1
|
Belényesi SK, Patmore S, O'Driscoll L. Extracellular vesicles and the tumour microenvironment. Biochim Biophys Acta Rev Cancer 2025; 1880:189275. [PMID: 39900204 DOI: 10.1016/j.bbcan.2025.189275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 12/18/2024] [Accepted: 01/29/2025] [Indexed: 02/05/2025]
Abstract
Extracellular vesicles (EVs), tiny packages of information released by cells, are well established as being involved in unwanted cell-to-cell communication in cancer. EVs from cancer cells have been associated with the spread of drug resistance, immune suppression, and metastasis. Additional to cancer cells, the tumour microenvironment (TME) involves many cell types -including immune cells, fibroblasts, and endothelial cells, each of which has a potential role in how tumours grow, spread, and respond (or otherwise) to therapy. This review collates and distils research developments regarding the role of EVs in multi-way communication between cells in the TME. Further research including tailored clinical studies are now warranted to determine how best to prevent this extensive adverse communication occurring and/or how best to exploit it for biomarker discovery and as a therapeutic approach, in the interest of patients and also for economic benefit.
Collapse
Affiliation(s)
- Szilárd-Krisztián Belényesi
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Ireland; Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland; Trinity St. James's Cancer Institute, Trinity College Dublin, Ireland
| | - Sean Patmore
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Ireland; Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland; Trinity St. James's Cancer Institute, Trinity College Dublin, Ireland
| | - Lorraine O'Driscoll
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Ireland; Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland; Trinity St. James's Cancer Institute, Trinity College Dublin, Ireland.
| |
Collapse
|
2
|
Golestannejad P, Monkaresi M, Zhian Zargaran F, Khosravani M, Asgari P, Mobaraki H, Gorjizad M, Hasany S, Senobari Ghezeljehmeidan A, Hemmati S, Zand S, Ghasemi P, Asadi Anar M. Role of Cancer Associated Fibroblast (CAF) derived miRNAs on head and neck malignancies microenvironment: a systematic review. BMC Cancer 2025; 25:582. [PMID: 40169971 PMCID: PMC11960023 DOI: 10.1186/s12885-025-13965-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 03/18/2025] [Indexed: 04/03/2025] Open
Abstract
BACKGROUND AND AIM MicroRNAs (miRNAs) play a key role in regulating gene expression within the tumor microenvironment, influencing cancer progression and therapy response. Cancer-associated fibroblasts (CAFs) contribute to tumor development by secreting exosomal miRNAs that promote proliferation, invasion, and resistance. This systematic review evaluates the impact of CAF-derived miRNAs on head and neck malignancies. METHODS A systematic search was conducted in PubMed, Scopus, WOS, and Google Scholar following PRISMA guidelines. Studies focusing on CAF-derived miRNAs in head and neck cancers were included. Data extraction covered study characteristics, miRNA profiling methods, functional roles, and clinical significance. The Scirap tool was used for quality assessment. RESULTS Among 921 identified articles, 21 met the inclusion criteria. Findings indicate that miR-21-5p, miR-106-5p, and miR-196a drive tumor progression in oral squamous cell carcinoma (OSCC), while miR-124 and miR-34a-5p act as suppressors. In esophageal squamous cell carcinoma (ESCC), miR-21 and miR-27a/b contribute to chemotherapy resistance, whereas miR-100-5p inhibits lymphangiogenesis. In head and neck squamous cell carcinoma (HNSCC), miR-196a and miR-196b may serve as diagnostic biomarkers. Exosomal miR-106a-5p promotes nasopharyngeal carcinoma (NPC) metastasis, and miR-7 and miR-196a contribute to therapy resistance in head and neck cancer (HNC). CONCLUSION CAF-derived miRNAs significantly influence tumor progression, metastasis, and therapy resistance. These findings highlight their potential as biomarkers and therapeutic targets, warranting further clinical research for personalized treatment strategies.
Collapse
Affiliation(s)
- Parsa Golestannejad
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mohamadparsa Monkaresi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | | - Mohammad Khosravani
- Department of Biology, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Pouya Asgari
- Ahvaz Jondishapur University of Medical Sciences, Ahvaz, Iran
| | - Hesam Mobaraki
- Faculty of Medicine, İStanbul Yeniyuzyil University, Istanbul, Turkey
| | - Mansour Gorjizad
- School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saina Hasany
- Islamic Azad University Tehran Medical Sciences, Tehran, Iran
| | | | - Sara Hemmati
- Gulian University of Medical Sciences, Rasht, Iran
| | - Samaneh Zand
- Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Parsa Ghasemi
- School of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mahsa Asadi Anar
- Student Research Committee, Shahid Beheshti University of Medical Sciences, Arabi Ave, Daneshjoo Blvd, Velenjak, Tehran, 19839-63113, Iran.
| |
Collapse
|
3
|
Quintavalle C, Ingenito F, Roscigno G, Pattanayak B, Esposito CL, Affinito A, Fiore D, Petrillo G, Nuzzo S, Della Ventura B, D'Aria F, Giancola C, Mitola S, Grillo E, Pirozzi M, Donati G, Di Leva FS, Marinelli L, Minic Z, De Micco F, Thomas G, Berezovski MV, Condorelli G. Ex.50.T aptamer impairs tumor-stroma cross-talk in breast cancer by targeting gremlin-1. Cell Death Discov 2025; 11:94. [PMID: 40069570 PMCID: PMC11897156 DOI: 10.1038/s41420-025-02363-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 12/19/2024] [Accepted: 02/14/2025] [Indexed: 03/15/2025] Open
Abstract
The tumor microenvironment profoundly influences tumor complexity, particularly in breast cancer, where cancer-associated fibroblasts play pivotal roles in tumor progression and therapy resistance. Extracellular vesicles are involved in mediating communication within the TME, specifically highlighting their role in promoting the transformation of normal fibroblasts into cancer-associated fibroblasts. Recently, we identified an RNA aptamer, namely ex.50.T, that binds with remarkable affinity to extracellular vesicles shed from triple-negative breast cancer cells. Here, through in vitro assays and computational analyses, we demonstrate that the binding of ex.50.T to extracellular vesicles and parental breast cancer cells is mediated by recognition of gremlin-1 (GREM1), a bone morphogenic protein antagonist implicated in breast cancer aggressiveness and metastasis. Functionally, we uncover the role of ex.50.T as an innovative therapeutic agent in the process of tumor microenvironment re-modeling, impeding GREM1 signaling, blocking triple-negative breast cancer extracellular vesicles internalization in recipient cells, and counteracting the transformation of normal fibroblasts into cancer-associated fibroblasts. Altogether, our findings highlight ex.50.T as a novel therapeutical avenue for breast cancer and potentially other GREM1-dependent malignancies, offering insights into disrupting TME dynamics and enhancing cancer treatment strategies.
Collapse
Affiliation(s)
- Cristina Quintavalle
- Institute of Endotypes in Oncology, Metabolism and Immunology "G. Salvatore" (IEOMI), Consiglio Nazionale delle Ricerche (CNR), Naples, Italy.
| | - Francesco Ingenito
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Giuseppina Roscigno
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Birlipta Pattanayak
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Carla Lucia Esposito
- Institute of Endotypes in Oncology, Metabolism and Immunology "G. Salvatore" (IEOMI), Consiglio Nazionale delle Ricerche (CNR), Naples, Italy
| | - Alessandra Affinito
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
- AKA Biotech S.r.l, Naples, Italy
| | - Danilo Fiore
- Institute of Endotypes in Oncology, Metabolism and Immunology "G. Salvatore" (IEOMI), Consiglio Nazionale delle Ricerche (CNR), Naples, Italy
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Gianluca Petrillo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | | | | | - Federica D'Aria
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Concetta Giancola
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Stefania Mitola
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Elisabetta Grillo
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Marinella Pirozzi
- Institute of Endotypes in Oncology, Metabolism and Immunology "G. Salvatore" (IEOMI), Consiglio Nazionale delle Ricerche (CNR), Naples, Italy
| | - Greta Donati
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | | | - Luciana Marinelli
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Zoran Minic
- Department of Chemistry and Biomolecular Sciences and John L. Holmes Mass Spectrometry Facility, University of Ottawa, Ottawa, ON, Canada
| | | | | | - Maxim V Berezovski
- Department of Chemistry and Biomolecular Sciences and John L. Holmes Mass Spectrometry Facility, University of Ottawa, Ottawa, ON, Canada
| | - Gerolama Condorelli
- Institute of Endotypes in Oncology, Metabolism and Immunology "G. Salvatore" (IEOMI), Consiglio Nazionale delle Ricerche (CNR), Naples, Italy.
