1
|
Sonar S, Das A, Kalele K, Subramaniyan V. Exosome-based cancer vaccine: a cell-free approach. Mol Biol Rep 2025; 52:421. [DOI: 10.1007/s11033-025-10519-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 04/15/2025] [Indexed: 05/04/2025]
|
2
|
Liu R, Cui H, Li D, Guo X, Zhang Z, Tan S, Zhu X. Roles and Mechanisms of Ferroptosis in Sorafenib Resistance for Hepatocellular Carcinoma. J Hepatocell Carcinoma 2024; 11:2493-2504. [PMID: 39717509 PMCID: PMC11665174 DOI: 10.2147/jhc.s500084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 12/11/2024] [Indexed: 12/25/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is the most prevalent malignant tumor, characterized by a poor prognosis. In recent decades, both the incidence and mortality rates of HCC have risen sharply. Sorafenib has emerged as the first conventional drug approved by the US Food and Drug Administration for first-line treatment in advanced HCC patients due to its favorable safety profile. However, its effectiveness is severely hindered by acquired drug resistance, which leads to only approximately 30% of HCC patients benefited from sorafenib therapy. Sorafenib resistance involves various mechanisms that inhibit cellular uptake of iron and reactive oxygen species (ROS). Consequently, ferroptosis a novel form of cell death contingent upon the accumulation of intracellular iron and ROS plays a critical role in mediating sorafenib resistance through the Hippo YAP pathway or Keap1-Nrf2 system. This review aimed to comprehensively elucidate the mechanisms underlying sorafenib resistance in HCC, particularly focusing on ferroptosis and its pathways, to provide valuable insights into targeting ferroptosis or its pathways for sorafenib-resistant HCC treatment.
Collapse
Affiliation(s)
- Ruyuan Liu
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, Guilin Medical University, Guilin, 541199, People’s Republic of China
| | - Huanyu Cui
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, Guilin Medical University, Guilin, 541199, People’s Republic of China
| | - Di Li
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, Guilin Medical University, Guilin, 541199, People’s Republic of China
| | - Xuefeng Guo
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, Guilin Medical University, Guilin, 541199, People’s Republic of China
| | - Zhengbao Zhang
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, Guilin Medical University, Guilin, 541199, People’s Republic of China
| | - Shengkui Tan
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, Guilin Medical University, Guilin, 541199, People’s Republic of China
- Guangxi Clinical Medical Research Center for Hepatobiliary Diseases, the Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, 533000, People’s Republic of China
| | - Xiaonian Zhu
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, Guilin Medical University, Guilin, 541199, People’s Republic of China
| |
Collapse
|
3
|
Cheng L, Zhang L, Wang X, Wang Y, Yu J, Li M, Ma Z, Chi-Lui Ho P, Chen X, Wang L, Sethi G, Goh BC. Extracellular vesicles in the HCC microenvironment: Implications for therapy and biomarkers. Pharmacol Res 2024; 209:107419. [PMID: 39284428 DOI: 10.1016/j.phrs.2024.107419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/10/2024] [Accepted: 09/12/2024] [Indexed: 09/20/2024]
Abstract
Hepatocellular carcinoma (HCC) stands as the sixth most prevalent cancer and the third leading cause of cancer mortality globally. Despite surgical resection being the preferred approach for early-stage HCC, most patients are diagnosed at intermediate to advanced stages, limiting treatment options to chemotherapy and immunotherapy, which often yield poor outcomes. Extracellular vesicles (EVs), minute lipid-bilayered particles released by diverse cells under various physiological and pathological conditions, are crucial for mediating communication between cells. Mounting evidence indicates that EVs sourced from different cells can profoundly influence the HCC tumor microenvironment (TME), thereby affecting the progression of HCC. Given their immunogenicity and liver-targeting properties, these EVs not only hold promise for HCC treatment but also provide avenues for advancing early diagnostic methods and assessing prognosis. This review not only describes the function of EVs within the HCC tumor microenvironment but also analyzes their therapeutic advantages and explores their significance in various therapeutic approaches for HCC, including chemotherapy, immunotherapy, combination therapy, and their role as innovative drug delivery carriers. Furthermore, it highlights the potential of EVs as biomarkers for the diagnosis and prognosis of HCC.
Collapse
Affiliation(s)
- Le Cheng
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, China
| | - Limin Zhang
- Jingzhou Hospital of Traditional Chinese Medicine, Jingzhou 434000, China; The Third Clinical Medical College of Yangtze University, Jingzhou 434000, China
| | - Xiaoxiao Wang
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, China
| | - Yufei Wang
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, China
| | - Jiahui Yu
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, China
| | - Mengnan Li
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, China
| | - Zhaowu Ma
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, China
| | - Paul Chi-Lui Ho
- School of Pharmacy, Monash University Malaysia, Subang Jaya 47500, Malaysia
| | - Xiaoguang Chen
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, China.
| | - Lingzhi Wang
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore; Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore; Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore.
| | - Gautam Sethi
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore; Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore.
| | - Boon-Cher Goh
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore; Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore; Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore; Department of Haematology-Oncology, National University Cancer Institute, 119228, Singapore
| |
Collapse
|
4
|
Lu Y, Zheng J, Lin P, Lin Y, Zheng Y, Mai Z, Chen X, Xia T, Zhao X, Cui L. Tumor Microenvironment-Derived Exosomes: A Double-Edged Sword for Advanced T Cell-Based Immunotherapy. ACS NANO 2024; 18:27230-27260. [PMID: 39319751 DOI: 10.1021/acsnano.4c09190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
The tumor microenvironment (TME) plays a crucial role in cancer progression and immune evasion, partially mediated by the activity of the TME-derived exosomes. These extracellular vesicles are pivotal in shaping immune responses through the transfer of proteins, lipids, and nucleic acids between cells, facilitating a complex interplay that promotes tumor growth and metastasis. This review delves into the dual roles of exosomes in the TME, highlighting both their immunosuppressive functions and their emerging therapeutic potential. Exosomes can inhibit T cell function and promote tumor immune escape by carrying immune-modulatory molecules, such as PD-L1, yet they also hold promise for cancer therapy as vehicles for delivering tumor antigens and costimulatory signals. Additionally, the review discusses the intricate crosstalk mediated by exosomes among various cell types within the TME, influencing both cancer progression and responses to immunotherapies. Moreover, this highlights current challenges and future directions. Collectively, elucidating the detailed mechanisms by which TME-derived exosomes mediate T cell function offers a promising avenue for revolutionizing cancer treatment. Understanding these interactions allows for the development of targeted therapies that manipulate exosomal pathways to enhance the immune system's response to tumors.
Collapse
Affiliation(s)
- Ye Lu
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Jiarong Zheng
- Department of Dentistry, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Pei Lin
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Yunfan Lin
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Yucheng Zheng
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Zizhao Mai
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Xu Chen
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Tian Xia
- Division of NanoMedicine, Department of Medicine, University of California Los Angeles, Los Angeles, California 90095, United States
| | - Xinyuan Zhao
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Li Cui
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong 510280, China
- School of Dentistry, University of California Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|
5
|
Tsui YM, Tian L, Lu J, Ma H, Ng IOL. Interplay among extracellular vesicles, cancer stemness and immune regulation in driving hepatocellular carcinoma progression. Cancer Lett 2024; 597:217084. [PMID: 38925362 DOI: 10.1016/j.canlet.2024.217084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/20/2024] [Accepted: 06/23/2024] [Indexed: 06/28/2024]
Abstract
The intricate interplay among extracellular vesicles, cancer stemness properties, and the immune system significantly impacts hepatocellular carcinoma (HCC) progression, treatment response, and patient prognosis. Extracellular vesicles (EVs), which are membrane-bound structures, play a pivotal role in conveying proteins, lipids, and nucleic acids between cells, thereby serving as essential mediators of intercellular communication. Since a lot of current research focuses on small extracellular vesicles (sEVs), with diameters ranging from 30 nm to 200 nm, this review emphasizes the role of sEVs in the context of interactions between HCC stemness-bearing cells and the immune cells. sEVs offer promising opportunities for the clinical application of innovative diagnostic and prognostic biomarkers in HCC. By specifically targeting sEVs, novel therapeutics aimed at cancer stemness can be developed. Ongoing investigations into the roles of sEVs in cancer stemness and immune regulation in HCC will broaden our understanding and ultimately pave the way for groundbreaking therapeutic interventions.
Collapse
Affiliation(s)
- Yu-Man Tsui
- Department of Pathology, Hong Kong; State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong
| | - Lu Tian
- Department of Pathology, Hong Kong; State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong
| | - Jingyi Lu
- Department of Pathology, Hong Kong; State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong
| | - Huanhuan Ma
- Department of Pathology, Hong Kong; State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong
| | - Irene Oi-Lin Ng
- Department of Pathology, Hong Kong; State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong.
| |
Collapse
|
6
|
Zhao G, Wang Y, Xing S, Jiang Y, Ding J, Cai Y, Ma P, Miao H, Fang Y, Jiang N, Cui D, Yu Y, Tang Q, Wang S, Li N. Exosome-based anticancer vaccines: From Bench to bedside. Cancer Lett 2024; 595:216989. [PMID: 38825162 DOI: 10.1016/j.canlet.2024.216989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/13/2024] [Accepted: 05/23/2024] [Indexed: 06/04/2024]
Abstract
Exosomes, a subset of extracellular vesicles, are released by all active cells and play a crucial role in intercellular communications. Exosomes could facilitate the transfer of various biologically active molecules, such as DNA, non-coding RNAs, and proteins, from donor to recipient cells, thereby participating in diverse biological and pathological processes. Besides, exosomes possess unique characteristics, including non-toxicity, low-immunogenicity, and stability within biological systems, rendering them highly advantageous for cancer drug development. Meanwhile, accumulating evidence suggests that exosomes originating from tumor cells and immune cells possess distinct composition profiles that play a direct role in anticancer immunotherapy. Of note, exosomes can transport their contents to specific cells, thereby exerting an impact on the phenotype and immune-regulatory functions of targeted cells. Therapeutic cancer vaccines, an emerging therapeutics of immunotherapy, could enhance antitumor immune responses by delivering a large number of tumor antigens, thereby augmenting the immune response against tumor cells. Therefore, the therapeutic rationale of cancer vaccines and exosome-based immunotherapy are almost similar to some extent, but some challenges have hindered their application in the clinical setting. Here, in this review, we first summarized the biogenesis, structure, compositions, and biological functions of exosomes. Then we described the roles of exosomes in cancer biology, particularly in tumor immunity. We also comprehensively reviewed current exosome-based anticancer vaccine development and we divided them into three types. Finally, we give some insights into clinical translation and clinical trial progress of exosome-based anticancer vaccines for future direction.
Collapse
Affiliation(s)
- Guo Zhao
- Clinical Trial Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yuning Wang
- Clinical Trial Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Shujun Xing
- Clinical Trial Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yale Jiang
- Clinical Trial Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jiatong Ding
- Clinical Trial Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yuanting Cai
- Clinical Trial Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Peiwen Ma
- Clinical Trial Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Huilei Miao
- Clinical Trial Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yuan Fang
- Clinical Trial Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Ning Jiang
- Clinical Trial Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Dandan Cui
- Clinical Trial Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yue Yu
- Clinical Trial Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Qiyu Tang
- Clinical Trial Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Shuhang Wang
- Clinical Trial Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Ning Li
- Clinical Trial Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
7
|
Hsu CY, Mustafa MA, Kumar A, Pramanik A, Sharma R, Mohammed F, Jawad IA, Mohammed IJ, Alshahrani MY, Ali Khalil NAM, Shnishil AT, Abosaoda MK. Exploiting the immune system in hepatic tumor targeting: Unleashing the potential of drugs, natural products, and nanoparticles. Pathol Res Pract 2024; 256:155266. [PMID: 38554489 DOI: 10.1016/j.prp.2024.155266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/05/2024] [Accepted: 03/15/2024] [Indexed: 04/01/2024]
Abstract
Hepatic tumors present a formidable challenge in cancer therapeutics, necessitating the exploration of novel treatment strategies. In recent years, targeting the immune system has attracted interest to augment existing therapeutic efficacy. The immune system in hepatic tumors includes numerous cells with diverse actions. CD8+ T lymphocytes, T helper 1 (Th1) CD4+ T lymphocytes, alternative M1 macrophages, and natural killer (NK) cells provide the antitumor immunity. However, Foxp3+ regulatory CD4+ T cells (Tregs), M2-like tumor-associated macrophages (TAMs), and myeloid-derived suppressor cells (MDSCs) are the key immune inhibitor cells. Tumor stroma can also affect these interactions. Targeting these cells and their secreted molecules is intriguing for eliminating malignant cells. The current review provides a synopsis of the immune system components involved in hepatic tumor expansion and highlights the molecular and cellular pathways that can be targeted for therapeutic intervention. It also overviews the diverse range of drugs, natural products, immunotherapy drugs, and nanoparticles that have been investigated to manipulate immune responses and bolster antitumor immunity. The review also addresses the potential advantages and challenges associated with these approaches.
