1
|
Yan S, Liu Q, Wen Z, Liang B, Liu Z, Xing J, Li J, Zhang M, Liu X, Wang C, Xing D. An AIE-active Janus filter membrane for highly efficient detection and elimination of bioaerosols. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138116. [PMID: 40174455 DOI: 10.1016/j.jhazmat.2025.138116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 03/16/2025] [Accepted: 03/30/2025] [Indexed: 04/04/2025]
Abstract
Highly efficient detection and sterilization techniques for bioaerosol prevention and control are urgently needed. Herein, we present an AIE-active Janus air filter membrane (AIE-HAFM) that features water-dissolvable micro-nano porous network architecture and aggregation-induced emission (AIE) activity constructed by the asymmetrical surface modification with an amphiphilic AIE photosensitizer (MeOTTVP). The all-round AIE-HAFM can not only provide low pressure drop and high interception efficiency for bioaerosol sampling but also perfectly inherit the AIE functions of MeOTTVP, which allows for intensive near-infrared (NIR) emission and efficient production of reactive oxygen species. The airborne pathogens can be effectively captured, collected, transferred, and released by AIE-HAFM for subsequent quantitative detection with colony counting and ATP bioluminescence, as well as stained by the incorporated MeOTTVP for NIR fluorescence imaging-guided visual detection. Meanwhile, AIE-HAFM enables on-demand and surface-dependent photodynamic effects for reliable bacterial eradication under white light irradiation due to the surface-concentrated MeOTTVP, consequently achieving the smart prevention and control of bioaerosols both in the simulated and real-world bioaerosol environment. The versatility of AIE-HAFM in handling diverse airborne pathogens may bring about a transformative solution to address the bioaerosol contamination problems.
Collapse
Affiliation(s)
- Saisai Yan
- Qingdao Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China.
| | - Qing Liu
- Qingdao Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China
| | - Zishu Wen
- Qingdao Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China
| | - Bing Liang
- Qingdao Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China
| | - Zhanjie Liu
- Qingdao Haier Biomedical Co., Ltd., Qingdao 266071, China
| | - Jiyao Xing
- Qingdao Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China
| | - Jiyixuan Li
- Qingdao Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China
| | - Miao Zhang
- Qingdao Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China
| | - Xinlin Liu
- Qingdao Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China
| | - Chao Wang
- Qingdao Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China
| | - Dongming Xing
- Qingdao Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China; School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
2
|
Noguera P, Pastor-Navarro N, Bernardos A, Medaglia S, Alcañiz-Fillol M, Masot-Peris R, Giménez-Romero D. LC biosensors (Bio-LC): new resonant sensors for direct detection of airborne viruses. Talanta 2025; 294:128192. [PMID: 40288188 DOI: 10.1016/j.talanta.2025.128192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 04/17/2025] [Accepted: 04/19/2025] [Indexed: 04/29/2025]
Abstract
Viruses suspended in the air are key in the transmission of infectious diseases. We present a label-free selective system capable of detecting in situ airborne viruses in ambient air, employing resonant LC (Inductor-Capacitator) circuits. As proof of principle, M13 bacteriophages were nebulized and monitored with this sensor. The selective recognition of viruses by the copper immune-functionalized inductor of an LC circuit resulted in shifts of its resonant frequency proportional to the virus ambient concentration. The selectivity of this resonator is due to the employed bioreceptor. So, the lowest ambient concentration of airborne M13 bacteriophage that can be selectively detected is 3 × 105 pfu L-1. This biosensing approach opens appealing perspectives for controlling the transmission of infectious diseases.
