1
|
Shakiba M, Faraji M, Jouybar S, Foroozandeh A, Bigham A, Abdouss M, Saidi M, Vatanpour V, Varma RS. Advanced nanofibers for water treatment: Unveiling the potential of electrospun polyacrylonitrile membranes. ENVIRONMENTAL RESEARCH 2025; 276:121403. [PMID: 40158874 DOI: 10.1016/j.envres.2025.121403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 01/26/2025] [Accepted: 03/13/2025] [Indexed: 04/02/2025]
Abstract
The challenges pertaining to the potable water scarcity and pollution motivates us to envision innovative strategies. Industrial wastewater containing hazardous heavy metals, synthetic dyes, and oil exacerbates the pursuit of clean drinking water. Among the array of available technologies, electrospun nanofiber membranes have garnered attention due to their efficiency, high surface-to-volume ratio, cost-effectiveness, scalability, and multifunctionality. These membranes possess distinct physical and chemical attributes that position them as ideal solutions to water purification challenges. Their versatility enables effective contaminant removal through filtration, adsorption, and chemical interactions. Polyacrylonitrile (PAN) emerges as a frontrunner among electrospun polymers due to its affordability, remarkable physical and chemical characteristics, and the ease of production. Research efforts have been dedicated to the study of electrospun PAN membranes, exploring modifications in terms of the functionalization of PAN molecular chain, incorporation of appropriate nanoparticles, and composition with other functional polymers. Parameters such as functional groups, hydrophilicity, mechanical properties, porosity, pore structure, reusability, sustainability, zeta potential, and operational conditions significantly influence the performance of electrospun PAN membranes in treating the contaminated water. Despite progress, challenges surrounding fouling, toxicity, scalability, selectivity, and production costs ought to be addressed strategically to enhance their practicality and real-world viability. This review comprehensively scrutinizes the current landscape of available electrospun PAN membranes in water treatment encompassing diverse range of synthesized entities and experimental outcomes. Additionally, the review delves into various approaches undertaken to optimize the performance of electrospun PAN membranes while proposing potential strategies to overcome the existing hindrances. By carefully analyzing the parameters that impact the performance of these membranes, this overview offers invaluable guidelines for researchers and engineers, thus empowering them to design tailored electrospun nanofiber membranes for specific water purification applications. As the innovative research continues and strategic efforts address the current challenges, these membranes can play a pivotal role in enhancing water quality, mitigating water scarcity, and contributing to environmental sustainability. The widespread application of electrospun nanofiber membranes in water treatment has the potential to create a lasting positive impact on global water resources and the environment. A dedicated effort towards their implementation will undoubtedly mark a crucial step towards a more sustainable and water-secure future.
Collapse
Affiliation(s)
| | - Mehdi Faraji
- School of Chemistry, College of Science, University of Tehran, 14155-6455, Tehran, Iran.
| | - Shirzad Jouybar
- Department of Chemistry, Amirkabir University of Technology, Tehran, Iran.
| | - Amin Foroozandeh
- Department of Chemistry, Amirkabir University of Technology, Tehran, Iran.
| | - Ashkan Bigham
- Institute of Polymers, Composites, and Biomaterials, National Research Council (IPCB-CNR), Naples, 80125, Italy; Department of Chemical, Materials and Production Engineering, University of Naples Federico II, Piazzale V. Tecchio 80, 80125, Naples, Italy.
| | - Majid Abdouss
- Department of Chemistry, Amirkabir University of Technology, Tehran, Iran.
| | - Majid Saidi
- School of Chemistry, College of Science, University of Tehran, 14155-6455, Tehran, Iran.
| | - Vahid Vatanpour
- Environmental Engineering Department, Istanbul Technical University, Maslak, Istanbul, 34469, Turkey.
| | - Rajender S Varma
- Centre of Excellence for Research in Sustainable Chemistry, Department of Chemistry, Federal University of São Carlos, 13565-905, São Carlos, SP, Brazil.
| |
Collapse
|
2
|
Gao H, Qian H, Meng Z, Chang S, Wang X, Han Z, Liu Y. Biomimetic materials for efficient emulsion separation: Based on the perspective of energy. Adv Colloid Interface Sci 2025; 341:103486. [PMID: 40163905 DOI: 10.1016/j.cis.2025.103486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 01/07/2025] [Accepted: 03/19/2025] [Indexed: 04/02/2025]
Abstract
Purifying emulsified oily wastewater is particularly crucial for solving environmental pollution and water scarcity. Membrane separation shows great potential for emulsified wastewater treatment. However, realizing continued effective emulsion separation remains a significant challenge. Fortunately, various kinds of creative schemes have been proposed to overcome the current dilemma. In this paper, biomimetic emulsion separation materials with unique wettability are introduced. Besides, This article summarizes the recently advanced emulsion separation strategies. First, we analyze the typical wettability theory and explore the trade-off between separation flux and efficiency. After that, based on emulsion types, the current common emulsion separation materials are summarized and analyzed. Notably, the integration of natural biological inspiration has made separation materials full of potential. Further, from the perspective of external energy input or no-external energy input, this article provides an overview of advanced emulsion separation materials and analyzes the potential separation mechanism. Encouragingly, efficient emulsion separation can be realized by membrane characteristics (microstructure, superwettability, electrostatic interaction) or the appropriate external stimulus (photo, electricity, magnetic). Finally, the challenges and trends are summarized. We hope that this article will provide inspiration for the advancement of novel generations of separation materials.
Collapse
Affiliation(s)
- Hanpeng Gao
- School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, PR China
| | - Haiyu Qian
- School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, PR China
| | - Zong Meng
- School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, PR China
| | - Siyu Chang
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun 130022, PR China
| | - Xi Wang
- School of Mechanical Engineering, Yancheng Institute of Technology, Yancheng 224051, PR China
| | - Zhiwu Han
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun 130022, PR China
| | - Yan Liu
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun 130022, PR China; Institute of Structured and Architected Materials, Liaoning Academy of Materials, Shenyang 110167, PR China.
| |
Collapse
|
3
|
Liu Y, Bai T, Zhao S, Zhang Z, Feng M, Zhang J, Li D, Feng L. Sugarcane-based superhydrophilic and underwater superoleophobic membrane for efficient oil-in-water emulsions separation. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132551. [PMID: 37722321 DOI: 10.1016/j.jhazmat.2023.132551] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/31/2023] [Accepted: 09/11/2023] [Indexed: 09/20/2023]
Abstract
The development of ecological, low cost, easy preparation, especially high performance materials for emulsions separation is of great importance due to the rise in pollution of oil-water emulsions from industrial production and domestic waste. Straws as agricultural wastes, including plenty of hydrophilic groups and multi-level pore structures, can be prepared as biomass membranes for oil-water emulsion separation. Herein, a novel super-hydrophilic sugarcane-based (SHS) membrane was prepared using a facile and eco-friendly method including chemical treatment and freeze-drying. The as-prepared SHS membrane has unique wettabilities due to the hydrophilic property of the internal cellulose and the micro-nano pores, including superhydrophilicity (water contact angle of 0°) and underwater superoleophobicity (underwater oil contact angles of over 150°). The SHS membrane has good durability and stability against ultraviolet (UV) irradiation, corrosion by acids and alkalis, mechanical abrasion and especially mould adhesion. Importantly, the SHS membrane can be used for separation of various oil-in-water emulsions, and exhibits excellent separation performances such as high separation efficiency (> 99 %) and good separation flux (above 891 L m-2 h-1 bar-1). The SHS membrane also exhibits excellent recyclability over 10 continuous separation cycles. Furthermore, the SHS membrane can be utilized to selectively absorb water from oils as a water absorbent material. Hence, SHS membrane is a promising and practical material for applications in treatment of wastewater containing oil-water emulsions.
