1
|
Cheng R, Yan C, Xiao Z, Tang X, Xu P, Qiu P. FeCuS multilayer nanoflowers loaded with N-CDs dual-mode method for the detection of uric acid and gout risk prediction with the aid of chemometrics. Talanta 2025; 287:127700. [PMID: 39923670 DOI: 10.1016/j.talanta.2025.127700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/03/2025] [Accepted: 02/05/2025] [Indexed: 02/11/2025]
Abstract
Transition metal sulfides have attracted much attention due to their low cost, high stability, adjustable performance, diverse morphology and good catalytic activity. In this work, nitrogen-doped carbon dots (N-CDs) were loaded onto bimetallic sulfides (FeCuS) and FeCuS/N-CDs could act as catalyst and fluorescent probe, which applied to the detection of uric acid (UA) in human blood and urine using dual-model assay (colorimetry and ratiometric fluorescence). The nanozyme has excellent peroxidase-like activity and steady-state kinetic results showed that the material prepared under optimized conditions had better affinity (Km = 0.42 mM) for the substrate and faster reaction rate (Vmax = 14.1 × 10-8 M s-1). •OH and O2•- were involved in the catalytic process of o-phenylenediamine (OPD) by FeCuS/N-CDs nanozymes. A profound discussion and quantitative analysis about the sensing mechanism of UA and fluorescence quenching mechanism between FeCuS/N-CDs and diaminophenazine (DAP) was performed. According to Parker equation, the inhibition efficiency of DAP in FeCuS/N-CDs was as high as 83 % of the total inhibition efficiency, confirming that the inhibition efficiency mainly came from internal filtering effect (IFE). The detection limits of ratiometric fluorescence method and colorimetric method were as low as 0.13 μM and 0.27 μM, respectively. Finally, principal component analysis was used to successfully distinguish three groups of people (healthy people, potential people and gout patients) and the model has potential value in clinical applications.
Collapse
Affiliation(s)
- Rou Cheng
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330047, China; Department of Chemistry, Nanchang University, Nanchang, 330031, China
| | - Chunyan Yan
- Department of Chemistry, Nanchang University, Nanchang, 330031, China
| | - Zhengyue Xiao
- Department of Chemistry, Nanchang University, Nanchang, 330031, China
| | - Xiaomin Tang
- Affiliated Rehabilitation Hospital of Nanchang University, Nanchang, 330003, China
| | - Peng Xu
- Center of Analysis and Testing, Nanchang University, Nanchang, 330031, China.
| | - Ping Qiu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330047, China; Department of Chemistry, Nanchang University, Nanchang, 330031, China.
| |
Collapse
|
2
|
Bina F, Bani F, Khalilzadeh B, Gheit T, Karimi A. Advancements in fluorescent nanobiosensors for HPV detection: from integrating nanomaterials to DNA nanotechnology. Int J Biol Macromol 2025; 311:143619. [PMID: 40306516 DOI: 10.1016/j.ijbiomac.2025.143619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 03/19/2025] [Accepted: 04/27/2025] [Indexed: 05/02/2025]
Abstract
Human papillomavirus (HPV) is a leading cause of cervical cancer and other malignancies, necessitating the development of highly sensitive and specific detection tools. This review explores recent advancements in fluorescent nanobiosensors (FNBS) for HPV detection, focusing on the integration of nanomaterials and DNA nanotechnology, highlighting their contributions to improving sensitivity, specificity, and point-of-care (POC) usability. The review critically evaluates a range of nanomaterial-based FNBS, including those employing quantum and carbon dots, nanoclusters, nanosheets, and nanoparticles, discussing their underlying signal amplification mechanisms, target recognition strategies, and limitations related to toxicity, stability, and reproducibility. Furthermore, it examines the application of diverse DNA nanotechnology, such as DNA origami, DNAzyme, catalytic hairpin assembly (CHA), hybridization chain reaction (HCR), and DNA hydrogel in improving FNBS performance. It also addresses the current challenges in clinical translation, emphasizing the necessity for large-scale production methods and thorough clinical validation to ensure biosafety. It also outlines the potential of innovative technologies, such as CRISPR-Cas-based diagnostics and artificial intelligence, to further revolutionize HPV detection and enable accessible, cost-effective screening, particularly in resource-limited settings. This review provides a valuable resource for researchers and clinicians seeking to develop next-generation FNBS for improved HPV diagnostics and cervical cancer prevention.
Collapse
Affiliation(s)
- Fateme Bina
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farhad Bani
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Balal Khalilzadeh
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Tarik Gheit
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer (IARC), Lyon, France.
| | - Abbas Karimi
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
3
|
Zhou H, Yin X, Zhang G, Yang Z, Zhou R. Advancing Nanomaterial-Based Strategies for Alzheimer's Disease: A Perspective. JACS AU 2025; 5:1519-1537. [PMID: 40313833 PMCID: PMC12041962 DOI: 10.1021/jacsau.5c00002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 03/19/2025] [Accepted: 03/21/2025] [Indexed: 05/03/2025]
Abstract
Alzheimer's disease (AD) is a complex neurodegenerative disorder and the most common cause of dementia. By 2050, the number of AD cases is projected to exceed 131 million, placing significant strain on healthcare systems and economies worldwide. The pathogenesis of AD is multifactorial, involving hypotheses/mechanisms, such as amyloid-β (Aβ) plaques, tau protein hyperphosphorylation, cholinergic neuron damage, oxidative stress, and inflammation. Despite extensive research, the complexity of these potentially entangled mechanisms has hindered the development of treatments that can reverse disease progression. Nanotechnology, leveraging the unique physical, electrical, magnetic, and optical properties of nanomaterials, has emerged as a promising approach for AD treatment. In this Perspective, we first outlined the major current pathogenic hypotheses of AD and then reviewed recent advances in nanomaterials in addressing these hypotheses. We have also discussed the challenges in translating nanomaterials into clinical applications and proposed future directions, particularly the development of multifunctional and multitarget nanomaterials, to enhance their therapeutic efficacy and clinical applicability in AD treatment.
Collapse
Affiliation(s)
- Hong Zhou
- Institute
of Quantitative Biology, College of Life Sciences, College of Physics, Zhejiang University, Hangzhou 310027, China
- Department
of Medical Laboratory, School of Medicine, Shaoxing University, Shaoxing 312000, China
| | - Xiuhua Yin
- Center
of Translational Medicine and Clinical Laboratory, The Fourth Affiliated Hospital of Soochow University, Medical Center
of Soochow University, Suzhou Medical College of Soochow University, Suzhou 215123, China
| | - Guanqiao Zhang
- Institute
of Quantitative Biology, College of Life Sciences, College of Physics, Zhejiang University, Hangzhou 310027, China
| | - Zaixing Yang
- State
Key Laboratory of Radiation Medicine and Protection, School for Radiological
and Interdisciplinary Sciences (RAD-X), Soochow University, Suzhou 215123, China
| | - Ruhong Zhou
- Institute
of Quantitative Biology, College of Life Sciences, College of Physics, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
4
|
Gao Y, Wang J, Mu X, Liu B, Xia M, Wang F, Tong Z. Carbon quantum dots in spectrofluorimetric analysis: A comprehensive review of synthesis, mechanisms and multifunctional applications. Talanta 2025; 293:128066. [PMID: 40194462 DOI: 10.1016/j.talanta.2025.128066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 03/19/2025] [Accepted: 04/01/2025] [Indexed: 04/09/2025]
Abstract
Carbon quantum dots (CQDs), as a representative nanomaterial, have demonstrated promising applications in fluorescence analysis owing to their unique optical properties, low cytotoxicity and exceptional biocompatibility. This review systematically summarizes recent advances in synthesis strategies, detection mechanisms and applications of CQDs for sensing metal ions (e.g., Hg2+, Fe3+, Cu2+), small molecules (e.g., biomolecules, pharmaceuticals, azo dyes) and proteins. Hybridization of CQDs with functional materials has been shown to significantly enhance their photoluminescence properties while optimizing detection sensitivity and selectivity. The article critically examines fundamental detection mechanisms, especially fluorescence quenching and further outlines design strategies for fluorescence probes based on "on-off" switching or ratio signaling. Moreover, current challenges are analyzed, such as the need for synthetic protocol standardization, in-depth exploration of heteroatom-doped CQDs, expansion of detectable analytes and rational design of fluorescence turn-on probes. Future prospects in environmental monitoring, biomedical diagnostics and pharmaceutical analysis are also highlighted. This comprehensive review offers critical insights to guide the rational design and application of advanced CQD-based hybrid systems.