Collapse
Affiliation(s)
- Patricia Noguera
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Camino de Vera s/n, 46022, Valencia, Spain; Departamento de Química, Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain
| | - Nuria Pastor-Navarro
- Departamento de Química, Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain
| | - Andrea Bernardos
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Camino de Vera s/n, 46022, Valencia, Spain; Departamento de Química, Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Serena Medaglia
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Camino de Vera s/n, 46022, Valencia, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Miguel Alcañiz-Fillol
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Camino de Vera s/n, 46022, Valencia, Spain; Department of Electronic Engineering, Universitat Politècnica de València, Valencia, 46022, Spain.
| | - Rafael Masot-Peris
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Camino de Vera s/n, 46022, Valencia, Spain; Department of Electronic Engineering, Universitat Politècnica de València, Valencia, 46022, Spain.
| | - David Giménez-Romero
- Departamento de Química-Física, Universitat de València, Calle Doctor Moliner 50, 46100, Burjassot, Spain.
| |
Collapse
|
3
|
Tarn MD, Shaw KJ, Foster PB, West JS, Johnston ID, McCluskey DK, Peyman SA, Murray BJ. Microfluidics for the biological analysis of atmospheric ice-nucleating particles: Perspectives and challenges. BIOMICROFLUIDICS 2025; 19:011502. [PMID: 40041008 PMCID: PMC11878220 DOI: 10.1063/5.0236911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 11/14/2024] [Indexed: 03/06/2025]
Abstract
Atmospheric ice-nucleating particles (INPs) make up a vanishingly small proportion of atmospheric aerosol but are key to triggering the freezing of supercooled liquid water droplets, altering the lifetime and radiative properties of clouds and having a substantial impact on weather and climate. However, INPs are notoriously difficult to model due to a lack of information on their global sources, sinks, concentrations, and activity, necessitating the development of new instrumentation for quantifying and characterizing INPs in a rapid and automated manner. Microfluidic technology has been increasingly adopted by ice nucleation research groups in recent years as a means of performing droplet freezing analysis of INPs, enabling the measurement of hundreds or thousands of droplets per experiment at temperatures down to the homogeneous freezing of water. The potential for microfluidics extends far beyond this, with an entire toolbox of bioanalytical separation and detection techniques developed over 30 years for medical applications. Such methods could easily be adapted to biological and biogenic INP analysis to revolutionize the field, for example, in the identification and quantification of ice-nucleating bacteria and fungi. Combined with miniaturized sampling techniques, we can envisage the development and deployment of microfluidic sample-to-answer platforms for automated, user-friendly sampling and analysis of biological INPs in the field that would enable a greater understanding of their global and seasonal activity. Here, we review the various components that such a platform would incorporate to highlight the feasibility, and the challenges, of such an endeavor, from sampling and droplet freezing assays to separations and bioanalysis.
Collapse
Affiliation(s)
- Mark D. Tarn
- School of Earth and Environment, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Kirsty J. Shaw
- Faculty of Science and Engineering, Manchester Metropolitan University, Manchester M1 5GD, United Kingdom
| | | | - Jon S. West
- Protecting Crops and Environment Department, Rothamsted Research, Harpenden AL5 2JQ, United Kingdom
| | - Ian D. Johnston
- School of Physics, Engineering and Computer Science, University of Hertfordshire, College Lane, Hatfield AL10 9AB, United Kingdom
| | - Daniel K. McCluskey
- School of Physics, Engineering and Computer Science, University of Hertfordshire, College Lane, Hatfield AL10 9AB, United Kingdom
| | | | - Benjamin J. Murray
- School of Earth and Environment, University of Leeds, Leeds LS2 9JT, United Kingdom
| |
Collapse
|
4
|
Lee I, Kim HY. Lab-on-a-Chip Devices for Nucleic Acid Analysis in Food Safety. MICROMACHINES 2024; 15:1524. [PMID: 39770277 PMCID: PMC11677256 DOI: 10.3390/mi15121524] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/16/2024] [Accepted: 12/20/2024] [Indexed: 01/11/2025]
Abstract
Lab-on-a-chip (LOC) devices have been developed for nucleic acid analysis by integrating complex laboratory functions onto a miniaturized chip, enabling rapid, cost-effective, and highly sensitive on-site testing. This review examines the application of LOC technology in food safety, specifically in the context of nucleic acid-based analyses for detecting pathogens and contaminants. We focus on microfluidic-based LOC devices that optimize nucleic acid extraction and purification on the chip or amplification and detection processes based on isothermal amplification and polymerase chain reaction. We also explore advancements in integrated LOC devices that combine nucleic acid extraction, amplification, and detection processes within a single chip to minimize sample preparation time and enhance testing accuracy. The review concludes with insights into future trends, particularly the development of portable LOC technologies for rapid and efficient nucleic acid testing in food safety.