Collapse
Affiliation(s)
- Yanhua Liu
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China.
| | - Tianbin Bai
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Shixing Zhao
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Zhuanli Zhang
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Meijun Feng
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Jianbin Zhang
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Dianming Li
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Libang Feng
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China.
| |
Collapse
|
4
|
Yu X, Ji J, Wu QY, Gu L. Direct-coating of cellulose hydrogel on PVDF membranes with superhydrophilic and antifouling properties for high-efficiency oil/water emulsion separation. Int J Biol Macromol 2024; 256:128579. [PMID: 38048931 DOI: 10.1016/j.ijbiomac.2023.128579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/28/2023] [Accepted: 12/01/2023] [Indexed: 12/06/2023]
Abstract
As a well-known natural and innocuous plant constituent, cellulose consists of abundant hydroxyl groups and can tightly adsorb onto material surfaces hydrogen bonding, resulting in a superhydrophilic surface. In this work, the hydrophobic polyvinylidene fluoride (PVDF) membranes were modified by immersing them in cellulose hydrogel using a simple one-step process. The modified PVDF membrane exhibited excellent resistance to fouling and oil adhesion, making it highly effective in separating various oil-in-water emulsions. The cellulose-modified PVDF membranes achieved a high oil rejection rate (>99 %) and a maximum separation flux of 2675.2 L·m-2·h-1. Furthermore, even an oil-in-water emulsion containing bovine serum albumin maintained a steady permeation flux after four filtration cycles. Additionally, these cellulose-modified PVDF membranes demonstrated excellent underwater superoleophobicity across a wide range of pH levels and high saline conditions. Overall, these cellulose-modified superhydrophilic PVDF membranes are sustainable, environmentally friendly, easily scalable, and hold great promise for practical applications in oily wastewater treatment.
Collapse
Affiliation(s)
- Xiao Yu
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| | - Jing Ji
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518000, China; University of Chinese Academy of Sciences, Beijing 100049, China; Guangzhou Institute of Advanced Technology, Guangzhou 511458, China
| | - Qing-Yun Wu
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China.
| | - Lin Gu
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China.
| |
Collapse
|
5
|
Nawaz S, Tabassum A, Muslim S, Nasreen T, Baradoke A, Kim TH, Boczkaj G, Jesionowski T, Bilal M. Effective assessment of biopolymer-based multifunctional sorbents for the remediation of environmentally hazardous contaminants from aqueous solutions. CHEMOSPHERE 2023; 329:138552. [PMID: 37003438 DOI: 10.1016/j.chemosphere.2023.138552] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/09/2023] [Accepted: 03/29/2023] [Indexed: 05/03/2023]
Abstract
Persistent contaminants in wastewater effluent pose a significant threat to aquatic life and are one of the most significant environmental concerns of our time. Although there are a variety of traditional methods available in wastewater treatment, including adsorption, coagulation, flocculation, ion exchange, membrane filtration, co-precipitation and solvent extraction, none of these have been found to be significantly cost-effective in removing toxic pollutants from the water environment. The upfront costs of these treatment methods are extremely high, and they require the use of harmful synthetic chemicals. For this reason, the development of new technologies for the treatment and recycling of wastewater is an absolute necessity. Our way of life can be made more sustainable by the synthesis of adsorbents based on biomass, making the process less harmful to the environment. Biopolymers offer a sustainable alternative to synthetic polymers, which are manufactured by joining monomer units through covalent bonding. This review presents a detailed classification of biopolymers such as pectin, alginate, chitosan, lignin, cellulose, chitin, carrageen, certain proteins, and other microbial biomass compounds and composites, with a focus on their sources, methods of synthesis, and prospective applications in wastewater treatment. A concise summary of the extensive body of knowledge on the fate of biopolymers after adsorption is also provided. Finally, consideration is given to open questions about future developments leading to environmentally friendly and economically beneficial applications of biopolymers.
Collapse
Affiliation(s)
- Shahid Nawaz
- Department of Chemistry, The University of Lahore, Lahore, Pakistan
| | - Andleeb Tabassum
- Department of Biological Sciences, International Islamic University Islamabad, Islamabad, Pakistan
| | - Sara Muslim
- Department of Chemistry, University of Agriculture Faisalabad-38040, Faisalabad, Pakistan
| | - Tayyaba Nasreen
- Department of Chemistry, University of Agriculture Faisalabad-38040, Faisalabad, Pakistan
| | - Ausra Baradoke
- Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
| | - Tak H Kim
- School of Environment and Science, Griffith University, 170 Kessels Road, Nathan, QLD, 4111, Australia
| | - Grzegorz Boczkaj
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, G. Narutowicza St. 11/12, Gdańsk 80-233, Poland; EkoTech Center, Gdańsk University of Technology, G. Narutowicza St. 11/12, Gdańsk 80-233, Poland
| | - Teofil Jesionowski
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznań University of Technology, Berdychowo 4, PL-60965, Poznań, Poland
| | - Muhammad Bilal
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznań University of Technology, Berdychowo 4, PL-60965, Poznań, Poland.
| |
Collapse
|
6
|
Li B, Qi B, Guo Z, Wang D, Jiao T. Recent developments in the application of membrane separation technology and its challenges in oil-water separation: A review. CHEMOSPHERE 2023; 327:138528. [PMID: 36990363 DOI: 10.1016/j.chemosphere.2023.138528] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/15/2023] [Accepted: 03/26/2023] [Indexed: 06/19/2023]
Abstract
In the development and production process of domestic and foreign oil fields, large amounts of oil-bearing wastewater with complex compositions containing toxic and harmful pollutants are generated. These oil-bearing wastewaters will cause serious environmental pollution if they are not effectively treated before discharge. Among these wastewaters, the oily sewage produced in the process of oilfield exploitation has the largest content of oil-water emulsion. In order to solve the problem of oil-water separation of oily sewage, the paper summarizes the research of many scholars in many aspects, such as the use of physical and chemical methods such as air flotation and flocculation, or the use of mechanical methods such as centrifuges and oil booms for sewage treatment. Comprehensive analysis shows that among these oil-water separation methods, membrane separation technology has higher separation efficiency in the separation of general oil-water emulsions than other methods and also exhibits a better separation effect for stable emulsions, which has a broader application prospect for future developments. To present the characteristics of different types of membranes more intuitively, this paper describes the applicable conditions and characteristics of various types of membranes in detail, summarizes the shortcomings of existing membrane separation technologies, and offers prospects for future research directions.
Collapse
Affiliation(s)
- Bingfan Li
- School of Vehicles and Energy, Yanshan University, Qinhuangdao, 066004, China
| | - Bo Qi
- School of Vehicles and Energy, Yanshan University, Qinhuangdao, 066004, China
| | - Ziyuan Guo
- School of Vehicles and Energy, Yanshan University, Qinhuangdao, 066004, China
| | - Dongxu Wang
- China Suntien Green Energy Co., Ltd., Shijiazhuang, 050000, China
| | - Tifeng Jiao
- State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, 066004, China.
| |
Collapse
|
7
|
Huang T, Su Z, Hou K, Zeng J, Zhou H, Zhang L, Nunes SP. Advanced stimuli-responsive membranes for smart separation. Chem Soc Rev 2023. [PMID: 37184537 DOI: 10.1039/d2cs00911k] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Membranes have been extensively studied and applied in various fields owing to their high energy efficiency and small environmental impact. Further conferring membranes with stimuli responsiveness can allow them to dynamically tune their pore structure and/or surface properties for efficient separation performance. This review summarizes and discusses important developments and achievements in stimuli-responsive membranes. The most commonly utilized stimuli, including light, pH, temperature, ions, and electric and magnetic fields, are discussed in detail. Special attention is given to stimuli-responsive control of membrane pore structure (pore size and porosity/connectivity) and surface properties (wettability, surface topology, and surface charge), from the perspective of determining the appropriate membrane properties and microstructures. This review also focuses on strategies to prepare stimuli-responsive membranes, including blending, casting, polymerization, self-assembly, and electrospinning. Smart applications for separations are also reviewed as well as a discussion of remaining challenges and future prospects in this exciting field. This review offers critical insights for the membrane and broader materials science communities regarding the on-demand and dynamic control of membrane structures and properties. We hope that this review will inspire the design of novel stimuli-responsive membranes to promote sustainable development and make progress toward commercialization.