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy.
| |
Collapse
|
4
|
Kwon JY, Vera RE, Fernandez-Zapico ME. The multi-faceted roles of cancer-associated fibroblasts in pancreatic cancer. Cell Signal 2025; 127:111584. [PMID: 39756502 PMCID: PMC11807759 DOI: 10.1016/j.cellsig.2024.111584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 12/13/2024] [Accepted: 12/28/2024] [Indexed: 01/07/2025]
Abstract
The tumor microenvironment (TME) has been linked with the pathogenesis of pancreatic ductal adenocarcinoma (PDAC), the most common histological subtype of pancreatic cancer. A central component of the TME are cancer-associated fibroblasts (CAFs), which can either suppress or promote tumor growth in a context-dependent manner. In this review, we will discuss the multi-faceted roles of CAFs in tumor-stroma interactions influencing cancer initiation, progression and therapeutic response.
Collapse
Affiliation(s)
- John Y Kwon
- Schulze Center for Novel Therapeutics, Division of Oncology Research, Rochester, MN 55901, USA.
| | - Renzo E Vera
- Schulze Center for Novel Therapeutics, Division of Oncology Research, Rochester, MN 55901, USA.
| | | |
Collapse
|
5
|
Orefice NS, Petrillo G, Pignataro C, Mascolo M, De Luca G, Verde S, Pentimalli F, Condorelli G, Quintavalle C. Extracellular vesicles and microRNAs in cancer progression. Adv Clin Chem 2025; 125:23-54. [PMID: 39988407 DOI: 10.1016/bs.acc.2024.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Extracellular vesicles (EVs) have emerged as critical mediators of intercellular communication in cancer. These membranous structures, secreted by normal and cancerous cells, carry a cargo of bioactive molecules including microRNAs (miRNAs) that modulate various cellular processes. miRNAs are small non-coding RNAs that play pivotal roles in post-transcriptional gene regulation and have been implicated in cancer initiation, progression, and metastasis. In cancer, tumor-derived EVs transport specific miRNAs to recipient cells, modulating tumorigenesis, growth, angiogenesis, and metastasis. Dysregulation of miRNA expression profiles within EVs contributes to the acquisition of cancer hallmarks that include increased proliferation, survival, and migration. EV miRNAs influence the tumor microenvironment, promoting immune evasion, remodeling the extracellular matrix, and establishing pre-metastatic niches. Understanding the complex interplay between EVs, miRNAs, and cancer holds significant promise for developing novel diagnostic and therapeutic strategies. This chapter provides insights into the role of EV-mediated miRNA signaling in cancer pathogenesis, highlighting its potential as a biomarker for cancer detection, prognosis, and treatment response assessment.
Collapse
Affiliation(s)
- Nicola S Orefice
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States.
| | - Gianluca Petrillo
- Department of Molecular Medicine and Medical Biotechnology, Federico II University of Naples, Naples, Italy
| | - Claudia Pignataro
- Department of Molecular Medicine and Medical Biotechnology, Federico II University of Naples, Naples, Italy
| | - Martina Mascolo
- Department of Molecular Medicine and Medical Biotechnology, Federico II University of Naples, Naples, Italy
| | - Giada De Luca
- Institute of Endotypes in Oncology, Metabolism and Immunology "G. Salvatore" (IEOMI) National Research Council (CNR), Naples, Italy
| | - Sara Verde
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy; Aka biotech S.r.l., Napoli, Italy
| | - Francesca Pentimalli
- Department of Medicine and Surgery, LUM University "Giuseppe DeGennaro", Bari, Italy
| | - Gerolama Condorelli
- Department of Molecular Medicine and Medical Biotechnology, Federico II University of Naples, Naples, Italy; Institute of Endotypes in Oncology, Metabolism and Immunology "G. Salvatore" (IEOMI) National Research Council (CNR), Naples, Italy.
| | - Cristina Quintavalle
- Institute of Endotypes in Oncology, Metabolism and Immunology "G. Salvatore" (IEOMI) National Research Council (CNR), Naples, Italy
| |
Collapse
|
6
|
Wenta T, Nastaly P, Lipinska B, Manninen A. Remodeling of the extracellular matrix by serine proteases as a prerequisite for cancer initiation and progression. Matrix Biol 2024; 134:197-219. [PMID: 39500383 DOI: 10.1016/j.matbio.2024.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 10/16/2024] [Accepted: 10/31/2024] [Indexed: 11/25/2024]
Abstract
The extracellular matrix (ECM) serves as a physical scaffold for tissues that is composed of structural proteins such as laminins, collagens, proteoglycans and fibronectin, forming a three dimensional network, and a wide variety of other matrix proteins with ECM-remodeling and signaling functions. The activity of ECM-associated signaling proteins is tightly regulated. Thus, the ECM serves as a reservoir for water and growth regulatory signals. The ECM architecture is dynamically modulated by multiple serine proteases that process both structural and signaling proteins to regulate physiological processes such as organogenesis and tissue homeostasis but they also contribute to pathological events, especially cancer progression. Here, we review the current literature regarding the role of ECM remodeling by serine proteases (KLKs, uPA, furin, HtrAs, granzymes, matriptase, hepsin) in tumorigenesis.
Collapse
Affiliation(s)
- Tomasz Wenta
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Poland.
| | - Paulina Nastaly
- Laboratory of Translational Oncology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk, Poland
| | - Barbara Lipinska
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Poland
| | - Aki Manninen
- Disease Networks Research Unit, Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Oulu, Finland.
| |
Collapse
|
7
|
Hong Y, Yang J, Liu X, Huang S, Liang T, Bai X. Deciphering extracellular vesicles protein cargo in pancreatic cancer. Biochim Biophys Acta Rev Cancer 2024; 1879:189142. [PMID: 38914240 DOI: 10.1016/j.bbcan.2024.189142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 06/12/2024] [Accepted: 06/19/2024] [Indexed: 06/26/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) presents a significant therapeutic challenge as it is frequently diagnosed at advanced inoperable stages. Therefore, the development of a reliable screening tool for PDAC is crucial for effective prevention and treatment. Extracellular vesicles (EVs), characterized by their cup-shaped lipid bilayer structure and ubiquitous release from various cell types, offer notable advantages as an emerging liquid biopsy technique that is rapid, minimally invasive, easily sampled, and cost-effective. While EVs play a substantial role in cancer progression, EV proteins serve as direct mediators of diverse cellular behaviors and have immense potential as biomarkers for PDAC diagnosis and prognostication. This review provides an overview of EV proteins regarding PDAC diagnosis and prognostic implications as well as disease progression.