Collapse
Affiliation(s)
- Chou-Yi Hsu
- Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan City 71710, Taiwan
| | | | - Ashwani Kumar
- Department of Life Sciences, School of Sciences, Jain (Deemed-to-be) University, Bengaluru, Karnataka 560069, India; Department of Pharmacy, Vivekananda Global University, Jaipur, Rajasthan 303012, India
| | - Atreyi Pramanik
- Institute of Pharma Sciences and Research, Chandigarh University, Mohali, India
| | - Rajiv Sharma
- Institute of Pharma Sciences and Research, Chandigarh University, Mohali, India
| | - Faraj Mohammed
- Department of Pharmacy, Al-Manara College for Medical Sciences, Maysan, Iraq
| | | | - Imad Jasim Mohammed
- College of Pharmacy, National University of Science and Technology, Dhi Qar, Iraq
| | - Mohammad Y Alshahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia.
| | | | | | - Munther Kadhim Abosaoda
- College of technical engineering, the Islamic University, Najaf, Iraq; College of technical engineering, the Islamic University of Al Diwaniyah, Iraq; College of technical engineering, the Islamic University of Babylon, Iraq
| |
Collapse
|
8
|
Wang X, Ye X, Chen Y, Lin J. Mechanism of M2 type macrophage-derived extracellular vesicles regulating PD-L1 expression via the MISP/IQGAP1 axis in hepatocellular carcinoma immunotherapy resistance. Int Immunopharmacol 2023; 124:110848. [PMID: 37633233 DOI: 10.1016/j.intimp.2023.110848] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 08/07/2023] [Accepted: 08/21/2023] [Indexed: 08/28/2023]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is a prevailing cancer affecting human health. M2 macrophages are essential in mediating immune responses in tumors. This study investigated the action of M2 macrophages in immune escape of HCC. METHODS Mitotic spindle positioning (MISP), IQ motif containing GTPase activating protein 1 (IQGAP1) and programmed cell death-1 (PD-L1) levels in primary HCC/tumor-adjacent tissues were determined by Western blot, followed by correlation analysis. M2 macrophage and CD3+CD8+T cell percentages were estimated by flow cytometry. Hep3B and HepG2 cells were treated with M2 macrophage conditioned medium (M2-CM) and M2 macrophage-derived extracellular vesicles (M2-EVs) and/or co-cultured with CD8+T cells, followed by assessment of cell viability and apoptosis. TNF-α and INF-γ levels were measured by ELISA. MISP and IQGAP1 overexpression plasmids were transfected into HCC cells to explore their role in immune escape. The interactions among MISP, IQGAP1, STAT3, and PD-L1 were analyzed by co-immunoprecipitation. The mechanism of M2-EVs in HCC immune escape was verified in nude mice. RESULTS MISP/IQGAP1/PD-L1 were upregulated in HCC tissues. MISP negatively-correlated with IQGAP1/PD-L1 and IQGAP1 positively-correlated with PD-L1. M2 macrophages were reduced but CD8+T cells were increased in HCC tissues with high MISP expression. M2-CM or M2-EVs inhibited the killing ability of CD8+T cells, increased HCC cell viability, impeded HCC cell apoptosis, induced CD8+T cell apoptosis, downregulated TNF-α and INF-γ, and upregulated PD-L1. M2-EVs facilitated HCC cell immune escape by potentiating IQGAP1 nuclear translocation and activating STAT3 phosphorylation through MISP downregulation. In vivo experiments further verified the action of M2-EVs through MISP. CONCLUSION M2-EVs promote HCC cell immune escape by upregulating PD-L1 through the MISP/IQGAP1/STAT3 axis.
Collapse
Affiliation(s)
- Xiaobo Wang
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou, 310053, China
| | - Xuxing Ye
- Department of Traditional Chinese Medicine, Jinhua Municipal Central Hospital, 351 Mingyue Street, Wucheng District, Jinhua, 321001, China
| | - Yanping Chen
- Department of Gastroenterology, Jinhua Municipal Central Hospital, 351 Mingyue Street, Wucheng District, Jinhua, 321001, China
| | - Junmei Lin
- Department of Traditional Chinese Medicine, Jinhua Municipal Central Hospital, 351 Mingyue Street, Wucheng District, Jinhua, 321001, China.
| |
Collapse
|
9
|
Li L, Wang C, Li Q, Guan Y, Zhang X, Kong F, Feng Z, Lu Y, Wang D, Wang N. Exosomes as a modulator of immune resistance in human cancers. Cytokine Growth Factor Rev 2023; 73:135-149. [PMID: 37543438 DOI: 10.1016/j.cytogfr.2023.07.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 07/31/2023] [Indexed: 08/07/2023]
Abstract
In the tumor microenvironment (TME), exosomes secreted by cells form interactive networks between the tumor cells and immune cells, thereby regulating immune signaling cascades in the TME. As key messengers of cell-to-cell communication in the TME, exosomes not only take charge of tumor cell antigen presentation to the immune cells, but also regulate the activities of immune cells, inhibit immune function, and, especially, promote immune resistance, all of which affects the therapeutic outcomes of tumors. Exosomes, which are small-sized vesicles, possess some remarkable advantages, including strong biological activity, a lack of immunogenicity and toxicity, and a strong targeting ability. Based on these characteristics, research on exosomes as biomarkers or carriers of tumor therapeutic drugs has become a research hotspot in related fields. This review describes the role of exosomes in cell communications in the TME, summarizes the effectiveness of exosome-based immunotherapy in overcoming immune resistance in cancer treatment, and systematically summarizes and discusses the characteristics of exosomes from different cell sources. Furthermore, the prospects and challenges of exosome-related therapies are discussed.
Collapse
Affiliation(s)
- Lanzhou Li
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, PR China
| | - Chunyue Wang
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, PR China
| | - Qiucheng Li
- School of Chinese Medicine, The University of Hong Kong, Pokfulam 999077, Hong Kong Special Administrative Region of China
| | - Yue Guan
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, PR China
| | - Xin Zhang
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, PR China
| | - Fange Kong
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, PR China
| | - Zixin Feng
- School of Chinese Medicine, The University of Hong Kong, Pokfulam 999077, Hong Kong Special Administrative Region of China
| | - Yuanjun Lu
- School of Chinese Medicine, The University of Hong Kong, Pokfulam 999077, Hong Kong Special Administrative Region of China
| | - Di Wang
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, PR China.
| | - Ning Wang
- School of Chinese Medicine, The University of Hong Kong, Pokfulam 999077, Hong Kong Special Administrative Region of China.
| |
Collapse
|
10
|
Luo S, Chen J, Xu F, Chen H, Li Y, Li W. Dendritic Cell-Derived Exosomes in Cancer Immunotherapy. Pharmaceutics 2023; 15:2070. [PMID: 37631284 PMCID: PMC10457773 DOI: 10.3390/pharmaceutics15082070] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/21/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023] Open
Abstract
Exosomes are nanoscale vesicles released by diverse types of cells for complex intercellular communication. Numerous studies have shown that exosomes can regulate the body's immune response to tumor cells and interfere with the tumor microenvironment (TME). In clinical trials on dendritic cell (DC)-based antitumor vaccines, no satisfactory results have been achieved. However, recent studies suggested that DC-derived exosomes (DEXs) may be superior to DC-based antitumor vaccines in avoiding tumor cell-mediated immunosuppression. DEXs contain multiple DC-derived surface markers that capture tumor-associated antigens (TAAs) and promote immune cell-dependent tumor rejection. These findings indicate the necessity of the further development and improvement of DEX-based cell-free vaccines to complement chemotherapy, radiotherapy, and other immunotherapies. In this review, we highlighted the recent progress of DEXs in cancer immunotherapy, particularly by concentrating on landmark studies and the biological characterization of DEXs, and we summarized their important role in the tumor immune microenvironment (TIME) and clinical application in targeted cancer immunotherapy. This review could enhance comprehension of advances in cancer immunotherapy and contribute to the elucidation of how DEXs regulate the TIME, thereby providing a reference for utilizing DEX-based vaccines in clinical practice.
Collapse
Affiliation(s)
- Shumin Luo
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China; (S.L.); (J.C.); (F.X.); (Y.L.)
| | - Jing Chen
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China; (S.L.); (J.C.); (F.X.); (Y.L.)
| | - Fang Xu
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China; (S.L.); (J.C.); (F.X.); (Y.L.)
| | - Huan Chen
- Integrated Chinese and Western Medicine Center, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China;
| | - Yiru Li
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China; (S.L.); (J.C.); (F.X.); (Y.L.)
| | - Weihua Li
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China; (S.L.); (J.C.); (F.X.); (Y.L.)
| |
Collapse
|
11
|
Li T, Jiao J, Ke H, Ouyang W, Wang L, Pan J, Li X. Role of exosomes in the development of the immune microenvironment in hepatocellular carcinoma. Front Immunol 2023; 14:1200201. [PMID: 37457718 PMCID: PMC10339802 DOI: 10.3389/fimmu.2023.1200201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/12/2023] [Indexed: 07/18/2023] Open
Abstract
Despite numerous improved treatment methods used in recent years, hepatocellular carcinoma (HCC) is still a disease with a high mortality rate. Many recent studies have shown that immunotherapy has great potential for cancer treatment. Exosomes play a significant role in negatively regulating the immune system in HCC. Understanding how these exosomes play a role in innate and adaptive immunity in HCC can significantly improve the immunotherapeutic effects on HCC. Further, engineered exosomes can deliver different drugs and RNA molecules to regulate the immune microenvironment of HCC by regulating the aforementioned immune pathway, thereby significantly improving the mortality rate of HCC. This study aimed to declare the role of exosomes in the development of the immune microenvironment in HCC and list engineered exosomes that could be used for clinical transformation therapy. These findings might be beneficial for clinical patients.
Collapse
Affiliation(s)
- Tanghua Li
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Jiapeng Jiao
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Haoteng Ke
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Wenshan Ouyang
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Luobin Wang
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Jin Pan
- The Department of Electronic Engineering, The Chinese University of Hong Kong, Hongkong, Hongkong SAR, China
| | - Xin Li
- Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
12
|
Wei S, Wei F, Li M, Yang Y, Zhang J, Li C, Wang J. Target immune components to circumvent sorafenib resistance in hepatocellular carcinoma. Biomed Pharmacother 2023; 163:114798. [PMID: 37121146 DOI: 10.1016/j.biopha.2023.114798] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/23/2023] [Accepted: 04/25/2023] [Indexed: 05/02/2023] Open
Abstract
Sorafenib, a multi-kinase inhibitor, has been approved for cancer treatment for decades, especially hepatocellular carcinoma (HCC). Although sorafenib produced substantial clinical benefits in the initial stage, a large proportion of cancer patients acquired drug resistance in subsequent treatment, which always disturbs clinical physicians. Cumulative evidence unraveled the underlying mechanism of sorafenib, but few reports focused on the role of immune subpopulations, since the immunological rationale of sorafenib resistance has not yet been defined. Here, we reviewed the immunoregulatory effects of sorafenib on the tumor microenvironment and emphasized the potential immunological mechanisms of therapeutic resistance to sorafenib. Moreover, we also summarized the clinical outcomes and ongoing trials in combination of sorafenib with immunotherapy, highlighted the immunotherapeutic strategies to improve sorafenib efficacy, and put forward several prospective questions aimed at guiding future research in overcoming sorafenib resistance in HCC.
Collapse
Affiliation(s)
- Shuhua Wei
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, PR China
| | - Fenghua Wei
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou City, Guangdong Province, PR China
| | - Mengyuan Li
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, PR China
| | - Yuhan Yang
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, PR China
| | - Jingwen Zhang
- R & D Management Department, China National Biotec Group, Beijing, PR China.
| | - Chunxiao Li
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, PR China.
| | - Junjie Wang
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, PR China.
| |
Collapse
|
13
|
Gondaliya P, Sayyed AA, Driscoll J, Patel K, Patel T. Extracellular vesicle RNA signaling in the liver tumor microenvironment. Cancer Lett 2023; 558:216089. [PMID: 36758739 PMCID: PMC9992346 DOI: 10.1016/j.canlet.2023.216089] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/24/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023]
Abstract
The tumor microenvironment (TME) in liver cancers such as hepatocellular cancer (HCC) consists of a complex milieu of liver tissue-resident cells, infiltrated immune cells, and secreted factors that collectively serve to promote tumor growth and progression. Intercellular crosstalk contributes to tissue homeostasis, and perturbations during injury, inflammation and tumorigenesis that are important for tumor progression. Extracellular vesicle (EV)-mediated transfer of a payload of RNA molecules that serve as an intercellular signaling is an important contributor to tissue homeostasis within the TME. Several types of RNA have been implicated in EV-mediated signaling. Biological processes that can be modulated by EV RNA signaling within the liver include tumor growth, invasion, metastasis, angiogenesis, and modulation of the immune cell activities. This mini-review describes the liver TME, and the biological effects of EV RNA-mediated signaling within the liver to highlight the role of EV RNA in intercellular communication.
