylenetriamine-pentaacetic acid (DTPA) to give a nanohybrid DTPA-APTES@Fe2O3 (DAMNP). Nano-isothermal titration calorimetry shows that DTPA complexation with uranyl ions in water is exothermic and has a stoichiometry of two DTPA to three uranyl ions. Density functional theory calculations indicate the possibility of several complexes between DTPA and UO22+ with different stoichiometries. Interactions between uranyl ions and DAMNP functional groups are revealed by X-photoelectron and Fourier transform infrared spectroscopies. Spherical aberration-corrected Scanning Transmission Electron Microscopy visualizes uranium on the particle surface. Adsorbent performance metrics were evaluated by batch adsorption studies under different conditions of pH, initial uranium concentration and contact time, and the results expressed in terms of equilibrium adsorption capacities (qe) and partition coefficients (PC). By either criterion, performance increases from MNP to AMNP to DAMNP, with the maximum uptake at pH 5.5 in all cases: MNP, qe = 63 mg g-1, PC = 127 mg g-1 mM-1; AMNP, qe = 165 mg g-1, PC = 584 mg g-1 mM-1; DAMNP, qe = 249 mg g-1, PC = 2318 mg g-1 mM-1 (at 25 °C; initial U concentration 0.63 mM; 5 mg adsorbent in 10 mL of solution; contact time, 3 h). The pH maximum is related to the predominance of mono- and di-cationic uranium species. Uptake by DAMNPs follows a pseudo-first-order or pseudo-second-order kinetic model and fits a variety of adsorption models. The maximum adsorption capacity for DAMNPs is higher than for other functionalized magnetic nanohybrids. This adsorbent can be regenerated and recycled for at least 10 cycles with less than 10% loss in activity, and shows high selectivity. These findings suggest that DAMNP could be a promising adsorbent for the recovery of uranium from nuclear wastewaters.
Collapse
Affiliation(s)
- Yawen Xiao
- Université Paris Cité, CNRS, ITODYS, F-75013, Paris, France
| | - Ahmed S Helal
- Université Paris Cité, CNRS, ITODYS, F-75013, Paris, France; Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, USA; Nuclear Materials Authority, P.O. Box 540, El Maadi, Cairo, Egypt
| | - Eva Mazario
- Université Paris Cité, CNRS, ITODYS, F-75013, Paris, France
| | - Alvaro Mayoral
- Universidad de Zaragoza Instituto de Nanociencia de Aragón Zaragoza, Aragon, Spain
| | | | | | - Rémi Losno
- Université Paris Cité, Institut de Physique du Globe de Paris, CNRS, F-75005, Paris, France
| | | | - Souad Ammar
- Université Paris Cité, CNRS, ITODYS, F-75013, Paris, France
| | - John S Lomas
- Université Paris Cité, CNRS, ITODYS, F-75013, Paris, France
| | - Miryana Hémadi
- Université Paris Cité, CNRS, ITODYS, F-75013, Paris, France.
| |
Collapse
|
11
|
Chromatographic supports for enantioselective liquid chromatography: Evolution and innovative trends. J Chromatogr A 2022; 1684:463555. [DOI: 10.1016/j.chroma.2022.463555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 09/29/2022] [Accepted: 10/06/2022] [Indexed: 11/21/2022]
|
12
|
Dhurjad P, Dhalaram CS, Ali N, Kumari N, Sonti R. Metal-organic frameworks in chiral separation of pharmaceuticals. Chirality 2022; 34:1419-1436. [PMID: 35924487 DOI: 10.1002/chir.23499] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 12/18/2022]
Abstract
Stereoselective chiral molecules are responsible for specific biological functions in nature. At present, more than half of the prescribed drugs are chiral. Living organisms display divergent pharmacological responses to the enantiomers, leading to altered toxicity, pharmacokinetics, and pharmacodynamics. Thus, chiral analysis, separation, and extraction are crucial for ensuring enantiomeric purity to develop safe and effective medication. In recent times, metal-organic frameworks (MOFs) with appealing structures are gaining importance because of their fascinating properties as a sorbent and stationary phase. MOFs are crystalline porous solid materials built by interconnecting metal ions or clusters and organic linkers. This review explores the advancements in MOFs for the isolation and separation of chiral active pharmaceutical drugs.