Collapse
Affiliation(s)
- Yifan Hong
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Pancreatic Disease of Zhejiang Province, Hangzhou, China; Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, Hangzhou, China
| | - Jiaqi Yang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Pancreatic Disease of Zhejiang Province, Hangzhou, China; Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, Hangzhou, China; Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou, China
| | - Xinyuan Liu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Pancreatic Disease of Zhejiang Province, Hangzhou, China; Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, Hangzhou, China
| | - Sicong Huang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Pancreatic Disease of Zhejiang Province, Hangzhou, China; Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, Hangzhou, China
| | - Tingbo Liang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Pancreatic Disease of Zhejiang Province, Hangzhou, China; Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, Hangzhou, China; Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou, China; Cancer Center, Zhejiang University, Hangzhou, China.
| | - Xueli Bai
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Pancreatic Disease of Zhejiang Province, Hangzhou, China; Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, Hangzhou, China; Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou, China; Cancer Center, Zhejiang University, Hangzhou, China.
| |
Collapse
|
8
|
Xu W, Ye J, Cao Z, Zhao Y, Zhu Y, Li L. Glucocorticoids in lung cancer: Navigating the balance between immunosuppression and therapeutic efficacy. Heliyon 2024; 10:e32357. [PMID: 39022002 PMCID: PMC11252876 DOI: 10.1016/j.heliyon.2024.e32357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/03/2024] [Accepted: 06/03/2024] [Indexed: 07/20/2024] Open
Abstract
Glucocorticoids (GCs), a class of hormones secreted by the adrenal glands, are released into the bloodstream to maintain homeostasis and modulate responses to various stressors. These hormones function by binding to the widely expressed GC receptor (GR), thereby regulating a wide range of pathophysiological processes, especially in metabolism and immunity. The role of GCs in the tumor immune microenvironment (TIME) of lung cancer (LC) has been a focal point of research. As immunosuppressive agents, GCs exert a crucial impact on the occurrence, progression, and treatment of LC. In the TIME of LC, GCs act as a constantly swinging pendulum, simultaneously offering tumor-suppressive properties while diminishing the efficacy of immune-based therapies. The present study reviews the role and mechanisms of GCs in the TIME of LC.
Collapse
Affiliation(s)
| | | | - Zhendong Cao
- Department of Respiration, The Second Affiliated Hospital of Nanjing University of Traditional Chinese Medicine (Jiangsu Second Hospital of Traditional Chinese Medicine), Nanjing, Jiangsu, 210017, China
| | - Yupei Zhao
- Department of Respiration, The Second Affiliated Hospital of Nanjing University of Traditional Chinese Medicine (Jiangsu Second Hospital of Traditional Chinese Medicine), Nanjing, Jiangsu, 210017, China
| | - Yimin Zhu
- Department of Respiration, The Second Affiliated Hospital of Nanjing University of Traditional Chinese Medicine (Jiangsu Second Hospital of Traditional Chinese Medicine), Nanjing, Jiangsu, 210017, China
| | - Lei Li
- Department of Respiration, The Second Affiliated Hospital of Nanjing University of Traditional Chinese Medicine (Jiangsu Second Hospital of Traditional Chinese Medicine), Nanjing, Jiangsu, 210017, China
| |
Collapse
|
9
|
Dhamdhere MR, Spiegelman VS. Extracellular vesicles in neuroblastoma: role in progression, resistance to therapy and diagnostics. Front Immunol 2024; 15:1385875. [PMID: 38660306 PMCID: PMC11041043 DOI: 10.3389/fimmu.2024.1385875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 03/22/2024] [Indexed: 04/26/2024] Open
Abstract
Neuroblastoma (NB) is the most common extracranial solid pediatric cancer, and is one of the leading causes of cancer-related deaths in children. Despite the current multi-modal treatment regimens, majority of patients with advanced-stage NBs develop therapeutic resistance and relapse, leading to poor disease outcomes. There is a large body of knowledge on pathophysiological role of small extracellular vesicles (EVs) in progression and metastasis of multiple cancer types, however, the importance of EVs in NB was until recently not well understood. Studies emerging in the last few years have demonstrated the involvement of EVs in various aspects of NB pathogenesis. In this review we summarize these recent findings and advances on the role EVs play in NB progression, such as tumor growth, metastasis and therapeutic resistance, that could be helpful for future investigations in NB EV research. We also discuss different strategies for therapeutic targeting of NB-EVs as well as utilization of NB-EVs as potential biomarkers.
Collapse
Affiliation(s)
| | - Vladimir S. Spiegelman
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA, United States
| |
Collapse
|
10
|
Ebrahim T, Ebrahim AS, Kandouz M. Diversity of Intercellular Communication Modes: A Cancer Biology Perspective. Cells 2024; 13:495. [PMID: 38534339 PMCID: PMC10969453 DOI: 10.3390/cells13060495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/27/2024] [Accepted: 03/10/2024] [Indexed: 03/28/2024] Open
Abstract
From the moment a cell is on the path to malignant transformation, its interaction with other cells from the microenvironment becomes altered. The flow of molecular information is at the heart of the cellular and systemic fate in tumors, and various processes participate in conveying key molecular information from or to certain cancer cells. For instance, the loss of tight junction molecules is part of the signal sent to cancer cells so that they are no longer bound to the primary tumors and are thus free to travel and metastasize. Upon the targeting of a single cell by a therapeutic drug, gap junctions are able to communicate death information to by-standing cells. The discovery of the importance of novel modes of cell-cell communication such as different types of extracellular vesicles or tunneling nanotubes is changing the way scientists look at these processes. However, are they all actively involved in different contexts at the same time or are they recruited to fulfill specific tasks? What does the multiplicity of modes mean for the overall progression of the disease? Here, we extend an open invitation to think about the overall significance of these questions, rather than engage in an elusive attempt at a systematic repertory of the mechanisms at play.
Collapse
Affiliation(s)
- Thanzeela Ebrahim
- Department of Pathology, Wayne State University School of Medicine, Detroit, MI 48202, USA
| | - Abdul Shukkur Ebrahim
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI 48202, USA
| | - Mustapha Kandouz
- Department of Pathology, Wayne State University School of Medicine, Detroit, MI 48202, USA
- Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48202, USA
| |
Collapse
|
11
|
Nelson H, Qu S, Franklin JL, Liu Q, Pua HH, Vickers KC, Weaver AM, Coffey RJ, Patton JG. Extracellular RNA in oncogenesis, metastasis and drug resistance. RNA Biol 2024; 21:17-31. [PMID: 39107918 PMCID: PMC11639457 DOI: 10.1080/15476286.2024.2385607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 07/09/2024] [Accepted: 07/24/2024] [Indexed: 08/18/2024] Open
Abstract
Extracellular vesicles and nanoparticles (EVPs) are now recognized as a novel form of cell-cell communication. All cells release a wide array of heterogeneous EVPs with distinct protein, lipid, and RNA content, dependent on the pathophysiological state of the donor cell. The overall cargo content in EVPs is not equivalent to cellular levels, implying a regulated pathway for selection and export. In cancer, release and uptake of EVPs within the tumour microenvironment can influence growth, proliferation, invasiveness, and immune evasion. Secreted EVPs can also have distant, systemic effects that can promote metastasis. Here, we review current knowledge of EVP biogenesis and cargo selection with a focus on the role that extracellular RNA plays in oncogenesis and metastasis. Almost all subtypes of RNA have been identified in EVPs, with miRNAs being the best characterized. We review the roles of specific miRNAs that have been detected in EVPs and that play a role in oncogenesis and metastasis.