Collapse
Affiliation(s)
| | - Hae-Yeong Kim
- Institute of Life Sciences & Resources, Department of Food Science and Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea;
| |
Collapse
|
5
|
Yan S, Liu Q, Liu Z, Liu R, Xing K, Zhang M, Zhang X, Xu J, Jia Q, Gao W, Liu X, Xing D. Gel-confined fabrication of fully bio-based filtration membrane for green capture and rapid detection of airborne microbes. J Colloid Interface Sci 2024; 670:417-427. [PMID: 38772258 DOI: 10.1016/j.jcis.2024.05.105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/10/2024] [Accepted: 05/15/2024] [Indexed: 05/23/2024]
Abstract
Air filtration has become a desirable route for collecting airborne microbes. However, the potential biotoxicity and sterilization of current air filtration membranes often lead to undesired inactivation of captured microbes, which greatly limits microbial non-traumatic transfer and recovery. Herein, we report a gel-confined phase separation strategy to rationally fabricate a fully bio-based filtration membrane (SGFM) using soluble soybean polysaccharide and gelatin. The versatile SGFM features fascinating honeycomb micro-nano architecture and hierarchical interconnected porous structures for microbial capture, and achieves a lower pressure drop, higher interception efficiency (99.3%), and superior microbial survivability than commercial gelatin filtration membranes. Particularly, the water-dissolvable SGFM can greatly simplify the elution and extraction process after bioaerosol sampling, thereby bringing about maximum sample transfer and vigorous recovery of collected microbes. Meanwhile, green capture coupled with ATP bioluminescence endows the SGFM with rapid and quantitative detection capability for airborne microbes. This work may pave the way for designing green protocols for the detection of bioaerosols.
Collapse
Affiliation(s)
- Saisai Yan
- Qingdao Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China.
| | - Qing Liu
- Qingdao Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China
| | - Zhanjie Liu
- Qingdao Haier Biomedical Co., Ltd., Qingdao 266071, China
| | - Rundong Liu
- Qingdao Haier Biomedical Co., Ltd., Qingdao 266071, China
| | - Kunyue Xing
- University of Manchester, Manchester, United Kingdom
| | - Miao Zhang
- Qingdao Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China
| | - Xinyi Zhang
- Qingdao Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China
| | - Junlin Xu
- Qingdao Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China
| | - Qiuzhi Jia
- Qingdao Haier Biomedical Co., Ltd., Qingdao 266071, China
| | - Wensheng Gao
- Qingdao Haier Biomedical Co., Ltd., Qingdao 266071, China
| | - Xinlin Liu
- Qingdao Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China.
| | - Dongming Xing
- Qingdao Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China; School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
6
|
Yan S, Liu Q, Xing K, Liu Z, Guo H, Jiang W, Ma X, Yan M, Wang C, Liu X, Xing D. Versatile filter membrane for effective sampling and real-time quantitative detection of airborne pathogens. JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134740. [PMID: 38805821 DOI: 10.1016/j.jhazmat.2024.134740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/03/2024] [Accepted: 05/24/2024] [Indexed: 05/30/2024]
Abstract
Construction of air filter membranes bearing prominent collecting and transferring capability is highly desirable for detecting airborne pathogens but remains challenging. Here, a hyaluronic acid air filter membrane (HAFM) with tunable heterogeneous micro-nano porous structures is straightforwardly constructed through the ethanol-induced phase separation strategy. Airborne pathogens can be trapped and collected by HAFM with high performance due to the ideal trade-off between removal efficiency and pressure drop. By exempting the sample elution and extraction processes, the HAFM after filtration sampling can not only directly disperse on the agar plate for colony culture but also turn to an aqueous solution for centrifugal enrichment, which significantly reduces the damage and losses of the captured microorganisms. The following combination with ATP bioluminescence endows the HAFM with a real-time quantitative detection function for the captured airborne pathogens. Benefiting from high-efficiency sampling and non-traumatic transfer of airborne pathogens, the real-world bioaerosol concentration can be facilely evaluated by the HAFM-based ATP assay. This work thus not only provides a feasible strategy to fabricate air filter membranes for efficient microbial collection and enrichment but also sheds light on designing advanced protocols for real-time detection of bioaerosols in the field.