Collapse
Affiliation(s)
- Piyush Gondaliya
- Departments of Transplantation and Cancer Biology, Mayo Clinic, Jacksonville, FL, USA
| | - Adil Ali Sayyed
- Departments of Transplantation and Cancer Biology, Mayo Clinic, Jacksonville, FL, USA
| | - Julia Driscoll
- Departments of Transplantation and Cancer Biology, Mayo Clinic, Jacksonville, FL, USA
| | - Krishna Patel
- Departments of Transplantation and Cancer Biology, Mayo Clinic, Jacksonville, FL, USA
| | - Tushar Patel
- Departments of Transplantation and Cancer Biology, Mayo Clinic, Jacksonville, FL, USA.
| |
Collapse
|
14
|
Yu SJ. Immunotherapy for hepatocellular carcinoma: Recent advances and future targets. Pharmacol Ther 2023; 244:108387. [PMID: 36948423 DOI: 10.1016/j.pharmthera.2023.108387] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/12/2023] [Accepted: 03/15/2023] [Indexed: 03/24/2023]
Abstract
Immunotherapy is a promising approach to treating various types of cancers, including hepatocellular carcinoma (HCC). While single immunotherapy drugs show limited effectiveness on a small subset of patients, the combination of the anti PD-L1 atezolizumab and anti-vascular endothelial growth factor bevacizumab has shown significant improvement in survival compared to sorafenib as a first-line treatment. However, the current treatment options still have a low success rate of about 30%. Thus, more effective treatments for HCC are urgently required. Several novel immunotherapeutic methods, including the use of novel immune checkpoint inhibitors, innovative immune cell therapies like chimeric antigen receptor T cells (CAR-T), TCR gene-modified T cells and stem cells, as well as combination strategies are being tested in clinical trials for the treatment of HCC. However, some crucial issues still exist such as the presence of heterogeneous antigens in solid tumors, the immune-suppressive environment within tumors, the risk of on-target/off-tumor, infiltrating CAR-T cells, immunosuppressive checkpoint molecules, and cytokines. Overall, immunotherapy is on the brink of major advancements in the fight against HCC.
Collapse
Affiliation(s)
- Su Jong Yu
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
15
|
Deng J, Ke H. Overcoming the resistance of hepatocellular carcinoma to PD-1/PD-L1 inhibitor and the resultant immunosuppression by CD38 siRNA-loaded extracellular vesicles. Oncoimmunology 2023; 12:2152635. [PMID: 36605619 PMCID: PMC9809939 DOI: 10.1080/2162402x.2022.2152635] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Extracellular vesicles (EVs) are promising tools for drug delivery across different biological barriers. Here, we evaluated the potential of EVs-mediated delivery of CD38 siRNA on the immunosuppression of hepatocellular carcinoma (HCC). EVs were isolated from bone marrow mesenchymal stem cell culture medium and loaded with CD38 siRNA to prepare EVs/siCD38. Loss-of-function assays were conducted to investigate the biological functions of EVs/siCD38 in HCC cells. Xenograft mouse models were performed for further validation. High CD38 expression was found in HCC. EVs/siCD38 inhibited CD38 enzyme activity, decreased adenosine production, and promoted macrophage repolarization to M1 type, thus inhibiting HCC cell growth and metastasis in vitro as well as tumor growth in mice. Mechanistically, CD38 was upregulated in mice resistant to PD-1/PD-L1 inhibitor and EVs/siCD38 reversed the resistance of tumor to PD-1/PD-L1 inhibitor in vivo. Our results provide functional evidence for the use of EV-mediated delivery of CD38 siRNA to prevent immunosuppression feature of HCC.
Collapse
Affiliation(s)
- Jun Deng
- Department of General Surgery, the First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China,CONTACT Jun Deng Department of General Surgery, the First Affiliated Hospital of Nanchang University, No. 1519, Dongyue Street, Nanchang, 330006, Jiangxi Province, China
| | - Hui Ke
- Surgical Dressing Room, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| |
Collapse
|
16
|
Lim S, Park JH, Chang H. Enhanced anti-tumor immunity of vaccine combined with anti-PD-1 antibody in a murine bladder cancer model. Investig Clin Urol 2023; 64:74-81. [PMID: 36629068 PMCID: PMC9834567 DOI: 10.4111/icu.20220031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 09/05/2022] [Accepted: 10/26/2022] [Indexed: 12/12/2022] Open
Abstract
PURPOSE Programmed cell death protein 1 (PD-1) and ligand programmed death ligand 1 (PD-L1) are important immune-suppressive regulators in the tumor microenvironment. A vaccine-induced immune effect on tumor cells is blunted by the immunosuppressive tumor microenvironment. Therefore, we hypothesized that a dendritic cell (DC) vaccine combined with anti-PD-1 (αPD-1) antibodies could elicit a synergistic anti-tumor immunity in bladder cancer. MATERIALS AND METHODS We produced a model of subcutaneous transplantation in C3H/HeJ mice by transplanting murine MBT-2 bladder cancer cells. DCs were isolated from normal C3H/HeJ mice, followed by stimulation against MBT-2 lysate before injection. Two weeks later of MBT-2 inoculation, αPD-1 and stimulated DCs were injected two times at one-week interval intraperitoneally and intravenously, respectively. Tumor-infiltrating immune cells and splenocytes were analyzed using flow cytometry. T-cell-mediated anti-tumor responses were measured by interferon (IFN)-γ ELISPOT and lactate dehydrogenase assays. RESULTS The mice treated with DC+αPD-1 showed a significant decrease in tumor volume compared to the DC-treated mice and IgG-treated group. Survival of the DC+αPD-1-treated group was improved compared with that of the IgG-treated mice. IFN-γ secretion from splenocytes against tumor cells was significantly increased in the DC+αPD-1 group compared with that of αPD-1-treated mice. The frequency of CD8+ and CD4+ T-cells in spleens was statistically increased in the DC+αPD-1-treated mice compared to those receiving monotherapy (DC- or αPD-1-treated group). CONCLUSIONS Our results support the hypothesis that the combination therapy of a DC vaccine and αPD-1 antibodies could enhance the anti-tumor immune response against bladder cancer.
Collapse
Affiliation(s)
- Soyeon Lim
- Institute for Bio-Medical Convergence, Catholic Kwandong University College of Medicine, Gangneung, Korea
| | - Jun-Hee Park
- Department of Laboratory Animal, Catholic Kwandong University International St. Mary’s Hospital, Incheon, Korea.,Department of Integrated Omics for Biomedical Sciences, Yonsei University, Seoul, Korea
| | - Hyun Chang
- Institute for Bio-Medical Convergence, Catholic Kwandong University College of Medicine, Gangneung, Korea.,Department of Medical Oncology and Hematology, International St. Mary’s Hospital, Catholic Kwandong University College of Medicine, Incheon, Korea
| |
Collapse
|
17
|
Pourhamzeh M, Asadian S, Mirzaei H, Minaei A, Shahriari E, Shpichka A, Es HA, Timashev P, Hassan M, Vosough M. Novel antigens for targeted radioimmunotherapy in hepatocellular carcinoma. Mol Cell Biochem 2023; 478:23-37. [PMID: 35708866 DOI: 10.1007/s11010-022-04483-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 05/18/2022] [Indexed: 01/17/2023]
Abstract
Liver cancer is the sixth common cancer and forth cause of cancer-related death worldwide. Based on usually advanced stages of hepatocellular carcinoma (HCC) at the time of diagnosis, therapeutic options are limited and, in many cases, not effective, and typically result in the tumor recurrence with a poor prognosis. Radioimmunotherapy (RIT) offers a selective internal radiation therapy approach using beta or alpha emitting radionuclides conjugated with tumor-specific monoclonal antibodies (mAbs), or specific selective peptides. When compared to chemotherapy or radiotherapy, radiolabeled mAbs against cancer-associated antigens could provide a high therapeutic and exclusive radiation dose for cancerous cells while decreasing the exposure-induced side effects to healthy tissues. The recent advances in cancer immunotherapy, such as blockade of immune-checkpoint inhibitors (ICIs), has changed the landscape of cancer therapy, and the efficacy of different classes of immunotherapy has been tested in many clinical trials. Taking into account the use of ICIs in the liver tumor microenvironment, combined therapies with different approaches may enhance the outcome in the future clinical studies. With the development of novel immunotherapy treatment options in the recent years, there has been a great deal of information about combining the diverse treatment modalities to boost the effectiveness of immunomodulatory drugs. In this opinion review, we will discuss the recent advancements in RIT. The current status of immunotherapy and internal radiotherapy will be updated, and we will propose novel approaches for the combination of both techniques. Potential target antigens for radioimmunotherapy in Hepatocellular carcinoma (HCC). HCC radioimmunotherapy target antigens are the most specific and commonly accessible antigens on the surface of HCC cells. CTLA-4 ligand and receptor, TAMs, PD-1/PD-L, TIM-3, specific IEXs/TEXs, ROBO1, and cluster of differentiation antigens CD105, CD147 could all be used in HCC radioimmunotherapy. Abbreviations: TAMs, tumor-associated macrophages; CTLA-4, cytotoxic T-lymphocyte associated antigen-4; PD-1, Programmed cell death protein 1; PD-L, programmed death-ligand1; TIM-3, T-cell immunoglobulin (Ig) and mucin-domain containing protein-3; IEXs, immune cell-derived exosomes; TEXs, tumor-derived exosomes.
Collapse
Affiliation(s)
- Mahsa Pourhamzeh
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.,Departments of Pathology and Medicine, UC San Diego, La Jolla, CA, USA
| | - Samieh Asadian
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Azita Minaei
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Elahe Shahriari
- Departments of Pathology and Medicine, UC San Diego, La Jolla, CA, USA
| | - Anastasia Shpichka
- World-Class Research Center "Digital Biodesign and Personalized Healthcare", Sechenov First Moscow State Medical University, Moscow, Russia.,Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, Moscow, Russia.,Chemistry Department, Lomonosov Moscow State University, Moscow, Russia
| | | | - Peter Timashev
- World-Class Research Center "Digital Biodesign and Personalized Healthcare", Sechenov First Moscow State Medical University, Moscow, Russia. .,Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, Moscow, Russia. .,Chemistry Department, Lomonosov Moscow State University, Moscow, Russia.
| | - Moustapha Hassan
- Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran. .,Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institute, Stockholm, Sweden.
| |
Collapse
|
18
|
Tumor-Derived Extracellular Vesicles in Cancer Immunoediting and Their Potential as Oncoimmunotherapeutics. Cancers (Basel) 2022; 15:cancers15010082. [PMID: 36612080 PMCID: PMC9817790 DOI: 10.3390/cancers15010082] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/16/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
The tumor microenvironment (TME) within and around a tumor is a complex interacting mixture of tumor cells with various stromal cells, including endothelial cells, fibroblasts, and immune cells. In the early steps of tumor formation, the local microenvironment tends to oppose carcinogenesis, while with cancer progression, the microenvironment skews into a protumoral TME and the tumor influences stromal cells to provide tumor-supporting functions. The creation and development of cancer are dependent on escape from immune recognition predominantly by influencing stromal cells, particularly immune cells, to suppress antitumor immunity. This overall process is generally called immunoediting and has been categorized into three phases; elimination, equilibrium, and escape. Interaction of tumor cells with stromal cells in the TME is mediated generally by cell-to-cell contact, cytokines, growth factors, and extracellular vesicles (EVs). The least well studied are EVs (especially exosomes), which are nanoparticle-sized bilayer membrane vesicles released by many cell types that participate in cell/cell communication. EVs carry various proteins, nucleic acids, lipids, and small molecules that influence cells that ingest the EVs. Tumor-derived extracellular vesicles (TEVs) play a significant role in every stage of immunoediting, and their cargoes change from immune-activating in the early stages of immunoediting into immunosuppressing in the escape phase. In addition, their cargos change with different treatments or stress conditions and can be influenced to be more immune stimulatory against cancer. This review focuses on the emerging understanding of how TEVs affect the differentiation and effector functions of stromal cells and their role in immunoediting, from the early stages of immunoediting to immune escape. Consideration of how TEVs can be therapeutically utilized includes different treatments that can modify TEV to support cancer immunotherapy.
Collapse
|
19
|
Yu S, Zhou L, Fu J, Xu L, Liu B, Zhao Y, Wang J, Yan X, Su J. H-TEX-mediated signaling between hepatocellular carcinoma cells and macrophages and exosome-targeted therapy for hepatocellular carcinoma. Front Immunol 2022; 13:997726. [PMID: 36311698 PMCID: PMC9608495 DOI: 10.3389/fimmu.2022.997726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/21/2022] [Indexed: 11/18/2022] Open
Abstract
There is increasing evidence for the key role of the immune microenvironment in the occurrence and development of hepatocellular carcinoma. As an important component of the immune microenvironment, the polarization state and function of macrophages determine the maintenance of the immunosuppressive tumor microenvironment. Hepatocellular carcinoma tumor-derived exosomes, as information carriers, regulate the physiological state of cells in the microenvironment and control cancer progression. In this review, we focus on the role of the exosome content in disease outcomes at different stages in the progression of hepatitis B virus/hepatitis C virus-induced hepatocellular carcinoma. We also explore the mechanism by which macrophages contribute to the formation of hepatocellular carcinoma and summarize the regulation of macrophage functions by the heterogeneity of exosome loading in liver cancer. Finally, with the rise of exosome modification in immunotherapy research on hepatocellular carcinoma, we summarize the application prospects of exosome-based targeted drug delivery.
