1
|
Chan SWS, Zeng J, Young J, Barghout SH, Al-Agha F, Raptis S, Brown MC, Liu G, Juergens R, Jao K. A Poor Prognostic ALK Phenotype: A Review of Molecular Markers of Poor Prognosis in ALK Rearranged Nonsmall Cell Lung Cancer. Clin Lung Cancer 2025; 26:e22-e32.e2. [PMID: 39578168 DOI: 10.1016/j.cllc.2024.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 10/06/2024] [Accepted: 10/17/2024] [Indexed: 11/24/2024]
Abstract
BACKGROUND Patients with nonsmall cell lung cancer with anaplastic lymphoma kinase (ALK) rearrangements derive a significant and durable clinical benefit from tyrosine kinase inhibitors (TKIs). However, early progression/death on treatment occurs in a subset of patients, which we term the poor prognostic ALK phenotype. This review aims to summarize the known molecular mechanisms that underlie this phenotype with a focus on variant 3 and TP53 mutations. METHODS A scoping review was performed using scientific databases such as Ovid Medline, Ovid Embase, and Cochrane Central Register of Controlled Trials. Studies included molecular markers of poor prognosis, with a focus on TP53 mutations, variant 3 re-arrangements, and poor clinical response to TKIs. RESULTS Of 4371 studies screened, 108 were included. Numerous studies implicated a negative prognostic role of variant 3, likely mediated through the acquisition of on-target resistance mutations and TP53 mutations which are associated with greater chromosomal instability and mutational burden. Co-occurring variant 3 and TP53 mutations were associated with even worse survival. Other mediators of early resistance development include aberrations in cell cycle regulators and mutations in cell signaling pathways. Comprehensive genomic analysis from first-line TKI clinical trial data was unable to identify a singular genomic signature that underlies the poor prognostic phenotype but implicated a combination of pathways. CONCLUSIONS This scoping review highlights that the poor prognostic ALK phenotype is likely composed of a heterogeneous variety of genomic factors. There remains an unmet need for a genomic assay to integrate these various molecular markers to predict this ALK phenotype.
Collapse
Affiliation(s)
- Sze Wah Samuel Chan
- Department of Oncology, McMaster University, Hamilton, Ontario, Canada; Department of Medical Oncology, Juravinski Cancer Center, Hamilton, Ontario, Canada
| | - Joy Zeng
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Jack Young
- Department of Medical Oncology, Juravinski Cancer Center, Hamilton, Ontario, Canada
| | - Samir H Barghout
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Faisal Al-Agha
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Stavroula Raptis
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - M Catherine Brown
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Geoffrey Liu
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada; Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Rosalyn Juergens
- Department of Oncology, McMaster University, Hamilton, Ontario, Canada; Department of Medical Oncology, Juravinski Cancer Center, Hamilton, Ontario, Canada
| | - Kevin Jao
- Division of Medical Oncology and Hematology, Hôpital du Sacré-Coeur de Montréal, Montreal, Quebec, Canada.
| |
Collapse
|
2
|
Priantti JN, Vilbert M, de Moraes FCA, Madeira T, de Lima Santiago EM, Leighl NB, Cavalcante L, Karim NFA. Neurocognitive Adverse Events Related to Lorlatinib in Non-Small Cell Lung Cancer: A Systematic Review and Meta-Analysis. Cancers (Basel) 2024; 16:2611. [PMID: 39061249 PMCID: PMC11275246 DOI: 10.3390/cancers16142611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/14/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Lorlatinib has been FDA-approved as a systemic therapy for ALK/ROS1-positive non-small cell lung cancer (NSCLC) patients. However, it has been associated with an increased frequency of neurocognitive adverse events (NAEs). Therefore, we conducted a systematic review and meta-analysis to assess the NAEs related to lorlatinib therapy in NSCLC patients. PubMed, Scopus, the Cochrane Library, and prominent conference proceedings were searched for eligible studies of lorlatinib in NSCLC patients. NAEs included cognitive, mood, speech, and psychotic effects. A total of 1147 patients from 12 studies were included; 62% had brain metastases. A pooled analysis of NAEs showed frequencies of cognitive effects of 14.57% (95% CI, 8.37 to 24.14, I2 = 84%), mood effects of 11.17% (95% CI, 5.93 to 20.07, I2 = 84%), speech effects of 7.24% (95% CI, 3.39 to 15.20, I2 = 72%), and psychotic effects of 4.97% (95% CI, 3.27 to 7.49, I2 = 21%). Clinical trials reported a significantly higher frequency of mood effects than was indicated by real-world data. These results highlight the importance of educating patients and healthcare professionals about lorlatinib-related NAEs for early detection and management to improve NSCLC patients' quality of life.
