1
|
Khan WA, Arain MB, Pedersen-Bjergaard S, Haq HU, Castro-Muñoz R, Boczkaj G. The role of nanomaterials in tailoring electromembrane extraction performance: A review. Talanta 2025; 289:127741. [PMID: 39993364 DOI: 10.1016/j.talanta.2025.127741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 02/10/2025] [Accepted: 02/12/2025] [Indexed: 02/26/2025]
Abstract
Electromembrane extraction (EME) is a membrane-based miniaturized microextraction technique used to extract ionized analytes from complex mixtures. EME extracts can be analyzed using all major analytical instrumental techniques. The major advantages of EME include short extraction time, low consumption of organic solvents and chemicals, high extraction capability, high selectivity, and efficient sample cleanup. Numerous modifications to EME, such as the use of microfluidic devices, green solvents, biobased renewable membranes, and hyphenation with other separation techniques, have increased the selectivity and sensitivity of EME. Furthermore, nanomaterials have been used to improve the efficiency, selectivity, and stability of EME systems. Various nanomaterials have been proposed for the modification of EME-based separation systems. The larger surface area, high porosity, and various interactions with the target analytes are the most important properties of nanomaterials and nanocomposites in improving the figures of merit of EME. Nanomaterials have mainly been used to modify the chemical composition of the liquid membrane in EME, but modifications of the polymeric support membrane and the electrodes have also been reported. Therefore, this review highlights the transformative role of nanomaterials in EME, focusing on their application in enhancing extraction efficiency, selectivity, and stability. Key advancements include modifying supported liquid membranes (SLMs), membrane decoration, and optimizing electrode performance. The review also critically examines challenges, such as pore blockage and electrolysis-induced instability, offering insights into future directions for nanomaterial-enhanced EME. Despite of the numerous benefits of nanomaterials, their environmental toxicity cannot be overlooked and should be carefully examined for each new case. A bio-based and biopolymer-based nanomaterials in future EME studies can significantly address these issues while remaining aligned with green chemistry principles. Artificial intelligence-based models should be applied to predict effective nanomaterials in EME, thus significantly reduce chemical costs and consumption while also increasing the greenness level of developed EME approaches. Finally, long-term stability of new developed solutions should be an obligatory part of each new research in this field.
Collapse
Affiliation(s)
- Wajid Ali Khan
- Department of Chemistry, Abdul Wali Khan University Mardan, 23200, KPK, Pakistan
| | - Muhammad Balal Arain
- Department of Chemistry, Faculty of Sciences, Erciyes University, 38039, Kayseri, Turkiye; Department of Chemistry, University of Karachi, 75270, Karachi, Pakistan
| | - Stig Pedersen-Bjergaard
- Institute of Pharmacy, University of Oslo, P.O. Box 1068 Blindern, 0316, Oslo, Norway; Institute of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
| | - Hameed Ul Haq
- Gdansk University of Technology, Faculty of Civil and Environmental Engineering, Department of Sanitary Engineering, 80 - 233 Gdansk, G. Narutowicza St. 11/12, Poland
| | - Roberto Castro-Muñoz
- Gdansk University of Technology, Faculty of Civil and Environmental Engineering, Department of Sanitary Engineering, 80 - 233 Gdansk, G. Narutowicza St. 11/12, Poland
| | - Grzegorz Boczkaj
- Gdansk University of Technology, Faculty of Civil and Environmental Engineering, Department of Sanitary Engineering, 80 - 233 Gdansk, G. Narutowicza St. 11/12, Poland; School of Civil, Environmental, and Architectural Engineering, College of Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea.
| |
Collapse
|
2
|
Shirkhodaie M, Seidi S, Shemirani F, Haghgouei H. Natural deep eutectic solvent-based hollow polymer inclusion membrane doped with TiO 2 nanoparticles: A new design of polymer inclusion membrane for on-chip electromembrane extraction of fluoroquinolones from food samples prior to liquid chromatography tandem mass analysis. Talanta 2025; 288:127696. [PMID: 39951989 DOI: 10.1016/j.talanta.2025.127696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 02/02/2025] [Accepted: 02/04/2025] [Indexed: 02/17/2025]
Abstract
A new design of polymer inclusion membrane has been proposed with the aim of addressing issues with using common forms of liquid membranes. To do so, a natural deep eutectic solvent (NADES) was employed as an extractant in the structure of the hollow polymer inclusion membrane (HPIM). Besides polyvinyl chloride (PVC) as a base polymer, titanium dioxide nanoparticles (TiO2) as well as polyethylene glycol polymer (PEG) were incorporated into the HPIM structure to achieve a nanocomposite form with a desirable hydrophilicity. The optimal HPIM was composed of 12.5 v/w% of thymol-coumarin NADES, 3.0 w/w% of TiO2 and 40.0 v/w% of PEG based on PVC content. Aiming to compare the applicability, HPIMs with other types of extractants, such as bis(2-ethylhexyl) phthalate (DEHP), and the mixture of DEHP-NADES were also fabricated. To confirm the successful fabrication of the HPIM, containing the aforementioned extractant doped with TiO2 nanoparticles various characterization techniques were employed. The resultant HPIM was employed as a liquid membrane in an on-chip electromembrane extraction (EME) of fluoroquinolones (FQs) from various samples, followed by LC-MS/MS analysis. The parameters influencing extraction performance were analyzed, and the proposed method was validated under ideal conditions. All the samples provided excellent performance concerning limits of detection (0.01-0.08 ng mL-1), and quantification (0.03-0.25 ng mL-1) together with an excellent linearity (R2 ≥ 0.9978). The method indicates the desirable RSDs% in the range of 3.2-7.0 % (intra-day, n = 3 × 3) and 3.8-6.1 % (inter-day, n = 3 × 3) for three spiked levels. The satisfactory relative recoveries fell within the 92.0-115.0 % range.