Collapse
Affiliation(s)
- Sihang Yu
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Lei Zhou
- Department of Pathology, Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Jiaying Fu
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Long Xu
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Buhan Liu
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Yuanxin Zhao
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Jian Wang
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Xiaoyu Yan
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, China
- *Correspondence: Xiaoyu Yan, ; Jing Su,
| | - Jing Su
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, China
- *Correspondence: Xiaoyu Yan, ; Jing Su,
| |
Collapse
|
20
|
Shao X, Hua S, Feng T, Ocansey DKW, Yin L. Hypoxia-Regulated Tumor-Derived Exosomes and Tumor Progression: A Focus on Immune Evasion. Int J Mol Sci 2022; 23:ijms231911789. [PMID: 36233088 PMCID: PMC9570495 DOI: 10.3390/ijms231911789] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/24/2022] [Accepted: 09/29/2022] [Indexed: 11/16/2022] Open
Abstract
Tumor cells express a high quantity of exosomes packaged with unique cargos under hypoxia, an important characteristic feature in solid tumors. These hypoxic tumor-derived exosomes are, crucially, involved in the interaction of cancer cells with their microenvironment, facilitating not only immune evasion, but increased cell growth and survival, enhanced angiogenesis, epithelial–mesenchymal transition (EMT), therapeutic resistance, autophagy, pre-metastasis, and metastasis. This paper explores the tumor microenvironment (TME) remodeling effects of hypoxic tumor-derived exosome towards facilitating the tumor progression process, particularly, the modulatory role of these factors on tumor cell immune evasion through suppression of immune cells, expression of surface recognition molecules, and secretion of antitumor soluble factor. Tumor-expressed exosomes educate immune effector cells, including macrophages, monocytes, T cells, natural killer (NK) cells, dendritic cells (DCs), γδ T lymphocytes, regulatory T cells (Tregs), myeloid-derived suppressor cells (MDSCs), mast cells, and B cells, within the hypoxic TME through the release of factors that regulate their recruitment, phenotype, and function. Thus, both hypoxia and tumor-derived exosomes modulate immune cells, growth factors, cytokines, receptor molecules, and other soluble factors, which, together, collaborate to form the immune-suppressive milieu of the tumor environment. Exploring the contribution of exosomal cargos, such as RNAs and proteins, as indispensable players in the cross-talk within the hypoxic tumor microenvironmental provides a potential target for antitumor immunity or subverting immune evasion and enhancing tumor therapies.
Collapse
|
21
|
Mortezaee K, Majidpoor J. Extracellular vesicle-based checkpoint regulation and immune state in cancer. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2022; 39:225. [PMID: 36175741 DOI: 10.1007/s12032-022-01837-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 08/28/2022] [Indexed: 10/14/2022]
Abstract
Tumor cells exploit several mechanisms for hijacking an immunosuppressive tumor ecosystem in order to evade immune surveillance and to progress toward metastasis. Equipment of extracellular vesicles (EVs) with checkpoints is an example of cancer control over anti-tumor responses from immune system. Programmed death-ligand 1 (PD-L1) is a checkpoint highly expressed in a tumor at progressive stage. Interactions between PD-L1 with its receptor programmed death-1 receptor (PD-1) expressed on T cells will block the effector function of CD8+ T cells, known as one of the most important defensive cells against cancer. Evaluation of circulatory exosomal PD-L1 can be a prognostic biomarker in tumor diagnosis and responses to the immune checkpoint inhibitor (ICI) therapy, and can be considered as a tool in clinical practice for exploiting personalized therapy. Cytotoxic T lymphocyte-associated antigen-4 (CTLA-4) is also a checkpoint that its engagement with CD80/CD86 expressed on antigen-presenting cells (APCs), such as dendritic cells (DCs) hamper the priming phase of CD4+ and CD8+ T cells. Harvesting EVs from tumor and their modification with desired anti-checkpoint antibodies can be a promising strategy in cancer immunotherapy. The aim of this review is to discuss about EV roles in checkpoint regulation, cancer diagnosis and ICI responses, and to survey possible application of such vesicles in cancer immunotherapy.
Collapse
Affiliation(s)
- Keywan Mortezaee
- Department of Anatomy, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| | - Jamal Majidpoor
- Department of Anatomy, School of Medicine, Infectious Disease Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| |
Collapse
|
22
|
Tian BW, Han CL, Dong ZR, Tan SY, Wang DX, Li T. Role of Exosomes in Immunotherapy of Hepatocellular Carcinoma. Cancers (Basel) 2022; 14:cancers14164036. [PMID: 36011030 PMCID: PMC9406927 DOI: 10.3390/cancers14164036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/21/2022] [Accepted: 08/18/2022] [Indexed: 12/03/2022] Open
Abstract
Simple Summary Hepatocellular carcinoma is one of the most lethal malignancies, having a significantly poor prognosis. Immunotherapy, as an emerging tumor treatment option, provides new hope for many cancer patients. However, a large proportion of patients do not benefit from immunotherapy. As a critical cell-to-cell communication mediator in the tumor immune microenvironment, exosomes may play a unique role in hepatocellular carcinoma immune response and thus affect the efficiency of immunotherapy. In this review, we discuss related research on the roles of exosomes in the current immunotherapy resistance mechanism of hepatocellular carcinoma. Furthermore, we also clarify the excellent predictive value of exosomes and the roles they play in improving immunotherapy efficacy for hepatocellular carcinoma patients. We hope that our review can help readers to gain a more comprehensive understanding of exosomes’ roles in hepatocellular carcinoma immunotherapy. Abstract Hepatocellular carcinoma (HCC) is one of the most lethal malignancies, having a significantly poor prognosis and no sufficiently efficient treatments. Immunotherapy, especially immune checkpoint inhibitors (ICIs), has provided new therapeutic approaches for HCC patients. Nevertheless, most patients with HCC do not benefit from immunotherapy. Exosomes are biologically active lipid bilayer nano-sized vesicles ranging in size from 30 to 150 nm and can be secreted by almost any cell. In the HCC tumor microenvironment (TME), numerous cells are involved in tumor progression, and exosomes—derived from tumor cells and immune cells—exhibit unique composition profiles and act as intercellular communicators by transporting various substances. Showing the dual characteristics of tumor promotion and suppression, exosomes exert multiple functions in shaping tumor immune responses in the crosstalk between tumor cells and surrounding immune cells, mediating immunotherapy resistance by affecting the PD-1/PD-L1 axis or the anti-tumor function of immune cells in the TME. Targeting exosomes or the application of exosomes as therapies is involved in many aspects of HCC immunotherapies (e.g., ICIs, tumor vaccines, and adoptive cell therapy) and may substantially enhance their efficacy. In this review, we discuss the impact of exosomes on the HCC TME and comprehensively summarize the role of exosomes in immunotherapy resistance and therapeutic application. We also discuss the potential of exosomes as biomarkers for predicting the efficacy of immunotherapy to help clinicians in identifying HCC patients who are amenable to immunotherapies.
Collapse
Affiliation(s)
- Bao-Wen Tian
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan 250000, China
| | - Cheng-Long Han
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan 250000, China
| | - Zhao-Ru Dong
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan 250000, China
| | - Si-Yu Tan
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan 250000, China
| | - Dong-Xu Wang
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan 250000, China
| | - Tao Li
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan 250000, China
- Department of Hepatobiliary Surgery, The Second Hospital of Shandong University, Jinan 250000, China
- Correspondence: ; Tel./Fax: +86-531-8216-6651
| |
Collapse
|
23
|
Yang S, Wang J, Wang S, Zhou A, Zhao G, Li P. Roles of small extracellular vesicles in the development, diagnosis and possible treatment strategies for hepatocellular carcinoma (Review). Int J Oncol 2022; 61:91. [PMID: 35674180 PMCID: PMC9262158 DOI: 10.3892/ijo.2022.5381] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 05/24/2022] [Indexed: 11/19/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common malignancy of hepatocytes accounting for 75-85% of primary hepatic carcinoma cases. Small extracellular vesicles (sEVs), previously known as exosomes with a diameter of 30-200 nm, can transport a variety of biological molecules between cells, and have been proposed to function in physiological and pathological processes. Recent studies have indicated that the cargos of sEVs are implicated in intercellular crosstalk among HCC cells, paratumor cells and the tumor microenvironment. sEV-encapsulated substances (including DNA, RNA, proteins and lipids) regulate signal transduction pathways in recipient cells and contribute to cancer initiation and progression in HCC. In addition, the differential expression of sEV cargos between patients facilitates the potential utility of sEVs in the diagnosis and prognosis of patients with HCC. Furthermore, the intrinsic properties of low immunogenicity and high stability render sEVs ideal vehicles for targeted drug delivery in the treatment of HCC. The present review article summarizes the carcinogenic and anti-neoplastic capacities of sEVs and discusses the potential and prospective diagnostic and therapeutic applications of sEVs in HCC.
Collapse
Affiliation(s)
- Shuyue Yang
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, P.R. China
| | - Jiaxin Wang
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, P.R. China
| | - Shidong Wang
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, P.R. China
| | - Anni Zhou
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, P.R. China
| | - Guiping Zhao
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, P.R. China
| | - Peng Li
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, P.R. China
| |
Collapse
|
24
|
Gulati R, Nandi D, Sarkar K, Venkataraman P, Ramkumar KM, Ranjan P, Janardhanan R. Exosomes as Theranostic Targets: Implications for the Clinical Prognosis of Aggressive Cancers. Front Mol Biosci 2022; 9:890768. [PMID: 35813829 PMCID: PMC9260243 DOI: 10.3389/fmolb.2022.890768] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 05/20/2022] [Indexed: 12/12/2022] Open
Abstract
Exosomes are extracellular vesicles produced by various cell types and extensively distributed in physiological fluids. Because of their significant role in cancer progression, they have been a focal point for the novel cancer therapy approach. Exosomes are highly efficient at transporting proteins, RNAs, and small drugs into cancer cells for therapeutic purposes. In addition to their prominent role as potential biomarkers for transporting targeted information from their progenitor cells, exosomes have also emerged as a new avenue for developing more effective clinical diagnostics and therapeutic techniques, also known as exosome theranostics. Lipids, proteins, and nucleic acids transported by exosomes were investigated as potential biomarkers for cancer diagnosis, prognosis, and future cancer treatment targets. The unique mechanism of exosomes and their therapeutic as well as diagnostic uses, also known as theranostic applications of exosomes in malignancies, are discussed in this review.
Collapse
Affiliation(s)
- Richa Gulati
- Department of Medical Research, Faculty of Medicine and Health Sciences, SRM Institute of Science and Technology, Kattankulathur, India
| | - Dhruva Nandi
- Department of Medical Research, Faculty of Medicine and Health Sciences, SRM Institute of Science and Technology, Kattankulathur, India
| | - Koustav Sarkar
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, India
| | - P. Venkataraman
- Department of Medical Research, Faculty of Medicine and Health Sciences, SRM Institute of Science and Technology, Kattankulathur, India
| | - K. M. Ramkumar
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, India
| | - Priya Ranjan
- Bhubaneswar Institute of Technology, Rourkela, India
| | - Rajiv Janardhanan
- Department of Medical Research, Faculty of Medicine and Health Sciences, SRM Institute of Science and Technology, Kattankulathur, India
- *Correspondence: Rajiv Janardhanan,
| |
Collapse
|
25
|
Chen X, Chi H, Zhao X, Pan R, Wei Y, Han Y. Role of Exosomes in Immune Microenvironment of Hepatocellular Carcinoma. JOURNAL OF ONCOLOGY 2022; 2022:2521025. [PMID: 35126514 PMCID: PMC8816547 DOI: 10.1155/2022/2521025] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 01/08/2022] [Indexed: 02/08/2023]
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver cancer. Since most patients with HCC are diagnosed at the intermediate or advanced stage and because HCC has a high incidence of metastasis and recurrence, it is one of the leading causes of cancer death. Exosomes are a subtype of extracellular vesicles and are typically 30-150 nm in diameter. Originating from endosomes, they can be secreted by almost all living cells. They are widely present in various body fluids and serve as an important medium for the interactions between cells. A series of studies have revealed that exosomes-mediated intercellular transfer of proteins, nucleic acids, and metabolites plays a crucial role in the initiation and progression of HCC, hypoxia and angiogenesis, chemotherapy sensitivity, and cell death mode and regulates the immune microenvironment. In this paper, we reviewed the recent researches on the multiple roles of tumor-associated exosomes in the progression of HCC. We laid particular focus on those researches that reveal how exosomes regulate the tumor immune microenvironment (TIME) and how exosomal cargos affect the progression of HCC. Besides, we emphasize some prospective directions to achieve a more accurate and complete analysis of the HCC immune microenvironment.