Collapse
Affiliation(s)
- Hannah Nelson
- Department of Biological Sciences, Vanderbilt University and Vanderbilt University Medical Center, Nashville, TN, USA
- Center for Extracellular Vesicle Research, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Sherman Qu
- Department of Biological Sciences, Vanderbilt University and Vanderbilt University Medical Center, Nashville, TN, USA
- Center for Extracellular Vesicle Research, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Jeffrey L. Franklin
- Center for Extracellular Vesicle Research, Vanderbilt University School of Medicine, Nashville, TN, USA
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Qi Liu
- Center for Extracellular Vesicle Research, Vanderbilt University School of Medicine, Nashville, TN, USA
- Department of Biostatistics, Vanderbilt University and Vanderbilt University Medical Center, Nashville, TN, USA
| | - Heather H. Pua
- Center for Extracellular Vesicle Research, Vanderbilt University School of Medicine, Nashville, TN, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University and Vanderbilt University Medical Center, Nashville, TN, USA
| | - Kasey C. Vickers
- Center for Extracellular Vesicle Research, Vanderbilt University School of Medicine, Nashville, TN, USA
- Department of Medicine, Vanderbilt University and Vanderbilt University Medical Center, Nashville, TN, USA
| | - Alissa M. Weaver
- Center for Extracellular Vesicle Research, Vanderbilt University School of Medicine, Nashville, TN, USA
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Robert J. Coffey
- Center for Extracellular Vesicle Research, Vanderbilt University School of Medicine, Nashville, TN, USA
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
- Department of Medicine, Vanderbilt University and Vanderbilt University Medical Center, Nashville, TN, USA
| | - James G. Patton
- Department of Biological Sciences, Vanderbilt University and Vanderbilt University Medical Center, Nashville, TN, USA
- Center for Extracellular Vesicle Research, Vanderbilt University School of Medicine, Nashville, TN, USA
| |
Collapse
|
12
|
Kang SH, Oh SY, Lee KY, Lee HJ, Kim MS, Kwon TG, Kim JW, Lee ST, Choi SY, Hong SH. Differential effect of cancer-associated fibroblast-derived extracellular vesicles on cisplatin resistance in oral squamous cell carcinoma via miR-876-3p. Theranostics 2024; 14:460-479. [PMID: 38169528 PMCID: PMC10758057 DOI: 10.7150/thno.87329] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 11/20/2023] [Indexed: 01/05/2024] Open
Abstract
Rationale: Platinum-based chemotherapy is commonly used for treating solid tumors, but drug resistance often limits its effectiveness. Cancer-associated fibroblast (CAF)-derived extracellular vesicle (EV), which carry various miRNAs, have been implicated in chemotherapy resistance. However, the molecular mechanism through which CAFs modulate cisplatin resistance in oral squamous cell carcinoma (OSCC) is not well understood. We employed two distinct primary CAF types with differential impacts on cancer progression: CAF-P, representing a more aggressive cancer-promoting category, and CAF-D, characterized by properties that moderately delay cancer progression. Consequently, we sought to investigate whether the two CAF types differentially affect cisplatin sensitivity and the underlying molecular mechanism. Methods: The secretion profile was examined by utilizing an antibody microarray with conditioned medium obtained from the co-culture of OSCC cells and two types of primary CAFs. The effect of CAF-dependent factors on cisplatin resistance was investigated by utilizing conditioned media (CM) and extracellular vesicle (EVs) derived from CAFs. The impacts of candidate genes were confirmed using gain- and loss-of-function analyses in spheroids and organoids, and a mouse xenograft. Lastly, we compared the expression pattern of the candidate genes in tissues from OSCC patients exhibiting different responses to cisplatin. Results: When OSCC cells were cultured with conditioned media (CM) from the two different CAF groups, cisplatin resistance increased only under CAF-P CM. OSCC cells specifically expressed insulin-like growth factor binding protein 3 (IGFBP3) after co-culture with CAF-D. Meanwhile, IGFBP3-knockdown OSCC cells acquired cisplatin resistance in CAF-D CM. IGFBP3 expression was promoted by GATA-binding protein 1 (GATA1), a transcription factor targeted by miR-876-3p, which was enriched only in CAF-P-derived EV. Treatment with CAF-P EV carrying miR-876-3p antagomir decreased cisplatin resistance compared to control miRNA-carrying CAF-P EV. On comparing the staining intensity between cisplatin-sensitive and -insensitive tissues from OSCC patients, there was a positive correlation between IGFBP3 and GATA1 expression and cisplatin sensitivity in OSCC tissues from patients. Conclusion: These results provide insights for overcoming cisplatin resistance, especially concerning EVs within the tumor microenvironment. Furthermore, it is anticipated that the expression levels of GATA1 and miR-876-3p, along with IGFBP3, could aid in the prediction of cisplatin resistance.
Collapse
Affiliation(s)
- Soo Hyun Kang
- Department of Microbiology and Immunology, School of Dentistry, Kyungpook National University, Daegu 700-412, Korea
| | - Su Young Oh
- Department of Microbiology and Immunology, School of Dentistry, Kyungpook National University, Daegu 700-412, Korea
| | - Kah-Young Lee
- Department of Microbiology and Immunology, School of Dentistry, Kyungpook National University, Daegu 700-412, Korea
| | - Heon-Jin Lee
- Department of Microbiology and Immunology, School of Dentistry, Kyungpook National University, Daegu 700-412, Korea
| | - Mee-Seon Kim
- Department of Oral Pathology, School of Dentistry, Kyungpook National University, Daegu 700-412, Korea
| | - Tae-Geon Kwon
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Kyungpook National University, Daegu 700-412, Korea
| | - Jin-Wook Kim
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Kyungpook National University, Daegu 700-412, Korea
| | - Sung-Tak Lee
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Kyungpook National University, Daegu 700-412, Korea
| | - So-Young Choi
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Kyungpook National University, Daegu 700-412, Korea
| | - Su-Hyung Hong
- Department of Microbiology and Immunology, School of Dentistry, Kyungpook National University, Daegu 700-412, Korea
| |
Collapse
|
13
|
Sun L, Ke M, Yin M, Zeng Y, Ji Y, Hu Y, Fu S, Zhang C. Extracellular vesicle-encapsulated microRNA-296-3p from cancer-associated fibroblasts promotes ovarian cancer development through regulation of the PTEN/AKT and SOCS6/STAT3 pathways. Cancer Sci 2024; 115:155-169. [PMID: 37972389 PMCID: PMC10823290 DOI: 10.1111/cas.16014] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 10/06/2023] [Accepted: 10/26/2023] [Indexed: 11/19/2023] Open
Abstract
Cancer-associated fibroblasts (CAFs), as important components of the tumor microenvironment, can regulate intercellular communication and tumor development by secreting extracellular vesicles (EVs). However, the role of CAF-derived EVs in ovarian cancer has not been fully elucidated. Here, using an EV-microRNA sequencing analysis, we reveal specific overexpression of microRNA (miR)-296-3p in activated CAF-derived EVs, which can be transferred to tumor cells to regulate the malignant phenotypes of ovarian cancer cells. Moreover, overexpression of miR-296-3p significantly promotes the proliferation, migration, invasion, and drug resistance of ovarian cancer cells in vitro, as well as tumor growth in vivo, while its inhibition has the opposite effects. Further mechanistic studies reveal that miR-296-3p promotes ovarian cancer progression by directly targeting PTEN and SOCS6 and activating AKT and STAT3 signaling pathways. Importantly, increased expression of miR-296-3p encapsulated in plasma EVs is closely correlated with tumorigenesis and chemoresistance in patients with ovarian cancer. Our results highlight the cancer-promoting role of CAF-derived EVs carrying miR-296-3p in ovarian cancer progression for the first time, and suggest that miR-296-3p encapsulated in CAF-derived EVs could be a diagnostic biomarker and therapeutic target for ovarian cancer.