Collapse
Affiliation(s)
- Yunfei Gao
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China; State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Jiang Wang
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Xihui Mu
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Bing Liu
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Mingzhu Xia
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Fengyun Wang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
| | - Zhaoyang Tong
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China.
| |
Collapse
|
5
|
Bai M, Shao X, Wang C, Wang J, Wang X, Guan P, Hu X. Application of carbon-based nanomaterials in Alzheimer's disease. MATERIALS HORIZONS 2025; 12:673-693. [PMID: 39526325 DOI: 10.1039/d4mh01256a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Alzheimer's disease (AD) is a chronic, progressive neurodegenerative disorder marked by permanent impairment of brain function across the whole brain. This condition results in a progressive deterioration of cognitive function in patients and is frequently associated with psychological symptoms such as agitation and anxiety, imposing a significant burden on both patients and their families. Nanomaterials possess numerous distinctive physical and chemical features that render them extensively utilized. In the biomedical domain, nanomaterials can be utilized for disease prevention and therapy, including medication delivery systems, biosensors, and tissue engineering. This article explores the etiology and potential molecular processes of AD, as well as the application of carbon-based nanomaterials in the diagnosis and treatment of AD. Some of such nanomaterials are carbon quantum dots, carbon nanotubes, and graphene, among others. These materials possess distinctive physicochemical features that render them highly promising for applications in biosensing, drug delivery, neuroprotection, and photothermal treatment. In addition, this review explored various therapeutic approaches for AD in terms of reducing inflammation, preventing oxidative damage, and inhibiting Aβ aggregation. The advent of carbon nanomaterials in nanotechnology has facilitated the development of novel treatment approaches for Alzheimer's disease. These strategies provide promising approaches for early diagnosis, effective intervention and neuroprotection of the disease.
Collapse
Affiliation(s)
- Mengyao Bai
- Department of Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, 127 Youyi Road, Xi'an 710072, China.
| | - Xu Shao
- Department of Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, 127 Youyi Road, Xi'an 710072, China.
| | - Chao Wang
- Department of Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, 127 Youyi Road, Xi'an 710072, China.
| | - Juanxia Wang
- Department of Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, 127 Youyi Road, Xi'an 710072, China.
| | - Xin Wang
- Department of Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, 127 Youyi Road, Xi'an 710072, China.
| | - Ping Guan
- Department of Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, 127 Youyi Road, Xi'an 710072, China.
| | - Xiaoling Hu
- Department of Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, 127 Youyi Road, Xi'an 710072, China.
| |
Collapse
|
6
|
Wang J, Xie Z, Xie H, Mo Z, Wang W, Zhu Y. A novel, portable, and cost-effective turbidimetric sensor for sensitive alkaline phosphatase activity assay. Biosens Bioelectron 2025; 267:116857. [PMID: 39426277 DOI: 10.1016/j.bios.2024.116857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/07/2024] [Accepted: 10/14/2024] [Indexed: 10/21/2024]
Abstract
The development of enzyme activity analysis methods is critical for precise and rapid assessments of enzyme activity levels within biological systems, facilitating a more profound comprehension of physiological functions and disease mechanisms. Alkaline phosphatase (ALP) participates in various physiological processes involving phosphate ester hydrolysis. Altered ALP activity levels are often indicative of different diseases, underscoring the necessity for accurate ALP activity determination in medical diagnostics. This study innovatively applies turbidity as a physical variable, proposing a turbidimetric sensor based on an enhanced ammonium molybdate reagent for phosphate analysis. By integrating this with the ALP substrate p-nitrophenyl phosphate, a turbidimetric sensor was devised and employed for ALP activity analysis. The proposed turbidimetric sensor demonstrated high sensitivity both for phosphate (0.18 μmol/L) and ALP activity (0.03 mU/mL) assay. In practical applications, this turbidimetric sensor has been effectively employed to detect ALP activity in mouse feces, showcasing its potential for auxiliary diagnosis of inflammatory bowel disease. Significantly, this novel turbidity-based approach offers not only swift and straightforward procedures but also remarkable portability and cost-efficiency. Requiring solely a handheld turbidimeter and eliminating the need for bulky instruments, this approach holds significant potential for point-of-care testing applications.
Collapse
Affiliation(s)
- Jikai Wang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China.
| | - Zhulan Xie
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China
| | - Haitao Xie
- Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, Hunan Province Clinical Research Center for Accurate Diagnosis and Treatment of High-incidence Sexually Transmitted Diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China
| | - Ziyi Mo
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China
| | - Weiguo Wang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China.
| | - Yanli Zhu
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, Hunan, 421001, PR China.
| |
Collapse
|
7
|
Guo J, Zhang J, Tong X. Adhered-3D paper microfluidic analytical device based on oxidase-mimicking activity of Co-doped carbon dots nanozyme for point-of-care testing of alkaline phosphatase. Anal Chim Acta 2024; 1332:343378. [PMID: 39580181 DOI: 10.1016/j.aca.2024.343378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 10/26/2024] [Accepted: 10/28/2024] [Indexed: 11/25/2024]
Abstract
Paper-based microfluidic analytical devices (μPADs) have become promising alternatives to clinical laboratory-based methods for point-of-care testing (POCT) of biomarkers in family care and resource-limited communities. Here, Co-doped carbon dots (Co-CDs) nanozyme with outstanding oxidase-mimicking catalytic activity and red fluorescent emission were prepared, and combined adhered-3D μPAD (A-3D μPAD) to monitor facilely alkaline phosphatase (ALP) level in whole blood samples. Co-CDs catalyzed the oxidization of nonfluorescent o-phenylenediamine (OPD) into 2,3-diaminophenazine (oxOPD) with yellow fluorescent emission due to the generation of tremendous O2•- species. With addition of ALP, ALP hydrolyzed l-ascorbic acid 2-phosphate into ascorbic acid, and the latter was oxidized by Co-CDs, then reacted with OPD to form blue fluorescent emission 3-(dihydroxyethyl)furo [3,4-b]quinoxaline-1-one (DFQ). Both DFQ and oxOPD quenched the fluorescence intensity of Co-CDs via inner-filter effect. The cascade reaction of ALP/Co-CDs was incorporated into A-3D μPAD based on above sensing principles. A-3D μPAD enabled sample pretreatment, cascade reaction and signal output, and integrated portable minimized device and smartphone for visual ALP detection. The linear range and limit of detection for ALP were 0.5-150 U L-1 and 0.1 U L-1, respectively, and the color varied from red, yellow to blue. The detection results for whole blood samples were consistent with biochemical detector. The efficiency, disposability, practicality and low-cost of A-3D μPAD can be extended to determine various biomarkers, and provided technical support for nanozyme applications in POCT environments.