Collapse
Affiliation(s)
- Jonathan N. Priantti
- School of Medicine, Federal University of Amazonas—UFAM, Manaus 69020-160, AM, Brazil;
| | - Maysa Vilbert
- Massachusetts General Hospital Cancer Center, Division of Hematology/Oncology, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | | | - Thiago Madeira
- School of Medicine, Federal University of Minas Gerais—UFMG, Belo Horizonte 30130-100, MG, Brazil
| | | | - Natasha B. Leighl
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C4, Canada
| | - Ludimila Cavalcante
- Department of Medical Oncology and Hematology, University of Virginia Comprehensive Cancer Center, Charlottesville, VA 22903, USA
| | | |
Collapse
|
3
|
Imyanitov EN, Preobrazhenskaya EV, Orlov SV. Current status of molecular diagnostics for lung cancer. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2024; 5:742-765. [PMID: 38966170 PMCID: PMC11220319 DOI: 10.37349/etat.2024.00244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 04/08/2024] [Indexed: 07/06/2024] Open
Abstract
The management of lung cancer (LC) requires the analysis of a diverse spectrum of molecular targets, including kinase activating mutations in EGFR, ERBB2 (HER2), BRAF and MET oncogenes, KRAS G12C substitutions, and ALK, ROS1, RET and NTRK1-3 gene fusions. Administration of immune checkpoint inhibitors (ICIs) is based on the immunohistochemical (IHC) analysis of PD-L1 expression and determination of tumor mutation burden (TMB). Clinical characteristics of the patients, particularly age, gender and smoking history, significantly influence the probability of finding the above targets: for example, LC in young patients is characterized by high frequency of kinase gene rearrangements, while heavy smokers often have KRAS G12C mutations and/or high TMB. Proper selection of first-line therapy influences overall treatment outcomes, therefore, the majority of these tests need to be completed within no more than 10 working days. Activating events in MAPK signaling pathway are mutually exclusive, hence, fast single-gene testing remains an option for some laboratories. RNA next-generation sequencing (NGS) is capable of detecting the entire repertoire of druggable gene alterations, therefore it is gradually becoming a dominating technology in LC molecular diagnosis.
Collapse
Affiliation(s)
- Evgeny N. Imyanitov
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, 197758 St.-Petersburg, Russia
- Department of Clinical Genetics, St.-Petersburg State Pediatric Medical University, 194100 St.-Petersburg, Russia
- I.V. Kurchatov Complex for Medical Primatology, National Research Centre “Kurchatov Institute”, 354376 Sochi, Russia
| | - Elena V. Preobrazhenskaya
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, 197758 St.-Petersburg, Russia
- Department of Clinical Genetics, St.-Petersburg State Pediatric Medical University, 194100 St.-Petersburg, Russia
| | - Sergey V. Orlov
- I.V. Kurchatov Complex for Medical Primatology, National Research Centre “Kurchatov Institute”, 354376 Sochi, Russia
- Department of Oncology, I.P. Pavlov St.-Petersburg State Medical University, 197022 St.-Petersburg, Russia
| |
Collapse
|
4
|
Biswas B, Ghadyalpatil NS, Patil S, Patel A, Ganguly S, Rathore A, Guleria B, Tarannum CF, Ghosh J, Kondapally MS, Thippeswamy R, Reddy SHP, Roy S. Real world study of safety and efficacy of lorlatinib as second line and beyond in ALK-rearranged advanced non-small cell lung cancer patients in India - a multicentre chart review study (ROSELAND). Ecancermedicalscience 2024; 18:1667. [PMID: 38439810 PMCID: PMC10911676 DOI: 10.3332/ecancer.2024.1667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Indexed: 03/06/2024] Open
Abstract
Background Lorlatinib, an anaplastic lymphoma kinase (ALK)-inhibitor, is approved as frontline as well as subsequent line of therapy in ALK-rearranged advanced non-small cell lung cancer (NSCLC). There is limited literature about safety and efficacy of lorlatinib in Indian patients. Materials and methods This was a retrospective multicentre study on patients with ALK-rearranged advanced NSCLC received lorlatinib as second line and beyond between May 2017 and December 2021. ALK was tested either by immunohistochemistry or fluorescent in-situ hybridisation. Clinicopathologic features, treatment details, toxicity and outcomes were analysed. Results A total of 38 patients were enrolled with a median age of 54 years (range: 30-72) and male: female ratio of 20:18. Fifteen (44%) patients had brain metastases at