Collapse
Affiliation(s)
- Luyao Sun
- Laboratory of Medical Genetics, School of MedicineSouth China University of TechnologyGuangzhouChina
- Department of BiologyHainan Medical UniversityHaikouChina
| | - Miaola Ke
- Department of Blood Transfusion, State Key Laboratory of Oncology in South ChinaSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Mengyuan Yin
- Laboratory of Medical Genetics, School of MedicineSouth China University of TechnologyGuangzhouChina
| | - Ying Zeng
- Laboratory of Medical Genetics, School of MedicineSouth China University of TechnologyGuangzhouChina
| | - Yutong Ji
- Laboratory of Medical Genetics, School of MedicineSouth China University of TechnologyGuangzhouChina
| | - Yiming Hu
- Laboratory of Medical Genetics, School of MedicineSouth China University of TechnologyGuangzhouChina
| | - Songbin Fu
- Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China (Harbin Medical University), Ministry of EducationHarbinChina
| | - Chunyu Zhang
- Laboratory of Medical Genetics, School of MedicineSouth China University of TechnologyGuangzhouChina
- Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China (Harbin Medical University), Ministry of EducationHarbinChina
| |
Collapse
|
14
|
Pal A, Ojha A, Ju J. Functional and Potential Therapeutic Implication of MicroRNAs in Pancreatic Cancer. Int J Mol Sci 2023; 24:17523. [PMID: 38139352 PMCID: PMC10744132 DOI: 10.3390/ijms242417523] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/01/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
The alarmingly low five-year survival rate for pancreatic cancer presents a global health challenge, contributing to about 7% of all cancer-related deaths. Late-stage diagnosis and high heterogeneity are the biggest hurdles in treating pancreatic cancer. Thus, there is a pressing need to discover novel biomarkers that could help in early detection as well as improve therapeutic strategies. MicroRNAs (miRNAs), a class of short non-coding RNA, have emerged as promising candidates with regard to both diagnostics and therapeutics. Dysregulated miRNAs play pivotal roles in accelerating tumor growth and metastasis, orchestrating tumor microenvironment, and conferring chemoresistance in pancreatic cancer. The differential expression profiles of miRNAs in pancreatic cancer could be utilized to explore novel therapeutic strategies. In this review, we also covered studies on recent advancements in various miRNA-based therapeutics such as restoring miRNAs with a tumor-suppressive function, suppressing miRNA with an oncogenic function, and combination with chemotherapeutic drugs. Despite several challenges in terms of specificity and targeted delivery, miRNA-based therapies hold the potential to revolutionize the treatment of pancreatic cancer by simultaneously targeting multiple signaling pathways.
Collapse
Affiliation(s)
- Amartya Pal
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; (A.P.); (A.O.)
- Graduate Program in Molecular and Cellular Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Anushka Ojha
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; (A.P.); (A.O.)
- Graduate Program in Molecular and Cellular Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Jingfang Ju
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; (A.P.); (A.O.)
- The Northport Veteran’s Administration Medical Center, Northport, NY 11768, USA
| |
Collapse
|
15
|
Hassametto A, Tanomrat R, Muangthong T, Worawichawong S, Suwannalert P. Role of Oxidative Stress-Dependent C/EBPβ Expression on CAF Transformation Inducing HCT116 Colorectal Cancer Cell Progression; Migration and Invasion. Asian Pac J Cancer Prev 2023; 24:3825-3835. [PMID: 38019240 PMCID: PMC10772768 DOI: 10.31557/apjcp.2023.24.11.3825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 11/19/2023] [Indexed: 11/30/2023] Open
Abstract
OBJECTIVE To investigate oxidative stress-related CAF transformation through C/EBPβ, which affects CRC progression and may have a potential implication for CRC treatment. METHODS The conditioned media (CM) from HCT116, CRC cells, was used to activate CCD-18Co, colon fibroblasts, then the ability of activated FBs to induce HCT116 growth and progression was assessed using MTT assay, transwell migration, and matrix invasion assay. Alteration of the cytokine profile and oxidative stress of the activated FBs were studied with cytokine arrays and DCFH-DA assay, respectively. The protein expressions of the CAF markers (α-SMA and FAP) and C/EBPβ were investigated with immunofluorescence and western blotting. RESULT It was found that CM from HCT116 cells induced oxidative stress, change of cytokine profile, CAF markers, and the C/EBPβ expression of activated FBs. Furthermore, when the oxidative stress of the activated FBs was suppressed, FAP and C/EBPβ expression were downregulated, correlating with the disabling of their capability to support the cancer progression. The C/EBPβ and prognosis for CRC patients were accessed using the GEPIA dataset, in which high C/EBPβ expression was associated with a poor prognosis. CONCLUSION These findings suggest that C/EBPβ expression has a role in CAF transformation in an oxidative stress-related manner and might be used as a target to improve aggressive CRC treatment outcomes.
Collapse
Affiliation(s)
- Artchaya Hassametto
- Department of Pathobiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand.
| | - Rataya Tanomrat
- Department of Pathobiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand.
| | - Tharathip Muangthong
- Department of Pathobiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand.
| | - Suchin Worawichawong
- Department of Pathology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand.
| | - Prasit Suwannalert
- Department of Pathobiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand.
- Pathobiology Information and Learning Center, Department of Pathobiology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand.
| |
Collapse
|
16
|
Shu Z, Fan M, Tu B, Tang Z, Wang H, Li H, Li H, Yuan M, Bai J, Huo S, Wang L, Zhu WG, Wang W, Liu X, Shu S, Zhao Y. The Lin28b/Wnt5a axis drives pancreas cancer through crosstalk between cancer associated fibroblasts and tumor epithelium. Nat Commun 2023; 14:6885. [PMID: 37898598 PMCID: PMC10613206 DOI: 10.1038/s41467-023-42508-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 10/13/2023] [Indexed: 10/30/2023] Open
Abstract
Bidirectional signal transduction between tumor epithelial cells and tumor microenvironment (TME) is important for tumor development. Here we show that Lin28b/let-7 pathway is indispensable for modulating the expression of Wnt5a in tumor epithelium, which could be secreted and then up-regulates Lin28b in cancer-associated fibroblasts (CAFs). Moreover, we demonstrate that Lin28b in CAFs promoted growth of PDAC by inducing cytokine PCSK9's production. Using an orthotopic mouse model of PDAC, we find that depletion of Lin28b in CAFs reduced tumor weight, highlighting the importance of Lin28b in PDAC stroma. Thus, our study shows that the Lin28b-Wnt5a axis plays a critical role in bidirectional crosstalk between pancreatic tumor epithelium and TME and results in a pro-tumorigenic contexture.
Collapse
Affiliation(s)
- Zhaoqi Shu
- Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
- Peking University International Cancer Institute, Peking University Health Science Center, Beijing, 100191, China
| | - Minghe Fan
- Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
- Peking University International Cancer Institute, Peking University Health Science Center, Beijing, 100191, China
| | - Bo Tu
- Molecular and Cellular Oncology Department, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Clinical Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | - Zhiheng Tang
- Department of Microbiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Haojie Wang
- Center for Precision Medicine Multi-Omics Research, School of Basic Medical Sciences, Peking University Health Science Center and Peking University Cancer Hospital and Institute, Beijing, China
| | - Haimeng Li
- Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
- Peking University International Cancer Institute, Peking University Health Science Center, Beijing, 100191, China
| | - Hengchao Li
- Department of Pancreatic Surgery, Huashan Hospital, Institute of Pancreatic Disease, FuDan University, Shanghai, 200040, China
| | - Meng Yuan
- Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
- Peking University International Cancer Institute, Peking University Health Science Center, Beijing, 100191, China
| | - Jingru Bai
- Marshall Laboratory of Biomedical Engineering, Shenzhen University School of Medicine, Shenzhen, 518055, China
- Department of Biochemistry and Molecular Biology, School of Medicine, Shenzhen University, Shenzhen, China
| | - Sihan Huo
- Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
- Peking University International Cancer Institute, Peking University Health Science Center, Beijing, 100191, China
| | - Lina Wang
- Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Wei-Guo Zhu
- Marshall Laboratory of Biomedical Engineering, Shenzhen University School of Medicine, Shenzhen, 518055, China
- Department of Biochemistry and Molecular Biology, School of Medicine, Shenzhen University, Shenzhen, China
| | - Wei Wang
- Department of Immunology, School of Basic Medical Sciences, Peking University, NHC Key Laboratory of Medical Immunology, Beijing, China
| | - Xiaoyun Liu
- Department of Microbiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Shaokun Shu
- Peking University International Cancer Institute, Peking University Health Science Center, Beijing, 100191, China
| | - Ying Zhao
- Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China.