Collapse
Affiliation(s)
- Jing Guo
- School of Physics and Information Engineering, Shanxi Normal University, Taiyuan, 031000, China
| | - Jing Zhang
- School of Chemistry and Materials Science, Shanxi Normal University, Taiyuan, 031000, China
| | - Xia Tong
- Stem Cell Translation Laboratory, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, Taiyuan, 030032, China.
| |
Collapse
|
8
|
Liu L, He JH, Wu XQ, Liu JJ, Lv WY, Huang CZ, Liu H, Li CM. Simultaneous detection of multiple microRNAs based on fluorescence resonance energy transfer under a single excitation wavelength. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 322:124788. [PMID: 38986256 DOI: 10.1016/j.saa.2024.124788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 07/02/2024] [Accepted: 07/04/2024] [Indexed: 07/12/2024]
Abstract
MicroRNAs (miRNAs) play a key role in physiological processes, and their dysregulation is closely related to various human diseases. Simultaneous detection of multiple miRNAs is pivotal to cancer diagnosis at an early stage. However, most multicomponent analyses generally involve multiple excitation wavelengths, which are complicated and often challenging to simultaneously acquire multiple detection signals. In this study, a convenient and sensitive sensor was developed to simultaneously detection of multiple miRNAs under a single excitation wavelength through the fluorescence resonance energy transfer between the carbon dots (CDs)/quantum dots (QDs) and graphene oxide (GO). A hybridization chain reaction (HCR) was triggered by miRNA-141 and miRNA-21, resulting in the high sensitivity with a limit of detection (LOD) of 50 pM (3σ/k) for miRNA-141 and 60 pM (3σ/k) for miRNA-21. This simultaneous assay also showed excellent specificity discrimination against the mismatch. Furthermore, our proposed method successfully detected miRNA-21 and miRNA-141 in human serum samples at a same time, indicating its diagnostic potential in a clinical setting.
Collapse
Affiliation(s)
- Lin Liu
- Key Laboratory of Biomedical Analytics (Southwest University), Chongqing Science and Technology Bureau, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, PR China
| | - Jia Hui He
- Key Laboratory of Biomedical Analytics (Southwest University), Chongqing Science and Technology Bureau, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, PR China
| | - Xiao Qiao Wu
- Key Laboratory of Biomedical Analytics (Southwest University), Chongqing Science and Technology Bureau, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, PR China
| | - Jia Jun Liu
- Key Laboratory of Biomedical Analytics (Southwest University), Chongqing Science and Technology Bureau, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, PR China
| | - Wen Yi Lv
- Key Laboratory of Biomedical Analytics (Southwest University), Chongqing Science and Technology Bureau, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, PR China
| | - Cheng Zhi Huang
- Key Laboratory of Biomedical Analytics (Southwest University), Chongqing Science and Technology Bureau, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, PR China
| | - Hui Liu
- Key Laboratory of Biomedical Analytics (Southwest University), Chongqing Science and Technology Bureau, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, PR China.
| | - Chun Mei Li
- Key Laboratory of Biomedical Analytics (Southwest University), Chongqing Science and Technology Bureau, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, PR China; NMPA Key Laboratory for Quality Monitoring of Narcotic Drugs and Psychotropic Substance, Chongqing 401121, PR China.
| |
Collapse
|
9
|
Liu H, Liu W, Li Y, Jiang X, Wang S, Zhang G, Luo X, Zhao Y. Fluorescent covalent organic framework as an ultrasensitive fluorescent probe for tyrosinase activity monitoring and inhibitor screening. Anal Chim Acta 2024; 1320:343026. [PMID: 39142791 DOI: 10.1016/j.aca.2024.343026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/05/2024] [Accepted: 07/24/2024] [Indexed: 08/16/2024]
Abstract
BACKGROUND As a significant biomarker of melanocytic lesions, tyrosinase (TYR) plays an essential role in the clinical diagnosis and treatment of melanin-related diseases. Thus, it is important to develop robust methods for assessing TYR activity. Covalent organic frameworks (COFs) have garnered considerable attention owing to their unique properties, including high chemical stability, good biocompatibility, and large surface area compared with organic dyes, noble metal nanoclusters, and semiconductor quantum dots. However, most COFs are insoluble in water and exhibit weak or no fluorescence emission. Therefore, the development of a water-soluble fluorescent COF for detecting TYR activity in biological samples remains highly desired. RESULTS In this work, a sensitive and facile fluorometric method based on fluorescent COF was constructed for the detection of TYR activity in human serum samples. The water-soluble COF was fabricated through the condensation polymerization of 4',4‴,4''''',4'''''''-(1,2-ethene-diylidene) tetrakis [1,1'-biphenyl]-4-carboxaldehyde and 2,4,6-tris-(4-aminophenyl)-triazine. The resulting COF displayed yellow-green fluorescence with a maximum emission peak at 560 nm. Tyrosine was catalyzed by TYR to produce melanin-like polymers which formed a coating on the surface of COF and effectively quenched its fluorescence due to fluorescence resonance energy transfer. The proposed approach demonstrated a strong linear correlation in the range of 0.5-80 U/L with a low detection limit of 0.09 U/L. Additionally, the limit of detection for kojic acid, serving as a representative TYR inhibitor, was determined to be 0.0004 μg/mL. SIGNIFICANCE Our proposed fluorometric sensing platform exhibited exceptional selectivity, sensitivity, and satisfactory recoveries in human serum samples, which is of paramount importance for the clinical diagnostics of melanin-related diseases. Furthermore, the proposed approach was further employed for the screening of TYR inhibitors, suggesting the potential applications in clinical treatment and pharmaceutical research.
Collapse
Affiliation(s)
- Hongmei Liu
- School of Science, Xihua University, Chengdu, 610039, China
| | - Weiping Liu
- Department of Clinical Laboratory, Zigong First People's Hospital, Zigong, 643000, Sichuan, China
| | - Yue Li
- School of Science, Xihua University, Chengdu, 610039, China
| | - Xinxin Jiang
- School of Science, Xihua University, Chengdu, 610039, China
| | - Sikai Wang
- School of Science, Xihua University, Chengdu, 610039, China
| | - Guoqi Zhang
- School of Science, Xihua University, Chengdu, 610039, China.
| | - Xiaojun Luo
- School of Science, Xihua University, Chengdu, 610039, China.
| | - Yan Zhao
- School of Science, Xihua University, Chengdu, 610039, China; Asymmetric Synthesis and Chiral Technology Key Laboratory of Sichuan Province, Xihua University, Chengdu, 610039, China.
| |
Collapse
|
10
|
Wang T, Tan HS, Wang AJ, Li SS, Feng JJ. Fluorescent metal nanoclusters: From luminescence mechanism to applications in enzyme activity assays. Biosens Bioelectron 2024; 257:116323. [PMID: 38669842 DOI: 10.1016/j.bios.2024.116323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/09/2024] [Accepted: 04/20/2024] [Indexed: 04/28/2024]
Abstract
Metal nanoclusters (MNCs) have outstanding fluorescence property and biocompatibility, which show widespread applications in biological analysis. Particularly, evaluation of enzyme activity with the fluorescent MNCs has been developed rapidly within the past several years. In this review, we first introduced the fluorescent mechanism of mono- and bi-metallic nanoclusters, respectively, whose interesting luminescence properties are mainly resulted from electron transfer between the lowest unoccupied molecular orbital (LUMO) and highest occupied molecular orbital (HOMO) energy levels. Meanwhile, the charge migration within the structure occurs through ligand-metal charge transfer (LMCT) or ligand-metal-metal charge transfer (LMMCT). On such foundation, diverse enzyme activities were rigorously evaluated, including three transferases and nine hydrolases, in turn harvesting rapid research progresses within past 5 years. Finally, we summarized the design strategies for evaluating enzyme activity with the MNCs, presented the major issues and challenges remained in the relevant research, coupled by showing some improvement measures. This review will attract researchers dedicated to the studies of the MNCs and provide some constructive insights for their further applications in enzyme analysis.