Collapse
Affiliation(s)
- Xiaojing Chen
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000 Sichuan, China
| | - Hao Chi
- Clinical Medical College, Southwest Medical University, Luzhou, 646000 Sichuan, China
| | - Xiaozhao Zhao
- Clinical Medical College, Southwest Medical University, Luzhou, 646000 Sichuan, China
| | - Rui Pan
- Clinical Medical College, Southwest Medical University, Luzhou, 646000 Sichuan, China
| | - Ying Wei
- Clinical Medical College, Southwest Medical University, Luzhou, 646000 Sichuan, China
| | - Yunwei Han
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000 Sichuan, China
| |
Collapse
|
26
|
Ding W, Chen X, Yang L, Chen Y, Song J, Bu W, Feng B, Zhang M, Luo Y, Jia X, Feng L. Combination of ShuangDan Capsule and Sorafenib Inhibits Tumor Growth and Angiogenesis in Hepatocellular Carcinoma Via PI3K/Akt/mTORC1 Pathway. Integr Cancer Ther 2022; 21:15347354221078888. [PMID: 35234063 PMCID: PMC8894619 DOI: 10.1177/15347354221078888] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a high mortality liver cancer. The existing treatments (transplantation, chemotherapy, and individualized treatment) with limitations. However, drug combination provides a viable option for hepatocellular carcinoma treatment. A Chinese patent medicine, ShuangDan Capsules (SDC), has been clinically prescribed to hepatocellular carcinoma patients as adjuvant therapy and has shown good antitumor activity. The purpose of this study was to investigate whether SDC could improve the anti-cancer effect and mitigate adverse reactions of sorafenib on HCC in vivo. Magnetic resonance imaging (MRI), immunohistochemistry, and western blot were executed to reveal the potential mechanisms of the combination of SDC and sorafenib on HCC. Tumors appeared hyperintense on T2 sequence images relative to the adjacent normal liver in MRI. Combination of SDC and sorafenib inhibited the progression of DEN (Diethylnitrosamine)-induced HCC. In the HepG2 xenografts model, sorafenib plus SDC exhibited greater suppression on tumor growth than individual treatment accompanied with decreased expression of VEGF, VEGFA, Ki67, CD31 and increased expression of caspase-3. Furthermore, PI3K/Akt/mTORC1 pathway was inhibited by co-administration. Sorafenib monotherapy elicited hepatotoxicity for specific expression in the up-regulated level of aspartate transaminase (AST) and AST/glutamic-pyruvic transaminase (ALT) ratio, but the co-administration could remedy this adverse effect. These dates indicated that the combination of SDC and sorafenib might offer a potential therapy for HCC.
Collapse
Affiliation(s)
- Wenbo Ding
- Nanjing University of Chinese Medicine, Nanjing, P.R. China
| | - Xiuwei Chen
- Yuhuatai District Maternity and Child Care Clinic, Nanjing, P.R. China
| | - Licheng Yang
- China Pharmaceutical University, Nanjing, P.R. China
| | - Yaping Chen
- China Pharmaceutical University, Nanjing, P.R. China
| | - Jie Song
- Nanjing University of Chinese Medicine, Nanjing, P.R. China
| | - Weiquan Bu
- Nanjing University of Chinese Medicine, Nanjing, P.R. China
| | - Bin Feng
- Nanjing University of Chinese Medicine, Nanjing, P.R. China
| | - Meng Zhang
- China Pharmaceutical University, Nanjing, P.R. China
| | - Yi Luo
- Nanjing University of Chinese Medicine, Nanjing, P.R. China
| | - Xiaobin Jia
- China Pharmaceutical University, Nanjing, P.R. China
| | - Liang Feng
- China Pharmaceutical University, Nanjing, P.R. China
| |
Collapse
|
27
|
Zhu M, Li S, Li S, Wang H, Xu J, Wang Y, Liang G. Strategies for Engineering Exosomes and Their Applications in Drug Delivery. J Biomed Nanotechnol 2021; 17:2271-2297. [PMID: 34974854 DOI: 10.1166/jbn.2021.3196] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Exosomes are representative of a promising vehicle for delivery of biomolecules. Despite their discovery nearly 40 years, knowledge of exosomes and extracellular vesicles (EVs) and the role they play in etiology of disease and normal cellular physiology remains in its infancy. EVs are produced in almost all cells, containing nucleic acids, lipids, and proteins delivered from donor cells to recipient cells. Consequently, they act as mediators of intercellular communication and molecular transfer. Recent studies have shown that, exosomes are associated with numerous physiological and pathological processes as a small subset of EVs, and they play a significant role in disease progression and treatment. In this review, we discuss several key questions: what are exosomes, why do they matter, and how do we repurpose them in their strategies and applications in drug delivery systems. In addition, opportunities and challenges of exosome-based theranostics are also described and directions for future research are presented.
Collapse
Affiliation(s)
- Mengxi Zhu
- School of Basic Medicine, Henan University of Science & Technology, Luoyang, 471023, China
| | - Shan Li
- School of Basic Medicine, Henan University of Science & Technology, Luoyang, 471023, China
| | - Sanqiang Li
- School of Basic Medicine, Henan University of Science & Technology, Luoyang, 471023, China
| | - Haojie Wang
- School of Basic Medicine, Henan University of Science & Technology, Luoyang, 471023, China
| | - Juanjuan Xu
- School of Basic Medicine, Henan University of Science & Technology, Luoyang, 471023, China
| | - Yili Wang
- School of Basic Medicine, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Gaofeng Liang
- School of Basic Medicine, Henan University of Science & Technology, Luoyang, 471023, China
| |
Collapse
|
28
|
Application of immunotherapy based on dendritic cells stimulated by tumor cell-derived exosomes in a syngeneic breast tumor mouse model. Biochem Biophys Rep 2021; 28:101136. [PMID: 34646949 PMCID: PMC8495757 DOI: 10.1016/j.bbrep.2021.101136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/09/2021] [Accepted: 09/15/2021] [Indexed: 11/28/2022] Open
Abstract
We here evaluated the therapeutic effect of tumor cell-derived exosomes (TEXs)-stimulated dendritic cells (DCs) in a syngeneic orthotopic breast tumor model. The DC line DC2.4 and breast cancer cell line E0771 originally isolated from C57BL/6 mice were used. E0771 cells stably expressing the exosomal CD63-RFP or luciferase (Luc) and DC2.4 cells stably expressing GFP were produced using lentivirus. TEXs were purified from conditioned medium of E0771/CD63-RFP cells. Breast tumor model was established by injecting E0771/Luc cells into mammary gland fat pad of mice. TEXs contained immune modulatory molecules such as HSP70, HSP90, MHC I, MHC II, TGF-β, and PD-L1. TEXs were easily taken by DC2.4 cells, resulting in a significant increase in the in vitro proliferation and migration abilities of DC2.4 cells, accompanied by the upregulation of CD40. TEX-DC-treated group exhibited a decreased tumor growth compared with control group. CD8+ cells were more abundant in the tumors and lymph nodes of TEX-DC-treated group than in those of control group, whereas many CD4+ or FOXP3+ cells were localized in those of control group. Our results suggest a potential application of TEX-DC-based cancer immunotherapy. TEXs contained immune modulatory molecules such as HSP70, HSP90, MHC I, MHC II, TGF-β, and PD-L1. . TEXs increased the proliferation and migration capacities of dendritic cells. TEXs up regulated CD40 molecule on dendritic cells. TEX-stimulated dendritic cells suppressed tumor growth, with accompanying increase in CD8+ T cell infiltration.
Collapse
|
29
|
Zhao Y, Liu P, Tan H, Chen X, Wang Q, Chen T. Exosomes as Smart Nanoplatforms for Diagnosis and Therapy of Cancer. Front Oncol 2021; 11:743189. [PMID: 34513718 PMCID: PMC8427309 DOI: 10.3389/fonc.2021.743189] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 08/09/2021] [Indexed: 12/17/2022] Open
Abstract
Exosomes are composed of a lipid bilayer membrane, containing proteins, nucleic acids, DNA, RNA, etc., derived from donor cells. They have a size range of approximately 30-150 nm. The intrinsic characteristics of exosomes, including efficient cellular uptake, low immunogenicity, low toxicity, intrinsic ability to traverse biological barriers, and inherent targeting ability, facilitate their application to the drug delivery system. Here, we review the generation, uptake, separation, and purification methods of exosomes, focusing on their application as carriers in tumor diagnosis and treatment, especially in brain tumors, as well as the patent applications of exosomes in recent years.
Collapse
Affiliation(s)
- Yuying Zhao
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Mammary Disease, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical Collage of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Piaoxue Liu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hanxu Tan
- School of Fundamental Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaojia Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Qi Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Tongkai Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
30
|
Shi Y, Du L, Lv D, Li Y, Zhang Z, Huang X, Tang H. Emerging role and therapeutic application of exosome in hepatitis virus infection and associated diseases. J Gastroenterol 2021; 56:336-349. [PMID: 33665710 PMCID: PMC8005397 DOI: 10.1007/s00535-021-01765-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 01/23/2021] [Indexed: 02/05/2023]
Abstract
Hepatitis viruses are chief pathogens of hepatitis and end-stage liver diseases. Their replication and related pathogenic process highly rely on the host micro-environment and multiple cellular elements, including exosomes. Representing with a sort of cell-derived vesicle structure, exosomes were considered to be dispensable cellular components, even wastes. Along with advancing investigation, a specific profile of exosome in driving hepatitis viruses' infection and hepatic disease progression is revealed. Exosomes greatly affect the pathogenesis of hepatitis viruses by mediating their replication and modulating the host immune responses. The characteristics of host exosomes are markedly changed after infection with hepatitis viruses. Exosomes released from hepatitis virus-infected cells can carry viral nucleic or protein components, thereby acting as an effective subterfuge for hepatitis viruses by participating in viral transportation and immune escape. On the contrary, immune cell-derived exosomes contribute toward the innate antiviral immune defense and virus eradication. There is growing evidence supporting the application of exosomal biomarkers for predicting disease progress or therapeutic outcome, while exosomal nanoshuttles are regarded as promising therapeutic options based on their delivery properties and immune compatibility. In this review, we summarize the biogenesis and secretion mechanism of exosomes, review the recent findings pertaining to the role of exosomes in the interplay between hepatitis viruses and innate immune responses, and conclude their potential in further therapeutic application.
Collapse
Affiliation(s)
- Ying Shi
- Center of Infectious Diseases, West China Hospital of Sichuan University, No. 37 Guoxue Alley, Wuhou District, Chengdu, 610041, Sichuan, China
- School of Medicine, University of Electronic Science and Technology of China, No. 4 Section 2, North Jianshe Road, Chengdu, 610054, Sichuan, China
- Department of Hepatobiliary Surgery and Cell Transplantation Center, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, No. 32 Western Section 2, 1st Ring Rd., Chengdu, 610072, Sichuan, China
| | - Lingyao Du
- Center of Infectious Diseases, West China Hospital of Sichuan University, No. 37 Guoxue Alley, Wuhou District, Chengdu, 610041, Sichuan, China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Diseases, West China Hospital, Sichuan University, No. 17 People's South Road, Chengdu, 610041, Sichuan, China
| | - Duoduo Lv
- Center of Infectious Diseases, West China Hospital of Sichuan University, No. 37 Guoxue Alley, Wuhou District, Chengdu, 610041, Sichuan, China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Diseases, West China Hospital, Sichuan University, No. 17 People's South Road, Chengdu, 610041, Sichuan, China
| | - Yan Li
- School of Medicine, University of Electronic Science and Technology of China, No. 4 Section 2, North Jianshe Road, Chengdu, 610054, Sichuan, China
- Department of Hepatobiliary Surgery and Cell Transplantation Center, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, No. 32 Western Section 2, 1st Ring Rd., Chengdu, 610072, Sichuan, China
| | - Zilong Zhang
- School of Medicine, University of Electronic Science and Technology of China, No. 4 Section 2, North Jianshe Road, Chengdu, 610054, Sichuan, China
- Department of Hepatobiliary Surgery and Cell Transplantation Center, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, No. 32 Western Section 2, 1st Ring Rd., Chengdu, 610072, Sichuan, China
| | - Xiaolun Huang
- School of Medicine, University of Electronic Science and Technology of China, No. 4 Section 2, North Jianshe Road, Chengdu, 610054, Sichuan, China
- Department of Hepatobiliary Surgery and Cell Transplantation Center, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, No. 32 Western Section 2, 1st Ring Rd., Chengdu, 610072, Sichuan, China
| | - Hong Tang
- Center of Infectious Diseases, West China Hospital of Sichuan University, No. 37 Guoxue Alley, Wuhou District, Chengdu, 610041, Sichuan, China.