Collapse
Affiliation(s)
- Mahsa Shirkhodaie
- School of Chemistry, College of Science, University of Tehran, P.O. Box 14155-6455, Tehran, Iran
| | - Shahram Seidi
- Department of Analytical Chemistry, Faculty of Chemistry, K.N. Toosi University of Technology, P.O. Box 16315-1618, 15418-49611, Tehran, Iran; Nanomaterial, Separation and Trace Analysis Research Lab, K.N. Toosi University of Technology, P.O. Box 16315-1618, 15418-49611, Tehran, Iran
| | - Farzaneh Shemirani
- School of Chemistry, College of Science, University of Tehran, P.O. Box 14155-6455, Tehran, Iran.
| | - Hanieh Haghgouei
- Department of Analytical Chemistry, Faculty of Chemistry, K.N. Toosi University of Technology, P.O. Box 16315-1618, 15418-49611, Tehran, Iran; Nanomaterial, Separation and Trace Analysis Research Lab, K.N. Toosi University of Technology, P.O. Box 16315-1618, 15418-49611, Tehran, Iran
| |
Collapse
|
3
|
Chen L, Yan Y, Hong C, Wei X, Xiong J, Huang C, Shen X. Successive electromembrane extraction: A new insight in simultaneous extraction of polar and non-polar metabolic molecules from biological samples. Anal Chim Acta 2025; 1344:343727. [PMID: 39984214 DOI: 10.1016/j.aca.2025.343727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 01/24/2025] [Accepted: 01/24/2025] [Indexed: 02/23/2025]
Abstract
BACKGROUND Simultaneous determination of different natures of analytes is of great significance for saving sample volumes and simplifying analytical procedures. However, sample preparation for the simultaneous extraction of polar and non-polar analytes represents a challenge in sample preparation. Inspired by the successive liquid-phase microextraction (sLPME) method for acidic and basic analytes that we previously developed, we first proposed an efficient successive electromembrane extraction (sEME) system by adjusting the acidity of the donor solution and using binary organic solvents for extraction of polar and non-polar targets from biological samples in this work. RESULTS We performed a detailed optimization of the sEME system. Here, carnitine (C0) and acylcarnitines were selected as model analytes since the demand increased especially in metabolomics studies. The combination of 2-nonanone and 2-nitrophenylpentyl ether (NPPE) was selected as supported liquid membranes (SLMs), and trichloroacetic acid (TCA) 100 % (v/v) was added to donor solution to adjust the acidity of the donor solution after the first sEME process (sEME-1). The recoveries of the targets in blood and urine were 47%-119% and 54%-118%, respectively. Moreover, the sEME systems were evaluated by liquid chromatography tandem mass spectrometry (LC-MS/MS) from biological samples. The limit of detection (LOD) and limit of quantitation (LOQ) of analytes were 0.03-1.33 ng mL-1 and 0.09-4.42 ng mL-1, respectively. SIGNIFICANCE sEME enabled the extraction of polar and non-polar analytes from the same sample under optimal extraction conditions for all target analytes, which provided ideas for efficient sEME of exogenous and endogenous analytes from biological samples for forensic, clinical, and epidemiological studies.
Collapse
Affiliation(s)
- Li Chen
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, China
| | - Yibo Yan
- Department of Forensic Medicine, Huazhong University of Science and Technology, Hangkong Road #13, Wuhan 430030, Hubei, China
| | - Changbao Hong
- Department of Forensic Medicine, Huazhong University of Science and Technology, Hangkong Road #13, Wuhan 430030, Hubei, China
| | - Xiangting Wei
- Department of Forensic Medicine, Huazhong University of Science and Technology, Hangkong Road #13, Wuhan 430030, Hubei, China
| | - Jianhua Xiong
- Department of Forensic Medicine, Huazhong University of Science and Technology, Hangkong Road #13, Wuhan 430030, Hubei, China
| | - Chuixiu Huang
- Department of Forensic Medicine, Huazhong University of Science and Technology, Hangkong Road #13, Wuhan 430030, Hubei, China.
| | - Xiantao Shen
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, China.
| |
Collapse
|
4
|
Song C, Dowlatshah S, Gaznawi S, Hay AO, Hasvold G, Hansen FA. New robust and efficient liquid membranes for conductive vial electromembrane extraction of acids with low to moderate hydrophilicity in human plasma. Anal Bioanal Chem 2025; 417:1293-1303. [PMID: 39207493 PMCID: PMC11861104 DOI: 10.1007/s00216-024-05503-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/06/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024]
Abstract
The current paper reports two new, robust, and efficient conditions for electromembrane extraction of acidic substances from human plasma. Two systems were developed based on eutectic solvents: A1 ("A" for acid) comprised dodecyl methyl sulfoxide and thymol in 1:2 ratio (w/w) as liquid membrane, while A2 used [6-methylcoumarin:thymol (1:2)]:2-nitrophenyl octyl ether in 2:1 ratio (w/w). The performance of A1 and A2 was characterized by extraction of 31 acidic model analytes (pharmaceutical drugs and nutrients) spiked into 100 µL human plasma diluted 1:1 (v/v) with phosphate buffer pH 7.4. The acceptor solution was 50 mM NH4HCO3 buffer pH 10.0, and extraction was performed at an agitation rate of 750 RPM. Voltage and extraction time were 30 V for 30 min and 10 V for 20 min for A1 and A2, respectively. Under optimal conditions, A1 extracted analytes with 1.8 ≤ log P ≤ 6.0 with an average recovery (R) of 85.1%, while A2 extracted in a range of 0.5 ≤ log P ≤ 6.0 with an average recovery of 79.9%. Meanwhile, extraction current was low at 9 and 26 µA, respectively, which is indicative of good system robustness. Using UHPLC-MS/MS analysis of the acceptor solution, repeatability of the A1 and A2 methods was determined to be 2.8-7.7% and 3.3-9.4% for R > 40%, matrix effects were 82-117% and 84-112%, respectively, and linear calibration curves were obtained. The performance and compatibility with human plasma represent a major improvement over previous state-of-the-art liquid membranes for acidic analytes, namely 1-octanol.
Collapse
Affiliation(s)
- Chenchen Song
- Department of Pharmacy, University of Oslo, Blindern, P.O. Box 1068, 0316, Oslo, Norway
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Samira Dowlatshah
- Department of Pharmacy, University of Oslo, Blindern, P.O. Box 1068, 0316, Oslo, Norway
| | - Somayeh Gaznawi
- Department of Pharmacy, University of Oslo, Blindern, P.O. Box 1068, 0316, Oslo, Norway
| | - Anne Oldeide Hay
- Department of Pharmacy, University of Oslo, Blindern, P.O. Box 1068, 0316, Oslo, Norway
| | - Grete Hasvold
- Department of Pharmacy, University of Oslo, Blindern, P.O. Box 1068, 0316, Oslo, Norway
| | - Frederik André Hansen
- Department of Pharmacy, University of Oslo, Blindern, P.O. Box 1068, 0316, Oslo, Norway.