Collapse
Affiliation(s)
- Tong Wang
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China
| | - Hong-Sheng Tan
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China
| | - Ai-Jun Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Shan-Shan Li
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China.
| | - Jiu-Ju Feng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| |
Collapse
|
11
|
Li K, Wang J, Wang J, Zheng Z, Liu X, Wang J, Zhang C, He S, Wei H, Yu CY. A Programmable Microfluidic Paper-Based Analytical Device for Simultaneous Colorimetric and Photothermal Visual Sensing of Multiple Enzyme Activities. Anal Chem 2024; 96:12181-12188. [PMID: 38975840 DOI: 10.1021/acs.analchem.4c02389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
New strategies for the simultaneous and portable detection of multiple enzyme activities are highly desirable for clinical diagnosis and home care. However, the methods developed thus far generally suffer from high costs, cumbersome procedures, and heavy reliance on large-scale instruments. To satisfy the actual requirements of rapid, accurate, and on-site detection of multiple enzyme activities, we report herein a smartphone-assisted programmable microfluidic paper-based analytical device (μPAD) that utilizes colorimetric and photothermal signals for simultaneous, accurate, and visual quantitative detection of alkaline phosphatase (ALP) and butyrylcholinesterase (BChE). Specifically, the operation of this μPAD sensing platform is based on two sequential steps. Cobalt-doped mesoporous cerium oxide (Co-m-CeO2) with remarkable peroxidase-like activities under neutral conditions first catalytically decomposes H2O2 for effectively converting colorless 3,3',5,5'-tetramethylbenzidine (TMB) into blue oxidized TMB (oxTMB). The subsequent addition of ALP or BChE to their respective substrates produces a reducing substance that can somewhat inhibit the oxTMB transformation for compromised colorimetric and photothermal signals of oxTMB. Notably, these two-step bioenzyme-nanozyme cascade reactions strongly support the straightforward and excellent processability of this platform, which exhibit lower detection limits for ALP and BChE with a detection limit for BChE an order of magnitude lower than those of the other reported paper-based detection methods. The practicability and efficiency of this platform are further demonstrated through the analysis of clinical serum samples. This innovative platform exhibits great potential as a facile yet robust approach for simultaneous, accurate, and on-site visual detection of multiple enzyme activities in authentic samples.
Collapse
Affiliation(s)
- Kailing Li
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Jun Wang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Jieqiong Wang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Zhi Zheng
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Xinping Liu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Jikai Wang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Chenjing Zhang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Suisui He
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Hua Wei
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Cui-Yun Yu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, China
- Affiliated Hospital of Hunan Academy of Chinese Medicine, Hunan Academy of Chinese Medicine, Changsha 410013, China
| |
Collapse
|
12
|
Mokhtari M, Khoshbakht S, Ziyaei K, Akbari ME, Moravveji SS. New classifications for quantum bioinformatics: Q-bioinformatics, QCt-bioinformatics, QCg-bioinformatics, and QCr-bioinformatics. Brief Bioinform 2024; 25:bbae074. [PMID: 38446742 PMCID: PMC10939336 DOI: 10.1093/bib/bbae074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 11/14/2023] [Accepted: 02/07/2021] [Indexed: 03/08/2024] Open
Abstract
Bioinformatics has revolutionized biology and medicine by using computational methods to analyze and interpret biological data. Quantum mechanics has recently emerged as a promising tool for the analysis of biological systems, leading to the development of quantum bioinformatics. This new field employs the principles of quantum mechanics, quantum algorithms, and quantum computing to solve complex problems in molecular biology, drug design, and protein folding. However, the intersection of bioinformatics, biology, and quantum mechanics presents unique challenges. One significant challenge is the possibility of confusion among scientists between quantum bioinformatics and quantum biology, which have similar goals and concepts. Additionally, the diverse calculations in each field make it difficult to establish boundaries and identify purely quantum effects from other factors that may affect biological processes. This review provides an overview of the concepts of quantum biology and quantum mechanics and their intersection in quantum bioinformatics. We examine the challenges and unique features of this field and propose a classification of quantum bioinformatics to promote interdisciplinary collaboration and accelerate progress. By unlocking the full potential of quantum bioinformatics, this review aims to contribute to our understanding of quantum mechanics in biological systems.
Collapse
Affiliation(s)
- Majid Mokhtari
- Department of Bioinformatics, Kish International Campus, University of Tehran, Kish Island, Iran
| | - Samane Khoshbakht
- Department of Bioinformatics, Kish International Campus, University of Tehran, Kish Island, Iran
- Duke Molecular Physiology Institute, Duke University School of Medicine-Cardiology, Durham, NC, 27701, USA
| | - Kobra Ziyaei
- Department of Fisheries, Faculty of Natural Resources, University of Tehran, Karaj, Iran
| | | | - Sayyed Sajjad Moravveji
- Department of Bioinformatics, Kish International Campus, University of Tehran, Kish Island, Iran
| |
Collapse
|
13
|
Belal F, Mabrouk M, Hammad S, Ahmed H, Barseem A. Recent Applications of Quantum Dots in Pharmaceutical Analysis. J Fluoresc 2024; 34:119-138. [PMID: 37222883 DOI: 10.1007/s10895-023-03276-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/16/2023] [Indexed: 05/25/2023]
Abstract
Nanotechnology has emerged as one of the most potential areas for pharmaceutical analysis. The need for nanomaterials in pharmaceutical analysis is comprehended in terms of economic challenges, health and safety concerns. Quantum dots (QDs)or colloidal semiconductor nanocrystals are new groups of fluorescent nanoparticles that bind nanotechnology to drug analysis. Because of their special physicochemical characteristics and small size, QDs are thought to be promising candidates for the electrical and luminescent probes development. They were originally developed as luminescent biological labels, but are now discovering new analytical chemistry applications, where their photo-luminescent properties are used in pharmaceutical, clinical analysis, food quality control and environmental monitoring. In this review, we discuss QDs regarding properties and advantages, advances in methods of synthesis and their recent applications in drug analysis in the recent last years.
Collapse
Affiliation(s)
- Fathalla Belal
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Mokhtar Mabrouk
- Department of pharmaceutical analytical Chemistry, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Sherin Hammad
- Department of pharmaceutical analytical Chemistry, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Hytham Ahmed
- Pharmaceutical Analysis Department, Faculty of Pharmacy, Menoufia University, Menoufia, Egypt
| | - Aya Barseem
- Pharmaceutical Analysis Department, Faculty of Pharmacy, Menoufia University, Menoufia, Egypt.
| |
Collapse
|
14
|
Lin Y, Ye S, Tian J, Leng A, Deng Y, Zhang J, Zheng C. Paper-assisted ratiometric fluorescent sensors for on-site sensing of sulfide based on the target-induced inner filter effect. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132201. [PMID: 37544178 DOI: 10.1016/j.jhazmat.2023.132201] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/20/2023] [Accepted: 07/30/2023] [Indexed: 08/08/2023]
Abstract
Dissolved sulfide tends to species transformation and loss upon leaving the matrix, thus the development of a practical on-site determination of sulfide is crucial for environmental monitoring and human health. In this work, a novel paper-based ratiometric fluorescence sensor was developed for the field analysis of sulfide, which system was constructed by the inner filter effect (IFE) of CdS quantum dots (QDs) toward carbon dots (C-dots). Instead of an aqueous phase system, the conversion of sulfide to its hydride would induce the in-situ formation of CdS QDs on the paper, which acted as an energy acceptor to quench the emission of C-dots, leading to a variation of ratiometric fluorescence from blue to yellow with the increasing concentration of sulfide. Moreover, we proposed a smartphone-based fluorescence capture device integrated with a programmed Python program, accomplishing both color recognition and accurate detection of sulfide. Under the optimal condition, this ratiometric fluorescence sensor allowed for the on-site analysis of sulfide with a limit of detection of 0.05 μM. The accuracy of the sensor was validated via the successful field analysis of environmental water samples with satisfactory recoveries. Compared to other fluorescence methods used for sulfide analysis, this developed system retains the advantages of label-free, low-cost, ease of operation, and miniaturization, showing great potential for the measurement of sulfide on-site, as well as environmental monitoring.