Collapse
Affiliation(s)
- Saisai Yan
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China.
| | - Qing Liu
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China
| | - Kunyue Xing
- University of Manchester, Manchester, United Kingdom
| | - Zhanjie Liu
- Qingdao Haier Biomedical Co.,Ltd., Qingdao 266071, China
| | - Han Guo
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China
| | - Wenhao Jiang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China
| | - Xinyue Ma
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China
| | - Mingzhe Yan
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China
| | - Chao Wang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China
| | - Xinlin Liu
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China.
| | - Dongming Xing
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China; School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
7
|
Vass WB, Shankar SN, Lednicky JA, Alipanah M, Stump B, Keady P, Fan ZH, Wu CY. Concentrating viable airborne pathogens using a virtual impactor with a compact water-based condensation air sampler. AEROSOL SCIENCE AND TECHNOLOGY : THE JOURNAL OF THE AMERICAN ASSOCIATION FOR AEROSOL RESEARCH 2024; 58:1114-1128. [PMID: 39492847 PMCID: PMC11530212 DOI: 10.1080/02786826.2024.2380096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 06/28/2024] [Indexed: 11/05/2024]
Abstract
Pathogens can be collected from air and detected in samples by many methods. However, merely detecting pathogens does not answer whether they can spread disease. To fully assess health risks from exposure to airborne pathogens, the infectivity of those agents must be assessed. Air samplers which operate by growing particles through water vapor condensation and subsequently collecting them into a liquid medium have proven effective at conserving the viability of microorganisms. We present a study that assessed performance improvement of one such sampler, BioSpot-GEM™, gained by augmenting it with an upstream virtual impactor (VI) designed to concentrate particles in aerosols. We demonstrate that such an integrated unit improved the collection of live Escherichia coli by a median Concentration Factor (C F ) of 1.59 and increased the recovery of viable human coronavirus OC43 (OC43) by a median C F of 12.7 as compared to the sampler without the VI. Our results also show that OC43 can be concentrated in this way without significant loss of infectivity. We further present that the small BioSpot-GEM™ bioaerosol sampler can collect live E. coli at an efficiency comparable to the larger BioSpot-VIVAS™ bioaerosol sampler. Our analyses show potential benefits toward improving the collection of viable pathogens from the air using a more portable water-based condensation air sampler while also highlighting challenges associated with using a VI with concentrated bioaerosols. This work can aid further investigation of VI usage to improve the collection of pathogens from air ultimately to better characterize health risks associated with airborne pathogen exposures.
Collapse
Affiliation(s)
- William B. Vass
- Department of Environmental Engineering Sciences, University of Florida, Gainesville, Florida, USA
| | - Sripriya Nannu Shankar
- Department of Environmental Engineering Sciences, University of Florida, Gainesville, Florida, USA
- Department of Environmental and Public Health Sciences, University of Cincinnati, Ohio, USA
| | - John A. Lednicky
- Department of Environmental and Global Health, University of Florida, Gainesville, Florida, USA
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, USA
| | - Morteza Alipanah
- Department of Mechanical & Aerospace Engineering, University of Florida, Gainesville, Florida, USA
| | - Braden Stump
- Aerosol Devices Inc., Fort Collins, Colorado, USA
| | | | - Z. Hugh Fan
- Department of Mechanical & Aerospace Engineering, University of Florida, Gainesville, Florida, USA
- Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida, USA
| | - Chang-Yu Wu
- Department of Environmental Engineering Sciences, University of Florida, Gainesville, Florida, USA
- Department of Chemical, Environmental, and Materials Engineering, University of Miami, Coral Gables, Florida USA
| |
Collapse
|
8
|
Liu Q, Yan S, Zhang M, Wang C, Xing D. Air sampling and ATP bioluminescence for quantitative detection of airborne microbes. Talanta 2024; 274:126025. [PMID: 38574539 DOI: 10.1016/j.talanta.2024.126025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/16/2024] [Accepted: 03/30/2024] [Indexed: 04/06/2024]
Abstract
Exposure to bioaerosol contamination has detrimental effects on human health. Recent advances in ATP bioluminescence provide more opportunities for the quantitative detection of bioaerosols. Since almost all active organisms can produce ATP, the amount of airborne microbes can be easily measured by detecting ATP-driven bioluminescence. The accurate evaluation of microorganisms mainly relies on following the four key steps: sampling and enrichment of airborne microbes, lysis for ATP extraction, enzymatic reaction, and measurement of luminescence intensity. To enhance the effectiveness of ATP bioluminescence, each step requires innovative strategies and continuous improvement. In this review, we summarized the recent advances in the quantitative detection of airborne microbes based on ATP bioluminescence, which focuses on the advanced strategies for improving sampling devices combined with ATP bioluminescence. Meanwhile, the optimized and innovative strategies for the remaining three key steps of the ATP bioluminescence assay are highlighted. The aim is to reawaken the prosperity of ATP bioluminescence and promote its wider utilization for efficient, real-time, and accurate detection of airborne microbes.