baseline. Lorlatinib use was - second line in 11 (29%), third line in 21 (55%) and fourth line in 4 (11%) of patients, respectively. The best radiologic response to lorlatinib was - complete response in 9 (24%), partial response in 17 (46%), stable disease in 9 (24%) and progressive disease in 2 (5%) of patients, respectively. After a median follow-up of 76.6 months (95% CI: 68.9-100), the median progression-free survival (PFS) of lorlatinib was not reached (95% CI: 24.3-not reached) and median overall survival (OS) of the whole cohort was 93.1 months (95% CI: 62-not reached). Both median PFS (p = 0.48) and median OS (p = 0.74) was similar between second line and later line use of lorlatinib. Thirty-three (87%) patients experienced treatment-related toxicity and six (16%) patients required dose modification. Conclusion Lorlatinib was highly efficacious in terms of overall response rate, median PFS and median OS in this small real-world cohort of advanced ALK+ve NSCLC with a manageable safety profile.
Collapse
Affiliation(s)
- Bivas Biswas
- Department of Medical Oncology, Tata Medical Center, Kolkata 700160, India
| | - Nikhil S Ghadyalpatil
- Department of Medical Oncology, Yashoda Hospitals, Somajiguda, Hyderabad, Telangana 500082, India
| | - Shekar Patil
- Department of Medical Oncology, HGC Cancer Centre, Bangalore, Karnataka 560027, India
| | - Amol Patel
- Department of Medical Oncology, INHS Asvini, Mumbai, Maharashtra 400005, India
| | - Sandip Ganguly
- Department of Medical Oncology, Tata Medical Center, Kolkata 700160, India
| | - Anvesh Rathore
- Department of Medical Oncology, Army Hospital (R&R), Delhi 110010, India
| | - Bhupesh Guleria
- Department of Medical Oncology, Command Hospital, Pune, Maharashtra 411001, India
| | - Cpalli Firdouse Tarannum
- Department of Medical Oncology, Yashoda Hospitals, Somajiguda, Hyderabad, Telangana 500082, India
| | - Joydeep Ghosh
- Department of Medical Oncology, Tata Medical Center, Kolkata 700160, India
| | | | - Ravi Thippeswamy
- Department of Medical Oncology, HGC Cancer Centre, Bangalore, Karnataka 560027, India
| | | | - Somnath Roy
- Department of Medical Oncology, Tata Medical Center, Kolkata 700160, India
| |
Collapse
|
5
|
Clavé S, Jackson JB, Salido M, Kames J, Gerding KMR, Verner EL, Kong EF, Weingartner E, Gibert J, Hardy-Werbin M, Rocha P, Riera X, Torres E, Hernandez J, Cerqueira G, Nichol D, Simmons J, Taus Á, Pijuan L, Bellosillo B, Arriola E. Comprehensive NGS profiling to enable detection of ALK gene rearrangements and MET amplifications in non-small cell lung cancer. Front Oncol 2023; 13:1225646. [PMID: 37927472 PMCID: PMC10623306 DOI: 10.3389/fonc.2023.1225646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 08/28/2023] [Indexed: 11/07/2023] Open
Abstract
Introduction Next-generation sequencing (NGS) is currently widely used for biomarker studies and molecular profiling to identify concurrent alterations that can lead to the better characterization of a tumor's molecular landscape. However, further evaluation of technical aspects related to the detection of gene rearrangements and copy number alterations is warranted. Methods There were 12 ALK rearrangement-positive tumor specimens from patients with non-small cell lung cancer (NSCLC) previously detected via fluorescence in situ hybridization (FISH), immunohistochemistry (IHC), and an RNA-based NGS assay, and 26 MET high gene copy number (GCN) cases detected by FISH, selected for this retrospective study. All 38 pre-characterized cases were reassessed utilizing the PGDx™ elio™ tissue complete assay, a 505 gene targeted NGS panel, to evaluate concordance with these conventional diagnostic techniques. Results The detection of ALK rearrangements using the DNA-based NGS assay demonstrated excellent sensitivity with the added benefit of characterizing gene fusion partners and genomic breakpoints. MET copy number alterations were also detected; however, some discordances were observed likely attributed to differences in algorithm, reporting thresholds and gene copy number state. TMB was also assessed by the assay and correlated to the presence of NSCLC driver alterations and was found to be significantly lower in cases with NGS-confirmed canonical driver mutations compared with those without (p=0.0019). Discussion Overall, this study validates NGS as an accurate approach for detecting structural variants while also highlighting the need for further optimization to enable harmonization across methodologies for amplifications.