Collapse
Affiliation(s)
- Yao Lin
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, China
| | - Simin Ye
- Key Laboratory of Green Chemistry & Technology of MOE, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Jinxiao Tian
- Key Laboratory of Green Chemistry & Technology of MOE, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Anqin Leng
- Sichuan Center for Disease Control and Prevention, Chengdu, Sichuan 610041, China
| | - Yurong Deng
- Key Laboratory of Green Chemistry & Technology of MOE, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Jinyi Zhang
- Key Laboratory of Green Chemistry & Technology of MOE, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China.
| | - Chengbin Zheng
- Key Laboratory of Green Chemistry & Technology of MOE, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China.
| |
Collapse
|
15
|
Yang Z, Xu T, Li H, She M, Chen J, Wang Z, Zhang S, Li J. Zero-Dimensional Carbon Nanomaterials for Fluorescent Sensing and Imaging. Chem Rev 2023; 123:11047-11136. [PMID: 37677071 DOI: 10.1021/acs.chemrev.3c00186] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
Advances in nanotechnology and nanomaterials have attracted considerable interest and play key roles in scientific innovations in diverse fields. In particular, increased attention has been focused on carbon-based nanomaterials exhibiting diverse extended structures and unique properties. Among these materials, zero-dimensional structures, including fullerenes, carbon nano-onions, carbon nanodiamonds, and carbon dots, possess excellent bioaffinities and superior fluorescence properties that make these structures suitable for application to environmental and biological sensing, imaging, and therapeutics. This review provides a systematic overview of the classification and structural properties, design principles and preparation methods, and optical properties and sensing applications of zero-dimensional carbon nanomaterials. Recent interesting breakthroughs in the sensitive and selective sensing and imaging of heavy metal pollutants, hazardous substances, and bioactive molecules as well as applications in information encryption, super-resolution and photoacoustic imaging, and phototherapy and nanomedicine delivery are the main focus of this review. Finally, future challenges and prospects of these materials are highlighted and envisaged. This review presents a comprehensive basis and directions for designing, developing, and applying fascinating fluorescent sensors fabricated based on zero-dimensional carbon nanomaterials for specific requirements in numerous research fields.
Collapse
Affiliation(s)
- Zheng Yang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, P. R. China
| | - Tiantian Xu
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, P. R. China
| | - Hui Li
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, P. R. China
| | - Mengyao She
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
- Ministry of Education Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Provincial Key Laboratory of Biotechnology of Shaanxi, The College of Life Sciences, Northwest University, Xi'an 710069, P. R. China
| | - Jiao Chen
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
- Ministry of Education Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Provincial Key Laboratory of Biotechnology of Shaanxi, The College of Life Sciences, Northwest University, Xi'an 710069, P. R. China
| | - Zhaohui Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Shengyong Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Jianli Li
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
| |
Collapse
|
16
|
Wu Y, Yu Liu Q, Qi Bu Z, Xia Quan M, Yang Lu J, Tao Huang W. Colorimetric multi-channel sensing of metal ions and advanced molecular information protection based on fish scale-derived carbon nanoparticles. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 290:122291. [PMID: 36603276 DOI: 10.1016/j.saa.2022.122291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/22/2022] [Accepted: 12/28/2022] [Indexed: 06/17/2023]
Abstract
Some nanosystems based on carbon nanomaterials have been used for fluorescent chemical/biosensing, elementary information processing, and textual coding. However, little attention has been paid to utilizing biowaste-derived carbon nanomaterials for colorimetric multi-channel sensing and advanced molecular information protection (including text and pattern information). Herein, fish scale-derived carbon nanoparticles (FSCN) were prepared and used for colorimetric detection of metal ions, encoding, encrypting and hiding text- and pattern-based information. The morphology and composition of FSCN were analyzed by TEM, XRD, FTIR, and XPS, and it was found that the FSCN-based multi-channel colorimetric sensing system can detect Cr6+ (detection limit of 56.59 nM and 13.32 nM) and Fe3+ (detection limit of 81.55 nM) through the changes of absorption intensity at different wavelengths (272, 370, and 310 nm). Moreover, the selective responses of FSCN to 20 kinds of metal ions can be abstracted into a series of binary strings, which can encode, hide, and encrypt traditional text-based and even two-dimensional pattern-based information. The preparation of carbon nanomaterials derived from waste fish scales can stimulate other researcheres' enthusiasm for the development and utilization of wastes and promoting resource recycling. Inspired by this work, more researches will continue to explore the world of molecular information technology.
Collapse
Affiliation(s)
- Ying Wu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha 410081, P. R. China
| | - Qing Yu Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha 410081, P. R. China
| | - Zhen Qi Bu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha 410081, P. R. China
| | - Min Xia Quan
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha 410081, P. R. China
| | - Jiao Yang Lu
- Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Academician Workstation, Changsha Medical University, Changsha 410219, PR China
| | - Wei Tao Huang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha 410081, P. R. China.
| |
Collapse
|
17
|
Lu T, Chen J, Zhang Q, Zhang M, Li Y, Qi Z. Surfactant-mediated mobility of carbon dots in saturated soil: comparison between anionic and cationic surfactants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:37622-37633. [PMID: 36572776 DOI: 10.1007/s11356-022-24878-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 12/15/2022] [Indexed: 06/18/2023]
Abstract
Understanding the mobility, retention, and fate of carbon dots (CDs) is critical for the risk management of this emerging carbon material. However, the influences of surfactants on CDs' transport through subsurface media are still poorly understood. Herein, column experiments were conducted to explore the different influences of an anionic surfactant, sodium dodecylbenzene sulfonate (SDBS), and a cationic surfactant, cetyltrimethylammonium bromide (CTAB), on the CDs' transport in water-saturated soil. In the Na+ background electrolyte, both surfactants facilitated the transport of CDs at pH 7.0. The trend stemmed from steric hindrance, a decline in the straining effect, and competitive deposition between CDs and surfactant molecules. Additionally, SDBS increased the electrostatic repulsion of CDs and soil. Interestingly, in the divalent cation background electrolytes (i.e., Ca2+ or Cu2+), SDBS suppressed CDs' mobility, whereas CTAB had the opposite effect. The transport-inhibited effect of SDBS was mainly due to anionic surfactant ion (DBS-) precipitation with metal cations and the formation of adsorbed SDBS-Cu2+/Ca2+-CDs complexes. The enhanced effect of CTAB resulted from the CTAB coating on soil grains, which suppressed the cation bridging between CDs and soil. Furthermore, the magnitude of the SDBS promotion effect was pH-dependent. Surprisingly, CTAB could inhibit CDs' mobility at pH 9.0, owing to the binding cationic surfactant's strong hydrophobicity effect on the soil surface. Moreover, the experimental breakthrough curves of CDs were well described using a two-site transport model. Overall, the observations obtained from this study shed light on the relative mobility of CDs with different surfactants in typical groundwater conditions.
Collapse
Affiliation(s)
- Taotao Lu
- College of Hydraulic Science and Engineering, Yangzhou University, Yangzhou, 225009, China
| | - Jiuyan Chen
- Key Laboratory of Environment Remediation and Ecological Health (Zhejiang University), Ministry of Education, Hangzhou, 310058, China
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, China
| | - Qiang Zhang
- Ecology Institute of the Shandong Academy of Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Mengli Zhang
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, China
| | - Yanxiang Li
- The Testing Center of Shandong Bureau of China Metallurgical Geology Bureau, Jinan, 250014, China
| | - Zhichong Qi
- College of Hydraulic Science and Engineering, Yangzhou University, Yangzhou, 225009, China.