Collapse
Affiliation(s)
- Qing Liu
- Qingdao Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China
| | - Saisai Yan
- Qingdao Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China.
| | - Miao Zhang
- Qingdao Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China
| | - Chao Wang
- Qingdao Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China
| | - Dongming Xing
- Qingdao Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China; School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
9
|
Chen Z, Liang Z, Li G, Das R, Chen P, An T. Online monitoring system for qualitative and quantitative analysis of bioaerosols by combined ATP bioluminescence assay with loop-mediated isothermal amplification. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 937:173404. [PMID: 38797419 DOI: 10.1016/j.scitotenv.2024.173404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/01/2024] [Accepted: 05/19/2024] [Indexed: 05/29/2024]
Abstract
Rapid detection of airborne pathogens is crucial in preventing respiratory infections and allergies. However, technologies aiming to real-time analysis of microorganisms in air remain limited due to the sparse and complex nature of bioaerosols. Here, we introduced an online bioaerosol monitoring system (OBMS) comprised of integrated units including a rotatable stainless-steel sintered filter-based sampler, a lysis unit for extracting adenosine triphosphate (ATP), and a single photon detector-based fluorescence unit. Through optimization of the ATP bioluminescence method and establishment of standard curves between relative luminescence units (RLUs) and ATP as well as microbial concentration, we achieved simultaneous detection of bioaerosols' concentration and activity. Testing OBMS with four bacterial and two fungal aerosols at a sampling flow rate of 10 to 50 L/min revealed an outstanding collection efficiency of 95 % at 30 L/min. A single OBMS measurement takes only 8 min (sampling: 5 min; lysis and detection: 3 min) with detection limits of 3 Pcs/ms photons (2.9 × 103 and 292 CFU/m3 for Staphylococcus aureus and Candida albicans aerosol). In both laboratory and field tests, OBMS detected higher concentrations of bioaerosol compared to the traditional Andersen impactor and liquid biosampler. When combined OBMS with loop-mediated isothermal amplification (LAMP), the bioaerosol can be qualitative and quantitative analyzed within 40 min without the cumbersome procedures of sample pretreatment and DNA extraction. These results offer a high compressive and humidity resistance membrane filtration sampler and validate the potential of OBMS for online measurement of bioaerosol concentration and composition.
