1
|
Gupta KM, Aitipamula S, Chin X, Chow PS. Synergistic Computational and Experimental Investigation of Covalent Organic Frameworks for Efficient Alcohol Dehydration. ACS APPLIED MATERIALS & INTERFACES 2025; 17:26551-26564. [PMID: 40273888 DOI: 10.1021/acsami.5c01219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2025]
Abstract
Covalent organic frameworks (COFs), a promising class of nanoporous materials, have received significant attention for membrane separation. Currently, several COFs are reported for alcohol dehydration, but they are not efficient owing to the pervasive challenge to separate small-sized molecular mixture. Herein, first we have computationally explored a series of COFs with different functionality and aperture size as pervaporation (PV) membrane and identified a novel COF for efficient dehydration of water/alcohol mixtures (90 wt % IPA, 90 wt % n-butanol and 90 wt % t-butanol). Subsequently, the best-performing COF was experimentally synthesized and characterized, and its sorption properties were correlated with computational results. Molecular dynamics (MD) simulations revealed that solvent permeation fluxes are predominantly influenced by the pore aperture of COFs, and larger pore aperture exhibits higher flux. Conversely, the separation factor is primarily determined by the polarity of the pore functional groups. Among the tested COF membranes, TpPa-1-OC3H6OCH3 demonstrated superior performance, surpassing the current state-of-the-art membranes. The activation energy (Ea) for water permeation in alcohol mixtures through TpPa-1-OC3H6OCH3 is mostly governed by water-alcohol interactions. Furthermore, experimental evaluation of the COFs indicated a plate-like morphology for TpPa-1-OC3H6OCH3 which ascertained a 2D-sheet-like structure. TpPa-1 showed greater sorption than TpPa-1-OC3H6OCH3 with all of the solvents tested owing to the inability of the solvent molecules to enter the relatively small pores in the later COF. This is in accordance with the MD simulation predictions, which indicated that the solvent molecules cannot penetrate the small pores of TpPa-1-OC3H6OCH3. This work synergistically integrates computational and experimental approaches to develop novel COFs with superior performance compared to previously reported PV membranes, paving the way for advanced membranes for sustainable solvent recovery.
Collapse
Affiliation(s)
- Krishna M Gupta
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore
- Department of Chemical Engineering, Indian Institute of Technology, Jammu 181221, J&K, India
| | - Srinivasulu Aitipamula
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore
| | - Xavier Chin
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore
| | - Pui Shan Chow
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore
| |
Collapse
|
2
|
Boza IAF, da Silva SL, Guedes NB, Bazzo GC, Stulzer HK. Pediatric Formulation Optimization Using a Rational Design: Exploring Amorphous Solid Dispersion Technology with Terbinafine Hydrochloride as a Case Study. AAPS PharmSciTech 2025; 26:40. [PMID: 39821556 DOI: 10.1208/s12249-024-03012-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 11/25/2024] [Indexed: 01/30/2025] Open
Abstract
Developing orally administered pediatric formulations presents significant challenges due to the unique characteristics of pediatric patients. Terbinafine hydrochloride (TER), a powerful antifungal agent, is effective against various fungal infections, including Tinea capitis, which is common in children. However, its low aqueous solubility necessitates innovative pharmaceutical strategies to enhance its effectiveness. This study describes a rational approach to selecting suitable carriers, approved for use in children, to increase the apparent solubility of TER and to guide the development of amorphous solid dispersions containing this drug. Assessments of solubility parameters, equilibrium solubility measurements, and calculations of pediatric dose numbers guided formulation development using theoretical and experimental methodologies. Carriers like Plasdone S-360 ULTRA®, HPMCAS L, and Soluplus® demonstrated favorable solubility parameter values with TER, indicating potential for drug solubilization. The solubility of TER was strongly dependent on pH. In buffer pH 6.5 containing 10% (w/v) of Soluplus®, TER presented the highest solubility value. The solid-state characterization techniques employed to assess the precipitate formed after equilibrium solubility studies during preformulation demonstrated that there were no phase transitions and no significant interactions between the drug and the evaluated carriers. Furthermore, the results demonstrate that Soluplus® achieved the lowest dose number (0.23) for pediatric patients over 6 years old. So, it was selected for preparing the amorphous solid dispersion via spray drying, which significantly enhanced the apparent solubility of TER while maintaining prolonged supersaturation, offering a promising alternative for developing solid formulations of this drug, particularly for pediatric patients, as it aims to improve oral bioavailability.