- Peking University International Cancer Institute, Peking University Health Science Center, Beijing, 100191, China.
| |
Collapse
|
17
|
Lamanuzzi A, Saltarella I, Reale A, Melaccio A, Solimando AG, Altamura C, Tamma G, Storlazzi CT, Tolomeo D, Desantis V, Mariggiò MA, Desaphy JF, Spencer A, Vacca A, Apollonio B, Frassanito MA. Uptake-Dependent and -Independent Effects of Fibroblasts-Derived Extracellular Vesicles on Bone Marrow Endothelial Cells from Patients with Multiple Myeloma: Therapeutic and Clinical Implications. Biomedicines 2023; 11:biomedicines11051400. [PMID: 37239071 DOI: 10.3390/biomedicines11051400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 04/20/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
Extracellular vesicles (EVs) have emerged as important players in cell-to-cell communication within the bone marrow (BM) of multiple myeloma (MM) patients, where they mediate several tumor-associated processes. Here, we investigate the contribution of fibroblasts-derived EVs (FBEVs) in supporting BM angiogenesis. We demonstrate that FBEVs' cargo contains several angiogenic cytokines (i.e., VEGF, HGF, and ANG-1) that promote an early over-angiogenic effect independent from EVs uptake. Interestingly, co-culture of endothelial cells from MM patients (MMECs) with FBEVs for 1 or 6 h activates the VEGF/VEGFR2, HGF/HGFR, and ANG-1/Tie2 axis, as well as the mTORC2 and Wnt/β-catenin pathways, suggesting that the early over-angiogenic effect is a cytokine-mediated process. FBEVs internalization occurs after longer exposure of MMECs to FBEVs (24 h) and induces a late over-angiogenic effect by increasing MMECs migration, chemotaxis, metalloproteases release, and capillarogenesis. FBEVs uptake activates mTORC1, MAPK, SRC, and STAT pathways that promote the release of pro-angiogenic cytokines, further supporting the pro-angiogenic milieu. Overall, our results demonstrate that FBEVs foster MM angiogenesis through dual time-related uptake-independent and uptake-dependent mechanisms that activate different intracellular pathways and transcriptional programs, providing the rationale for designing novel anti-angiogenic strategies.
Collapse
Affiliation(s)
- Aurelia Lamanuzzi
- Unit of Internal Medicine and Clinical Oncology, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Ilaria Saltarella
- Unit of Internal Medicine and Clinical Oncology, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, 70124 Bari, Italy
- Unit of Pharmacology, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, 70121 Bari, Italy
| | - Antonia Reale
- Myeloma Research Group, Australian Centre for Blood Diseases, Central Clinical School, Monash University-Alfred Health, Melbourne, VIC 3004, Australia
| | - Assunta Melaccio
- Unit of Internal Medicine and Clinical Oncology, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Antonio Giovanni Solimando
- Unit of Internal Medicine and Clinical Oncology, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Concetta Altamura
- Unit of Pharmacology, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, 70121 Bari, Italy
| | - Grazia Tamma
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, 70121 Bari, Italy
| | - Clelia Tiziana Storlazzi
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, 70121 Bari, Italy
| | - Doron Tolomeo
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, 70121 Bari, Italy
| | - Vanessa Desantis
- Unit of Pharmacology, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, 70121 Bari, Italy
| | - Maria Addolorata Mariggiò
- Unit of Clinical Pathology, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, 70121 Bari, Italy
| | - Jean-François Desaphy
- Unit of Pharmacology, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, 70121 Bari, Italy
| | - Andrew Spencer
- Myeloma Research Group, Australian Centre for Blood Diseases, Central Clinical School, Monash University-Alfred Health, Melbourne, VIC 3004, Australia
- Malignant Haematology and Stem Cell Transplantation, Department of Haematology, Alfred Hospital, Melbourne, VIC 3004, Australia
- Department of Clinical Hematology, Monash University, Melbourne, VIC 3004, Australia
| | - Angelo Vacca
- Unit of Internal Medicine and Clinical Oncology, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Benedetta Apollonio
- Unit of Internal Medicine and Clinical Oncology, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Maria Antonia Frassanito
- Unit of Clinical Pathology, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, 70121 Bari, Italy
| |
Collapse
|
18
|
Dhamdhere MR, Gowda CP, Singh V, Liu Z, Carruthers N, Grant CN, Sharma A, Dovat S, Sundstrom JM, Wang HG, Spiegelman VS. IGF2BP1 regulates the cargo of extracellular vesicles and promotes neuroblastoma metastasis. Oncogene 2023; 42:1558-1571. [PMID: 36973517 PMCID: PMC10547097 DOI: 10.1038/s41388-023-02671-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/09/2023] [Accepted: 03/15/2023] [Indexed: 03/29/2023]
Abstract
Neuroblastoma is a highly metastatic cancer, and thus is one of the leading causes of cancer-related mortalities in pediatric patients. More than 50% of NB cases exhibit 17q21-ter partial chromosomal gain, which is independently associated with poor survival, suggesting the clinical importance of genes at this locus in NB. IGF2BP1 is one such proto-oncogene located at 17q locus, and was found to be upregulated in patients with metastatic NBs. Here, utilizing multiple immunocompetent mouse models, along with our newly developed highly metastatic NB cell line, we demonstrate the role of IGF2BP1 in promoting NB metastasis. Importantly, we show the significance of small extracellular vesicles (EVs) in NB progression, and determine the pro-metastatic function of IGF2BP1 by regulating the NB-EV-protein cargo. Through unbiased proteomic analysis of EVs, we discovered two novel targets (SEMA3A and SHMT2) of IGF2BP1, and reveal the mechanism of IGF2BP1 in NB metastasis. We demonstrate that IGF2BP1 directly binds and governs the expression of SEMA3A/SHMT2 in NB cells, thereby modulating their protein levels in NB-EVs. IGF2BP1-affected levels of SEMA3A and SHMT2 in the EVs, regulate the formation of pro-metastatic microenvironment at potential metastatic organs. Finally, higher levels of SEMA3A/SHMT2 proteins in the EVs derived from NB-PDX models indicate the clinical significance of the two proteins and IGF2BP1-SEMA3A/SHMT2 axis in NB metastasis.
Collapse
Affiliation(s)
- Mayura R Dhamdhere
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Chethana P Gowda
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Vikash Singh
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Zhenqiu Liu
- Department of Public Health Sciences, The Pennsylvania State University College of Medicine, Penn State Cancer Institute, Hershey, PA, USA
| | - Nicholas Carruthers
- Bioinformatics Core, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Christa N Grant
- Division of Pediatric Surgery, Department of Surgery, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Arati Sharma
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Sinisa Dovat
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Jeffrey M Sundstrom
- Department of Ophthalmology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Hong-Gang Wang
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Vladimir S Spiegelman
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA, USA.
| |
Collapse
|
19
|
Salazar A, Chavarria V, Flores I, Ruiz S, Pérez de la Cruz V, Sánchez-García FJ, Pineda B. Abscopal Effect, Extracellular Vesicles and Their Immunotherapeutic Potential in Cancer Treatment. Molecules 2023; 28:molecules28093816. [PMID: 37175226 PMCID: PMC10180522 DOI: 10.3390/molecules28093816] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 04/25/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
The communication between tumor cells and the microenvironment plays a fundamental role in the development, growth and further immune escape of the tumor. This communication is partially regulated by extracellular vesicles which can direct the behavior of surrounding cells. In recent years, it has been proposed that this feature could be applied as a potential treatment against cancer, since several studies have shown that tumors treated with radiotherapy can elicit a strong enough immune response to eliminate distant metastasis; this phenomenon is called the abscopal effect. The mechanism behind this effect may include the release of extracellular vesicles loaded with damage-associated molecular patterns and tumor-derived antigens which activates an antigen-specific immune response. This review will focus on the recent discoveries in cancer cell communications via extracellular vesicles and their implication in tumor development, as well as their potential use as an immunotherapeutic treatment against cancer.