Collapse
Affiliation(s)
- Sergi Clavé
- Pathology Department, Hospital del Mar, Barcelona, Spain
- Cancer Research Program, Hospital del Mar Medical Research Institute, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | | | - Marta Salido
- Pathology Department, Hospital del Mar, Barcelona, Spain
- Cancer Research Program, Hospital del Mar Medical Research Institute, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Jacob Kames
- Personal Genome Diagnostics (PGDx/Labcorp), Baltimore, MD, United States
| | | | - Ellen L. Verner
- Personal Genome Diagnostics (PGDx/Labcorp), Baltimore, MD, United States
| | - Eric F. Kong
- Personal Genome Diagnostics (PGDx/Labcorp), Baltimore, MD, United States
| | | | - Joan Gibert
- Cancer Research Program, Hospital del Mar Medical Research Institute, Barcelona, Spain
| | - Max Hardy-Werbin
- Cancer Research Program, Hospital del Mar Medical Research Institute, Barcelona, Spain
- Medical Oncology Department, Hospital del Mar, Barcelona, Spain
| | - Pedro Rocha
- Cancer Research Program, Hospital del Mar Medical Research Institute, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Medical Oncology Department, Hospital del Mar, Barcelona, Spain
| | - Xènia Riera
- Pathology Department, Hospital del Mar, Barcelona, Spain
- Cancer Research Program, Hospital del Mar Medical Research Institute, Barcelona, Spain
| | - Erica Torres
- Pathology Department, Hospital del Mar, Barcelona, Spain
| | - James Hernandez
- Personal Genome Diagnostics (PGDx/Labcorp), Baltimore, MD, United States
| | - Gustavo Cerqueira
- Personal Genome Diagnostics (PGDx/Labcorp), Baltimore, MD, United States
| | - Donna Nichol
- Personal Genome Diagnostics (PGDx/Labcorp), Baltimore, MD, United States
| | - John Simmons
- Personal Genome Diagnostics (PGDx/Labcorp), Baltimore, MD, United States
| | - Álvaro Taus
- Cancer Research Program, Hospital del Mar Medical Research Institute, Barcelona, Spain
- Medical Oncology Department, Hospital del Mar, Barcelona, Spain
| | - Lara Pijuan
- Pathology Department, Hospital del Mar, Barcelona, Spain
| | - Beatriz Bellosillo
- Pathology Department, Hospital del Mar, Barcelona, Spain
- Cancer Research Program, Hospital del Mar Medical Research Institute, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Edurne Arriola
- Cancer Research Program, Hospital del Mar Medical Research Institute, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Medical Oncology Department, Hospital del Mar, Barcelona, Spain
| |
Collapse
|
6
|
Abstract
Lorlatinib, a third-generation ALK tyrosine kinase inhibitor, has been approved as a treatment for ALK-positive lung cancer. This review provides information regarding the pharmacology and clinical features of lorlatinib, including its efficacy and associated adverse events. Pivotal clinical trials are discussed along with the current status of lorlatinib as a treatment for ALK-positive lung cancer and future therapeutic challenges.