Collapse
Affiliation(s)
- Pooja Dhurjad
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India
| | - Choudhary Sampat Dhalaram
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India
| | - Nazish Ali
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India
| | - Nikita Kumari
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India
| | - Rajesh Sonti
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India
| |
Collapse
|
13
|
Teng Y, Gu C, Chen Z, Jiang H, Xiong Y, Liu D, Xiao D. Advances and applications of chiral resolution in pharmaceutical field. Chirality 2022; 34:1094-1119. [PMID: 35676772 DOI: 10.1002/chir.23453] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/07/2022] [Accepted: 04/12/2022] [Indexed: 11/07/2022]
Abstract
The attention to chiral drugs has been raised to an unprecedented level as drug discovery and development strategies grow rapidly. However, separation of enantiomers is still a huge task, which leads to an increasing significance to equip a wider range of expertise in chiral separation science to meet the current and future challenges. In the last few decades, remarkable progress of chiral resolution has been achieved. This review summarizes and classifies chiral resolution methods in analytical scale and preparative scale systematically and comprehensively, including crystallization-based method, inclusion complexation, chromatographic separation, capillary electrophoresis, kinetic resolution, liquid-liquid extraction, membrane-based separation, and especially one bold new progress based on chiral-induced spin selectivity theory. The advances and recent applications will be presented in detail, in which the contents may bring more thinking to wide-ranging readers in various professional fields, from analytical chemistry, pharmaceutical chemistry, natural medicinal chemistry, to manufacturing of drug production.
Collapse
Affiliation(s)
- Yan Teng
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing, China
| | - Chenglu Gu
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing, China
| | - Zhuhui Chen
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing, China
| | - Hui Jiang
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing, China
| | - Yue Xiong
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing, China
| | - Dong Liu
- Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, School of Biological and Pharmaceutical Engineering, West Anhui University, Liu'an, China
| | - Deli Xiao
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing, China
- Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of Education, Nanjing, China
- Key Laboratory of Biomedical Functional Materials, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
14
|
An Update on the Use of Molecularly Imprinted Polymers in Beta-Blocker Drug Analysis as a Selective Separation Method in Biological and Environmental Analysis. Molecules 2022; 27:molecules27092880. [PMID: 35566233 PMCID: PMC9104958 DOI: 10.3390/molecules27092880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/19/2022] [Accepted: 04/28/2022] [Indexed: 11/17/2022] Open
Abstract
Beta-blockers are antihypertensive drugs and can be abused by athletes in some sport competitions; it is therefore necessary to monitor beta-blocker levels in biological samples. In addition, beta-blocker levels in environmental samples need to be monitored to determine whether there are contaminants from the activities of the pharmaceutical industry. Several extraction methods have been developed to separate beta-blocker drugs in a sample, one of which is molecularly imprinted polymer solid-phase extraction (MIP-SPE). MIPs have some advantages, including good selectivity, high affinity, ease of synthesis, and low cost. This review provides an overview of the polymerization methods for synthesizing MIPs of beta-blocker groups. The methods that are still widely used to synthesize MIPs for beta-blockers are the bulk polymerization method and the precipitation polymerization method. MIPs for beta-blockers still need further development, especially since many types of beta-blockers have not been used as templates in the MIP synthesis process and modification of the MIP sorbent is required, to obtain high throughput analysis.
Collapse
|
15
|
Li L, Li C, Jia L. Unlocking the potential of Escherichia coli modified magnetic particles for chiral discrimination of racemic tryptophan. J Chromatogr A 2021; 1659:462638. [PMID: 34731753 DOI: 10.1016/j.chroma.2021.462638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 10/18/2021] [Accepted: 10/20/2021] [Indexed: 11/25/2022]
Abstract
Enzymes possess a highly specific affinity toward their substrates. In this study, an enzyme-based biological method was established for chiral discrimination of D/L-tryptophan (Trp). The polydopamine modified magnetic particles (PDA@Fe3O4) were prepared for immobilization of the genetically engineered bacterium Escherichia coli (E. coli) DH5α. The bacteria-magnetic particles conjugates (bacteria@PDA@Fe3O4) demonstrate excellent chiral discrimination performance toward D/L-Trp at pH 7.0 and 45 °C. The investigation for the principle exhibits that the immobilized E. coli DH5α can produce tryptophanase, and the enzyme can selectively recognize and degrade L-Trp. The Michaelis constant of tryptophanase produced by bacteria@PDA@Fe3O4 was measured to be 25.7 µg mL-1. This method avoids the purification of tryptophanase and unlocks the potential of bacteria modified magnetic particles for chiral discrimination of racemic tryptophan.