Collapse
Affiliation(s)
- Zhen Chen
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhishu Liang
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| | - Guiying Li
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Ranjit Das
- Department of Microbiology, All India Institute of Medical Sciences (AIIMS), Kalyani, West Bengal 741245, India
| | - Pingan Chen
- Guangzhou Xiuming Environmental Protection Co., Ltd., Guangzhou 511450, China
| | - Taicheng An
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
10
|
Lehnert T, Gijs MAM. Microfluidic systems for infectious disease diagnostics. LAB ON A CHIP 2024; 24:1441-1493. [PMID: 38372324 DOI: 10.1039/d4lc00117f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Microorganisms, encompassing both uni- and multicellular entities, exhibit remarkable diversity as omnipresent life forms in nature. They play a pivotal role by supplying essential components for sustaining biological processes across diverse ecosystems, including higher host organisms. The complex interactions within the human gut microbiota are crucial for metabolic functions, immune responses, and biochemical signalling, particularly through the gut-brain axis. Viruses also play important roles in biological processes, for example by increasing genetic diversity through horizontal gene transfer when replicating inside living cells. On the other hand, infection of the human body by microbiological agents may lead to severe physiological disorders and diseases. Infectious diseases pose a significant burden on global healthcare systems, characterized by substantial variations in the epidemiological landscape. Fast spreading antibiotic resistance or uncontrolled outbreaks of communicable diseases are major challenges at present. Furthermore, delivering field-proven point-of-care diagnostic tools to the most severely affected populations in low-resource settings is particularly important and challenging. New paradigms and technological approaches enabling rapid and informed disease management need to be implemented. In this respect, infectious disease diagnostics taking advantage of microfluidic systems combined with integrated biosensor-based pathogen detection offers a host of innovative and promising solutions. In this review, we aim to outline recent activities and progress in the development of microfluidic diagnostic tools. Our literature research mainly covers the last 5 years. We will follow a classification scheme based on the human body systems primarily involved at the clinical level or on specific pathogen transmission modes. Important diseases, such as tuberculosis and malaria, will be addressed more extensively.
Collapse
Affiliation(s)
- Thomas Lehnert
- Laboratory of Microsystems, École Polytechnique Fédérale de Lausanne, Lausanne, CH-1015, Switzerland.
| | - Martin A M Gijs
- Laboratory of Microsystems, École Polytechnique Fédérale de Lausanne, Lausanne, CH-1015, Switzerland.
| |
Collapse
|
11
|
Rastmanesh A, Boruah JS, Lee MS, Park S. On-Site Bioaerosol Sampling and Airborne Microorganism Detection Technologies. BIOSENSORS 2024; 14:122. [PMID: 38534229 PMCID: PMC10968652 DOI: 10.3390/bios14030122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/09/2024] [Accepted: 02/21/2024] [Indexed: 03/28/2024]
Abstract
Bioaerosols are small airborne particles composed of microbiological fragments, including bacteria, viruses, fungi, pollens, and/or by-products of cells, which may be viable or non-viable wherever applicable. Exposure to these agents can cause a variety of health issues, such as allergic and infectious diseases, neurological disorders, and cancer. Therefore, detecting and identifying bioaerosols is crucial, and bioaerosol sampling is a key step in any bioaerosol investigation. This review provides an overview of the current bioaerosol sampling methods, both passive and active, as well as their applications and limitations for rapid on-site monitoring. The challenges and trends for detecting airborne microorganisms using molecular and immunological methods are also discussed, along with a summary and outlook for the development of prompt monitoring technologies.
Collapse
Affiliation(s)
| | | | | | - Seungkyung Park
- Complex Fluids Laboratory, School of Mechanical Engineering, Korea University of Technology and Education, Cheonan 31253, Chungnam, Republic of Korea
| |
Collapse
|
12
|
Jeon E, Koo B, Kim S, Kim J, Yu Y, Jang H, Lee M, Kim SH, Kang T, Kim SK, Kwak R, Shin Y, Lee J. Biporous silica nanostructure-induced nanovortex in microfluidics for nucleic acid enrichment, isolation, and PCR-free detection. Nat Commun 2024; 15:1366. [PMID: 38355558 PMCID: PMC10866868 DOI: 10.1038/s41467-024-45467-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 01/24/2024] [Indexed: 02/16/2024] Open
Abstract
Efficient pathogen enrichment and nucleic acid isolation are critical for accurate and sensitive diagnosis of infectious diseases, especially those with low pathogen levels. Our study introduces a biporous silica nanofilms-embedded sample preparation chip for pathogen and nucleic acid enrichment/isolation. This chip features unique biporous nanostructures comprising large and small pore layers. Computational simulations confirm that these nanostructures enhance the surface area and promote the formation of nanovortex, resulting in improved capture efficiency. Notably, the chip demonstrates a 100-fold lower limit of detection compared to conventional methods used for nucleic acid detection. Clinical validations using patient samples corroborate the superior sensitivity of the chip when combined with the luminescence resonance energy transfer assay. The enhanced sample preparation efficiency of the chip, along with the facile and straightforward synthesis of the biporous nanostructures, offers a promising solution for polymer chain reaction-free detection of nucleic acids.