| |
Collapse
|
5
|
Sahragard A, Pagan-Galbarro C, Cocovi-Solberg DJ, Miró M. Dual microelectromembrane extraction as a tunable platform for the determination of antioxidant compounds with varied hydrophobicity in oral bioaccessibility assays of food commodities: a proof of concept. Anal Bioanal Chem 2025; 417:1421-1430. [PMID: 39891662 PMCID: PMC11861116 DOI: 10.1007/s00216-025-05744-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/23/2024] [Accepted: 01/13/2025] [Indexed: 02/03/2025]
Abstract
An automatic millifluidic dual microelectromembrane extraction (D-µEME) method as a front-end to HPLC-UV-Vis is herein proposed for the first time to facilitate the matrix clean-up of relatively polar polyphenolic acidic (PPA) antioxidants with a relatively broad range of lipophilicity (logP from -0.27 to 2.14) from simulated gastric extracts of oral bioaccessibility tests. The flow setup is amenable to handle microliter volumes of two distinct organic phases along with donor and acceptor phases unsupervised, conduct in-tube D-µEME in parallel without supporting membranes, and mix the two acceptor phases automatically prior to online HPLC-UV-Vis. The target antioxidants involve gallic acid, chlorogenic acid, 4-hydroxybenzoic acid, caffeic acid, and trans-cinnamic acid. Various solvents are explored to investigate their compatibility for simultaneous D-µEME, including 1-pentanol, 1-hexanol, 1-heptanol, 1-octanol, and 1-nonanol, as well as deep eutectic solvents, e.g., thymol/6-methyl coumarin, and ionic liquids as additives to alcohols. Notably, 1-pentanol and 1-octanol exhibit the best performances in extracting the most polar (gallic acid and chlorogenic acid) and the least polar analytes (trans-cinnamic acid), respectively, notwithstanding both solvents are amenable to retrieve analytes with medium hydrophobicity (4-hydroxybenzoic acid and caffeic acid). The effects of the voltage, the extraction time, and the sample ionic strength on the extraction recoveries are also investigated in detail. Under the selected D-µEME conditions, the overall linear ranges span from 1.25 to 80 mg/L, with limits of detection ranging from 0.2 to 3.3 mg/L. The flow-based D-µEME is resorted to oral bioaccessibility assays in the gastric phase of the target compounds from eggplant, blueberry, and coffee bean extracts, with relative extraction recoveries ranging from 71.5 to 133.5%.
Collapse
Affiliation(s)
- Ali Sahragard
- FI-TRACE Group, Department of Chemistry, Faculty of Science, University of the Balearic Islands, Illes Balears, Carretera de Valldemossa Km 7.5, 07122, Palma, Spain.
| | - Carlos Pagan-Galbarro
- FI-TRACE Group, Department of Chemistry, Faculty of Science, University of the Balearic Islands, Illes Balears, Carretera de Valldemossa Km 7.5, 07122, Palma, Spain
| | - David J Cocovi-Solberg
- Department of Chemistry, Institute of Analytical Chemistry, University of Natural Resources and Life Sciences, Muthgasse 18, 1190, Vienna, Austria
| | - Manuel Miró
- FI-TRACE Group, Department of Chemistry, Faculty of Science, University of the Balearic Islands, Illes Balears, Carretera de Valldemossa Km 7.5, 07122, Palma, Spain.
| |
Collapse
|
6
|
Orlando RM, Dvořák M, Kubáň P. Electroextraction of Large Volume Samples Using Paper Points Coupled With Hollow Fiber Membranes: Study of Parameters and Strategies to Enhance Analytical Performance. Electrophoresis 2024. [PMID: 39470112 DOI: 10.1002/elps.202400102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/29/2024] [Accepted: 10/04/2024] [Indexed: 10/30/2024]
Abstract
Electroextraction (EE) encompasses a range of sample preparation methods whose effectiveness, selectivity, and efficiency are significantly influenced by the physical-chemical characteristics of analytes, samples, and instrumental conditions. This article explores, for the first time, various strategies aimed at enhancing the extraction efficiency of a recent approach of EE utilizing a paper point (PP) combined with a hollow fiber (HF) (abbreviated as PP-HF-EE) to extract various cationic and anionic model compounds from water samples. The study also explores, experimentally, the impact of agitation, organic filter composition, PP diameter, and PP brand on extraction performance, and proves that all these factors are quite important, especially when digital image analysis is utilized for determination. Furthermore, this work demonstrates the ease and feasibility of simultaneously extracting cations and anions using PP-HF-EE and proposes a straightforward method to enhance analyte concentration on the vertex of the PP through a base-to-vertex focusing. Lastly, it is demonstrated, using capillary electrophoresis coupled to a UV-Vis detector, that for PP-HF-EE, the extraction efficiency and pre-concentration factor are less dependent on other parameters when multiple PPs per sample are utilized, with signal enhancement values of up to 111 and 339 for nortriptyline and haloperidol, respectively. All the findings and strategies presented herein constitute significant contributions that can facilitate future research in method development, particularly in the utilization of PP-HF-EE and similar EE approaches.
Collapse
Grants
- RVO68081715 by Czech Academy of Sciences, PROCAD Segurança Pública e Ciências Forenses, INCTAA/ CNPq/FAPESP, and Rede Mineira de Ciências Forenses.
- 88881.516313/2029-01 by Czech Academy of Sciences, PROCAD Segurança Pública e Ciências Forenses, INCTAA/ CNPq/FAPESP, and Rede Mineira de Ciências Forenses.
- 465768/2014-8 by Czech Academy of Sciences, PROCAD Segurança Pública e Ciências Forenses, INCTAA/ CNPq/FAPESP, and Rede Mineira de Ciências Forenses.
- 2014/50951-4 by Czech Academy of Sciences, PROCAD Segurança Pública e Ciências Forenses, INCTAA/ CNPq/FAPESP, and Rede Mineira de Ciências Forenses.
- RED-00120-23 by Czech Academy of Sciences, PROCAD Segurança Pública e Ciências Forenses, INCTAA/ CNPq/FAPESP, and Rede Mineira de Ciências Forenses.