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Diseases, West China Hospital, Sichuan University, No. 17 People's South Road, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
31
|
Tian C, Yang Y, Bai B, Wang S, Liu M, Sun RC, Yu T, Chu XM. Potential of exosomes as diagnostic biomarkers and therapeutic carriers for doxorubicin-induced cardiotoxicity. Int J Biol Sci 2021; 17:1328-1338. [PMID: 33867849 PMCID: PMC8040474 DOI: 10.7150/ijbs.58786] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 03/17/2021] [Indexed: 02/07/2023] Open
Abstract
Doxorubicin (DOX) is a kind of representative anthracyclines. It has greatly prolonged lifespan of cancer patients. However, a long course of DOX chemotherapy could induce various forms of deaths of cardiomyocytes, such as apoptosis, pyroptosis and ferroptosis, contributing to varieties of cardiac complications called cardiotoxicity. It has become a major concern considering the large number of cancer patients' worldwide and increased survival rates after chemotherapy. Exosomes, a subgroup of extracellular vesicles (EVs), are secreted by nearly all cells and consist of lipid bilayers, nucleic acids and proteins. They can serve as mediators between intercellular communication via the transfer of bioactive molecules from secretory to recipient cells, modulating multiple pathophysiological processes. It has been proven that exosomes in body fluids can serve as biomarkers for doxorubicin-induced cardiotoxicity (DIC). Moreover, exosomes have attracted considerable attention because of their capacity as carriers of certain proteins, genetic materials (miRNA and lncRNA), and chemotherapeutic drugs to decrease the dosage of DOX and alleviate cardiotoxicity. This review briefly describes the characteristics of exosomes and highlights their clinical application potential as diagnostic biomarkers and drug delivery vehicles for DIC, thus providing a strategy for addressing it based on exosomes.
Collapse
Affiliation(s)
- Chao Tian
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Yanyan Yang
- Department of Immunology, Basic Medicine School, Qingdao University, Qingdao 266071, China
| | - Baochen Bai
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Shizhong Wang
- Department of Cardiovascular Surgery, The Affiliated Cardiovascular Hospital of Qingdao University, Qingdao 266000, China
| | - Meixin Liu
- Department of Cardiac Ultrasound, The Affiliated hospital of Qingdao University, Qingdao 266000, China
| | - Rui-Cong Sun
- Department of Cardiac Ultrasound, The Affiliated hospital of Qingdao University, Qingdao 266000, China
| | - Tao Yu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266021, China
- Department of Cardiac Ultrasound, The Affiliated hospital of Qingdao University, Qingdao 266000, China
| | - Xian-ming Chu
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
- Department of Cardiology, The Affiliated Cardiovascular Hospital of Qingdao University, Qingdao 266032, China
| |
Collapse
|
32
|
Gaurav I, Thakur A, Iyaswamy A, Wang X, Chen X, Yang Z. Factors Affecting Extracellular Vesicles Based Drug Delivery Systems. Molecules 2021; 26:molecules26061544. [PMID: 33799765 PMCID: PMC7999478 DOI: 10.3390/molecules26061544] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/18/2021] [Accepted: 02/19/2021] [Indexed: 02/07/2023] Open
Abstract
Extracellular vesicles (EVs) play major roles in intracellular communication and participate in several biological functions in both normal and pathological conditions. Surface modification of EVs via various ligands, such as proteins, peptides, or aptamers, offers great potential as a means to achieve targeted delivery of therapeutic cargo, i.e., in drug delivery systems (DDS). This review summarizes recent studies pertaining to the development of EV-based DDS and its advantages compared to conventional nano drug delivery systems (NDDS). First, we compare liposomes and exosomes in terms of their distinct benefits in DDS. Second, we analyze what to consider for achieving better isolation, yield, and characterization of EVs for DDS. Third, we summarize different methods for the modification of surface of EVs, followed by discussion about different origins of EVs and their role in developing DDS. Next, several major methods for encapsulating therapeutic cargos in EVs have been summarized. Finally, we discuss key challenges and pose important open questions which warrant further investigation to develop more effective EV-based DDS.
Collapse
Affiliation(s)
- Isha Gaurav
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; (I.G.); (A.I.); (X.W.); (X.C.)
| | - Abhimanyu Thakur
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation-CAS Limited, Hong Kong, China;
| | - Ashok Iyaswamy
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; (I.G.); (A.I.); (X.W.); (X.C.)
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson’s Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Xuehan Wang
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; (I.G.); (A.I.); (X.W.); (X.C.)
| | - Xiaoyu Chen
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; (I.G.); (A.I.); (X.W.); (X.C.)
| | - Zhijun Yang
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; (I.G.); (A.I.); (X.W.); (X.C.)
- Changshu Research Institute, Hong Kong Baptist University, Changshu Economic and Technological Development (CETD) Zone, Changshu 215500, Jiangsu Province, China
- Correspondence: ; Tel.: +852-3411-2961
| |
Collapse
|
33
|
Pi YN, Xia BR, Jin MZ, Jin WL, Lou G. Exosomes: Powerful weapon for cancer nano-immunoengineering. Biochem Pharmacol 2021; 186:114487. [PMID: 33647264 DOI: 10.1016/j.bcp.2021.114487] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 02/12/2021] [Accepted: 02/19/2021] [Indexed: 12/15/2022]
Abstract
Cancer immunotherapy (CIT) that targets the tumor immune microenvironment is regarded as a revolutionary advancement in the fight against cancer. The success and failure of CIT are due to the complexity of the immunosuppressive microenvironment. Cancer nanomedicine is a potential adjuvant therapeutic strategy for immune-based combination therapy. Exosomes are natural nanomaterials that play a pivotal role in mediating intercellular communications and package delivery in the tumor microenvironment. They affect the immune response or the effectiveness of immunotherapy. In particular, exosomal PD-L1 promotes cancer progression and resistance to immunotherapy. Exosomes possess high bioavailability, biological stability, targeting specificity, low toxicity, and immune characteristics, which indicate their potential for cancer therapy. They can be engineered to act as effective cancer therapeutic tools that activate anti-tumor immune response and start immune surveillance. In the current review, we introduce the role of exosomes in a tumor immune microenvironment, highlight the application of engineered exosomes to CIT, and discuss the challenges and prospects for clinical application.
Collapse
Affiliation(s)
- Ya-Nan Pi
- Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin 150086, PR China
| | - Bai-Rong Xia
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui Provincial Cancer Hospital, Hefei, Anhui 230031, PR China
| | - Ming-Zhu Jin
- Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China
| | - Wei-Lin Jin
- Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, The First Clinical Medical College of Lanzhou University, Lanzhou 730000, PR China.
| | - Ge Lou
- Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin 150086, PR China.
| |
Collapse
|
34
|
Wang J, Zeng H, Zhang H, Han Y. The role of exosomal PD-L1 in tumor immunotherapy. Transl Oncol 2021; 14:101047. [PMID: 33647542 PMCID: PMC7921878 DOI: 10.1016/j.tranon.2021.101047] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 02/09/2021] [Accepted: 02/17/2021] [Indexed: 12/14/2022] Open
Abstract
Exosomes are bioactive lipid bilayer vesicles released by most cells to mediate intercellular signal communication. Tumor cells release exosomes transmitting signals cell-to-cell and between cells and organs, which will promote tumor angiogenesis, regulate tumor stromal response, immune response, and enhance tumor cells resistance, while exosomes-derived from immune cells in tumor microenvironment play a key role in inhibiting tumor growth and killing tumor cells. Programmed cell death protein 1 (PD-1) combined with Programmed cell death protein ligand 1(PD-L1) can inhibit the activation of T cells, for tumor cells achieve immune escape by overexpressing PD-L1 and binding PD-1 on T cells. The use of anti-PD-1 / PD-L1 antibodies prevents their binding to a certain extent and partially restores T cell's activity. This article mainly discusses the role of exosomal PD-L1 in tumor progression and therapeutic efficacy after application of clinical antibodies, as well as the relation between different reactivity and immunity set points in cancer patients of different races, with different types and at different stages. Besides, we propose that exosomal PD-L1 may become targets for anti-PD-1 / PD-L1 antibody therapy, biomarkers for liquid biopsy, and drug carriers.
Collapse
Affiliation(s)
- Jing Wang
- Department of blood transfusion, the affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Hao Zeng
- Southwest Medical University, Luzhou, Sichuan, China
| | - Hongwei Zhang
- Department of blood transfusion, the affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China.
| | - Yunwei Han
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China.
| |
Collapse
|
35
|
Naseri M, Zöller M, Hadjati J, Ghods R, Ranaei Pirmardan E, Kiani J, Eini L, Bozorgmehr M, Madjd Z. Dendritic cells loaded with exosomes derived from cancer stem cell-enriched spheroids as a potential immunotherapeutic option. J Cell Mol Med 2021; 25:3312-3326. [PMID: 33634564 PMCID: PMC8034455 DOI: 10.1111/jcmm.16401] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 11/30/2020] [Accepted: 02/08/2021] [Indexed: 02/07/2023] Open
Abstract
Cancer stem cells (CSCs) are responsible for therapeutic resistance and recurrence in colorectal cancer. Despite advances in immunotherapy, the inability to specifically eradicate CSCs has led to treatment failure. Hence, identification of appropriate antigen sources is a major challenge in designing dendritic cell (DC)‐based therapeutic strategies against CSCs. Here, in an in vitro model using the HT‐29 colon cancer cell line, we explored the efficacy of DCs loaded with exosomes derived from CSC‐enriched colonospheres (CSCenr‐EXOs) as an antigen source in activating CSC‐specific T‐cell responses. HT‐29 lysate, HT‐29‐EXOs and CSCenr lysate were independently assessed as separate antigen sources. Having confirmed CSCs enrichment in spheroids, CSCenr‐EXOs were purified and characterized, and their impact on DC maturation was investigated. Finally, the impact of the antigen‐pulsed DCs on the proliferation rate and also spheroid destructive capacity of autologous T cells was assessed. CSCenr‐EXOs similar to other antigen groups had no suppressive/negative impacts on phenotypic maturation of DCs as judged by the expression level of costimulatory molecules. Notably, similar to CSCenr lysate, CSCenr‐EXOs significantly increased the IL‐12/IL‐10 ratio in supernatants of mature DCs. CSCenr‐EXO‐loaded DCs effectively promoted T‐cell proliferation. Importantly, T cells stimulated with CSCenr‐EXOs disrupted spheroids' structure. Thus, CSCenr‐EXOs present a novel and promising antigen source that in combination with conventional tumour bulk‐derived antigens should be further explored in pre‐clinical immunotherapeutic settings for the efficacy in hampering recurrence and metastatic spread.
Collapse
Affiliation(s)
- Marzieh Naseri
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran.,Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Margot Zöller
- Section Pancreas Research, University Hospital of Surgery, Heidelberg, Germany
| | - Jamshid Hadjati
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Roya Ghods
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran.,Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Ehsan Ranaei Pirmardan
- Department of Radiology, Molecular Biomarkers Nano-imaging Laboratory, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jafar Kiani
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran.,Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Leila Eini
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran.,Department of Basic Science, Faculty of Veterinary, Science and Research Branch of Islamic, Azad University, Tehran, Iran
| | - Mahmood Bozorgmehr
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Zahra Madjd
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran.,Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| |
Collapse
|
36
|
Zhang J, Song Q, Wu M, Zheng W. The Emerging Roles of Exosomes in the Chemoresistance of Hepatocellular Carcinoma. Curr Med Chem 2021; 28:93-109. [PMID: 32000636 DOI: 10.2174/0929867327666200130103206] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 10/08/2019] [Accepted: 10/23/2019] [Indexed: 11/22/2022]
Abstract
Hepatocellular carcinoma (HCC) is a common gastrointestinal malignancy with a leading incidence of cancer-related mortality worldwide. Despite the progress of treatment options, there remains low efficacy for patients with intermediate-advanced HCC, due to tumor metastasis, recurrence and chemoresistance. Increasing evidence suggests that exosomes in the tumor microenvironment (TME), along with other extracellular vesicles (EVs) and cytokines, contribute to the drug chemosensitivity of cancer cells. Exosomes, the intercellular communicators in various biological activities, have shown to play important roles in HCC progression. This review summarizes the underlying associations between exosomes and chemoresistance of HCC cells. The exosomes derived from distinct cell types mediate the drug resistance by regulating drug efflux, epithelial-mesenchymal transition (EMT), cancer stem cell (CSC) properties, autophagic phenotypes, as well as the immune response. In summary, TME-related exosomes can be a potential target to reverse chemoresistance and a candidate biomarker of drug efficacy in HCC patients.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Chemotherapy, Affiliated Hospital of Nantong University, 20 Xisi Road, 226001 Nantong, Jiangsu, China
| | - Qianqian Song
- Department of Radiology, Wake Forest School of Medicine, One Medical Center Boulevard, Winston-Salem, 27157 NC, United States
| | - Mengna Wu
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, 20 Xisi Road, 226001 Nantong, Jiangsu, China
| | - Wenjie Zheng
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, 20 Xisi Road, 226001 Nantong, Jiangsu, China
| |
Collapse
|
37
|
Yang J, Eresen A, Scotti A, Cai K, Zhang Z. Combination of NK-based immunotherapy and sorafenib against hepatocellular carcinoma. Am J Cancer Res 2021; 11:337-349. [PMID: 33575075 PMCID: PMC7868752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 12/07/2020] [Indexed: 06/12/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most frequent malignancy of the liver, which is considered the fourth leading cause of cancer-related death in the United States. Liver transplant and surgical resection are curative treatments for HCC, but only 10-15% of HCC patients are eligible candidates. The FDA-approved sorafenib is a multi-kinase inhibitor systemic therapy for advanced HCC that extends the overall survival by over 3 months when compared with placebo. Adoptive transfer of Natural Killer (NK) cells holds great promise for clinical cancer treatment. However, only limited clinical benefit has been achieved in cancer patients. Therefore, there is currently considerable interest in development of the combination of sorafenib and NK cells for the treatment of HCC patients. However, the mechanism of how sorafenib affects the function of NK cells remains to be comprehensively clarified. In this paper, we will discuss NK cell-based immunotherapies that are currently under preclinical and clinical investigation and its potential combination with sorafenib for improving the survival of HCC patients.