Collapse
Affiliation(s)
- Aleli Salazar
- Neuroimmunology and Neuro-Oncology Unit, National Institute of Neurology and Neurosurgery "Manuel Velasco Suárez", Mexico City 14269, Mexico
| | - Víctor Chavarria
- Neuroimmunology and Neuro-Oncology Unit, National Institute of Neurology and Neurosurgery "Manuel Velasco Suárez", Mexico City 14269, Mexico
- Immunoregulation Lab, Department of Immunology, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - Itamar Flores
- Neuroimmunology and Neuro-Oncology Unit, National Institute of Neurology and Neurosurgery "Manuel Velasco Suárez", Mexico City 14269, Mexico
| | - Samanta Ruiz
- Neuroimmunology and Neuro-Oncology Unit, National Institute of Neurology and Neurosurgery "Manuel Velasco Suárez", Mexico City 14269, Mexico
| | - Verónica Pérez de la Cruz
- Neurobiochemistry and Behavior Laboratory, National Institute of Neurology and Neurosurgery "Manuel Velasco Suárez", Mexico City 14269, Mexico
| | | | - Benjamin Pineda
- Neuroimmunology and Neuro-Oncology Unit, National Institute of Neurology and Neurosurgery "Manuel Velasco Suárez", Mexico City 14269, Mexico
| |
Collapse
|
20
|
Robado de Lope L, Sánchez‐Herrero E, Serna‐Blasco R, Provencio M, Romero A. Cancer as an infective disease: the role of EVs in tumorigenesis. Mol Oncol 2023; 17:390-406. [PMID: 36168102 PMCID: PMC9980310 DOI: 10.1002/1878-0261.13316] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 08/19/2022] [Accepted: 09/26/2022] [Indexed: 11/09/2022] Open
Abstract
Cancer is conventionally considered an evolutionary disease where tumor cells adapt to the environment and evolve eventually leading to the formation of metastasis through the seeding and growth of metastasis-initiating cells in distant organs. Tumor cell and tumor-stroma communication via soluble factors and extracellular vesicles (EVs) are essential for the success of the metastatic process. As the field of EVs advances, growing data support the role of tumor-derived EVs not only in modifying the microenvironment to facilitate tumor progression but also in inducing changes in cells outside the primary tumor that may lead to a malignant transformation. Thus, an alternative hypothesis has emerged suggesting the conceptualization of cancer as an 'infective' disease. Still, tackling EVs as a possible cancer treatment has not been widely explored. A major understanding is needed to unveil possible additional contributions of EVs in progression and metastasis, which may be essential for the development of novel approaches to treat cancer patients. Here, we review the contribution of EVs to cancer progression and the possible implication of these factors in the oncogenic transformation of indolent cells.
Collapse
Affiliation(s)
- Lucia Robado de Lope
- Liquid Biopsy LaboratoryBiomedical Sciences Research Institute Puerta de Hierro‐MajadahondaSpain
| | - Estela Sánchez‐Herrero
- Liquid Biopsy LaboratoryBiomedical Sciences Research Institute Puerta de Hierro‐MajadahondaSpain
- Atrys HealthBarcelonaSpain
| | - Roberto Serna‐Blasco
- Liquid Biopsy LaboratoryBiomedical Sciences Research Institute Puerta de Hierro‐MajadahondaSpain
| | - Mariano Provencio
- Liquid Biopsy LaboratoryBiomedical Sciences Research Institute Puerta de Hierro‐MajadahondaSpain
- Medical Oncology DepartmentHospital Universitario Puerta de Hierro‐MajadahondaSpain
| | - Atocha Romero
- Liquid Biopsy LaboratoryBiomedical Sciences Research Institute Puerta de Hierro‐MajadahondaSpain
- Medical Oncology DepartmentHospital Universitario Puerta de Hierro‐MajadahondaSpain
| |
Collapse
|
21
|
Lu C, Zhang C. Oxaliplatin inhibits colorectal cancer progression by inhibiting CXCL11 secreted by cancer-associated fibroblasts and the CXCR3/PI3K/AKT pathway. CLINICAL & TRANSLATIONAL ONCOLOGY : OFFICIAL PUBLICATION OF THE FEDERATION OF SPANISH ONCOLOGY SOCIETIES AND OF THE NATIONAL CANCER INSTITUTE OF MEXICO 2023; 25:160-172. [PMID: 36129606 DOI: 10.1007/s12094-022-02922-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 08/02/2022] [Indexed: 01/07/2023]
Abstract
PURPOSE Colorectal cancer (CRC) is a malignant tumor. Oxaliplatin (OXA) can inhibit cancer-associated fibroblasts (CAFs)-induced cancer progression. This study sought to explore the mechanism of OXA in CAFs-induced CRC development. METHODS CRC cell lines (Caco-2, SW620), normal fibroblasts (NFs), and CAFs were treated with OXA. NFs and CAFs were cultured. CAFs were treated with/without OXA (0.4 mM), and the supernatant was extracted as the conditioned medium (CM) to culture CRC cells. Cell malignant episodes, E-cadherin and Vimentin levels, CXCL1, CXCL2, CXCL3, CXCL8, and CXCL11 mRNA levels, CXCL11 protein level, and extracellular release were assessed. CAFs were transfected with interfering RNA sh-CXCL11 to silence CXCL11 or transfected with CXCL11 overexpression plasmids and treated with OXA to explore the role of CXCL11 in OXA-mediated CRC cells through CAFs. CXCL11 receptor CXCR3 levels in CRC cells and the PI3K/AKT pathway changes were examined. The xenogeneic tumor was transplanted in nude mice. CXCL11 and CXCR3 levels in tumor tissues, tumor volume, shape, size, weight, and Ki67 positive expressions were assessed. RESULTS CRC cell growths and epithelial-mesenchymal transformation were stimulated after culture with CAFs-CM, while OXA averted these trends. CXCL11 mRNA level was elevated most significantly, and its protein and extracellular secretion levels were raised, while OXA diminished the levels. CXCL11 silencing weakened the effects of CAFs-CM on promoting CRC proliferation and malignant episodes and CXCL11 overexpression averted OXA property on inhibiting CAFs-promoted CRC cell growth. CXCR3 and PI3K and AKT1 phosphorylation levels were raised in the CAFs-CM group but diminished by OXA. CXCL11 overexpression in CAFs averted OXA property on inhibiting CAFs-activated CXCR3/PI3K/AKT in CRC cells. OXA also inhibited the progression of xenograft tumors by limiting CAFs-secreted CXCL11. CONCLUSIONS OXA repressed CRC progression by inhibiting CAFs-secreted CXCL11 and the CXCR3/PI3K/AKT pathway.