Collapse
Affiliation(s)
- Ling Li
- Ministry of Education Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science & Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Chuang Li
- Ministry of Education Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science & Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Li Jia
- Ministry of Education Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science & Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, China.
| |
Collapse
|
16
|
Safarnejad A, Reza Hormozi-Nezhad M, Abdollahi H. Radial basis function-artificial neural network (RBF-ANN) for simultaneous fluorescent determination of cysteine enantiomers in mixtures. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 261:120029. [PMID: 34098477 DOI: 10.1016/j.saa.2021.120029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 06/12/2023]
Abstract
The determination of chiral compounds is critically important in chemical and pharmaceutical sciences. Cysteine amino acid is one of the important chiral compounds where each enantiomer (L and D) has different effects on fundamental physiological processes. The unique optical properties of nanoparticles make them a suitable probe for the determination of different analytes. In this work, the water-soluble thioglycolic acid (TGA)-capped cadmium-telluride (CdTe) quantum dots (QDs) were applied as optical nanoprobe for the simultaneous determination of cysteine enantiomers. The difference in the kinetics of the interactions between L- and D-cysteine with CdTe QDs is used for multivariate quantitative analysis. Multivariate methods are superior to univariate methods in determining the concentration of each enantiomer in the mixture without the information about the total chiral analyte concentration. As a nonlinear calibration method the radial basis function -artificial neural network (RBF-ANN) model was more successful in predicting L-and D-cysteine concentrations than the linear partial least squares regression (PLS) model.
Collapse
Affiliation(s)
- Azam Safarnejad
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
| | - M Reza Hormozi-Nezhad
- Department of Chemistry, Sharif University of Technology, Tehran 11155-9516, Iran; Institute for Nanoscience and Nanotechnology, Sharif University of Technology, Tehran, Iran
| | - Hamid Abdollahi
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran.
| |
Collapse
|
17
|
Sun J, Ma Q, Xue D, Shan W, Liu R, Dong B, Zhang J, Wang Z, Shao B. Polymer/inorganic nanohybrids: An attractive materials for analysis and sensing. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116273] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
18
|
Gu L, Yang S, Wu F, Xu F, Yu S, Zhou M, Chu Y, Ding CF. Enantio-separation of pregabalin by ternary complexation using trapped ion mobility spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2021; 35:e9052. [PMID: 33470461 DOI: 10.1002/rcm.9052] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/19/2021] [Accepted: 01/19/2021] [Indexed: 06/12/2023]
Abstract
UNLABELLED Rationale The rapid identification of small-molecule chiral drugs is challenging due to subtle structural differences. Different enantiomers of chiral drugs may produce inverse biological effects through their different pharmacokinetics. Therefore, it is highly desirable to distinguish the chirality of drug molecules. METHODS The chirality of pregabalin was distinguished by studying the ion mobility spectra of the ternary non-covalent complexes formed with cyclodextrins (CDs), pregabalin, and alkali-earth cations using trapped ion mobility spectrometry (TIMS). The ternary non-covalent complex ions were determined by electrospray ionization of mixed solutions. The analyzed sample was simply mixed, without derivatization or sample pretreatment. The relative contents of pregabalin enantiomers were derived using a calibration curve method. RESULTS The ion mobility spectra of several ternary non-covalent complexes formed with α-, β-, and γ-CD, pregabalin, and alkali-earth cations were obtained. We compared their ability to distinguish the chirality of pregabalin. The best peak-to-peak resolution (Rp-p ) was estimated to be 2.20 for [2β-CD + pregabalin + Sr]2+ , which can be ascribed as baseline separation. The derived relative contents for S-pregabalin were in agreement with the actual contents. CONCLUSIONS A novel and convenient method for discriminating the chirality of the pregabalin molecule by TIMS was developed and optimized. The chirality of pregabalin was recognized by studying the ion mobility spectra of the ternary non-covalent complexes, such as [2β-CD + pregabalin + Sr]2+ . This TIMS method could also be used to quantify the relative contents of pregabalin enantiomers.