- Key Laboratory of Environment Remediation and Ecological Health (Zhejiang University), Ministry of Education, Hangzhou, 310058, China.
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, China.
| |
Collapse
|
18
|
Yang Y, Tong X, Chen Y, Zhou R, Cai G, Wang T, Zhang S, Shi S, Guo Y. A dual-emission carbon dots-based nonenzymatic fluorescent sensing platform for simultaneous detection of parathion-methyl and glyphosate. Food Chem 2023; 403:134346. [DOI: 10.1016/j.foodchem.2022.134346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 09/05/2022] [Accepted: 09/17/2022] [Indexed: 10/14/2022]
|
19
|
The preparation, optical properties and applications of carbon dots derived from phenylenediamine. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
20
|
Carbon dots modified/prepared by supramolecular host molecules and their potential applications: A review. Anal Chim Acta 2022; 1232:340475. [DOI: 10.1016/j.aca.2022.340475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/28/2022] [Accepted: 09/29/2022] [Indexed: 11/18/2022]
|
21
|
Yang Y, Jiang Y, Wang X, Han S. Chemiluminescence of doped carbon dots with H 2O 2-KMnO 4 system for the detection of Cu 2+ and tannin. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 279:121434. [PMID: 35653811 DOI: 10.1016/j.saa.2022.121434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 05/09/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
The carbon dots doped with chlorine and phosphorus (CDs-Cl,P) were used as chemiluminescence (CL) reagent for the sensitive detection of copper ions (Cu2+) and tannin (TA). The CDs-Cl,P was found to strongly enhance the reaction of H2O2 and KMnO4 in alkaline medium. The enhanced CL behavior of CDs-Cl,P was investigated and it was found that some radicals such as •OH, •O2- and 1O2 appeared in the CL reaction process. The participation of Cu2+ could result in an enhanced CL intensity of the CDs-Cl,P-H2O2-KMnO4 system due to the Cu2+-catalyzed decomposition of H2O2 resulting in more •OH generation. Therefore, the CDs-Cl,P-H2O2-KMnO4 system was used to selectively quantify Cu2+ in solution by CL emission. A linear increase was observed between CL intensity and Cu2+ concentration. The CDs-Cl,P-H2O2-KMnO4 system allowed the detection of Cu2+ down to lower concentration of 0.1 μM with a linear range of 0.2-60.0 μM. Moreover, TA as a common polyphenolic compound, could selectively decrease the CL signal of the CDs-Cl,P-H2O2-KMnO4-Cu2+ system due to its complexation with Cu2+. On this basis, the CL assay for TA was also developed. The detection limit was 0.14 μM and the linear range was from 5.0 μM to 100.0 μM. The proposed method was successfully applied to the determination of Cu2+ and TA in water, rice dumplings leaves, sodium copper chlorophyllin and wine samples with satisfactory results.
Collapse
Affiliation(s)
- Yaqiong Yang
- School of Chemistry and Material Science, Shanxi Normal University, Linfen 041000, Shanxi, PR China
| | - Yamei Jiang
- School of Chemistry and Material Science, Shanxi Normal University, Linfen 041000, Shanxi, PR China
| | - Xiaowei Wang
- School of Chemistry and Material Science, Shanxi Normal University, Linfen 041000, Shanxi, PR China
| | - Suqin Han
- School of Chemistry and Material Science, Shanxi Normal University, Linfen 041000, Shanxi, PR China.
| |
Collapse
|
22
|
Fan S, Li X, Ma F, Yang M, Su J, Chen X. Sulfur quantum dot based fluorescence assay for lactate dehydrogenase activity detection. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.113989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
23
|
Olenin AY, Yagov VV. Using the Turn-On Fluorescence Effect in Chemical and Biochemical Analysis. JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1134/s1061934822090088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
24
|
Luo SZ, Yang JY, Jia BZ, Wang H, Chen ZJ, Wei XQ, Shen YD, Lei HT, Xu ZL, Luo L. Multicolorimetric and fluorometric dual-modal immunosensor for histamine via enzyme-enabled metallization of gold nanorods and inner filter effect of carbon dots. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.108941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
25
|
Yin C, Wu M, Liu T, Fu L, Sun Q, Chen L, Niu N. Turn-on fluorescent inner filter effect-based B,S,N co-doped carbon quantum dots and vanadium oxide nanoribbons for α-glucosidase activity detection. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
26
|
Yang Z, Xu T, Zhang X, Li H, Jia X, Zhao S, Yang Z, Liu X. Nitrogen-doped carbon quantum dots as fluorescent nanosensor for selective determination and cellular imaging of ClO . SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 271:120941. [PMID: 35114635 DOI: 10.1016/j.saa.2022.120941] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 01/17/2022] [Accepted: 01/20/2022] [Indexed: 05/28/2023]
Abstract
The carbon nanomaterial based fluorescent probes have been widely applied in biological imaging. In the current research, we propose an interesting strategy for selective sensing of hypochlorite (ClO-) by a water-soluble and highly fluorescent nanosensor based on the N-doped carbon quantum dots (CDs) which was fabricated by a facile and environmental friendly hydrothermal approach from polyvinyl pyrrolidone, L-arginine and tryptophan. The structural characteristics of the probe were measured by multitudinous methods which proved the nanometer spherical structure of the probe and the successfully N-doping. Fluorescent investigation demonstrated that the probe is not only highly stable under interferences of pH, ionic strength, and irradiation, but also significantly selective toward ClO- amongst a variety of attractive bioactive species through the fluorescent quenching process which was correlative with the concentration of ClO- and linearly in the range of 0.1-50 μmol·L-1 with the sensitivity of 0.03 μmol·L-1. The probe can also be further illustrated in a prospective application for determination of ClO- in environmental water through both solution response and filer paper sensing. Moreover, the positive biocompatibility and ignorable cytotoxicity made the probe a promising effective agent for detection and visualizing ClO- in living cells which can facilitate the understanding the oxidative stress from the overexpressing ClO-.
Collapse
Affiliation(s)
- Zheng Yang
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, PR China; Key Laboratory of Coal Resources Exploration and Comprehensive Utilization, Ministry of Land and Resources, Xi'an 710012, PR China; Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, PR China.
| | - Tiantian Xu
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, PR China
| | - Xu Zhang
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, PR China
| | - Hui Li
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, PR China; Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, PR China
| | - Xiaodan Jia
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, PR China; Key Laboratory of Coal Resources Exploration and Comprehensive Utilization, Ministry of Land and Resources, Xi'an 710012, PR China
| | - Shunsheng Zhao
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, PR China; Key Laboratory of Coal Resources Exploration and Comprehensive Utilization, Ministry of Land and Resources, Xi'an 710012, PR China
| | - Zaiwen Yang
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, PR China; Key Laboratory of Coal Resources Exploration and Comprehensive Utilization, Ministry of Land and Resources, Xi'an 710012, PR China
| | - Xiangrong Liu
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, PR China; Key Laboratory of Coal Resources Exploration and Comprehensive Utilization, Ministry of Land and Resources, Xi'an 710012, PR China
| |
Collapse
|
27
|
Liu J, Wang Y, Ma W, Zong S, Li J. Biomass-based Carbon Dots as Peroxidase Mimics for Colorimetric Detection of Glutathione and L-Cysteine. Chem Res Chin Univ 2022. [DOI: 10.1007/s40242-022-2021-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
28
|
Huang S, Yao J, Ning G, Li B, Mu P, Xiao Q. Ultrasensitive ratiometric fluorescent probes for Hg( ii) and trypsin activity based on carbon dots and metalloporphyrin via a target recycling amplification strategy. Analyst 2022; 147:1457-1466. [DOI: 10.1039/d1an02287c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A ultrasensitive ratiometric fluorescent probe was developed for Hg(ii) and trypsin based on CDs and TPPS via a target recycling amplification strategy. The detection limits of Hg2+ and trypsin were 0.086 nM and 0.013 ng mL−1.