Collapse
Affiliation(s)
- Ricardo Mathias Orlando
- Laboratory of Microfluidics and Separations (LaMS), Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Miloš Dvořák
- Institute of Analytical Chemistry of the Czech Academy of Sciences, v. v. i., Brno, Czech Republic
| | - Pavel Kubáň
- Institute of Analytical Chemistry of the Czech Academy of Sciences, v. v. i., Brno, Czech Republic
| |
Collapse
|
7
|
Liu C, Liu J, Liu Q, Zhu Q, Wang H, Fang X, Zhang W, Liu Z, Huang C. Confined Gel-Electromembrane Extraction of Oligonucleotides. Anal Chem 2024; 96:13217-13225. [PMID: 39078883 DOI: 10.1021/acs.analchem.4c02239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
Gel-electromembrane extraction (G-EME) is an increasingly popular green variant of electromembrane extraction (EME). However, the electroendosmosis (EEO) flow associated with G-EME greatly limits the development of this technology. To address this challenge, the current study proposed the concept of confined G-EME (CG-EME), and a three-dimensional-printed modular device was elaborately designed to realize this concept. The device blocked the EEO flow by limiting the volume of the sample compartment. Moreover, the mesh structure at the bottom of the extraction module helps to prepare thin and stable gel films, which enhance the electromigration driving force and shorten the migration path. In addition, polar oligonucleotides, a nucleic acid analyte, were extracted for the first time to prove the concept of CG-EME. After optimization, 62% of the oligonucleotides were extracted at 50 V voltage for 15 min using a 3 mm thick agarose (3%) gel film. Finally, the application capability of CG-EME was further demonstrated by recovering DNA primers and isolating disease biomarkers (miRNA-181b) from real samples. In combination with CG-EME and quantitative polymerase chain reaction (qPCR) analysis, the upregulation of miRNA-181b expression in the peripheral blood of patients with schizophrenia was observed. In conclusion, this study proposes CG-EME to diminish EEO and push EME into the clinical field to isolate nucleic acid biomarkers, which will greatly expand the application scenarios of this emerging technology.
Collapse
Affiliation(s)
- Cong Liu
- Department of Forensic Medicine, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jie Liu
- Department of Forensic Medicine, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Quan Liu
- Hubei Key Laboratory of the Forensic Science, Hubei University of Police, Wuhan 430035, China
| | | | - Hao Wang
- Wuhan YouFu Hospital, Wuhan 430000, China
| | | | - Wenfang Zhang
- Key Laboratory of Forensic Toxicology, Ministry of Public Security, People's Republic of China (Beijing Municipal Public Security Bureau), Beijing 100000, China
| | - Zilong Liu
- Department of Forensic Medicine, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Chuixiu Huang
- Department of Forensic Medicine, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
8
|
Román-Hidalgo C, Villar-Navarro M, Martín-Valero MJ, López-Pérez G. Chemical nature evolution of solid supports used in electromembrane extraction procedures: A comparative analysis based on metric tools. Anal Chim Acta 2024; 1316:342868. [PMID: 38969413 DOI: 10.1016/j.aca.2024.342868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/11/2024] [Accepted: 06/11/2024] [Indexed: 07/07/2024]
Abstract
BACKGROUND In recent decades, green chemistry has been focusing on the adaptation of different chemical methods towards environmental friendliness. Sample preparation procedures, which constitute a fundamental step in analytical methodology, have also been modified and implemented in this direction. In particular, electromembrane extraction (EME) procedures, which have traditionally used plastic supports, have been optimized towards greener approaches through the emergence of alternative materials. In this regard, biopolymer-based membranes (such as agarose or chitosan) have become versatile and very promising substitutes to perform these processes. RESULTS Different green metric tools (Analytical Eco-Scale, ComplexGAPI and AGREEprep have been applied to study the evolution of solid supports used in EME from nanostructured tissues and polymer inclusion membranes to agar films and chitosan flat membranes. The main goal is to evaluate the usage of these new biomaterials in the analytical procedure to quantify their environmental impact in the frame of Green Analytical Chemistry (GAC). In addition, both RGB model and BAGI metrics have been employed to study the sustainability of the whole procedure, including not only greenness, but also analytical performance and feasibility aspects. Results obtained after the performance of the mentioned metrics have demonstrated that the most efficient and environmentally friendly analytical methods are based on the use of chitosan supports. This improvement is mainly due to the chemical nature of this biopolymer as well as to the removal of organic solvents. SIGNIFICANCE This work highlights the advantages of biodegradable materials employment in EME procedures to achieve green analytical methodologies. These materials also contribute to raise the figure of merits regarding to the quantification parameters in a wide range of applications compared to classical supports employed in EME, thus enhancing sustainability of procedures.
Collapse
Affiliation(s)
- Cristina Román-Hidalgo
- Department of Analytical Chemistry, Faculty of Chemistry, Universidad de Sevilla, C/Prof. García González, s/n, 41012, Seville, Spain.
| | - Mercedes Villar-Navarro
- Department of Analytical Chemistry, Faculty of Chemistry, Universidad de Sevilla, C/Prof. García González, s/n, 41012, Seville, Spain
| | - María Jesús Martín-Valero
- Department of Analytical Chemistry, Faculty of Chemistry, Universidad de Sevilla, C/Prof. García González, s/n, 41012, Seville, Spain
| | - Germán López-Pérez
- Department of Physical Chemistry, Faculty of Chemistry, Universidad de Sevilla, C/Prof. García González, s/n, 41012, Seville, Spain.
| |
Collapse
|
9
|
Dikobe J, Melato FA, Adlem CJL, Netshiongolwe K. Determination of chromium species in water using diphenylcarbazide with a sequential spectrophotometric discrete robotic analyser. Heliyon 2024; 10:e34670. [PMID: 39130436 PMCID: PMC11315072 DOI: 10.1016/j.heliyon.2024.e34670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 07/10/2024] [Accepted: 07/15/2024] [Indexed: 08/13/2024] Open
Abstract
There is an increasing need for fast and reliable analytical methods for the determination of chemical forms of elements in environmental samples. The interest in chromium is driven by the fact that its toxicity depends on its oxidation state. Although chromium (III) is essential for mammals to maintain their metabolism of proteins, fats, and carbohydrates, chromium (VI) is toxic to humans. For chromium speciation, several costly analytical methods coupling separation methods with atomic absorption and emission spectroscopy have been developed. This article presents the online robotic discrete analyser procedure with the 1,5 diphenylcarbazide (DPC) method for the speciation of Cr (III) and Cr (VI). Cr (III) was determined by difference since it does not interfere with the reaction of Cr (VI)-DPC. Chromium (VI) and total chromium were characterised sequentially (after online oxidation of Cr (III) by Cerium (Ce (IV)). The calibration graphs were linear under experimental conditions up to 1 mg/L Cr (VI) and 2 mg/L total Cr with correlation coefficient R2, 0.9997 and 0.9999 respectively. At a signal-to-noise ratio of three, the detection limits were 0.004 mg/L Cr (VI) and 0.015 mg/L total Cr. Good agreement between the real values of certified reference materials and the chromium species content was obtained in this study. The method was precise with a percentage relative standard deviation of less than 2 for hexavalent chromium and total chromium. The t-stat demonstrates that there was no significant difference between the developed robotic discrete analyser method and the ICP-MS method. Except for effluent water, which had recoveries between 65 and 75 % in the assessment of the devised method's selectivity, the overall percentage of recoveries fell between 90 and 110 %, which was generally satisfactory. This method proved to be appropriate for its intended use.