Collapse
Affiliation(s)
- Eunyoung Jeon
- Department of Chemistry, Hanyang University, Seoul, 04763, Republic of Korea
- Research Institute for Natural Science, Hanyang University, Seoul, 04763, Republic of Korea
- Research Institute for Convergence of Basic Sciences, Hanyang University, Seoul, 04763, Republic of Korea
| | - Bonhan Koo
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Suyeon Kim
- Department of Chemistry, Hanyang University, Seoul, 04763, Republic of Korea
- Research Institute for Natural Science, Hanyang University, Seoul, 04763, Republic of Korea
- Research Institute for Convergence of Basic Sciences, Hanyang University, Seoul, 04763, Republic of Korea
| | - Jieun Kim
- Department of Mechanical Convergence Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Yeonuk Yu
- Department of Mechanical Convergence Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Hyowon Jang
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Minju Lee
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Sung-Han Kim
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Taejoon Kang
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Sang Kyung Kim
- Center for Augmented Safety Systems with Intelligence, Sensing and Tracking (ASSIST), Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Rhokyun Kwak
- Department of Mechanical Convergence Engineering, Hanyang University, Seoul, 04763, Republic of Korea.
| | - Yong Shin
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea.
| | - Joonseok Lee
- Department of Chemistry, Hanyang University, Seoul, 04763, Republic of Korea.
- Research Institute for Natural Science, Hanyang University, Seoul, 04763, Republic of Korea.
- Research Institute for Convergence of Basic Sciences, Hanyang University, Seoul, 04763, Republic of Korea.
| |
Collapse
|
13
|
Zhou X, Liu X, Zhao H, Guo G, Jiang X, Liu S, Sun X, Yang H. Research advances in microfluidic collection and detection of virus, bacterial, and fungal bioaerosols. Mikrochim Acta 2024; 191:132. [PMID: 38351367 DOI: 10.1007/s00604-024-06213-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 01/14/2024] [Indexed: 02/16/2024]
Abstract
Bioaerosols are airborne suspensions of fine solid or liquid particles containing biological substances such as viruses, bacteria, cellular debris, fungal spores, mycelium, and byproducts of microbial metabolism. The global Coronavirus disease 2019 (COVID-19) pandemic and the previous emergence of severe acute respiratory syndrome (SARS), Middle East respiratory syndrome (MERS), and influenza have increased the need for reliable and effective monitoring tools for bioaerosols. Bioaerosol collection and detection have aroused considerable attention. Current bioaerosol sampling and detection techniques suffer from long response time, low sensitivity, and high costs, and these drawbacks have forced the development of novel monitoring strategies. Microfluidic technique is considered a breakthrough for high performance analysis of bioaerosols. In recent years, several emerging methods based on microfluidics have been developed and reported for collection and detection of bioaerosols. The unique advantages of microfluidic technique have enabled the integration of bioaerosol collection and detection, which has a higher efficiency over conventional methods. This review focused on the research progress of bioaerosol collection and detection methods based on microfluidic techniques, with special attention on virus aerosols and bacterial aerosols. Different from the existing reviews, this work took a unique perspective of the targets to be collected and detected in bioaerosols, which would provide a direct index of bioaerosol categories readers may be interested in. We also discussed integrated microfluidic monitoring system for bioaerosols. Additionally, the application of bioaerosol detection in biomedicine was presented. Finally, the current challenges in the field of bioaerosol monitoring are presented and an outlook given of future developments.