Collapse
Affiliation(s)
- Liancheng Gu
- Department of Chemistry, Laser Chemistry Institute, Fudan University, Shanghai, 200438, China
| | - Shutong Yang
- Department of Chemistry, Laser Chemistry Institute, Fudan University, Shanghai, 200438, China
| | - Fangling Wu
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Provincial, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Fuxing Xu
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Provincial, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Shaoning Yu
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Provincial, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Mingfei Zhou
- Department of Chemistry, Laser Chemistry Institute, Fudan University, Shanghai, 200438, China
| | - Yanqiu Chu
- Department of Chemistry, Laser Chemistry Institute, Fudan University, Shanghai, 200438, China
| | - Chuan-Fan Ding
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Provincial, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| |
Collapse
|
19
|
Pajewska-Szmyt M, Biniewska E, Buszewski B, Gadzała-Kopciuch R. Synthesis of Magnetic Molecularly Imprinted Polymer Sorbents for Isolation of Parabens from Breast Milk. MATERIALS 2020; 13:ma13194328. [PMID: 33003301 PMCID: PMC7579064 DOI: 10.3390/ma13194328] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 11/16/2022]
Abstract
Magnetic molecularly imprinted polymers (MMIPs) are an invaluable asset in the development of many methods in analytical chemistry, particularly sample preparation. Novel adsorbents based on MMIPs are characterized by high selectivity towards a specific analyte due to the presence of a specific cavity on their polymer surface, enabling the lock-key model interactions to occur. In addition, the magnetic core provides superparamagnetic properties that allow rapid separation of the sorbent from the sample solution. Such a combination of imprinted polymers with a magnetic core has an innovative influence on the development of separation techniques. Hence, the present study describes the synthesis of MMIPs with 17β-estradiol used as a template molecule in the production of imprinted polymers. The as-prepared sorbent was used for a sorption/desorption study of five parabens from breast milk samples. The obtained results were characterized by sorption efficiency exceeding 92%, which shows the high affinity of the analytes to the functional groups on the sorbent. The final determination of the selected analytes was done with high-performance liquid chromatography using a fluorometric detector. The determined linearity ranges for selected parabens were characterized by high determination coefficients (r2 from 0.9992 to 0.9999), and the calculated limit of detection (LOD) and limit of quantification (LOQ) for the identified compounds were low (LOD from 1.1-2.7 ng mL-1; LOQ from 3.6-8.1 ng mL-1), which makes their quantitative analysis in real samples feasible.
Collapse
Affiliation(s)
- Martyna Pajewska-Szmyt
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, 7 Gagarin St, 87100 Toruń, Poland; (M.P.-S.); (E.B.); (B.B.)
- Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University in Toruń, 4 Wileńska St, 87100 Toruń, Poland
| | - Ewelina Biniewska
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, 7 Gagarin St, 87100 Toruń, Poland; (M.P.-S.); (E.B.); (B.B.)
- Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University in Toruń, 4 Wileńska St, 87100 Toruń, Poland
| | - Bogusław Buszewski
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, 7 Gagarin St, 87100 Toruń, Poland; (M.P.-S.); (E.B.); (B.B.)
- Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University in Toruń, 4 Wileńska St, 87100 Toruń, Poland
| | - Renata Gadzała-Kopciuch
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, 7 Gagarin St, 87100 Toruń, Poland; (M.P.-S.); (E.B.); (B.B.)
- Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University in Toruń, 4 Wileńska St, 87100 Toruń, Poland
- Correspondence:
| |
Collapse
|
20
|
Song L, Pan M, Zhao R, Deng J, Wu Y. Recent advances, challenges and perspectives in enantioselective release. J Control Release 2020; 324:156-171. [DOI: 10.1016/j.jconrel.2020.05.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/11/2020] [Accepted: 05/12/2020] [Indexed: 12/20/2022]
|
21
|
Pinto MM, Fernandes C, Tiritan ME. Chiral Separations in Preparative Scale: A Medicinal Chemistry Point of View. Molecules 2020; 25:E1931. [PMID: 32326326 PMCID: PMC7221958 DOI: 10.3390/molecules25081931] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/18/2020] [Accepted: 04/19/2020] [Indexed: 01/22/2023] Open
Abstract
Enantiomeric separation is a key step in the development of a new chiral drug. Preparative liquid chromatography (LC) continues to be the technique of choice either during the drug discovery process, to achieve a few milligrams, or to a scale-up during the clinical trial, needing kilograms of material. However, in the last few years, instrumental and technical developments allowed an exponential increase of preparative enantioseparation using other techniques. Besides LC, supercritical fluid chromatography (SFC) and counter-current chromatography (CCC) have aroused interest for preparative chiral separation. This overview will highlight the importance to scale-up chiral separations in Medicinal Chemistry, especially in the early stages of the pipeline of drugs discovery and development. Few examples within different methodologies will be selected, emphasizing the trends in chiral preparative separation. The advantages and drawbacks will be critically discussed.
Collapse
Affiliation(s)
- Madalena M.M. Pinto
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia da Universidade do Porto, 4050-313 Porto, Portugal; (C.F.); (M.E.T.)
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Edifício do Terminal de Cruzeiros do Porto de Leixões, 4050-208 Matosinhos, Portugal
| | - Carla Fernandes
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia da Universidade do Porto, 4050-313 Porto, Portugal; (C.F.); (M.E.T.)
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Edifício do Terminal de Cruzeiros do Porto de Leixões, 4050-208 Matosinhos, Portugal
| | - Maria E. Tiritan
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia da Universidade do Porto, 4050-313 Porto, Portugal; (C.F.); (M.E.T.)
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Edifício do Terminal de Cruzeiros do Porto de Leixões, 4050-208 Matosinhos, Portugal
- CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde (IINFACTS), 4585-116 Gandra PRD, Portugal
| |
Collapse
|