Collapse
Affiliation(s)
- Tiefan Huang
- Functional Membrane Materials Engineering Research Center of Hunan Province, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China.
| | - Zhixin Su
- Functional Membrane Materials Engineering Research Center of Hunan Province, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China.
| | - Kun Hou
- Functional Membrane Materials Engineering Research Center of Hunan Province, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China.
| | - Jianxian Zeng
- Functional Membrane Materials Engineering Research Center of Hunan Province, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China.
| | - Hu Zhou
- Functional Membrane Materials Engineering Research Center of Hunan Province, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China.
| | - Lin Zhang
- Engineering Research Center of Membrane and Water Treatment of MOE, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China.
- Academy of Ecological Civilization, Zhejiang University, Hangzhou, 310058, China
| | - Suzana P Nunes
- King Abdullah University of Science and Technology (KAUST), Nanostructured Polymeric Membranes Laboratory, Advanced Membranes and Porous Materials Center, Biological and Environmental Science and Engineering Division (BESE), Thuwal, 23955-6900, Saudi Arabia.
| |
Collapse
|
8
|
Wei K, Xie S, Zhang Z, Zhang Z, Cao W, Fang Q, Li X. Surface Wettability-Switchable Janus Fiber Fragments Stabilize Pickering Emulsions for Effective Oil/Water Separation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:6455-6465. [PMID: 37092960 DOI: 10.1021/acs.langmuir.3c00376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Pickering emulsions indicate stronger resistance against droplet coalescence than the surfactant-stabilized emulsions. To resemble the surfactant amphiphilicity, Janus fiber fragments (JFs) were herein prepared through side-by-side electrospinning of poly(styrene-maleic anhydride) (PSMA) derivatives and cryosection of the aligned fibers, followed by conjugation of hydrophobic cetylamine (C16) and hydrophilic poly(N-isopropylacrylamide) (PNIPAm) ligands on the separate sides. Orthogonal analysis table L25(56) was designed to examine the effect of process parameters on the emulsification efficiency and stability index of Pickering emulsions. The emulsification efficiency is dominated by the JF concentration and length, while the emulsion stability could be prolonged through adjusting the JF concentration and hydrophilic graft density. JF-stabilized emulsions exhibit a much higher stability index (96.4%) than that of Janus microparticle counterparts (37.7%). Though there is no apparent effect on the surface wettability, JFs with PNIPAm grafts of about 2200 Da achieve the most stable Pickering emulsions. Superparamagnetic Fe3O4 nanoparticles are inoculated into JFs to collect emulsion droplets under a magnetic field, and the emulsions could be demulsified at an elevated temperature to harvest oil. Meanwhile, the recovered JF emulsifiers could be repeatedly used without loss of the emulsification efficiency. Thus, this study demonstrates surface-switchable JFs to be effective stabilizers of Pickering emulsions and readily recycled for oil harvesting from wastewater.
Collapse
Affiliation(s)
- Kun Wei
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, P.R. China
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P.R. China
| | - Songzhi Xie
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P.R. China
| | - Zhao Zhang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P.R. China
| | - Zhanlin Zhang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P.R. China
| | - Wenxiong Cao
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, P.R. China
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P.R. China
| | - Qibo Fang
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, P.R. China
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P.R. China
| | - Xiaohong Li
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, P.R. China
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P.R. China
| |
Collapse
|
9
|
Hydrophilic modification of
PVDF
membranes for oily water separation with enhanced anti‐fouling performance. J Appl Polym Sci 2023. [DOI: 10.1002/app.53738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
10
|
Zhang Z, Ahmed AIS, Malik MZ, Ali N, Khan A, Ali F, Hassan MO, Mohamed BA, Zdarta J, Bilal M. Cellulose/inorganic nanoparticles-based nano-biocomposite for abatement of water and wastewater pollutants. CHEMOSPHERE 2023; 313:137483. [PMID: 36513201 DOI: 10.1016/j.chemosphere.2022.137483] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/25/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
Nanostructured materials offer a significant role in wastewater treatment with diminished capital and operational expense, low dose, and pollutant selectivity. Specifically, the nanocomposites of cellulose with inorganic nanoparticles (NPs) have drawn a prodigious interest because of the extraordinary cellulose properties, high specific surface area, and pollutant selectivity of NPs. Integrating inorganic NPs with cellulose biopolymers for wastewater treatment is a promising advantage for inorganic NPs, such as colloidal stability, agglomeration prevention, and easy isolation of magnetic material after use. This article presents a comprehensive overview of water treatment approaches following wastewater remediation by green and environmentally friendly cellulose/inorganic nanoparticles-based bio-nanocomposites. The functionalization of cellulose, functionalization mechanism, and engineered hybrid materials were thoroughly discussed. Moreover, we also highlighted the purification of wastewater through the composites of cellulose/inorganic nanoparticles via adsorption, photocatalytic and antibacterial approach.
Collapse
Affiliation(s)
- Zhen Zhang
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, 318000, Zhejiang Province, China
| | - Abdulrazaq Ibrahim Said Ahmed
- Key Laboratory of Regional Resource Exploitation and Medicinal Research, Faculty of Chemical Engineering, Huaiyin Institute of Technology, Huai'an, Jiangsu Province, China
| | - Muhammad Zeeshan Malik
- School of Electronics and Information Engineering, Taizhou University, Taizhou, 318000, Zhejiang Province, China.
| | - Nisar Ali
- Key Laboratory of Regional Resource Exploitation and Medicinal Research, Faculty of Chemical Engineering, Huaiyin Institute of Technology, Huai'an, Jiangsu Province, China
| | - Adnan Khan
- Institute of Chemical Sciences, University of Peshawar, Khyber Pakhtunkhwa, 25120, Pakistan
| | - Farman Ali
- Department of Chemistry, Hazara University, KPK, Mansehra, 21300, Pakistan
| | - Mohamed Osman Hassan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Badr A Mohamed
- Department of Agricultural Engineering, Cairo University, El-Gamma Street, Giza 12613, Egypt
| | - Jakub Zdarta
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965, Poznan, Poland
| | - Muhammad Bilal
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965, Poznan, Poland
| |
Collapse
|
11
|
Fabrication of firm, superhydrophobic and antimicrobial PVDF@ZnO@TA@DT electrospun nanofibrous membranes for emulsion separation. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.130962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
12
|
Zhang S, Vanessa C, Khan A, Ali N, Malik S, Shah S, Bilal M, Yang Y, Akhter MS, Iqbal HMN. Prospecting cellulose fibre-reinforced composite membranes for sustainable remediation and mitigation of emerging contaminants. CHEMOSPHERE 2022; 305:135291. [PMID: 35760128 DOI: 10.1016/j.chemosphere.2022.135291] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 05/24/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
Many environmental pollutants caused by uncontrolled urbanization and rapid industrial growth have provoked serious concerns worldwide. These pollutants, including toxic metals, dyes, pharmaceuticals, pesticides, volatile organic compounds, and petroleum hydrocarbons, unenviably compromise the water quality and manifest a severe menace to aquatic entities and human beings. Therefore, it is of utmost importance to acquaint bio-nanocomposites with the capability to remove and decontaminate this extensive range of emerging pollutants. Recently, considerable emphasis has been devoted to developing low-cost novel materials obtained from natural resources accompanied by minimal toxicity to the environment. One such component is cellulose, naturally the most abundant organic polymer found in nature. Given bio-renewable sources, natural abundance, and impressive nanofibril arrangement, cellulose-reinforced composites are widely engineered and utilized for multiple applications, such as wastewater decontamination, energy storage devices, drug delivery systems, paper and pulp industries, construction industries, and adhesives, etc. Environmental remediation prospective is among the fascinating application of these cellulose-reinforced composites. This review discusses the structural attributes of cellulose, types of cellulose fibrils-based nano-biocomposites, preparatory techniques, and the potential of cellulose-based composites to remediate a diverse array of organic and inorganic pollutants in wastewater.