Collapse
Affiliation(s)
- Jerry Dikobe
- Tshwane University of Technology, Department of Chemistry, Private Bag X680, Pretoria, 0001, South Africa
- Council for Scientific and Industrial Research, Meiring Naude Road, Brummeria, Pretoria, 0001, South Africa
| | - Funzani Asnath Melato
- Tshwane University of Technology, Department of Chemistry, Private Bag X680, Pretoria, 0001, South Africa
| | | | - Khathutshelo Netshiongolwe
- Tshwane University of Technology, Department of Chemistry, Private Bag X680, Pretoria, 0001, South Africa
| |
Collapse
|
10
|
Sahragard A, Carrasco-Correa EJ, Cocovi-Solberg DJ, Kubáň P, Miró M. Enhancing the Concentration Capability of Nonsupported Electrically Driven Liquid-Phase Microextraction through Programmable Flow Using an All-In-One 3D-Printed Optosensor: A Proof of Concept. Anal Chem 2024; 96:11068-11075. [PMID: 38917332 PMCID: PMC11238157 DOI: 10.1021/acs.analchem.4c02139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
A versatile millifluidic 3D-printed inverted Y-shaped unit (3D-YSU) was prototyped to ameliorate the concentration capability of nonsupported microelectromembrane extraction (μ-EME), exploiting optosensing detection for real-time monitoring of the enriched acceptor phase (AP). Continuous forward-flow and stop-and-go flow modes of the donor phase (DP) were implemented via an automatic programmable-flow system to disrupt the electrical double layer generated at the DP/organic phase (OP) interface while replenishing the potentially depleted layers of analyte in DP. To further improve the enrichment factor (EF), the organic holding section of the OP/AP channel was bifurcated to increase the interfacial contact area between the DP and the OP. Exploiting the synergistic assets of (i) the continuous forward-flow of DP (1050 μL), (ii) the unique 3D-printed cone-shaped pentagon cross-sectional geometry of the OP/AP channel, (iii) the bifurcation of the OP that creates an inverted Y-shape configuration, and (iv) the in situ optosensing of the AP, a ca. 24 EF was obtained for a 20 min extraction using methylene blue (MB) as a model analyte. The 3D-YSU was leveraged for the unsupervised μ-EME and the determination of MB in textile dye and urban wastewater samples, with relative recoveries ≥88%. This is the first work toward analyte preconcentration in μ-EME with in situ optosensing of the resulting extracts using 3D-printed millifluidic platforms.
Collapse
Affiliation(s)
- Ali Sahragard
- FI-TRACE Group, Department of Chemistry, Faculty of Science, University of the Balearic Islands, Carretera de Valldemossa km 7.5, E-07122 Palma de Mallorca, Illes Balears, Spain
| | - Enrique Javier Carrasco-Correa
- CLECEM Group, Department of Analytical Chemistry, University of Valencia, C/Doctor Moliner, 50, 46100 Burjassot, Valencia, Spain
| | - David J Cocovi-Solberg
- Department of Chemistry, Institute of Analytical Chemistry, University of Natural Resources and Life Sciences Vienna, Muthgasse 18, 1190 Vienna, Austria
| | - Pavel Kubáň
- Institute of Analytical Chemistry of the Czech Academy of Sciences, Veveří 97, CZ-60200 Brno, Czech Republic
| | - Manuel Miró
- FI-TRACE Group, Department of Chemistry, Faculty of Science, University of the Balearic Islands, Carretera de Valldemossa km 7.5, E-07122 Palma de Mallorca, Illes Balears, Spain
| |
Collapse
|
11
|
Orlando RM, Dvořák M, Kubáň P. Electroextraction of methylene blue from aqueous environmental samples using paper points coupled with hollow fiber membranes. Talanta 2024; 273:125849. [PMID: 38490026 DOI: 10.1016/j.talanta.2024.125849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/26/2024] [Accepted: 02/28/2024] [Indexed: 03/17/2024]
Abstract
This article introduces a novel approach by coupling paper points with hollow fiber membrane for electroextraction (PP-HF-EE). The method was innovatively applied to extract methylene blue (MB) from large water volumes (up to 580 mL). A comprehensive study of six key parameters - organic filter, acceptor and donor phase composition, extraction time, applied voltage, and sample volume - was conducted using conventional flatbed scanning and digital image analysis. Our results revealed that extraction performance was primarily influenced by time, with low voltages (50 V) and low-conductivity organic filters (1-decanol) yielding comparable results to higher settings (300 V or 1-pentanol). Under optimized conditions (50 V, 60 min, 1-decanol as the organic filter), analytical performance parameters were assessed, demonstrating acceptable precision (RSD <18% for intra- and inter-day measurements) within a linear range of 5-100 μg L-1 (r = 0.98). PP-HF-EE demonstrated reliability through stable and reproducible electric current measurements during all extraction studies. Utilizing an extremely cost-effective detection system, PP-HF-EE achieved detection limits in the low ppb range, highlighting its potential as a promising variation of electromembrane extraction for environmental sample analysis.