Collapse
Affiliation(s)
- Izabelle Amorim Ferreira Boza
- Department of Chemistry, Center for Physical and Mathematical Sciences, Federal University of Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| | - Stéfani Laise da Silva
- Department of Chemistry, Center for Physical and Mathematical Sciences, Federal University of Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| | - Nicolly Bittencourt Guedes
- Department of Pharmaceutical Sciences, Federal University of Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| | - Giovana Carolina Bazzo
- Department of Pharmaceutical Sciences, Federal University of Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| | - Hellen Karine Stulzer
- Department of Chemistry, Center for Physical and Mathematical Sciences, Federal University of Santa Catarina, Florianópolis, SC, 88040-900, Brazil.
- Department of Pharmaceutical Sciences, Federal University of Santa Catarina, Florianópolis, SC, 88040-900, Brazil.
| |
Collapse
|
3
|
Newman A, Zografi G. Perspectives on the Wetting of Solids in Pharmaceutical Systems. Pharm Res 2023; 40:3099-3118. [PMID: 36964300 DOI: 10.1007/s11095-023-03491-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/24/2023] [Indexed: 03/26/2023]
Abstract
PURPOSE The ability of water and aqueous solutions to wet relatively nonpolar pharmaceutical solids during the processing and administration of solid dosage forms is an important part of development. RESULTS Various factors, both fundamental and technological, which are important to wettability are reviewed and analyzed. Initially, the ideal thermodynamic importance of liquid surface tension and solid surface energetics, determined by the contact angle and the polarity of the solid surface, are established. Then, emphasis is placed on various factors that change the surface energetics due to crystal defects, polymorphism, varying Miller Indices, crystal habit, amorphous structure, variable surface concentration of components in a formulation mixture, surface roughness, and complex pore structure. Case studies cover single component systems (APIs and excipients), binary mixtures (amorphous solid dispersions and physical mixtures), multicomponent systems (granules and tablets), as well as disintegration and dissolution of solid oral dosage forms. CONCLUSIONS This perspective and analysis indicates the primary importance of understanding and modifying solid surface energetics, surface chemical and physical heterogeneities, and pore structure to promote wettability in pharmaceutical systems.
Collapse
Affiliation(s)
- Ann Newman
- Seventh Street Development Group, PO Box 251, Kure Beach, NC, 24889, 765-650-4462, USA.
| | - George Zografi
- School of Pharmacy, University of Wisconsin, Madison, WI, 53705, USA
| |
Collapse
|
4
|
Iyer J, Brunsteiner M, Modhave D, Paudel A. Role of Crystal Disorder and Mechanoactivation in Solid-State Stability of Pharmaceuticals. J Pharm Sci 2023; 112:1539-1565. [PMID: 36842482 DOI: 10.1016/j.xphs.2023.02.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/20/2023] [Accepted: 02/20/2023] [Indexed: 02/28/2023]
Abstract
Common energy-intensive processes applied in oral solid dosage development, such as milling, sieving, blending, compaction, etc. generate particles with surface and bulk crystal disorder. An intriguing aspect of the generated crystal disorder is its evolution and repercussion on the physical- and chemical stabilities of drugs. In this review, we firstly examine the existing literature on crystal disorder and its implications on solid-state stability of pharmaceuticals. Secondly, we discuss the key aspects related to the generation and evolution of crystal disorder, dynamics of the disordered/amorphous phase, analytical techniques to measure/quantify them, and approaches to model the disordering propensity from first principles. The main objective of this compilation is to provide special impetus to predict or model the chemical degradation(s) resulting from processing-induced manifestation in bulk solid manufacturing. Finally, a generic workflow is proposed that can be useful to investigate the relevance of crystal disorder on the degradation of pharmaceuticals during stability studies. The present review will cater to the requirements for developing physically- and chemically stable drugs, thereby enabling early and rational decision-making during candidate screening and in assessing degradation risks associated with formulations and processing.