Collapse
Affiliation(s)
- Shizhong Zhang
- Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huai'an, 223003, China.
| | - ChansaKayeye Vanessa
- Institute of Chemical Sciences, University of Peshawar, Khyber Pakhtunkhwa, 25120, Pakistan
| | - Adnan Khan
- Institute of Chemical Sciences, University of Peshawar, Khyber Pakhtunkhwa, 25120, Pakistan
| | - Nisar Ali
- Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huai'an, 223003, China
| | - Sumeet Malik
- Institute of Chemical Sciences, University of Peshawar, Khyber Pakhtunkhwa, 25120, Pakistan
| | - Sumaira Shah
- Department of Botany, Bacha Khan University, Charsadda, KPK, Pakistan
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China.
| | - Yong Yang
- Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huai'an, 223003, China
| | | | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Science, Monterrey, 64849, Mexico.
| |
Collapse
|
13
|
|
14
|
Fan Q, Lu T, Deng Y, Zhang Y, Ma W, Xiong R, Huang C. Bio-based materials with special wettability for oil-water separation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121445] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
15
|
Ali N, Gyllye EL, Duanmu C, Yang Y, Khan A, Ali F, Bilal M, Iqbal HMN. Robust bioinspired surfaces and their exploitation for petroleum hydrocarbon remediation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:61881-61895. [PMID: 34545517 DOI: 10.1007/s11356-021-16525-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 09/09/2021] [Indexed: 02/08/2023]
Abstract
The current improvement in science and engineering, actively dealing with surfaces and interfaces, turns into a functioning control with a thriving advancement propensity. Superlyophobic/superlyophilic phenomena in surface sciences have pulled in broad considerations of researchers and specialists. Inspired by the natural and living organism, researchers have designed different biomimetic materials with exceptional surface wettability, such as the smart wetting of asymmetric spider silk surfaces. These smart materials with superlyophobic/superlyophilic wettability are generally utilized for water assortment, self-cleaning, fluid transportation and separation, and many researchers' domains. Among them, emulsion separation, including division of oil-water blend, mixtures of immiscible liquids and oil-water emulsions, is highlighted by an increasing number of researchers. Numerous materials with one- and two-dimensional morphology, smart surfaces, and super wettability have been effectively designed and utilized in various scientific research applications. We expect that these bioinspired materials with super wettability can have promising applications in practical for emulsion destabilization and liquid transportation.
Collapse
Affiliation(s)
- Nisar Ali
- Key Laboratory of Regional Resource Exploitation and Medicinal Research, Faculty of Chemical Engineering, Huaiyin Institute of Technology, Huaian, Jiangsu Province, People's Republic of China.
| | - Essoh Lionnelle Gyllye
- Key Laboratory of Regional Resource Exploitation and Medicinal Research, Faculty of Chemical Engineering, Huaiyin Institute of Technology, Huaian, Jiangsu Province, People's Republic of China
| | - Chuansong Duanmu
- Key Laboratory of Regional Resource Exploitation and Medicinal Research, Faculty of Chemical Engineering, Huaiyin Institute of Technology, Huaian, Jiangsu Province, People's Republic of China
| | - Yong Yang
- Key Laboratory of Regional Resource Exploitation and Medicinal Research, Faculty of Chemical Engineering, Huaiyin Institute of Technology, Huaian, Jiangsu Province, People's Republic of China
| | - Adnan Khan
- Institute of Chemical Sciences, University of Peshawar, Peshawar, Khyber Pakhtunkhwa, 25120, Pakistan
| | - Farman Ali
- Department of Chemistry, Hazara University, KPK, Mansehra, 21300, Pakistan
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China.
| | - Hafiz M N Iqbal
- School of Engineering and Sciences, Tecnologico de Monterrey, 64849, Monterrey, Mexico.
| |
Collapse
|
16
|
Zhang S, Malik S, Ali N, Khan A, Bilal M, Rasool K. Covalent and Non-covalent Functionalized Nanomaterials for Environmental Restoration. Top Curr Chem (Cham) 2022; 380:44. [PMID: 35951126 PMCID: PMC9372017 DOI: 10.1007/s41061-022-00397-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 06/07/2022] [Indexed: 12/07/2022]
Abstract
Nanotechnology has emerged as an extraordinary and rapidly developing discipline of science. It has remolded the fate of the whole world by providing diverse horizons in different fields. Nanomaterials are appealing because of their incredibly small size and large surface area. Apart from the naturally occurring nanomaterials, synthetic nanomaterials are being prepared on large scales with different sizes and properties. Such nanomaterials are being utilized as an innovative and green approach in multiple fields. To expand the applications and enhance the properties of the nanomaterials, their functionalization and engineering are being performed on a massive scale. The functionalization helps to add to the existing useful properties of the nanomaterials, hence broadening the scope of their utilization. A large class of covalent and non-covalent functionalized nanomaterials (FNMs) including carbons, metal oxides, quantum dots, and composites of these materials with other organic or inorganic materials are being synthesized and used for environmental remediation applications including wastewater treatment. This review summarizes recent advances in the synthesis, reporting techniques, and applications of FNMs in adsorptive and photocatalytic removal of pollutants from wastewater. Future prospects are also examined, along with suggestions for attaining massive benefits in the areas of FNMs.
Collapse
Affiliation(s)
- Shizhong Zhang
- Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, National and Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huai'an, 223003, China.
| | - Sumeet Malik
- Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, National and Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huai'an, 223003, China
- Institute of Chemical Sciences, University of Peshawar, Khyber Pakhtunkhwa, 25120, Pakistan
| | - Nisar Ali
- Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, National and Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huai'an, 223003, China.
| | - Adnan Khan
- Institute of Chemical Sciences, University of Peshawar, Khyber Pakhtunkhwa, 25120, Pakistan
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, 223003, China
| | - Kashif Rasool
- Qatar Environment and Energy Research Institute, Hamad Bin Khalifa University (HBKU), Qatar Foundation, P.O. Box 5824, Doha, Qatar.
| |
Collapse
|
17
|
Yeszhanov AB, Muslimova IB, Melnikova GB, Petrovskaya AS, Seitbayev AS, Chizhik SA, Zhappar NK, Korolkov IV, Güven O, Zdorovets MV. Graft Polymerization of Stearyl Methacrylate on PET Track-Etched Membranes for Oil-Water Separation. Polymers (Basel) 2022; 14:3015. [PMID: 35893980 PMCID: PMC9331679 DOI: 10.3390/polym14153015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 02/04/2023] Open
Abstract
In this article, results of PET track-etched membranes (PET TeMs) hydrophobized by photo-induced graft polymerization of stearyl methacrylate (SM) inside the pores were presented. The effects of monomer concentration, time of irradiation and the nature of the solvent on the degree of grafting and membrane morphology were investigated. The PET TeMs with pore diameters ranging from 350 nm (pore density of 1 × 108 pore/cm2) to 3.05 µm (pore density of 1 × 106 pore/cm2) were hydrophobized and tested for oil-water separation by using hexadecane-water and chloroform-water emulsions. Studies have shown high separation performance for membranes (up to 1100 mL/m2·s) with large pore diameters while achieving a high degree of purification.
Collapse
Affiliation(s)
- Arman B. Yeszhanov
- L.N. Gumilyov Eurasian National University, Satpaev Str., 5, Nur-Sultan 010008, Kazakhstan; (A.B.Y.); (I.B.M.); (G.B.M.); (A.S.S.)