Collapse
Affiliation(s)
- Ricardo Mathias Orlando
- Laboratory of Microfluidics and Separations, LaMS, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| | - Miloš Dvořák
- Institute of Analytical Chemistry of the Czech Academy of Sciences, v. v. i., Veveří 97, Brno, Czech Republic
| | - Pavel Kubáň
- Institute of Analytical Chemistry of the Czech Academy of Sciences, v. v. i., Veveří 97, Brno, Czech Republic
| |
Collapse
|
12
|
Tahmasebi E, Javadi A. Introduction of an electrospun nanofibrous membrane incorporated by metal-organic framework-199 (MOF-199) with Lewis acid property for efficient extraction of sulfonamides in on-chip electromembrane extraction. J Chromatogr A 2024; 1723:464900. [PMID: 38643741 DOI: 10.1016/j.chroma.2024.464900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/24/2024] [Accepted: 04/09/2024] [Indexed: 04/23/2024]
Abstract
In this study, a new supporting polymeric membrane having Lewis acid nature was introduced for immobilizing organic solvent in on-chip electromembrane extraction (on-chip EME). For this aim, a polymeric nanofibrous membrane incorporated by a copper based metal-organic framework (MOF-199), with coordinatively unsaturated metal sites and Lewis acid property, was prepared by electrospinning a mixture of polycaprolactone (PCL) and MOF-199. Based on the field emission scanning electron microscopy images, the obtained polymeric membrane consisted of intertwined nanofibers having empty space between the fibers which could provide a suitable place for immobilizing the organic solvent. To demonstrate remarkable extractability of the proposed membrane (PCL/MOF-199 nanofibers) via executing Lewis acid-base interactions, three sulfonamide drugs was selected as anionic polar analytes with Lewis base feature. The parameters affecting the extraction efficiency of the method were optimized through the experimental design method using the orthogonal and rotatable central composite design (CCD). Under optimum conditions, the extraction recoveries ranging from 35.5 to 71.2 %, the relative standard deviations (RSD%) less than 6.45 %, and the detection limits in the range of 0.2-0.5 μg L-1 were achieved. The comparison of the extraction efficiency of the on-chip EME method using the electrospun PCL/MOF-199 nanofibers and PCL nanofibers membranes indicated that the proposed membrane was more efficient for extraction of sulfonamides because of the significant Lewis acid-base interactions of sulfonamides with copper uncoordinated open sites in MOF-199. Finally, the performance of the proposed method for extraction and determination of sulfonamides in three real samples was assayed.
Collapse
Affiliation(s)
- Elham Tahmasebi
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran.
| | - Arezou Javadi
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
| |
Collapse
|
13
|
Sahragard A, Dvořák M, Pagan-Galbarro C, Carrasco-Correa EJ, Kubáň P, Miró M. 3D-printed stereolithographic fluidic devices for automatic nonsupported microelectromembrane extraction and clean-up of wastewater samples. Anal Chim Acta 2024; 1297:342362. [PMID: 38438239 DOI: 10.1016/j.aca.2024.342362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 03/06/2024]
Abstract
BACKGROUND There is a quest of novel functional and reliable platforms for enhancing the efficiency of microextraction approaches in troublesome matrices, such as industrial wastewaters. 3D printing has been proven superb in the analytical field to act as the springboard of microscale extraction approaches. RESULTS In this work, low-force stereolithography (SL) was exploited for 3D printing and prototyping bespoke fluidic devices for accommodating nonsupported microelectromembrane extraction (μEME). The analytical performance of 3D-printed μEME devices with distinct cross-sections, including square, circle, and obround, and various channel dimensions was explored against that of commonly used circular polytetrafluoroethylene (PTFE) tubing in flow injection systems. A computer-controlled millifluidic system was harnessed for the (i) automatic liquid-handling of minute volumes of donor, acceptor, and organic phases at the low μL level that spanned from 3 to 44 μL in this work, (ii) formation of three-phase μEME, (iii) in-line extraction, (iv) flow-through optical detection of the acceptor phase, and (v) solvent removal and regeneration of the μEME device and fluidic lines. Using methylene blue (MB) as a model analyte, experimental results evinced that the 3D-printed channels with an obround cross-section (2.5 mm × 2.5 mm) were the most efficient in terms of absolute extraction recovery (59%), as compared to PTFE tubing of 2.5 mm inner diameter (27%). This is attributed to the distinctive convex interface of the organic phase (1-octanol), with a more pronounced laminar pattern, in 3D-printed SL methacrylate-based fluidic channels against that of PTFE tubing on account of the enhanced 1-octanol wettability and lower contact angles for the 3D-printed devices. The devices with obround channels were leveraged for the automatic μEME and in-line clean-up of MB in high matrix textile dyeing wastewater samples with relative recoveries ≥81%, RSD% ≤ 17.1% and LOD of 1.3 mg L-1. The 3D-printed nonsupported μEME device was proven superb for the analysis of wastewater samples with an elevated ionic strength (0.7 mol L-1 NaCl, 5000 mg L-1 Na2CO3, and 0.013 mol L-1 NaOH) with recorded electric currents below 12 μA. NOVELTY The coupling of 3D printing with nonsupported μEME in automatic flow-based systems is herein proposed for the first time and demonstrated for the clean-up of troublesome samples, such as wastewaters.
Collapse
Affiliation(s)
- Ali Sahragard
- FI-TRACE Group, Department of Chemistry, Faculty of Science, University of the Balearic Islands, Carretera de Valldemossa km 7.5, E-07122, Palma de Mallorca, Illes Balears, Spain
| | - Miloš Dvořák
- Institute of Analytical Chemistry of the Czech Academy of Sciences, Veveří 97, CZ-60200, Brno, Czech Republic
| | - Carlos Pagan-Galbarro
- FI-TRACE Group, Department of Chemistry, Faculty of Science, University of the Balearic Islands, Carretera de Valldemossa km 7.5, E-07122, Palma de Mallorca, Illes Balears, Spain
| | - Enrique Javier Carrasco-Correa
- CLECEM Group, Department of Analytical Chemistry, University of Valencia, C/ Doctor Moliner, 50, 46100, Burjassot, Valencia, Spain
| | - Pavel Kubáň
- Institute of Analytical Chemistry of the Czech Academy of Sciences, Veveří 97, CZ-60200, Brno, Czech Republic
| | - Manuel Miró
- FI-TRACE Group, Department of Chemistry, Faculty of Science, University of the Balearic Islands, Carretera de Valldemossa km 7.5, E-07122, Palma de Mallorca, Illes Balears, Spain.
| |
Collapse
|
14
|
de Sousa DVM, Orlando RM, Pereira FV. Layer-by-layer assembly of PDDA/MWCNTs thin films as an efficient strategy for extraction of organic compounds from complex samples. J Chromatogr A 2024; 1717:464705. [PMID: 38310702 DOI: 10.1016/j.chroma.2024.464705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/06/2024]
Abstract
This article presents the assembly and characterization of poly(diallyldimethylammonium chloride)/multi-walled carbon nanotubes (PDDA/MWCNTs) thin films on borosilicate bottles using a layer-by-layer (LBL) approach. The thin films, consisting of 10 bilayers of coating materials, were thoroughly characterized using UV-VIS spectroscopy, scanning electron microscopy (SEM), and zeta potential measurements. The modified bottles were then utilized for the extraction of analytes with diverse acid-base characteristics, including drugs, illicit drugs, and pesticides, from saliva, urine, and surface water samples. The studied analytes can be adsorbed on the surface of the LBL film mainly through hydrogen bonding and/or hydrophobic interactions. Remarkably high extraction percentages of up to 92 % were achieved, accompanied by an impressive enhancement in the analytical signal of up to 12 times when the sample volume was increased from 0.7 to 10 mL. These results highlight the outstanding extraction and sorption capabilities of the developed material. Additionally, the (PDDA/MWCNTs)10 films exhibited notable resistance to extraction and desorption processes, enabling their reuse for at least 5 cycles. The straightforward and cost-effective fabrication of these sorbent materials using the LBL technique, combined with the ability to extract target compounds during sample transportation and/or storage, renders this sample preparation method a promising alternative.