Collapse
Affiliation(s)
- Jayant Iyer
- Research Center Pharmaceutical Engineering GmbH (RCPE), Graz, Austria
| | | | - Dattatray Modhave
- Research Center Pharmaceutical Engineering GmbH (RCPE), Graz, Austria
| | - Amrit Paudel
- Research Center Pharmaceutical Engineering GmbH (RCPE), Graz, Austria; Graz University of Technology, Institute of Process and Particle Engineering, Graz Austria.
| |
Collapse
|
5
|
Shi Q, Moinuddin SM, Wang Y, Ahsan F, Li F. Physical stability and dissolution behaviors of amorphous pharmaceutical solids: Role of surface and interface effects. Int J Pharm 2022; 625:122098. [PMID: 35961416 DOI: 10.1016/j.ijpharm.2022.122098] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/28/2022] [Accepted: 08/05/2022] [Indexed: 11/24/2022]
Abstract
Amorphous pharmaceutical solids (APS) are single- or multi-component systems in which drugs exist in high-energy states with long-range disordered molecular packing. APSs have become one of the most effective and widely used pharmaceutical delivery approaches for poorly water-soluble drugs in the last several decades. Considerable efforts have been made to investigate the physical stability and dissolution behaviors of APSs, however, the underlying mechanisms remain imperfectly understood. Recent studies reveal that surface and interface properties of APSs could strongly affect the physical stability and dissolution behaviors. This paper provides a comprehensive overview of recent studies focusing on the physical stability and dissolution behaviors of APSs from both surface and interface perspectives. We highlight the role of surface or interface properties in nucleation, crystal growth, phase separation, dissolution, and supersaturation. Meanwhile, the challenges and scope of research on surface and interface properties in the future are also briefly discussed. This review contributes to a better understanding of the surface- and interface-facilitated processes, which will provide more efficient and rational guidance for the design of APSs.
Collapse
Affiliation(s)
- Qin Shi
- School of Pharmacy, Jiangsu Vocational College of Medicine, Yancheng 224005, China.
| | - Sakib M Moinuddin
- California Northstate University, College of Pharmacy, 9700 West Taron Drive, Elk Grove, CA 95757, USA; East Bay Institute For Research & Education (EBIRE), 10535 Hospital Way, Bldg. 650 2nd Floor, Rm. 2B121A, Mather, CA 95655, USA
| | - Yanan Wang
- School of Pharmacy, Jiangsu Vocational College of Medicine, Yancheng 224005, China
| | - Fakhrul Ahsan
- California Northstate University, College of Pharmacy, 9700 West Taron Drive, Elk Grove, CA 95757, USA; East Bay Institute For Research & Education (EBIRE), 10535 Hospital Way, Bldg. 650 2nd Floor, Rm. 2B121A, Mather, CA 95655, USA.
| | - Fang Li
- School of Pharmacy, Jiangsu Vocational College of Medicine, Yancheng 224005, China.