Collapse
Affiliation(s)
- Shan Huang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, China
| | - Jiandong Yao
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, China
| | - Gan Ning
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, China
| | - Bo Li
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, China
| | - Pingping Mu
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, China
| | - Qi Xiao
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, China
| |
Collapse
|
29
|
Tong X, Cai G, Zhu Y, Tong C, Wang F, Guo Y, Shi S. Integrating smartphone-assisted ratiometric fluorescent sensors with in situ hydrogel extraction for visual detection of organophosphorus pesticides. NEW J CHEM 2022. [DOI: 10.1039/d1nj05614j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Rapid, reliable and on-site detection of organophosphorus pesticides (OPs) on fruit or vegetable surfaces is necessary in real life.
Collapse
Affiliation(s)
- Xia Tong
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, China
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine under Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, Jiangxi, China
| | - Guihan Cai
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, China
| | - Yongfeng Zhu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, China
| | - Chaoying Tong
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, China
| | - Fang Wang
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine under Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, Jiangxi, China
| | - Ying Guo
- Department of Clinical Pharmacology, Xiangya Hospital, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, 410078, Hunan, China
| | - Shuyun Shi
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, China
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine under Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, Jiangxi, China
| |
Collapse
|
30
|
Zhu Y, Tong X, Wei Q, Cai G, Cao Y, Tong C, Shi S, Wang F. 3D origami paper-based ratiometric fluorescent microfluidic device for visual point-of-care detection of alkaline phosphatase and butyrylcholinesterase. Biosens Bioelectron 2021; 196:113691. [PMID: 34637993 DOI: 10.1016/j.bios.2021.113691] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/24/2021] [Accepted: 10/04/2021] [Indexed: 12/20/2022]
Abstract
On-site multiplex enzyme detection is crucial for diagnosis, therapeutics and prognostic. To date, it is still a daunting challenge to develop portable, low-cost, and efficient multi-enzyme detection methods. Herein, a novel sample-in-result-out platform integrating ratiometric fluorescent assays with 3D origami microfluidic paper-based device (μPAD) was developed for simultaneous visual point-of-care testing (POCT) of alkaline phosphatase (ALP) and butyrylcholinesterase (BChE). Cascade catalytic reaction with the same two fluorescent signal indicators was rationally designed to ratiometric fluorescent detection of ALP and BChE: substrate of ALP (pyrophosphate) and product of BChE (thiocholine) can strongly complex with Cu2+, Cu2+ oxidizes o-phenylenediamine to fluorescent 2,3-diaminophenazine (oxOPD) (emission, 565 nm), oxOPD quenches the fluorescence of carbon dots (CDs, emission at 445 nm) via inner filter effect, thus oxOPD/CDs values are relevant to ALP and BChE activities. Then 3D origami μPAD composing of four layers and two parallel channels was fabricated and simply prepared by one-step plotting with black oil-based marker and specific metal molds. After simple folding and unfolding neighboring layers to sequentially initiate reactions of pre-loaded reagents, fluorescent images on the detection zone can be captured by smartphone and analyzed by red-green-blue software for quantitative analysis. Under optimal conditions, the proposed platform was successfully performed to detect ALP and BChE with activity difference at 3 orders of magnitude in human serum samples without any pretreatment procedures. Excellent selectivity, good precision, favorable linear range, and high accuracy were exhibited. Importantly, the platform opens a promising horizon for high-throughput POCT of multiplex biomarkers.
Collapse
Affiliation(s)
- Yongfeng Zhu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, Hunan, China; Key Laboratory of Modern Preparation of Traditional Chinese Medicine Under Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, Jiangxi, China
| | - Xia Tong
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, Hunan, China
| | - Qisheng Wei
- Natural Product Research Laboratory, Guangxi Baise High-tech Development Zone, Baise, 533612, Guangxi, China
| | - Guihan Cai
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, Hunan, China
| | - Yuanxin Cao
- Natural Product Research Laboratory, Guangxi Baise High-tech Development Zone, Baise, 533612, Guangxi, China
| | - Chaoying Tong
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, Hunan, China
| | - Shuyun Shi
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, Hunan, China; Key Laboratory of Modern Preparation of Traditional Chinese Medicine Under Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, Jiangxi, China; Natural Product Research Laboratory, Guangxi Baise High-tech Development Zone, Baise, 533612, Guangxi, China.
| | - Fang Wang
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine Under Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, Jiangxi, China
| |
Collapse
|
31
|
Development of QDs-based nanosensors for heavy metal detection: A review on transducer principles and in-situ detection. Talanta 2021; 239:122903. [PMID: 34857381 DOI: 10.1016/j.talanta.2021.122903] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/15/2021] [Accepted: 09/22/2021] [Indexed: 12/17/2022]
Abstract
Heavy metal pollution has severe threats to the ecological environment and human health. Thus, it is urgent to achieve the rapid, selective, sensitive and portable detection of heavy metal ions. To overcome the defects of traditional methods such as time-consuming, low sensitivity, high cost and complicated operation, QDs (Quantum dots)-based nanomaterials have been used in sensors to significantly improve the sensing performance. Due to their excellent physicochemical properties, high specific surface area, high adsorption and reactive capacity, nanomaterials could act as potential probes or offer enhanced sensitivity and create a promising nanosensors platform. In this review, the rapidly advancing types of QDs for heavy metal ions detection are first summarized. Modified with ligands, nanomaterials, or biomaterials, QDs are assembled on sensors by the interaction of electrostatic adsorption, chemical bonding, steric hindrance, and base-pairing. The stability of QDs-based nanosensors is improved by doping the elements to QDs, providing the reference substance, optimizing the assemble strategies and so on. Then, according to transducer principles, the two most typical sensor categories based on QDs: optical and electrochemical sensors are highlighted to be discussed. In the meanwhile, portable devices combining with QDs to adapt the practical detection in complex situations are summarized. The deficiencies and future challenges of QDs in toxicity, specificity, portability, multi-metal co-detection and degradation during the detection are also pointed out. In the end, the development trends of QDs-based nanosensors for heavy metal ions detection are discussed. This review presents an overall understanding, recent advances, current challenges and future outlook of QDs-based nanosensors for heavy metal detection.
Collapse
|
32
|
Simultaneous sensing γ-glutamyl transpeptidase and alkaline phosphatase by robust dual-emission carbon dots. Anal Chim Acta 2021; 1178:338829. [PMID: 34482874 DOI: 10.1016/j.aca.2021.338829] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/04/2021] [Accepted: 07/02/2021] [Indexed: 12/12/2022]
Abstract
Rapid, convenient, sensitive and simultaneous detection of distinct enzymes is urgently needed for diagnosis, therapeutics and prognostic of related diseases. Here, a new strategy for simultaneous monitoring γ-glutamyl transpeptidase (GGT) and alkaline phosphatase (ALP) activity has been fabricated based on dual-emission carbon dots (CDs). CDs were prepared by solvothermal treatment of Actinidia chinensis, which presents two fluorescent emissions at 471 nm (blue channel) and 671 nm (red channel). GGT and ALP activity can be detected based on inner filter effect (IFE) and static quenching effect (SQE) of blue and red channels of CDs, respectively. Linear ranges were 2.5-90 U L-1 and 5-200 U L-1, and limit of detection (LOD) were 0.71 U L-1 and 1.2 U L-1 for GGT and ALP, respectively. Developed CDs can monitor GGT and ALP activity in human serum samples with satisfied recoveries (99.3%-108.6% for GGT, 98.4%-105.4% for ALP). Furthermore, the combination of CDs to sense GGT and ALP activity with OR logic gate can predict human health status. The design and application of dual-emission CDs can also be extended as promising tools to detect multianalytes using different channel signals.