- The Institute of Nuclear Physics, Ibragimov Str., 1, Almaty 050032, Kazakhstan
| | - Indira B. Muslimova
- L.N. Gumilyov Eurasian National University, Satpaev Str., 5, Nur-Sultan 010008, Kazakhstan; (A.B.Y.); (I.B.M.); (G.B.M.); (A.S.S.)
- The Institute of Nuclear Physics, Ibragimov Str., 1, Almaty 050032, Kazakhstan
| | - G. B. Melnikova
- L.N. Gumilyov Eurasian National University, Satpaev Str., 5, Nur-Sultan 010008, Kazakhstan; (A.B.Y.); (I.B.M.); (G.B.M.); (A.S.S.)
- A.V. Luikov Heat and Mass Transfer Institute of the National Academy of Sciences of Belarus, P. Brovki Str., 15, 220072 Minsk, Belarus; (A.S.P.); (S.A.C.)
| | - A. S. Petrovskaya
- A.V. Luikov Heat and Mass Transfer Institute of the National Academy of Sciences of Belarus, P. Brovki Str., 15, 220072 Minsk, Belarus; (A.S.P.); (S.A.C.)
| | - Aibek S. Seitbayev
- L.N. Gumilyov Eurasian National University, Satpaev Str., 5, Nur-Sultan 010008, Kazakhstan; (A.B.Y.); (I.B.M.); (G.B.M.); (A.S.S.)
- The Institute of Nuclear Physics, Ibragimov Str., 1, Almaty 050032, Kazakhstan
| | - S. A. Chizhik
- A.V. Luikov Heat and Mass Transfer Institute of the National Academy of Sciences of Belarus, P. Brovki Str., 15, 220072 Minsk, Belarus; (A.S.P.); (S.A.C.)
| | - Nariman K. Zhappar
- LLP “EcoSave”, 3 Microdistrict-9, Stepnogorsk, Akmola Region 021500, Kazakhstan;
| | - Ilya V. Korolkov
- L.N. Gumilyov Eurasian National University, Satpaev Str., 5, Nur-Sultan 010008, Kazakhstan; (A.B.Y.); (I.B.M.); (G.B.M.); (A.S.S.)
- The Institute of Nuclear Physics, Ibragimov Str., 1, Almaty 050032, Kazakhstan
| | - Olgun Güven
- Department of Chemistry, Hacettepe University, Beytepe, Ankara 06800, Turkey;
| | - Maxim V. Zdorovets
- L.N. Gumilyov Eurasian National University, Satpaev Str., 5, Nur-Sultan 010008, Kazakhstan; (A.B.Y.); (I.B.M.); (G.B.M.); (A.S.S.)
- The Institute of Nuclear Physics, Ibragimov Str., 1, Almaty 050032, Kazakhstan
- Ural Federal University, Mira Str. 19, 620002 Ekaterinburg, Russia
| |
Collapse
|
18
|
Superhydrophobic starch-based adsorbent with honeycomb coral-like surface fabricated via facile immersion process for removing oil from water. Int J Biol Macromol 2022; 207:549-558. [PMID: 35292279 DOI: 10.1016/j.ijbiomac.2022.03.045] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/13/2022] [Accepted: 03/09/2022] [Indexed: 01/18/2023]
Abstract
The development of novel superhydrophobic adsorbents is highly demanded for tackling frequent oil spill accidents. Porous starch-based materials have been proven to possess good oil absorption performance, but their superhydrophobicity has not yet been reported, thus limiting their application in oil spill cleanup. Herein, a superhydrophobic starch-based adsorbent (MSC) was fabricated through the facile immersion process of starch cryogel (SC) into toluene solution of methyltrichlorosilane (MTS). Low-surface-energy and honeycomb coral-like micro/nanostructures, which contribute to high water contact angle (>151.0°) and low sliding angle (<15.0°), were provided simultaneously to SC by the hydrolysis-condensation reaction of MTS. MSC exhibited excellent water repellent, self-cleaning, and anti-fouling properties, as well as passable mechanical and chemical durability. The reasonable oil adsorption performance and selective wettability toward oil and water allowed this absorbent to be applied for heavy oil removal underwater and oil slick cleaning from the water surface. It is expected that the facile strategy provided by this work will accelerate the application of superhydrophobic starch-based materials in oil contamination removal and other industrial activities.
Collapse
|
19
|
Dedovets D, Li Q, Leclercq L, Nardello‐Rataj V, Leng J, Zhao S, Pera‐Titus M. Multiphase Microreactors Based on Liquid-Liquid and Gas-Liquid Dispersions Stabilized by Colloidal Catalytic Particles. Angew Chem Int Ed Engl 2022; 61:e202107537. [PMID: 34528366 PMCID: PMC9293096 DOI: 10.1002/anie.202107537] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Indexed: 01/08/2023]
Abstract
Pickering emulsions, foams, bubbles, and marbles are dispersions of two immiscible liquids or of a liquid and a gas stabilized by surface-active colloidal particles. These systems can be used for engineering liquid-liquid-solid and gas-liquid-solid microreactors for multiphase reactions. They constitute original platforms for reengineering multiphase reactors towards a higher degree of sustainability. This Review provides a systematic overview on the recent progress of liquid-liquid and gas-liquid dispersions stabilized by solid particles as microreactors for engineering eco-efficient reactions, with emphasis on biobased reagents. Physicochemical driving parameters, challenges, and strategies to (de)stabilize dispersions for product recovery/catalyst recycling are discussed. Advanced concepts such as cascade and continuous flow reactions, compartmentalization of incompatible reagents, and multiscale computational methods for accelerating particle discovery are also addressed.
Collapse
Affiliation(s)
- Dmytro Dedovets
- Eco-Efficient Products and Processes Laboratory (E2P2L)UMI 3464 CNRS-Solvay3966 Jin Du Road, Xin Zhuang Ind Zone201108ShanghaiChina
- Laboratoire du Futur (LOF)UMR 5258, CNRS-Solvay-Universite Bordeaux 1178 Av Dr Albert Schweitzer33608Pessac CedexFrance
| | - Qingyuan Li
- Eco-Efficient Products and Processes Laboratory (E2P2L)UMI 3464 CNRS-Solvay3966 Jin Du Road, Xin Zhuang Ind Zone201108ShanghaiChina
| | - Loïc Leclercq
- Univ LilleCNRSCentrale LilleUniv ArtoisUMR 8181 UCCSF-59000LilleFrance
| | | | - Jacques Leng
- Laboratoire du Futur (LOF)UMR 5258, CNRS-Solvay-Universite Bordeaux 1178 Av Dr Albert Schweitzer33608Pessac CedexFrance
| | - Shuangliang Zhao
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification TechnologySchool of Chemistry and Chemical EngineeringGuangxi University530004NanningChina
| | - Marc Pera‐Titus
- Eco-Efficient Products and Processes Laboratory (E2P2L)UMI 3464 CNRS-Solvay3966 Jin Du Road, Xin Zhuang Ind Zone201108ShanghaiChina
- Cardiff Catalysis InstituteSchool of ChemistryCardiff UniversityMain Building, Park PlaceCardiffCF10 3ATUK
| |
Collapse
|
20
|
Dedovets D, Li Q, Leclercq L, Nardello‐Rataj V, Leng J, Zhao S, Pera‐Titus M. Multiphase Microreactors Based on Liquid–Liquid and Gas–Liquid Dispersions Stabilized by Colloidal Catalytic Particles. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202107537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Dmytro Dedovets
- Eco-Efficient Products and Processes Laboratory (E2P2L) UMI 3464 CNRS-Solvay 3966 Jin Du Road, Xin Zhuang Ind Zone 201108 Shanghai China
- Laboratoire du Futur (LOF) UMR 5258, CNRS-Solvay-Universite Bordeaux 1 178 Av Dr Albert Schweitzer 33608 Pessac Cedex France
| | - Qingyuan Li
- Eco-Efficient Products and Processes Laboratory (E2P2L) UMI 3464 CNRS-Solvay 3966 Jin Du Road, Xin Zhuang Ind Zone 201108 Shanghai China
| | - Loïc Leclercq
- Univ Lille CNRS Centrale Lille Univ Artois UMR 8181 UCCS F-59000 Lille France
| | | | - Jacques Leng
- Laboratoire du Futur (LOF) UMR 5258, CNRS-Solvay-Universite Bordeaux 1 178 Av Dr Albert Schweitzer 33608 Pessac Cedex France
| | - Shuangliang Zhao
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology School of Chemistry and Chemical Engineering Guangxi University 530004 Nanning China
| | - Marc Pera‐Titus
- Eco-Efficient Products and Processes Laboratory (E2P2L) UMI 3464 CNRS-Solvay 3966 Jin Du Road, Xin Zhuang Ind Zone 201108 Shanghai China
- Cardiff Catalysis Institute School of Chemistry Cardiff University Main Building, Park Place Cardiff CF10 3AT UK
| |
Collapse
|
21
|
Dzumbira W, Ali N, Duanmu C, Yang Y, Khan A, Ali F, Bilal M, Aleya L, Iqbal HMN. Separation and remediation of environmental pollutants using metal-organic framework-based tailored materials. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:4822-4842. [PMID: 34787811 DOI: 10.1007/s11356-021-17446-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 11/05/2021] [Indexed: 02/08/2023]
Abstract
Metal-organic frameworks (MOFs) are a polymer hybrid family of compounds comprising metal ions that have been deliberately incorporated in organic ligands to form several multi-dimensional structures with unique structural and functional attributes. They have the typical properties of brittleness, major porosity, and randomly crystalline. These three factors hampered their potential incorporation into modern technologies. However, with the discovery of their polymers, hope was rekindled. Polymers, unlike their counterparts, are versatile and malleable and can be tailored into solids with a wide range of technical applications. MOFs can be effectively incorporated into polymer structures, resulting in polymers with enhanced properties and increased demand, according to recent studies. This review focuses on the synthetic procedures of MOFs used to create hybrid materials, as well as their potential environmentally related applications. Desalination, hazardous heavy metal removal and mitigation, gas and liquid separations and purifications, and dye removal will all be extensively discussed as applications. To assemble this review, we will add insight from recent papers and discoveries, as well as seminal reports from experts on the advancement of MOF-polymers.