Collapse
Affiliation(s)
- Xinyue Zhou
- Department of Respiratory Medicine, The Fourth Hospital of China Medical University, No. 4, Chongshan East Road, Huanggu District, Shenyang, 110032, Liaoning, China
| | - Xin Liu
- Department of Respiratory Medicine, The Fourth Hospital of China Medical University, No. 4, Chongshan East Road, Huanggu District, Shenyang, 110032, Liaoning, China
| | - Haiyang Zhao
- Teaching Center for Basic Medical Experiment, China Medical University, No.77, Puhe Road, Shenyang, 110122, Liaoning Province, China
| | - Guanqi Guo
- Teaching Center for Basic Medical Experiment, China Medical University, No.77, Puhe Road, Shenyang, 110122, Liaoning Province, China
| | - Xiran Jiang
- School of Intelligent Medicine, China Medical University, No.77, Puhe Road, Shenyang, 110122, Liaoning Province, China.
| | - Shuo Liu
- Department of Respiratory Medicine, The Fourth Hospital of China Medical University, No. 4, Chongshan East Road, Huanggu District, Shenyang, 110032, Liaoning, China.
| | - Xiaoting Sun
- School of Forensic Medicine, China Medical University, No.77, Puhe Road, Shenyang, 110122, Liaoning Province, China.
| | - Huazhe Yang
- School of Intelligent Medicine, China Medical University, No.77, Puhe Road, Shenyang, 110122, Liaoning Province, China.
| |
Collapse
|
14
|
Stevenson E, Mortazavi R, Casuccio GS, Chow JC, Lednicky JA, Lee RJ, Levine A, Watson JG. Environmental sampling for disease surveillance: Recent advances and recommendations for best practice. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2023; 73:723-729. [PMID: 37729106 DOI: 10.1080/10962247.2023.2253709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Affiliation(s)
- Eric Stevenson
- Immediate Past Chair, A&WMA Critical Review Committee, Retired from Bay Area Air Quality Management District, San Francisco, CA, USA
| | | | | | - Judith C Chow
- Division of Atmospheric Sciences, Desert Research Institute, Reno, NV, USA
| | - John A Lednicky
- Department of Environmental and Global Health of the College of Public Health and Health Professions, University of Florida, Gainesville, FL, USA
| | | | | | - John G Watson
- Division of Atmospheric Sciences, Desert Research Institute, Reno, NV, USA
| |
Collapse
|
15
|
Pan YY, Zhao BC, Zhang X, Zhu W, Shen AG. "Dramatic Growth" of Microbial Aerosols for Visualization and Accurate Counting of Bioaerosols. Anal Chem 2023; 95:13537-13545. [PMID: 37653720 DOI: 10.1021/acs.analchem.3c02042] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
While the global COVID-19 pandemic has subsided, microbial aerosol detection has become of high concern. Timely, accurate, and highly sensitive monitoring of microbial aerosols in indoor air is the basis for effective prevention and control of infectious diseases. At present, no commercial equipment or reliable technology can simultaneously control the detection time and limit at 6 h and 102 CFU/mL, respectively. Based on the "safety size range" of particulate matter in the air, we propose a new method of microbial dilation detection, which enables the pathogen to grow rapidly and dramatically into a polymeric microsphere, larger in size than the coexisting aerosol particles. "Like a crane standing among chickens", the microorganism can be easily visualized and counted. Different from routine chemical and biological sensing technologies, this method can achieve absolute counting of microbial particles, and the simple principles can be developed into devices for different life scenarios.
Collapse
Affiliation(s)
- Yao-Yu Pan
- College of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430200, P.R. China
- Research Center of Graphic Communication, Printing and Packaging, Wuhan University, Wuhan 430072, P.R. China
| | - Bai-Chuan Zhao
- Research Center of Graphic Communication, Printing and Packaging, Wuhan University, Wuhan 430072, P.R. China
| | - Xin Zhang
- Beijing Digital Sky Eye Biotechnology Co., Beijing 100089, P.R. China
| | - Wei Zhu
- College of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430200, P.R. China
| | - Ai-Guo Shen
- College of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430200, P.R. China
- Research Center of Graphic Communication, Printing and Packaging, Wuhan University, Wuhan 430072, P.R. China
| |
Collapse
|