Collapse
|
33
|
Huang S, Yao J, Li B, Ning G, Xiao Q. Integrating target-responsive CD-CdTe QD-based ratiometric fluorescence hydrogel with smartphone for visual and on-site determination of dichlorvos. Mikrochim Acta 2021; 188:318. [PMID: 34476614 DOI: 10.1007/s00604-021-04982-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 08/10/2021] [Indexed: 12/27/2022]
Abstract
A facile, economic, and portable test kit based on target-responsive hydrogel with smartphone detection was fabricated for the accurate determination of dichlorvos in tap water and food samples. Carbon dots (CDs) and CdTe quantum dots (QDs) embedded hydrogel were employed as indicator, and fluorescence of CdTe QDs (645 nm) was dynamically quenched by Cu2+ while that of CDs (490 nm) were non-response for Cu2+, em erging a typical ratiometric fluorescence signal. Acetylcholinesterase hydrolyzed acetylthiocholine to generate thiocholine that bound with Cu2+ strongly via S-Cu-S bond. Dichlorvos as competitive inhibitor for acetylcholinesterase prevented the generation of thiocholine, which blocked the formation of Cu-thiocholine complex and changed the ratiometric fluorescence signal. The signal of the test kit, which was recorded by smartphone's camera, was transduced by ImageJ software into the color parameter that was linearly proportional to the logarithm of dichlorvos concentration. This portable test kit showed wide linear range of 1 to 40 ppb and low detection limit of 0.38 ppb for dichlorvos. This test kit exhibited rapid sample-to-answer detection time (50 min) of dichlorvos in tap water and food samples, and the recoveries were in the range 81.3 to 111% with relative standard deviations of less than 9.1%. A facile and economic portable test kit based on CD-CdTe QD target-responsive hydrogel with smartphone was innovatively fabricated for the accurate determination of organophosphorus pesticides. This portable test kit showed low detection limit of 0.38 ppb for dichlorvos and rapid sample-to-answer detection time (50 min) in tap water and food samples, which offered a new sight for portable monitoring of environmental pollution and food safety.
Collapse
Affiliation(s)
- Shan Huang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning, 530001, China
| | - Jiandong Yao
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning, 530001, China
| | - Bo Li
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning, 530001, China
| | - Gan Ning
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning, 530001, China
| | - Qi Xiao
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning, 530001, China.
| |
Collapse
|
34
|
Li X, Jian M, Sun Y, Zhu Q, Wang Z. The Peptide Functionalized Inorganic Nanoparticles for Cancer-Related Bioanalytical and Biomedical Applications. Molecules 2021; 26:3228. [PMID: 34072160 PMCID: PMC8198790 DOI: 10.3390/molecules26113228] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 02/08/2023] Open
Abstract
In order to improve their bioapplications, inorganic nanoparticles (NPs) are usually functionalized with specific biomolecules. Peptides with short amino acid sequences have attracted great attention in the NP functionalization since they are easy to be synthesized on a large scale by the automatic synthesizer and can integrate various functionalities including specific biorecognition and therapeutic function into one sequence. Conjugation of peptides with NPs can generate novel theranostic/drug delivery nanosystems with active tumor targeting ability and efficient nanosensing platforms for sensitive detection of various analytes, such as heavy metallic ions and biomarkers. Massive studies demonstrate that applications of the peptide-NP bioconjugates can help to achieve the precise diagnosis and therapy of diseases. In particular, the peptide-NP bioconjugates show tremendous potential for development of effective anti-tumor nanomedicines. This review provides an overview of the effects of properties of peptide functionalized NPs on precise diagnostics and therapy of cancers through summarizing the recent publications on the applications of peptide-NP bioconjugates for biomarkers (antigens and enzymes) and carcinogens (e.g., heavy metallic ions) detection, drug delivery, and imaging-guided therapy. The current challenges and future prospects of the subject are also discussed.
Collapse
Affiliation(s)
- Xiaotong Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; (X.L.); (M.J.); (Y.S.)
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Minghong Jian
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; (X.L.); (M.J.); (Y.S.)
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Yanhong Sun
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; (X.L.); (M.J.); (Y.S.)
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Qunyan Zhu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; (X.L.); (M.J.); (Y.S.)
| | - Zhenxin Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; (X.L.); (M.J.); (Y.S.)
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
35
|
Tang C, Long R, Tong X, Guo Y, Tong C, Shi S. Dual-emission biomass carbon dots for near-infrared ratiometric fluorescence determination and imaging of ascorbic acid. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106000] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
36
|
Tong C, Shi F, Tong X, Shi S, Ali I, Guo Y. Shining natural flavonols in sensing and bioimaging. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116222] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
37
|
Guo Y, Li T, Xie L, Tong X, Tang C, Shi S. Red pitaya peels-based carbon dots for real-time fluorometric and colorimetric assay of Au 3+, cellular imaging, and antioxidant activity. Anal Bioanal Chem 2020; 413:935-943. [PMID: 33210176 DOI: 10.1007/s00216-020-03049-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/18/2020] [Accepted: 11/04/2020] [Indexed: 12/18/2022]
Abstract
The synthesis of fascinating multifunctional carbon dots (CDs) attracted immense attention. Here, a facile solvothermal treatment of red pitaya peels in acetic acid produced CDs (designated as ACDs, excitation/emission wavelengths at 357/432 nm). ACDs with high sp2-hybridized carbon and carboxylic group contents can rapidly and selectively reduce Au3+ to Au0, and stabilize produced Au nanoparticles (AuNPs). The synergetic effect of electron transfer from ACDs to Au3+ and inner filter effect (IFE) from ACDs to AuNPs quenches the fluorescence within 30 s. Simultaneously, the resulting AuNPs have a purple color with a maximum absorption at 545 nm for visual detection. Therefore, for the first time, we reported a fluorometric and colorimetric dual-mode sensing system for real-time, highly sensitive and selective detection of Au3+. The fluorescence quenching ratio and absorbance change linearly with the increase of Au3+ concentration in the range of 0.3-8.0 μM and 3.3-60.0 μM with limits of detection (LODs) at 0.072 μM and 2.2 μM, respectively. The assay was applied for Au3+ determination in spiked real water samples with recoveries from 95.5 to 105.0%, and relative standard deviation (RSD) of less than 6.5%. Furthermore, ACDs with good photostability, low cytotoxicity, and excellent biocompatibility were successfully applied for intracellular Au3+ sensing and imaging. In addition, ACDs exhibited an extraordinarily high antioxidant activity, with an IC50 value for DPPH radical scavenging (0.70 μg mL-1) much lower than that of ascorbic acid (4.34 μg mL-1). The proposed strategy demonstrates the outstanding properties of ACDs in chemical and biomedical analysis. Graphical abstract.
Collapse
Affiliation(s)
- Ying Guo
- Department of Clinical Pharmacology, Xiangya Hospital; Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, 410078, Hunan, China.
| | - Te Li
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, Hunan, China. .,Yunnan Provincial Energy Research Institute Co., Ltd, Kunming, 650000, Yunnan, China.
| | - Lianwu Xie
- College of Sciences, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China
| | - Xia Tong
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, Hunan, China
| | - Cui Tang
- Department of Clinical Pharmacology, Xiangya Hospital; Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, 410078, Hunan, China
| | - Shuyun Shi
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, Hunan, China.
| |
Collapse
|