Collapse
Affiliation(s)
- Denise V Monteiro de Sousa
- Department of Chemistry, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, Belo Horizonte, MG CEP 31270-901, Brazil
| | - Ricardo Mathias Orlando
- Department of Chemistry, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, Belo Horizonte, MG CEP 31270-901, Brazil
| | - Fabiano Vargas Pereira
- Department of Chemistry, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, Belo Horizonte, MG CEP 31270-901, Brazil.
| |
Collapse
|
15
|
Krebs F, Zagst H, Stein M, Ratih R, Minkner R, Olabi M, Hartung S, Scheller C, Lapizco-Encinas BH, Sänger-van de Griend C, García CD, Wätzig H. Strategies for capillary electrophoresis: Method development and validation for pharmaceutical and biological applications-Updated and completely revised edition. Electrophoresis 2023; 44:1279-1341. [PMID: 37537327 DOI: 10.1002/elps.202300158] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 07/19/2023] [Indexed: 08/05/2023]
Abstract
This review is in support of the development of selective, precise, fast, and validated capillary electrophoresis (CE) methods. It follows up a similar article from 1998, Wätzig H, Degenhardt M, Kunkel A. "Strategies for capillary electrophoresis: method development and validation for pharmaceutical and biological applications," pointing out which fundamentals are still valid and at the same time showing the enormous achievements in the last 25 years. The structures of both reviews are widely similar, in order to facilitate their simultaneous use. Focusing on pharmaceutical and biological applications, the successful use of CE is now demonstrated by more than 600 carefully selected references. Many of those are recent reviews; therefore, a significant overview about the field is provided. There are extra sections about sample pretreatment related to CE and microchip CE, and a completely revised section about method development for protein analytes and biomolecules in general. The general strategies for method development are summed up with regard to selectivity, efficiency, precision, analysis time, limit of detection, sample pretreatment requirements, and validation.
Collapse
Affiliation(s)
- Finja Krebs
- Institute, of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Braunschweig, Lower Saxony, Germany
| | - Holger Zagst
- Institute, of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Braunschweig, Lower Saxony, Germany
| | - Matthias Stein
- Institute, of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Braunschweig, Lower Saxony, Germany
| | - Ratih Ratih
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Surabaya, Surabaya, East Java, Indonesia
| | - Robert Minkner
- Institute, of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Braunschweig, Lower Saxony, Germany
| | - Mais Olabi
- Institute, of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Braunschweig, Lower Saxony, Germany
| | - Sophie Hartung
- Institute, of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Braunschweig, Lower Saxony, Germany
| | - Christin Scheller
- Institute, of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Braunschweig, Lower Saxony, Germany
| | - Blanca H Lapizco-Encinas
- Department of Biomedical Engineering, Kate Gleason College of Engineering, Rochester Institute of Technology, Rochester, New York, USA
| | - Cari Sänger-van de Griend
- Kantisto BV, Baarn, The Netherlands
- Department of Medicinal Chemistry, Faculty of Pharmacy, Uppsala Universitet, Uppsala, Sweden
| | - Carlos D García
- Department of Chemistry, Clemson University, Clemson, South Carolina, USA
| | - Hermann Wätzig
- Institute, of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Braunschweig, Lower Saxony, Germany
| |
Collapse
|
16
|
Hadavi D, Tosheva I, Siegel TP, Cuypers E, Honing M. Technological advances for analyzing the content of organ-on-a-chip by mass spectrometry. Front Bioeng Biotechnol 2023; 11:1197760. [PMID: 37284240 PMCID: PMC10239923 DOI: 10.3389/fbioe.2023.1197760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/05/2023] [Indexed: 06/08/2023] Open
Abstract
Three-dimensional (3D) cell cultures, including organ-on-a-chip (OOC) devices, offer the possibility to mimic human physiology conditions better than 2D models. The organ-on-a-chip devices have a wide range of applications, including mechanical studies, functional validation, and toxicology investigations. Despite many advances in this field, the major challenge with the use of organ-on-a-chips relies on the lack of online analysis methods preventing the real-time observation of cultured cells. Mass spectrometry is a promising analytical technique for real-time analysis of cell excretes from organ-on-a-chip models. This is due to its high sensitivity, selectivity, and ability to tentatively identify a large variety of unknown compounds, ranging from metabolites, lipids, and peptides to proteins. However, the hyphenation of organ-on-a-chip with MS is largely hampered by the nature of the media used, and the presence of nonvolatile buffers. This in turn stalls the straightforward and online connection of organ-on-a-chip outlet to MS. To overcome this challenge, multiple advances have been made to pre-treat samples right after organ-on-a-chip and just before MS. In this review, we summarised these technological advances and exhaustively evaluated their benefits and shortcomings for successful hyphenation of organ-on-a-chip with MS.
Collapse
|
17
|
Román-Hidalgo C, Martín-Valero MJ, López-Pérez G, Villar-Navarro M. Green Method for the Selective Electromembrane Extraction of Parabens and Fluoroquinolones in the Presence of NSAIDs by Using Biopolymeric Chitosan Films. MEMBRANES 2023; 13:326. [PMID: 36984713 PMCID: PMC10059583 DOI: 10.3390/membranes13030326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/06/2023] [Accepted: 03/10/2023] [Indexed: 06/18/2023]
Abstract
A chitosan biopolymeric membrane was successfully used as a support in a green electromembrane extraction procedure for the simultaneous and selective extraction of seven parabens and three fluoroquinolones in the presence of three non-steroidal anti-inflammatory drugs. The optimal experimental conditions (10 mL donor phase and 50 μL acceptor phase, pH 10 in both phases; 80 V of applied voltage during 15 min of extraction time) were determined, providing high enrichment factors for six of the studied parabens (EF ≥ 90) and the three fluoroquinolones (EF ≥ 50). Wide linear concentration ranges (0.5-500 μg L-1), good linearity (>97%), low limits of detection (0.2-1.1 μg L-1), and good repeatability (relative standard deviation values 4-10%) were achieved. The proposed method was successfully applied for the extraction of the target analytes from different kinds of water samples (river, lake, and swimming pool). The usage of a chitosan membrane in the extraction process presents many advantages, as it is a biodegradable and versatile support, offering a good alternative to commercial plastic materials commonly used in this methodology and these procedures.