Collapse
Affiliation(s)
- Walter Dzumbira
- Key Laboratory of Regional Resource Exploitation and Medicinal Research, Faculty of Chemical Engineering, Huaiyin Institute of Technology, Huai'an, Jiangsu Province, People's Republic of China
| | - Nisar Ali
- Key Laboratory of Regional Resource Exploitation and Medicinal Research, Faculty of Chemical Engineering, Huaiyin Institute of Technology, Huai'an, Jiangsu Province, People's Republic of China.
| | - Chuansong Duanmu
- Key Laboratory of Regional Resource Exploitation and Medicinal Research, Faculty of Chemical Engineering, Huaiyin Institute of Technology, Huai'an, Jiangsu Province, People's Republic of China
| | - Yong Yang
- Key Laboratory of Regional Resource Exploitation and Medicinal Research, Faculty of Chemical Engineering, Huaiyin Institute of Technology, Huai'an, Jiangsu Province, People's Republic of China
| | - Adnan Khan
- Institute of Chemical Sciences, University of Peshawar, Khyber Pakhtunkhwa, Peshawar, 25120, Pakistan
| | - Farman Ali
- Department of Chemistry, Hazara University, KPK, Mansehra, 21300, Pakistan
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, 223003, China.
| | - Lotfi Aleya
- Chrono-Environment Laboratory, UMR CNRS 6249, Bourgogne Franche-Comté University, Besançon, France
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, 64849, Monterrey, Mexico.
| |
Collapse
|
22
|
Zhao Y, Ji X, Wu L, Tian J, Zhang C. Preparation of demulsifying functional membrane and its application in separation of emulsified oil. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
23
|
Siekierka A, Smolińska-Kempisty K, Wolska J. Enhanced Specific Mechanism of Separation by Polymeric Membrane Modification-A Short Review. MEMBRANES 2021; 11:membranes11120942. [PMID: 34940443 PMCID: PMC8705657 DOI: 10.3390/membranes11120942] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/21/2021] [Accepted: 11/25/2021] [Indexed: 11/23/2022]
Abstract
Membrane technologies have found a significant application in separation processes in an exceeding range of industrial fields. The crucial part that is decided regarding the efficiency and effectivity of separation is the type of membrane. The membranes deal with separation problems, working under the various mechanisms of transportation of selected species. This review compares significant types of entrapped matter (ions, compounds, and particles) within membrane technology. The ion-exchange membranes, molecularly imprinted membranes, smart membranes, and adsorptive membranes are investigated. Here, we focus on the selective separation through the above types of membranes and detect their preparation methods. Firstly, the explanation of transportation and preparation of each type of membrane evaluated is provided. Next, the working and application phenomena are evaluated. Finally, the review discusses the membrane modification methods and briefly provides differences in the properties that occurred depending on the type of materials used and the modification protocol.
Collapse
Affiliation(s)
- Anna Siekierka
- Correspondence: (A.S.); (K.S.-K.); (J.W.); Tel.: +48-71-320-36-55 (A.S.); +48-71-320-59-29 (K.S.-K.); +48-71-320-23-83 (J.W.)
| | - Katarzyna Smolińska-Kempisty
- Correspondence: (A.S.); (K.S.-K.); (J.W.); Tel.: +48-71-320-36-55 (A.S.); +48-71-320-59-29 (K.S.-K.); +48-71-320-23-83 (J.W.)
| | - Joanna Wolska
- Correspondence: (A.S.); (K.S.-K.); (J.W.); Tel.: +48-71-320-36-55 (A.S.); +48-71-320-59-29 (K.S.-K.); +48-71-320-23-83 (J.W.)
| |
Collapse
|
24
|
Delamination-Free In-Air and Underwater Oil-Repellent Filters for Oil-Water Separation: Gravity-Driven and Cross-Flow Operations. ENERGIES 2021. [DOI: 10.3390/en14217429] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Separating oil-water mixtures is critical in a variety of practical applications, including the treatment of industrial wastewater, oil spill cleanups, as well as the purification of petroleum products. Among various methodologies that have been utilized, membranes are the most attractive technology for separating oil-water emulsions. In recent years, selective wettability membranes have attracted particular attention for oil-water separations. The membrane surfaces with hydrophilic and in-air oleophobic wettability have demonstrated enhanced effectiveness for oil-water separations in comparison with underwater oleophobic membranes. However, developing a hydrophilic and in-air oleophobic surface for a membrane is not a trivial task. The coating delamination process is a critical challenge when applying these membranes for separations. Inspired by the above, in this study we utilize poly(ethylene glycol)diacrylate (PEGDA) and 1H,1H,2H,2H-heptadecafluorodecyl acrylate (F-acrylate) to fabricate a hydrophilic and in-air oleophobic coating on a filter. We utilize methacryloxypropyl trimethoxysilane (MEMO) as an adhesion promoter to enhance the adhesion of the coating to the filter. The filter demonstrates robust oil repellency preventing oil adhesion and oil fouling. Utilizing the filter, gravity-driven and continuous separations of surfactant-stabilized oil-water emulsions are demonstrated. Finally, we demonstrate that the filter can be reused multiple times upon rinsing for further oil-water separations.