Collapse
Affiliation(s)
- Keisuke Baba
- Department of Thoracic Oncology, National Cancer Center Hospital, Chuo-ku, Tokyo, Japan
| | - Yasushi Goto
- Department of Thoracic Oncology, National Cancer Center Hospital, Chuo-ku, Tokyo, Japan
| |
Collapse
|
7
|
Ma X, Yang S, Zhang K, Xu J, Lv P, Gao H, Qin H, Wang H, Liu X. Efficacy of different sequential patterns after crizotinib progression in advanced anaplastic lymphoma kinase-positive non-small cell lung cancer. Thorac Cancer 2022; 13:1788-1794. [PMID: 35560808 PMCID: PMC9200878 DOI: 10.1111/1759-7714.14455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 11/29/2022] Open
Abstract
Background The efficacy difference between the second‐ and third‐generation of anaplastic lymphoma kinase‐tyrosine kinase inhibitors (ALK‐TKIs) after crizotinib failure in advanced ALK‐positive non–small cell lung cancer (NSCLC) has not been clarified. This study evaluates the efficacy of different sequential patterns after crizotinib progression. Methods Data of patients who met the study criteria were retrospectively analyzed. The Kaplan–Meier method was used to draw survival curves, log‐rank method was used to compare the differences between groups, and Cox multivariate analysis was used to evaluate the significance of influencing factors. Results A total of 128 patients developed disease progression after crizotinib. The overall survival (OS) of 57 patients in the sequential second‐generation ALK‐TKIs group was significantly longer than that of 65 patients with other systemic treatment (58.5 months vs. 33.0 months, p < 0.001); The OS of the direct sequential lorlatinib group was significantly longer than the second‐generation ALK‐TKIs group (114.0 months vs. 58.5 months, p = 0.020). Similarly, of the 48 patients who developed disease progression after first‐ and second‐generation ALK‐TKIs treatment, 16 patients with sequential lorlatinib had significantly longer OS than the others (62.0 months vs. 43.0 months, p = 0.014). The progression‐free survival (PFS) of second‐line and third‐ or later‐line lorlatinib were statistically different (20.0 months vs. 5.5 months, p = 0.011). Conclusions The application of next‐generation ALK‐TKIs after crizotinib progression significantly prolonged survival, whereas direct sequencing lorlatinib seemed advantageous. Similarly, lorlatinib also prolonged survival in patients with first‐ and second‐generation ALK‐TKIs failure.
Collapse
Affiliation(s)
- Xiya Ma
- Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, China.,Department of Oncology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Shaoxing Yang
- Department of Oncology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Kun Zhang
- Department of Oncology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Jing Xu
- Medical School of Chinese PLA, Beijing, China
| | - Panpan Lv
- Department of Oncology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Hongjun Gao
- Department of Oncology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Haifeng Qin
- Department of Oncology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Hong Wang
- Department of Oncology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xiaoqing Liu
- Department of Oncology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
8
|
Aleksakhina SN, Imyanitov EN. Cancer Therapy Guided by Mutation Tests: Current Status and Perspectives. Int J Mol Sci 2021; 22:ijms222010931. [PMID: 34681592 PMCID: PMC8536080 DOI: 10.3390/ijms222010931] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/06/2021] [Accepted: 10/08/2021] [Indexed: 12/11/2022] Open
Abstract
The administration of many cancer drugs is tailored to genetic tests. Some genomic events, e.g., alterations of EGFR or BRAF oncogenes, result in the conformational change of the corresponding proteins and call for the use of mutation-specific compounds. Other genetic perturbations, e.g., HER2 amplifications, ALK translocations or MET exon 14 skipping mutations, cause overproduction of the entire protein or its kinase domain. There are multilocus assays that provide integrative characteristics of the tumor genome, such as the analysis of tumor mutation burden or deficiency of DNA repair. Treatment planning for non-small cell lung cancer requires testing for EGFR, ALK, ROS1, BRAF, MET, RET and KRAS gene alterations. Colorectal cancer patients need to undergo KRAS, NRAS, BRAF, HER2 and microsatellite instability analysis. The genomic examination of breast cancer includes testing for HER2 amplification and PIK3CA activation. Melanomas are currently subjected to BRAF and, in some instances, KIT genetic analysis. Predictive DNA assays have also been developed for thyroid cancers, cholangiocarcinomas and urinary bladder tumors. There is an increasing utilization of agnostic testing which involves the analysis of all potentially actionable genes across all tumor types. The invention of genomically tailored treatment has resulted in a spectacular improvement in disease outcomes for a significant portion of cancer patients.
Collapse
Affiliation(s)
- Svetlana N. Aleksakhina
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, 197758 Saint-Petersburg, Russia;
- Department of Medical Genetics, St.-Petersburg Pediatric Medical University, 194100 Saint-Petersburg, Russia
| | - Evgeny N. Imyanitov
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, 197758 Saint-Petersburg, Russia;
- Department of Medical Genetics, St.-Petersburg Pediatric Medical University, 194100 Saint-Petersburg, Russia
- Correspondence: ; Tel.: +7-812-439-95-28
| |
Collapse
|