Collapse
Affiliation(s)
- Jia Yang
- Department of Radiology, Feinberg School of Medicine, Northwestern UniversityChicago, IL, 60611, USA
| | - Aydin Eresen
- Department of Radiology, Feinberg School of Medicine, Northwestern UniversityChicago, IL, 60611, USA
| | - Alessandro Scotti
- Department of Radiology, University of Illinois at ChicagoChicago, IL, 60612, USA
- Department of Bioengineering, University of Illinois at ChicagoChicago, IL, 60612, USA
| | - Kejia Cai
- Department of Radiology, University of Illinois at ChicagoChicago, IL, 60612, USA
- Department of Bioengineering, University of Illinois at ChicagoChicago, IL, 60612, USA
| | - Zhuoli Zhang
- Department of Radiology, Feinberg School of Medicine, Northwestern UniversityChicago, IL, 60611, USA
- Robert H. Lurie Comprehensive Cancer Center of Northwestern UniversityChicago, IL, 60611, USA
| |
Collapse
|
38
|
Elliott RO, He M. Unlocking the Power of Exosomes for Crossing Biological Barriers in Drug Delivery. Pharmaceutics 2021; 13:pharmaceutics13010122. [PMID: 33477972 PMCID: PMC7835896 DOI: 10.3390/pharmaceutics13010122] [Citation(s) in RCA: 148] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/12/2021] [Accepted: 01/14/2021] [Indexed: 12/25/2022] Open
Abstract
Since the 2013 Nobel Prize was awarded for the discovery of vesicle trafficking, a subgroup of nanovesicles called exosomes has been driving the research field to a new regime for understanding cellular communication. This exosome-dominated traffic control system has increased understanding of many diseases, including cancer metastasis, diabetes, and HIV. In addition to the important diagnostic role, exosomes are particularly attractive for drug delivery, due to their distinctive properties in cellular information transfer and uptake. Compared to viral and non-viral synthetic systems, the natural, cell-derived exosomes exhibit intrinsic payload and bioavailability. Most importantly, exosomes easily cross biological barriers, obstacles that continue to challenge other drug delivery nanoparticle systems. Recent emerging studies have shown numerous critical roles of exosomes in many biological barriers, including the blood–brain barrier (BBB), blood–cerebrospinal fluid barrier (BCSFB), blood–lymph barrier (BlyB), blood–air barrier (BAB), stromal barrier (SB), blood–labyrinth barrier (BLaB), blood–retinal barrier (BRB), and placental barrier (PB), which opens exciting new possibilities for using exosomes as the delivery platform. However, the systematic reviews summarizing such discoveries are still limited. This review covers state-of-the-art exosome research on crossing several important biological barriers with a focus on the current, accepted models used to explain the mechanisms of barrier crossing, including tight junctions. The potential to design and engineer exosomes to enhance delivery efficacy, leading to future applications in precision medicine and immunotherapy, is discussed.
Collapse
Affiliation(s)
- Rebekah Omarkhail Elliott
- Department of Chemical and Petroleum Engineering, Bioengineering Program, University of Kansas, Lawrence, KS 66045, USA;
| | - Mei He
- Department of Chemical and Petroleum Engineering, Bioengineering Program, University of Kansas, Lawrence, KS 66045, USA;
- Department of Chemistry, University of Kansas, Lawrence, KS 66045, USA
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
- Correspondence:
| |
Collapse
|
39
|
Tu K, Li J, Mo H, Xian Y, Xu Q, Xiao X. Identification and validation of redox-immune based prognostic signature for hepatocellular carcinoma. Int J Med Sci 2021; 18:2030-2041. [PMID: 33850474 PMCID: PMC8040390 DOI: 10.7150/ijms.56289] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 02/24/2021] [Indexed: 01/03/2023] Open
Abstract
The intimate interaction between redox signaling and immunity has been widely revealed. However, the clinical application of relevant therapeutic is unavailable due to the absence of validated markers that stratify patients. Here, we identified novel biomarkers for prognosis prediction in hepatocellular carcinoma (HCC). Prognostic redox-immune-related genes for predicting overall survival (OS) of HCC were identified using datasets from TCGA, LIRI-JP, and GSE14520. LASSO Cox regression was employed to construct the signature model and generate a risk score in the TCGA cohort. The signature contained CDO1, G6PD, LDHA, GPD1L, PPARG, FABP4, CCL20, SPP1, RORC, HDAC1, STC2, HDGF, EPO, and IL18RAP. Patients in the high-risk group had a poor prognosis compared to the low-risk group. Univariate and multivariate Cox regressions identified this signature as an independent factor for predicting OS. Nomogram constructed by multiple clinical parameters showed good performance for predicting OS indicated by the c-index, the calibration curve, and AUC. GSEA showed that oxidoreductase activity and peroxisome-related metabolic pathways were enriched in the low-risk group, while glycolysis activity and hypoxia were higher in the high-risk group. Furthermore, immune profiles analysis showed that the immune score and stromal score were significantly decreased in the high-risk group in the TCGA cohort. There was a considerably lower infiltration of anti-tumor immune cells while a higher proportion of pro-tumor immune cells in silico. Immune markers were distinctly expressed between the subgroups, and redox-sensitive immunoregulatory biomarkers were at higher levels in the high-risk group. Altogether, we identified a redox-immune prognostic signature. A more severe redox perturbation-driven immunosuppressive environment in the high-risk group stratified by the signature may account for poor survival. This may provide a clue to the combined therapy targeting redox and immune in HCC.
Collapse
Affiliation(s)
- Kangsheng Tu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Jin Li
- Department of Shoulder and Elbow Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, China
| | - Huanye Mo
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Yao Xian
- Department of Nutrition, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Qiuran Xu
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou 310014, China
| | - Xuelian Xiao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| |
Collapse
|
40
|
Liang B, Hu X, Ding Y, Liu M. Tumor-derived exosomes in the PD-1/PD-L1 axis: Significant regulators as well as promising clinical targets. J Cell Physiol 2020; 236:4138-4151. [PMID: 33275291 DOI: 10.1002/jcp.30197] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 11/17/2020] [Accepted: 11/23/2020] [Indexed: 12/14/2022]
Abstract
Programmed cell death-1 (PD-1) is a negative coreceptor mainly expressed on the surface of activated T cells. The binding of PD-1 to its ligand PD-L1 significantly induces non-reactivity of T cells to maintain the balance of autoimmunity and immune tolerance. It is reported that tumor cells highly express PD-L1 to restrict cellular immune response, which is one of the most important mechanisms for tumor to mediate immune escape. Cancer immunotherapy targeting PD-1/PD-L1 has achieved remarkable success so far. Tumor-derived exosomes (TEXs) are lipid bilayer vesicles released by tumor cells in an endosome-dependent manner, mediating communication between tumor cells and adjacent cells in the tumor microenvironment. Through signals transmitted by TEXs, tumor can alter the biological characteristics of these cells to promote tumor growth and metastasis. Recent studies have demonstrated that TEXs not only carry tumor-derived PD-L1, but are also closely related to PD-1/PD-L1 expression on target cells. The primary focus of this review will be on how TEXs regulate the PD-1/PD-L1 axis to promote tumor progression, and the promising clinical applications targeting TEXs and exosomal PD-L1.
Collapse
Affiliation(s)
- Benhui Liang
- Department of Cell Biology, Central South University, Changsha, China
- Xiangya Hospital, Central South University, Changsha, China
| | - Ximin Hu
- Department of Cell Biology, Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Yinghe Ding
- Department of Cell Biology, Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Mujun Liu
- Department of Cell Biology, Central South University, Changsha, China
| |
Collapse
|
41
|
Mittal S, Gupta P, Chaluvally-Raghavan P, Pradeep S. Emerging Role of Extracellular Vesicles in Immune Regulation and Cancer Progression. Cancers (Basel) 2020; 12:cancers12123563. [PMID: 33260606 PMCID: PMC7760253 DOI: 10.3390/cancers12123563] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/29/2020] [Accepted: 11/13/2020] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Accumulating evidence has reported that extracellular vesicles secreted by different tumor microenvironment cells can interfere with the host immune system. These vesicles transmit the signals in the tumor microenvironment that affect the proliferation, apoptosis, activation, and, metabolism of immune cells such as dendritic cells, T cells, macrophages, and natural killer cells, creating a pro-tumoral environment for tumor progression and survival. In this review, we summarize the recent literature on the function of extracellular vesicles derived from tumor cells and immune cells in regulating the critical processes associated with cancer progression. Besides, we also provide insights on how the extracellular vesicles are employed as diagnostic and prognostic biomarkers and drug carriers in cancer. Abstract The development of effective therapies for cancer treatment requires a better understanding of the tumor extracellular environment and a dynamic interaction between tumor cells, the cells of the immune system, and the tumor stroma. Increasing evidence suggests that extracellular vesicles play an important role in this interaction. Extracellular vesicles are nanometer-sized membrane-bound vesicles secreted by various types of cells that facilitate intracellular communication by transferring proteins, various lipids, and nucleic acids, especially miRNAs, between cells. Extracellular vesicles play discrete roles in the immune regulatory functions, such as antigen presentation, and activation or suppression of immune cells. Achieving therapeutic intervention through targeting of extracellular vesicles is a crucial area of research now. Thus, a deeper knowledge of exosome biology and the molecular mechanism of immune regulation is likely to provide significant insight into therapeutic intervention utilizing extracellular vesicles to combat this dreadful disease. This review describes the recent updates on immune regulation by extracellular vesicles in cancer progression and possible use in cancer therapy.
Collapse
Affiliation(s)
- Sonam Mittal
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (S.M.); (P.G.); (P.C.-R.)
- Cancer Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Prachi Gupta
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (S.M.); (P.G.); (P.C.-R.)
- Cancer Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Pradeep Chaluvally-Raghavan
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (S.M.); (P.G.); (P.C.-R.)
- Cancer Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Sunila Pradeep
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (S.M.); (P.G.); (P.C.-R.)
- Cancer Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Correspondence: ; Tel.: +1-414-955-2673; Fax: +1-414-805-6622
| |
Collapse
|
42
|
Myeloid Cell Modulation by Tumor-Derived Extracellular Vesicles. Int J Mol Sci 2020; 21:ijms21176319. [PMID: 32878277 PMCID: PMC7504548 DOI: 10.3390/ijms21176319] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/28/2020] [Accepted: 08/29/2020] [Indexed: 12/17/2022] Open
Abstract
Extracellular vesicles (EV) can carry proteins, RNA and DNA, thus serving as communication tools between cells. Tumor cells secrete EV, which can be taken up by surrounding cells in the tumor microenvironment as well as by cells in distant organs. Tumor-derived EV (TEV) contain factors induced by tumor-associated hypoxia such as heat shock proteins or a variety of microRNA (miRNA). The interaction of TEV with tumor and host cells can promote cancer angiogenesis, invasion and metastasis. Myeloid cells are widely presented in tissues, comprise the majority of immune cells and play an essential role in immune reactions and tissue remodeling. However, in cancer, the differentiation of myeloid cells and their functions are impaired, resulting in tumor promotion. Such alterations are due to chronic inflammatory conditions associated with cancer and are mediated by the tumor secretome, including TEV. A high capacity of myeloid cells to clear EV from circulation put them in the central position in EV-mediated formation of pre-metastatic niches. The exposure of myeloid cells to TEV could trigger numerous signaling pathways. Progenitors of myeloid cells alter their differentiation upon the contact with TEV, resulting in the generation of myeloid-derived suppressor cells (MDSC), inhibiting anti-tumor function of T and natural killer (NK) cells and promoting thereby tumor progression. Furthermore, TEV can augment MDSC immunosuppressive capacity. Different subsets of mature myeloid cells such as monocytes, macrophages, dendritic cells (DC) and granulocytes take up TEV and acquire a protumorigenic phenotype. However, the delivery of tumor antigens to DC by TEV was shown to enhance their immunostimulatory capacity. The present review will discuss a diverse and complex EV-mediated crosstalk between tumor and myeloid cells in the context of the tumor type, TEV-associated cargo molecules and type of recipient cells.