Collapse
|
25
|
Fast demulsification of oil-water emulsions at room temperature by functionalized magnetic nanoparticles. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118967] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
26
|
Ali N, Bilal M, Khan A, Ali F, Nasir Mohamad Ibrahim M, Gao X, Zhang S, Hong K, Iqbal HM. Engineered Hybrid Materials with Smart Surfaces for Effective Mitigation of Petroleum-Originated Pollutants. ENGINEERING 2021; 7:1492-1503. [DOI: 10.1016/j.eng.2020.07.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
27
|
Ali N, Hellen BJ, Duanmu C, Yang Y, Nawaz S, Khan A, Ali F, Gao X, Bilal M, Iqbal HMN. Effective remediation of petrochemical originated pollutants using engineered materials with multifunctional entities. CHEMOSPHERE 2021; 278:130405. [PMID: 33823342 DOI: 10.1016/j.chemosphere.2021.130405] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/20/2021] [Accepted: 03/23/2021] [Indexed: 02/05/2023]
Abstract
The highly robust, effective, and sustainable remediation of hydrocarbon-contaminated wastewater matrices, which is mainly generated from petroleum and related petrochemical industries, is of supreme interest. Owing to the notable presence of suspended solids, oil, and grease, organic matter, highly toxic elements, high salts, and recalcitrant chemicals, crude oil emulsions, and hydrocarbon-contaminated wastewater are considered a potential threat to the environments, animals, plants, and humans. To effectively tackle this challenging issue, magnetic hybrid materials assembled at nano- and micro-scale with unique structural, chemical, and functional entities are considered robust candidates for demulsification purposes. The current research era on magnetic materials has superwettability, leading to an effective system of superwettability, which is vibrant and promising. The wettability of magnetic and magnetic hybrid materials explaining the theme of superhydrophobicity and superhydrophilicity under the liquid. Herein, we reviewed the applications of magnetic nanoparticles (MNPs) as effective demulsifiers. The demulsifier wettability, dose, pH, salinity, and surface morphology of compelling, magnetic nanoparticles are the main hidden factors in effective demulsifiers. There is a comprehensive discussion on the reuse and recyclability of MNPs after oil, water separation. Furthermore, the main challenges, coupled with the magnetic nanoparticles in the effective separation of emulsions, are intensified in detail. This review will compare the current literature and the utilization of MNPs for the demulsification of oil and water emulsions. This is envisioned that the MNPs would be critical in the petroleum and petrochemical industry to effectively eliminate water from a crude oil emulsion.
Collapse
Affiliation(s)
- Nisar Ali
- Key Laboratory of Regional Resource Exploitation and Medicinal Research, Faculty of Chemical Engineering, Huaiyin Institute of Technology, Huaian, Jiangsu Province, PR China.
| | - Buame Jacinta Hellen
- Key Laboratory of Regional Resource Exploitation and Medicinal Research, Faculty of Chemical Engineering, Huaiyin Institute of Technology, Huaian, Jiangsu Province, PR China
| | - Chuansong Duanmu
- Key Laboratory of Regional Resource Exploitation and Medicinal Research, Faculty of Chemical Engineering, Huaiyin Institute of Technology, Huaian, Jiangsu Province, PR China
| | - Yong Yang
- Key Laboratory of Regional Resource Exploitation and Medicinal Research, Faculty of Chemical Engineering, Huaiyin Institute of Technology, Huaian, Jiangsu Province, PR China
| | - Shahid Nawaz
- Department of Chemistry, The University of Lahore, Lahore, Pakistan
| | - Adnan Khan
- Institute of Chemical Sciences, University of Peshawar, Khyber Pakhtunkhwa, 25120, Pakistan
| | - Farman Ali
- Department of Chemistry, Hazara University, KPK, Mansehra 21300, Pakistan
| | - Xiaoyan Gao
- Key Laboratory of Regional Resource Exploitation and Medicinal Research, Faculty of Chemical Engineering, Huaiyin Institute of Technology, Huaian, Jiangsu Province, PR China
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China.
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico.
| |
Collapse
|
28
|
Current Status of Cellulosic and Nanocellulosic Materials for Oil Spill Cleanup. Polymers (Basel) 2021; 13:polym13162739. [PMID: 34451277 PMCID: PMC8400096 DOI: 10.3390/polym13162739] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 08/05/2021] [Accepted: 08/09/2021] [Indexed: 12/23/2022] Open
Abstract
Recent developments in the application of lignocellulosic materials for oil spill removal are discussed in this review article. The types of lignocellulosic substrate material and their different chemical and physical modification strategies and basic preparation techniques are presented. The morphological features and the related separation mechanisms of the materials are summarized. The material types were classified into 3D-materials such as hydrophobic and oleophobic sponges and aerogels, or 2D-materials such as membranes, fabrics, films, and meshes. It was found that, particularly for 3D-materials, there is a clear correlation between the material properties, mainly porosity and density, and their absorption performance. Furthermore, it was shown that nanocellulosic precursors are not exclusively suitable to achieve competitive porosity and therefore absorption performance, but also bulk cellulose materials. This finding could lead to developments in cost- and energy-efficient production processes of future lignocellulosic oil spillage removal materials.
Collapse
|
29
|
Ou W, Luo X, Feng Y. Hydrophobically modified melamine‐formaldehyde sponge used for conformance control and water shutoff during oil production. J Appl Polym Sci 2021. [DOI: 10.1002/app.51416] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Wen Ou
- Polymer Research Institute, State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu China
| | - Xinjie Luo
- Polymer Research Institute, State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu China
| | - Yujun Feng
- Polymer Research Institute, State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu China
| |
Collapse
|
30
|
Abdelkader A, Hussien BM, Fawzy EM, Ibrahim AA. Boehmite nanopowder recovered from aluminum cans waste as a potential adsorbent for the treatment of oilfield produced water. APPLIED PETROCHEMICAL RESEARCH 2021. [DOI: 10.1007/s13203-021-00267-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
AbstractIn the present study, high surface area boehmite nanopowder was recovered from aluminum cans waste. The sodium aluminate solution was first prepared by dissolving aluminum cans in NaOH solution and then, H2O2 solution was added to precipitate boehmite. The prepared boehmite was characterized by means of X-ray diffraction (XRD), transmission electron microscopy (TEM) and N2 adsorption–desorption techniques. The thermal stability of the boehmite sample was investigated using thermogravimetry (TG) and differential scanning calorimetry (DSC) techniques. The feasibility of using the prepared boehmite powder as a new low-cost adsorbent for the treatment of oilfield produced water was investigated. For comparison, commercial activated carbon was used for the treatment of the produced water under the same conditions. The efficiency of both of boehmite and activated carbon in the treatment of produced water was determined by monitoring the values of a number of pollution indicators [i.e. turbidity, sulfides, sulfates, total organic carbon (TOC), total petroleum hydrocarbon (TPH), and chemical oxygen demand (COD)] before and after the treatment. The boehmite powder showed very good efficiency in the treatment of the produced water, which is very close to that of commercial activated carbon under the same conditions. The effect of adsorbent dose, treatment time, and pH of the media on the adsorption efficiency of both of boehmite and activated carbon was examined at room temperature using chemical oxygen demand as a pollution indicator. The maximum capacity for COD reduction was 69.6% for boehmite and 83.5% for activated carbon at 40 g/l adsorbent dosage, pH7, and 24-h contact time.