| |
Collapse
|
6
|
Optimization of Particle Properties of Nanocrystalline Solid Dispersion Based Dry Powder for Inhalation of Voriconazole. J Pharm Sci 2022; 111:2592-2605. [PMID: 35700797 DOI: 10.1016/j.xphs.2022.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/08/2022] [Accepted: 06/08/2022] [Indexed: 11/23/2022]
Abstract
A one-step spray drying based process was employed to generate ready-to-use nanocrystalline solid dispersion (NCSD) dry powder for inhalation (DPI) of voriconazole (VRC). The solid dispersion was prepared by spray drying VRC, MAN (mannitol) and soya lecithin (LEC) from mixture of methanol-water. Various formulation and process related parameters were screened, including LEC, inlet temperature, total solid content and feed flow rate to generate particles of geometric size ≤5 µm. Aerosil® 200 was explored as the quaternary excipient either during spray drying or by physically mixing with the optimized ternary NCSD. The powders were extensively characterized for solid form, primary particle size, assay, embedded nanocrystal size, morphology, porosity, density and moisture content. Aerodynamic properties were studied using next generation impactor (NGI), while surface elemental composition and topography were investigated using SEM-EDS (scanning electron microscopy- energy dispersive spectroscopy) and AFM (atomic force microscopy), respectively. At selected inlet temperature of 120 ˚C, total solid content and feed flow rate significantly impacted the size of primary NCSD particles. Size of primary particles increased with increase in total solid content and feed flow rate of the solution. VRC nanocrystals were obtained in polymorphic Form B whereas the matrix of MAN consisted of mixture of polymorphic Forms α, β and δ. SEM-EDS analysis confirmed deposition of Aerosil® 200 on surface of spray dried particles. In addition to increased porosity and reduced density, increase in surface roughness of particles (evident from AFM topographic analysis) contributed to enhanced powder deposition at stages 3 and 4 in NGI. In comparison, physical blending of NCSD with Aerosil® 200 showed improvement in aerosolization due to flow enhancement property.
Collapse
|
7
|
Abstract
Wood modification is an excellent and increasingly used method to expand the application of woody materials. Traditional methods, such as chemical or thermal, have been developed for the targeted improvement of some selected properties, unfortunately typically at the expense of others. These methods generally alter the composition of wood, and thus its mechanical properties, and enhance dimensional stability, water resistance, or decrease its susceptibility to microorganisms. Although conventional methods achieve the desired properties, they require a lot of energy and chemicals, therefore research is increasingly moving towards more environmentally friendly processes. The advantage of modern methods is that in most cases, they only modify the surface and do not affect the structure and mechanical properties of the wood, while reducing the amount of chemicals used. Cold plasma surface treatment is one of the cheapest and easiest technologies with a limited burden on the environment. In this review, we focus on cold plasma treatment, the interaction between plasma and wood compounds, the advantages of plasma treatment compared to traditional methods, and perspectives.
Collapse
|
8
|
Goh CF, Lane ME. Advanced structural characterisation of pharmaceuticals using nano-thermal analysis (nano-TA). Adv Drug Deliv Rev 2022; 180:114077. [PMID: 34896130 DOI: 10.1016/j.addr.2021.114077] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 11/12/2021] [Accepted: 12/02/2021] [Indexed: 12/17/2022]
Abstract
The production of drug delivery systems fabricated at the nano scale comes with the challenges of identifying reliable characterisation tools, especially for solid dosage forms. A full understanding of physicochemical properties of solid-state systems at a high spatial resolution is essential to monitor their manufacturability, processability, performance (dissolution) and stability. Nano-thermal analysis (nano-TA), a hybrid of atomic force microscopy (AFM) and thermal analysis, has emerged as a solution to address the need for complete characterisation of samples with surface heterogeneity. Nano-TA provides not only physical information using conventional AFM but also the thermal behaviour of these systems as an additional chemical dimension. In this review, the principles and techniques of nano-TA are discussed with emphasis on recent pharmaceutical applications. Building on nano-TA, the combination of this approach with infrared spectroscopic analysis is briefly introduced. The challenges and considerations for future development of nano-TA characterisation are also outlined.
Collapse
Affiliation(s)
- Choon Fu Goh
- Discipline of Pharmaceutical Technology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia.
| | - Majella E Lane
- Department of Pharmaceutics, UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, United Kingdom.
| |
Collapse
|
9
|
Orally disintegrating films: The effects of water content on disintegration and mechanical properties. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102893] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|