Collapse
|
43
|
Dai J, Su Y, Zhong S, Cong L, Liu B, Yang J, Tao Y, He Z, Chen C, Jiang Y. Exosomes: key players in cancer and potential therapeutic strategy. Signal Transduct Target Ther 2020; 5:145. [PMID: 32759948 PMCID: PMC7406508 DOI: 10.1038/s41392-020-00261-0] [Citation(s) in RCA: 746] [Impact Index Per Article: 149.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 06/28/2020] [Accepted: 07/17/2020] [Indexed: 12/13/2022] Open
Abstract
Exosomes are extracellular vesicles secreted by most eukaryotic cells and participate in intercellular communication. The components of exosomes, including proteins, DNA, mRNA, microRNA, long noncoding RNA, circular RNA, etc., which play a crucial role in regulating tumor growth, metastasis, and angiogenesis in the process of cancer development, and can be used as a prognostic marker and/or grading basis for tumor patients. Hereby, we mainly summarized as followed: the role of exosome contents in cancer, focusing on proteins and noncoding RNA; the interaction between exosomes and tumor microenvironment; the mechanisms that epithelial-mesenchymal transition, invasion and migration of tumor affected by exosomes; and tumor suppression strategies based on exosomes. Finally, the application potential of exosomes in clinical tumor diagnosis and therapy is prospected, which providing theoretical supports for using exosomes to serve precise tumor treatment in the clinic.
Collapse
Affiliation(s)
- Jie Dai
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha, 410013, Hunan, China.,School of Medicine, Hunan Normal University, Changsha, 410013, Hunan, China
| | - Yangzhou Su
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha, 410013, Hunan, China.,School of Medicine, Hunan Normal University, Changsha, 410013, Hunan, China
| | - Suye Zhong
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha, 410013, Hunan, China.,School of Medicine, Hunan Normal University, Changsha, 410013, Hunan, China
| | - Li Cong
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha, 410013, Hunan, China.,School of Medicine, Hunan Normal University, Changsha, 410013, Hunan, China
| | - Bang Liu
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha, 410013, Hunan, China.,School of Medicine, Hunan Normal University, Changsha, 410013, Hunan, China
| | - Junjun Yang
- Center for Joint Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Yongguang Tao
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, Xiangya Hospital, School of Basic Medicine, Central South University, Changsha, 410078, Hunan, China
| | - Zuping He
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha, 410013, Hunan, China.,School of Medicine, Hunan Normal University, Changsha, 410013, Hunan, China
| | - Chao Chen
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210013, Jiangsu, China.
| | - Yiqun Jiang
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha, 410013, Hunan, China. .,School of Medicine, Hunan Normal University, Changsha, 410013, Hunan, China.
| |
Collapse
|
44
|
Exosome: A New Player in Translational Nanomedicine. J Clin Med 2020; 9:jcm9082380. [PMID: 32722531 PMCID: PMC7463834 DOI: 10.3390/jcm9082380] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/20/2020] [Accepted: 07/22/2020] [Indexed: 02/07/2023] Open
Abstract
Summary: Exosomes are extracellular vesicles released by the vast majority of cell types both in vivo and ex vivo, upon the fusion of multivesicular bodies (MVBs) with the cellular plasma membrane. Two main functions have been attributed to exosomes: their capacity to transport proteins, lipids and nucleic acids between cells and organs, as well as their potential to act as natural intercellular communicators in normal biological processes and in pathologies. From a clinical perspective, the majority of applications use exosomes as biomarkers of disease. A new approach uses exosomes as biologically active carriers to provide a platform for the enhanced delivery of cargo in vivo. One of the major limitations in developing exosome-based therapies is the difficulty of producing sufficient amounts of safe and efficient exosomes. The identification of potential proteins involved in exosome biogenesis is expected to directly cause a deliberate increase in exosome production. In this review, we summarize the current state of knowledge regarding exosomes, with particular emphasis on their structural features, biosynthesis pathways, production techniques and potential clinical applications.
Collapse
|
45
|
Gandham S, Su X, Wood J, Nocera AL, Alli SC, Milane L, Zimmerman A, Amiji M, Ivanov AR. Technologies and Standardization in Research on Extracellular Vesicles. Trends Biotechnol 2020; 38:1066-1098. [PMID: 32564882 PMCID: PMC7302792 DOI: 10.1016/j.tibtech.2020.05.012] [Citation(s) in RCA: 308] [Impact Index Per Article: 61.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/20/2020] [Accepted: 05/26/2020] [Indexed: 12/14/2022]
Abstract
Extracellular vesicles (EVs) are phospholipid bilayer membrane-enclosed structures containing RNAs, proteins, lipids, metabolites, and other molecules, secreted by various cells into physiological fluids. EV-mediated transfer of biomolecules is a critical component of a variety of physiological and pathological processes. Potential applications of EVs in novel diagnostic and therapeutic strategies have brought increasing attention. However, EV research remains highly challenging due to the inherently complex biogenesis of EVs and their vast heterogeneity in size, composition, and origin. There is a need for the establishment of standardized methods that address EV heterogeneity and sources of pre-analytical and analytical variability in EV studies. Here, we review technologies developed for EV isolation and characterization and discuss paths toward standardization in EV research.
Collapse
Affiliation(s)
- Srujan Gandham
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA 02115, USA
| | - Xianyi Su
- Department of Chemistry and Chemical Biology, Barnett Institute of Chemical and Biological Analysis, Northeastern University, Boston, MA 02115, USA
| | - Jacqueline Wood
- Department of Chemistry and Chemical Biology, Barnett Institute of Chemical and Biological Analysis, Northeastern University, Boston, MA 02115, USA
| | - Angela L Nocera
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA 02115, USA
| | - Sarath Chandra Alli
- Department of Chemistry and Chemical Biology, Barnett Institute of Chemical and Biological Analysis, Northeastern University, Boston, MA 02115, USA; Department of Bioengineering, Northeastern University, Boston, MA 02115, USA
| | - Lara Milane
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA 02115, USA
| | - Alan Zimmerman
- Department of Chemistry and Chemical Biology, Barnett Institute of Chemical and Biological Analysis, Northeastern University, Boston, MA 02115, USA
| | - Mansoor Amiji
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA 02115, USA
| | - Alexander R Ivanov
- Department of Chemistry and Chemical Biology, Barnett Institute of Chemical and Biological Analysis, Northeastern University, Boston, MA 02115, USA.
| |
Collapse
|
46
|
Naseri M, Bozorgmehr M, Zöller M, Ranaei Pirmardan E, Madjd Z. Tumor-derived exosomes: the next generation of promising cell-free vaccines in cancer immunotherapy. Oncoimmunology 2020; 9:1779991. [PMID: 32934883 PMCID: PMC7466856 DOI: 10.1080/2162402x.2020.1779991] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Identification of immunogenic tumor antigens that are efficiently processed and delivered by dendritic cells to prime the immune system and to induce an appropriate immune response is a research hotspot in the field of cancer vaccine development. High biosafety is an additional demand. Tumor-derived exosomes (TEXs) are nanosized lipid bilayer encapsulated vesicles that shuttle bioactive information to the tumor microenvironment facilitating tumor progression. However, accumulating evidence points toward the capacity of TEXs to efficiently stimulate immune responses against tumors provided they are appropriately administered. After briefly describing the function of exosomes in cancer biology and their communication with immune cells, we summarize in this review in vitro and preclinical studies eliciting the potency of TEXs in inducing effective anti-tumor responses and recently modified strategies further improving TEX-vaccination efficacy. We interpret the available data as TEXs becoming a lead in cancer vaccination based on tumor antigen-selective high immunogenicity.
Collapse
Affiliation(s)
- Marzieh Naseri
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.,Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mahmood Bozorgmehr
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Margot Zöller
- Section Pancreas Research, University Hospital of Surgery, Heidelberg, Germany
| | - Ehsan Ranaei Pirmardan
- Molecular Biomarkers Nano-imaging Laboratory, Brigham & Women's Hospital, Department of Radiology, Harvard Medical School, Boston, MA, USA
| | - Zahra Madjd
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.,Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
47
|
The mechanisms of sorafenib resistance in hepatocellular carcinoma: theoretical basis and therapeutic aspects. Signal Transduct Target Ther 2020; 5:87. [PMID: 32532960 PMCID: PMC7292831 DOI: 10.1038/s41392-020-0187-x] [Citation(s) in RCA: 644] [Impact Index Per Article: 128.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/14/2020] [Accepted: 04/26/2020] [Indexed: 02/07/2023] Open
Abstract
Sorafenib is a multikinase inhibitor capable of facilitating apoptosis, mitigating angiogenesis and suppressing tumor cell proliferation. In late-stage hepatocellular carcinoma (HCC), sorafenib is currently an effective first-line therapy. Unfortunately, the development of drug resistance to sorafenib is becoming increasingly common. This study aims to identify factors contributing to resistance and ways to mitigate resistance. Recent studies have shown that epigenetics, transport processes, regulated cell death, and the tumor microenvironment are involved in the development of sorafenib resistance in HCC and subsequent HCC progression. This study summarizes discoveries achieved recently in terms of the principles of sorafenib resistance and outlines approaches suitable for improving therapeutic outcomes for HCC patients.
Collapse
|
48
|
Özverel CS, Uyanikgil Y, Karaboz İ, Nalbantsoy A. Investigation of the combination of anti-PD-L1 mAb with HER2/neu-loaded dendritic cells and QS-21 saponin adjuvant: effect against HER2 positive breast cancer in mice. Immunopharmacol Immunotoxicol 2020; 42:346-357. [PMID: 32515626 DOI: 10.1080/08923973.2020.1775644] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
BACKGROUND Human epidermal growth factor receptor 2 (HER2) is overexpressed in a subset of cancers including 25% of breast cancers. Since combination therapy consisting of multiple therapeutic approaches is considered a promising regimen, we examined combination treatment modalities in a xenograft model in Balb/c mice injected with 4T1-HER2 cells. We used HER2/neu-loaded bone marrow-derived dendritic cells (BM-DC's) along with anti-PD-L1 monoclonal antibody in a new combination immunotherapy model. METHODS The combination was composed of an active immunotherapy (i.e. BM-DC-based vaccine) designed to boost the immune response against target antigen and was augmented by using anti-PD-L1 mAb to prevent immune evasion by the xenografted tumors. The vaccine combination was further supported using a QS-21 saponin adjuvant and the immune response was evaluated. RESULTS Mice treated with HER2/neu-loaded BM-DCs, combined with QS-21 and anti-PD-L1 mAb had significantly decreased tumor sizes and their splenocytes had enhanced cytotoxic activity, based on the lactate dehydrogenase (LDH) assay, compared to vaccine and adjuvant groups alone. The same vaccination group demonstrated a remarkable increase in IFN-γ secreting CD8+ T-cells analyzed by flow cytometry. ELISA data also revealed a significant increase in the serum anti-HER2 IgG1 response; in addition, there was significant splenocyte proliferation upon stimulation with antigen compared to vaccine and adjuvant groups. Consistently, a significant infiltration of CD4+, CD8+ immune cells in and around the tumors was observed. CONCLUSIONS Our data suggest that the BM-DC + HER2/neu + QS-21 + anti-PD-L1 vaccine combination paradigm synergistically generates anti-tumor activity and immune responses against HER2 overexpressing breast cancer in mice.
Collapse
Affiliation(s)
| | - Yiğit Uyanikgil
- Department of Histology and Embryology, Faculty of Medicine, Ege University, İzmir, Turkey
| | - İsmail Karaboz
- Department of Biology, Faculty of Science, Ege University, İzmir, Turkey
| | - Ayse Nalbantsoy
- Department of Bioengineering, Faculty of Engineering, Ege University, İzmir, Turkey
| |
Collapse
|
49
|
CCL22 signaling contributes to sorafenib resistance in hepatitis B virus-associated hepatocellular carcinoma. Pharmacol Res 2020; 157:104800. [PMID: 32278046 DOI: 10.1016/j.phrs.2020.104800] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/02/2020] [Accepted: 04/05/2020] [Indexed: 01/07/2023]
Abstract
The HBV-initiated hepatocellular carcinoma (HCC) frequently develops from or accompanies long-term chronic hepatitis, inflammation, and cirrhosis, and has a poor prognosis. Sorafenib, an orally active multi-kinase inhibitor, currently the most common approved drug for first-line systemic treatment of advanced HCC, only improves overall survival of three months, suggesting the need for new therapeutic strategies. In this study, we identified that sorafenib selectively resisted in immune competent C57BL/6 mice but not nude mice. The chemokines CCL22 and CCL17 were upregulated by sorafenib, which elevated dramatically higher in HBV-associated HCC. Mechanically, sorafenib accelerates CCL22 expression via TNF-α-RIP1-NF-κB signaling pathway. Blocking CCL22 signaling with antagonist C-021 and sorafenib treated in combination can inhibit tumor growth and enhance the antitumor response, whereas no significant differences in tumor burden were observed in nude mice upon addition of C-021. These findings strongly suggest that CCL22 signaling pathway strongly contributes to sorafenib resistance in HBV-associated HCC, indicating a potential therapeutic strategy for immunological chemotherapy complementing first-line agents against HBV-associated HCC.
Collapse
|
50
|
Zongyi Y, Xiaowu L. Immunotherapy for hepatocellular carcinoma. Cancer Lett 2020; 470:8-17. [DOI: 10.1016/j.canlet.2019.12.002] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/25/2019] [Accepted: 12/01/2019] [Indexed: 02/08/2023]
|