Collapse
Affiliation(s)
- Cristina Román-Hidalgo
- Department of Analytical Chemistry, Faculty of Chemistry, Universidad de Sevilla, c/Prof. García González, s/n. 41012 Seville, Spain
| | - María Jesús Martín-Valero
- Department of Analytical Chemistry, Faculty of Chemistry, Universidad de Sevilla, c/Prof. García González, s/n. 41012 Seville, Spain
| | - Germán López-Pérez
- Department of Physical Chemistry, Faculty of Chemistry, Universidad de Sevilla, c/Prof. García González, s/n. 41012 Seville, Spain
| | - Mercedes Villar-Navarro
- Department of Analytical Chemistry, Faculty of Chemistry, Universidad de Sevilla, c/Prof. García González, s/n. 41012 Seville, Spain
| |
Collapse
|
18
|
Martins RO, de Araújo GL, Simas RC, Chaves AR. ELECTROMEMBRANE EXTRACTION (EME): FUNDAMENTALS AND APPLICATIONS. TALANTA OPEN 2023. [DOI: 10.1016/j.talo.2023.100200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023] Open
|
19
|
Román-Hidalgo C, Barreiros L, Villar-Navarro M, López-Pérez G, Martín-Valero MJ, Segundo MA. Electromembrane extraction based on biodegradable materials: Biopolymers as sustainable alternatives to plastics. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.117048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
20
|
Silva M, Mendiguchía C, Moreno C. An electromembrane microextraction-based green method for the determination of trace copper in natural waters. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:618-625. [PMID: 36644977 DOI: 10.1039/d2ay01733d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Driven by the search for an environmentally-friendly methodology, electromembrane extraction (EME) has recently emerged as a green and versatile tool for the analysis of trace pollutants in water samples, being mainly applied to the preconcentration and determination of organic compounds. Recently, EME has also shown its applicability to the analysis of inorganic species, allowing a considerable reduction in both reagent consumption and extraction times, and without loss of efficacy, in comparison with other liquid phase microextraction techniques. In this study, an EME system for trace copper analysis in natural waters has been optimised by the modified simplex method. A chemical modifier, di-2-pyridyl ketone benzoylhydrazone (dPKBH) was synthesized and dissolved in 1-nonanol, to be used as an organic phase impregnated into the pores of a polymeric hollow fibre. With only 15 min of extraction, an enrichment factor of 77.1 ± 10.8 was obtained for a wide salinity range (0-35), allowing its application in a variety of different waters, including seawater. Optimum operating conditions were a sample pH of 6.26, an electric potential of 95 V, 0.08 M nitric acid as the acceptor phase, 4.01 mM dPKBH in 1-nonanol as the organic phase and a stirring rate of 1500 rpm. A LOD of 0.004 μg L-1 was obtained, and the system was successfully applied to the analysis of several water samples containing copper at low ppb levels (tap water and river water) or even at sub-ppb levels (seawater).
Collapse
Affiliation(s)
- Macarena Silva
- Department of Analytical Chemistry, Faculty of Marine and Environmental Sciences, University of Cadiz, 11510 Puerto Real, Spain.
| | - Carolina Mendiguchía
- Department of Analytical Chemistry, Faculty of Marine and Environmental Sciences, University of Cadiz, 11510 Puerto Real, Spain.
| | - Carlos Moreno
- Department of Analytical Chemistry, Faculty of Marine and Environmental Sciences, University of Cadiz, 11510 Puerto Real, Spain.
| |
Collapse
|
21
|
Silva M, Mendiguchía C, Moreno C. Analytical Performance of Electromembranes as a Tool for Nanoconcentrations of Silver in Waters. MEMBRANES 2022; 13:11. [PMID: 36676818 PMCID: PMC9867316 DOI: 10.3390/membranes13010011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/12/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
Electromembranes increase the efficiency of metal transport in liquid-phase microextraction systems by applying an electric potential, which accelerates the transport. Nevertheless, to get high extraction percentages in short extraction times it is necessary to take into account a great variety of factors, and multivariate optimization techniques are the best alternative to determine the most influential variables and to optimize the extraction process. In this work, a fractional factorial design was applied to determine the most influential variables in the extraction of silver by electromembranes. Thus, the effect of tri-isobutylphosphine sulphide (Cyanex 471x) concentration in the organic solution, sodium thiosulphate concentration in the acceptor solution, nitrate concentration in the sample solution, extraction time, stirring rate and electric potential on the enrichment factor were studied. Once the most important variables were selected, a small composite design (Draper-Lin) was used to obtain their optimal values to maximize the enrichment factor. Under these conditions, an experimental enrichment factor of 49.91 ± 3.95 was achieved after 22 min. Finally, the effect of saline matrix on the enrichment factor was tested and the optimized system was successfully applied to analyse silver concentrations at ultratrace levels, within the range of 7-29 ng·L-1 in different real seawater samples.
Collapse
|
22
|
Electromembrane extraction of tramadol from exhaled breath condensate and its liquid chromatographic analysis. J Pharm Biomed Anal 2022; 219:114959. [PMID: 35907318 DOI: 10.1016/j.jpba.2022.114959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/18/2022] [Accepted: 07/21/2022] [Indexed: 11/21/2022]
Abstract
Tramadol has extracted from the exhaled breath condensate (EBC) samples through the supported liquid membrane consisting of 2-nitrophenyl octyl ether impregnated in the hollow fiber wall, and the lumen of the hollow fiber was filled with 20 μL of an acceptor phase. Under the optimum conditions of the electromembrane extraction, i.e. the stirring speed of 750 rpm, extraction time of 20 min, acceptor pH at 1.0, donor phase pH at 6.0, and an applied voltage of 170 V across the supported liquid membrane, a preconcentration factor of 128-fold with a extraction recovery of 64% was achieved. Acceptable linearity was obtained in the tramadol concentration range of 5-1000 ng mL-1 (R2 = 0.9999) with a limit of detection of 1.5 ng mL-1 and a limit of quantitation of 5 ng mL-1. The relative standard deviations for the intra-day and inter-day replications were obtained between 0.4% and 2.5%. The validated technique was successfully used to determine tramadol in real EBC samples.
Collapse
|
23
|
Shang Q, Mei H, Huang C, Shen X. Fundamentals, operations and applications of electromembrane extraction: An overview of reviews. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|