Graphic abstract
Collapse
|
31
|
Ahmad W, Khan A, Ali N, Khan S, Uddin S, Malik S, Ali N, Khan H, Khan H, Bilal M. Photocatalytic degradation of crystal violet dye under sunlight by chitosan-encapsulated ternary metal selenide microspheres. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:8074-8087. [PMID: 33048294 DOI: 10.1007/s11356-020-10898-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 09/16/2020] [Indexed: 06/11/2023]
Abstract
Organic dyes that are extensively released in wastewater from various industries remain the priority concern in the modern world. Therefore, a novel catalyst, bismuth-iron selenide, was prepared through the solvothermal process for photocatalytic degradation of a carcinogenic crystal violet dye. The catalyst was supported with chitosan to form iron-bismuth selenide-chitosan microspheres (BISe-CM). The synthesized catalyst was composed of iron, bismuth, and selenium in a definite proportion based on EDX analysis. FTIR analysis confirmed the synthesis of BISe-CM from characteristic bands of metal selenium bond as well as the typical bands of chitosan. SEM analysis illustrated the average diameter of the barren catalyst to be 54.8 nm, while the average size of the microspheres was 982.5 um. The BISe-CM has the surface of a pore with an average size of 0.5 um. XRD analysis revealed that the synthesized catalyst was composed of Fe3Se4 and Bi2Se3. The prepared catalyst showed better degradation efficiency for crystal violet dye at optimized conditions under solar irradiation. Employing 0.2 g of BISe-CM resulted in complete degradation for 30 ppm of crystal violet dye in 150 min at pH 8.0. The reusability of the catalyst up to four consecutive times makes it a more attractive and practical candidate. Moreover, the catalyst followed pseudo-first-order kinetics in the decontamination of crystal violet. Conclusively, the novel photocatalyst showed the best decolorizing property of crystal violet under sunlight irradiation and could be a suitable alternative for dye decontamination from wastewater.
Collapse
Affiliation(s)
- Waqar Ahmad
- Institute of Chemical Sciences, University of Peshawar, Peshawar, Khyber Pakhtunkhwa, 25120, Pakistan
| | - Adnan Khan
- Institute of Chemical Sciences, University of Peshawar, Peshawar, Khyber Pakhtunkhwa, 25120, Pakistan.
| | - Nisar Ali
- Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, National & Local Joint Engineering Research Center for Deep Utilization Technology of Rock-salt Resource, Faculty of Chemical Engineering, Huaiyin Institute of Technology, Huaian, 223003, China
| | - Sana Khan
- Institute of Chemical Sciences, University of Peshawar, Peshawar, Khyber Pakhtunkhwa, 25120, Pakistan
| | - Salah Uddin
- Institute of Chemical Sciences, University of Peshawar, Peshawar, Khyber Pakhtunkhwa, 25120, Pakistan
| | - Sumeet Malik
- Institute of Chemical Sciences, University of Peshawar, Peshawar, Khyber Pakhtunkhwa, 25120, Pakistan
| | - Nauman Ali
- Institute of Chemical Sciences, University of Peshawar, Peshawar, Khyber Pakhtunkhwa, 25120, Pakistan
| | - Hamayun Khan
- Department of Chemistry, Islamia College University, Peshawar, Khyber Pakhtunkhwa, 25120, Pakistan
| | - Hammad Khan
- Department of Chemical Engineering, Faculty of Materials and Chemical Engineering, Ghulam Ishaq Khan Institute of Engineering Sciences and Technology, Topi, Swabi, KP, Pakistan
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China.
| |
Collapse
|
32
|
Yang Y, Ali N, Bilal M, Khan A, Ali F, Mao P, Ni L, Gao X, Hong K, Rasool K, Iqbal HM. Robust membranes with tunable functionalities for sustainable oil/water separation. J Mol Liq 2021; 321:114701. [DOI: 10.1016/j.molliq.2020.114701] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
33
|
Yang Y, Ali N, Khan A, Khan S, Khan S, Khan H, Xiaoqi S, Ahmad W, Uddin S, Ali N, Bilal M. Chitosan-capped ternary metal selenide nanocatalysts for efficient degradation of Congo red dye in sunlight irradiation. Int J Biol Macromol 2020; 167:169-181. [PMID: 33249161 DOI: 10.1016/j.ijbiomac.2020.11.167] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/19/2020] [Accepted: 11/23/2020] [Indexed: 11/28/2022]
Abstract
Wastewater emerging from the industries containing organic pollutants is a severe threat to humans' health and aquatic life. Therefore, the degradation of highly poisonous organic dye pollutants is necessary to ensure public health and environmental protection. To tackle this problem, visible-light-driven ternary metal selenide nanocomposites were synthesized successfully by the solvothermal method and supported by chitosan microspheres (FeNiSe-CHM). The prepared nanoparticles were capped in chitosan microspheres to avoid leaching and facilitate easy recovery of the catalyst. FTIR spectrum confirmed the synthesis of nanocomposite and nanocomposite-chitosan microspheres (FeNiSe-CHM). Based on the SEM images, the nanomaterial and FeNiSe-CHM has an average particle size of 64 nm and 874 μm, respectively. The presence of iron, nickel and selenium elements in the EDX spectrum revealed the synthesis of FeNiSe-NPs. XRD analysis determined the crystallite structure of nanocomposites as 14.2 nm. The photocatalyst has a crystalline structure and narrow bandgap of 2.09 eV. Moreover, the as-synthesized FeNiSe-CHM were employed for the photodegradation of carcinogenic and mutagenic Congo red dye. The catalyst microspheres showed efficient photocatalytic degradation efficiency of up to 99% for Congo red dye under the optimized conditions of 140 min, pH 6.0, dye concentration 60 ppm and catalyst dose of 0.2 g in the presence of sunlight irradiation following the second-order kinetics. After five consecutive cycles, it showed a slight loss in the degradation efficiency. In conclusion, the results demonstrate a high potential of chitosan-based ternary metal selenide nanocomposites for abatement of dye pollutants from the industrial wastewater.
Collapse
Affiliation(s)
- Yong Yang
- Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, National & Local Joint Engineering Research Centre for Deep Utilization Technology of Rock-salt Resource, Faculty of Chemical Engineering, Huaiyin Institute of Technology, Huai'an 223003, China.
| | - Nisar Ali
- Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, National & Local Joint Engineering Research Centre for Deep Utilization Technology of Rock-salt Resource, Faculty of Chemical Engineering, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Adnan Khan
- Institute of Chemical Sciences, University of Peshawar, Khyber Pakhtunkhwa 25120, Pakistan
| | - Saraf Khan
- Institute of Chemical Sciences, University of Peshawar, Khyber Pakhtunkhwa 25120, Pakistan
| | - Sana Khan
- Institute of Chemical Sciences, University of Peshawar, Khyber Pakhtunkhwa 25120, Pakistan
| | - Hammad Khan
- Department of Chemical Engineering, Faculty of Materials and Chemical Engineering, Ghulam Ishaq Khan Institute of Engineering Sciences and Technology, Topi, Swabi, KP, Pakistan
| | - Shi Xiaoqi
- Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, National & Local Joint Engineering Research Centre for Deep Utilization Technology of Rock-salt Resource, Faculty of Chemical Engineering, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Waqar Ahmad
- Institute of Chemical Sciences, University of Peshawar, Khyber Pakhtunkhwa 25120, Pakistan
| | - Salah Uddin
- Institute of Chemical Sciences, University of Peshawar, Khyber Pakhtunkhwa 25120, Pakistan
| | - Nauman Ali
- Institute of Chemical Sciences, University of Peshawar, Khyber Pakhtunkhwa 25120, Pakistan
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, China.
| |
Collapse
|
34
|
Ali N, Bilal M, Khan A, Ali F, Khan H, Khan HA, Rasool K, Iqbal HM. Understanding the hierarchical assemblies and oil/water separation applications of metal-organic frameworks. J Mol Liq 2020; 318:114273. [DOI: 10.1016/j.molliq.2020.114273] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
35
|
Ali N, Uddin S, Khan A, Khan S, Khan S, Ali N, Khan H, Khan H, Bilal M. Regenerable chitosan-bismuth cobalt selenide hybrid microspheres for mitigation of organic pollutants in an aqueous environment. Int J Biol Macromol 2020; 161:1305-1317. [DOI: 10.1016/j.ijbiomac.2020.07.132] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/30/2020] [Accepted: 07/12/2020] [Indexed: 10/23/2022]
|
36
|
Ali N, Bilal M, Khan A, Ali F, Yang Y, Khan M, Adil SF, Iqbal HM. Dynamics of oil-water interface demulsification using multifunctional magnetic hybrid and assembly materials. J Mol Liq 2020; 312:113434. [DOI: 10.1016/j.molliq.2020.113434] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|