Collapse
Affiliation(s)
- Caifu Lu
- Department of Proctology, Aikang Hospital, Huangshi, 435000, Hubei Province, China
| | - Cong Zhang
- Department of Acupuncture, Huangshi Traditional Chinese Medicine Hospital, 6 Square Road, Huangshi, 435000, Hubei Province, China.
| |
Collapse
|
22
|
Gattupalli M, Dey P, Poovizhi S, Patel RB, Mishra D, Banerjee S. The Prospects of RNAs and Common Significant Pathways in Cancer Therapy and Regenerative Medicine. Regen Med 2023. [DOI: 10.1007/978-981-19-6008-6_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
|
23
|
Zhang X, Zhang Y, Qiu X, Cai J, Yang Z, Song F. Extracellular Vesicles Derived from Lung Cancer Cells Induce Transformation of Normal Fibroblasts into Lung Cancer-Associated Fibroblasts and Promote Metastasis of Lung Cancer by Delivering lncRNA HOTAIR. Stem Cells Int 2022; 2022:3805013. [PMID: 36267242 PMCID: PMC9578906 DOI: 10.1155/2022/3805013] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/11/2022] [Accepted: 09/02/2022] [Indexed: 11/29/2022] Open
Abstract
Human lung cancer (LC) cells A549/H358, normal lung epithelial cells BEAS-2B, and lung normal fibroblasts (NFs) were cultured, followed by transfection of H358 cells with HOTAIR shRNA. Extracellular vesicles (EVs) extracted from H358 cells were identified. The internalization of Dil-labeled-EVs by NFs was tested, and protein levels of cancer-associated fibroblast (CAF) surface markers, inflammatory cytokines, cell proliferation, invasion, and migration, and lncRNA HOTAIR levels were determined. A549 cells were cultured in an H358-EVs-treated conditioned medium of NFs (NFCM), followed by intravenous injection of A549 cells into nude mice. The lesions and Ki-67-positive cells in lung tissues were measured. The results showed that tumor cell-derived EVs (T-EVs) motivated the transformation of NFs into CAFs. Specifically, EVs can be internalized by NFs, and the protein levels of CAF surface markers and inflammation levels were elevated in H358-EVs-treated NFs. The proliferation, invasion, and migration of A549 cells cultured in T-EVs-treated NFCM were increased. H358-EVs carried HOTAIR into NFs and promoted the transformation of NFs into CAFs. Inhibition of HOTAIR partially reversed the promoting effect of H358-EVs on the transformation of NFs into CAFs and invasion and migration of LC cells. T-EVs promoted metastasis of LC in vivo by transforming NFs into CAFs.
Collapse
Affiliation(s)
- Xiaoxuan Zhang
- Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, China
- Department of Biochemistry and Molecular Biology, Chongqing Medical University, Chongqing 400016, China
- Department of Cancer Center, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, China
| | - Yan Zhang
- Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, China
- Department of Biochemistry and Molecular Biology, Chongqing Medical University, Chongqing 400016, China
| | - Xin Qiu
- Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, China
- Department of Biochemistry and Molecular Biology, Chongqing Medical University, Chongqing 400016, China
| | - Jing Cai
- Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, China
- Department of Biochemistry and Molecular Biology, Chongqing Medical University, Chongqing 400016, China
| | - Zhenzhou Yang
- Department of Cancer Center, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, China
| | - Fangzhou Song
- Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, China
- Department of Biochemistry and Molecular Biology, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
24
|
Li F, Mao C, Yeh S, Xin J, Wang P, Shi Q, Ming X. Combinatory therapy of MRP1-targeted photoimmunotherapy and liposomal doxorubicin promotes the antitumor effect for chemoresistant small cell lung cancer. Int J Pharm 2022; 625:122076. [PMID: 35931394 DOI: 10.1016/j.ijpharm.2022.122076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 07/24/2022] [Accepted: 07/31/2022] [Indexed: 11/20/2022]
Abstract
Small cell lung cancer (SCLC), considered a mortal recalcitrant cancer, is a severe healthcare issue because of its poor prognosis, early metastasis, drug resistance and limited clinical treatment options. In our previous study, we established a MRP1-targeted antibody-IR700 system (Mab-IR700) for near infrared photoimmunotherapy (NIR-PIT) which exhibited a promising therapeutic effect on drug resistant H69AR cells both in vitro and in vivo, though the tumor growth suppression effect did not last long with a single round of PIT treatment. To achieve a better anticancer effect, we have combined Mab-IR700-mediated NIR-PIT with liposomal doxorubicin (Doxil®) and investigated the in vitro and in vivo cytotoxicity by using a H69AR/3T3 cell co-culture model in which 3T3 cells were used to mimic stromal cells. Cytotoxicity experiments demonstrated the specificity of Mab-IR700 to H69AR cells, while cytotoxicity and flow cytometry experiments confirmed that H69AR cells were doxorubicin-resistant. Compared with Mab-IR700-mediated PIT or Doxil-mediated chemotherapy, the combination therapy exhibited the best cell killing effect in vitro and superior tumor growth inhibition and survival prolongation effect in vivo. Super enhanced permeability and retention (SUPR) effect was observed in both co-culture spheroids and tumor-bearing mice. Owing to an approximately 9-fold greater accumulation of Doxil within the tumors, NIR-PIT combined with Doxil resulted in enhanced antitumor effects compared to NIR-PIT alone. This photoimmunochemotherapy is a practical strategy for the treatment of chemoresistant SCLC and should be further investigated for clinical translation.
Collapse
Affiliation(s)
- Fang Li
- School of Pharmacy, Jiangsu Vocational College of Medicine, Yancheng 224005, China; Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem 27157, USA.
| | - Chengqiong Mao
- Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem 27157, USA
| | - Stacy Yeh
- Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem 27157, USA
| | - Junbo Xin
- School of Pharmacy, Jiangsu Vocational College of Medicine, Yancheng 224005, China
| | - Peng Wang
- School of Pharmaceutical Engineering, Yancheng Teachers University, Yancheng 224007, China
| | - Qin Shi
- School of Pharmacy, Jiangsu Vocational College of Medicine, Yancheng 224005, China
| | - Xin Ming
- Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem 27157, USA.
| |
Collapse
|
25
|
The Combination of Zerumbone with 5-Fluorouracil for Sensitizing Colorectal Cancer-Associated Fibroblasts to Treatment. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:9369328. [PMID: 35449812 PMCID: PMC9017496 DOI: 10.1155/2022/9369328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 03/22/2022] [Indexed: 11/17/2022]
Abstract
The present study aimed to evaluate the synergic effects of combination therapy on 5-fluorouracil (5-FU) resistance-cancer-associated fibroblasts (CAFs) to treatment. Chemotherapy resistance is an important challenge in colorectal cancer (CRC) eradication attention to the tumor microenvironment (TME) is very important. CAFs in the TME play an essential role in cancer chemoresistance and relapse. Additionally, many patients with advanced CRC show resistance to 5-FU therapy. Anti-tumorigenic activities of ZER, a chemopreventive compound derived from the rhizomes of the wild ginger, have been demonstrated. Synergistic and potentiating effects of combination therapy, using herbal and chemical drugs, can improve patients’ response. At the first, CAFs were isolated from a CRC patient and sorted by fluorescent-activated cell sorting (FACS), then, confirmed by flow cytometry, and immunocytochemistry (ICC). The effect of 5-FU and ZER on the cell viability was investigated by MTT assay in a dose and time-dependent manner, after that, the expression of vimentin, β-catenin, and survivin was quantified. Apoptosis, cell cycle, and invasion were analyzed by flow cytometry and scratch test, respectively. ZER could significantly sensitize CAFs cells to 5-FU. A combination of 5-FU + ZER revealed a marked decrease in the marker of interest in both mRNA and protein levels compared to control groups, including 5-FU, ZER treated, and untreated cells. Functional evaluation of cells in different groups presented significant suppression in migration of CAFs and an apparent increase in cell arrest and apoptosis by 5-FU + ZER treatment.
Collapse
|
26
|
Zhang Q, Ding J, Wang Y, He L, Xue F. Tumor microenvironment manipulates chemoresistance in ovarian cancer (Review). Oncol Rep 2022; 47:102. [PMID: 35362546 DOI: 10.3892/or.2022.8313] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 03/22/2022] [Indexed: 11/05/2022] Open
Abstract
Ovarian cancer (OC) is the leading cause of mortality among the various types of gynecological cancer, and >75% of the cases are diagnosed at a late stage. Although platinum‑based chemotherapy is able to help the majority of patients to achieve remission, the disease frequently recurs and acquires chemoresistance, resulting in high mortality rates. The complexity of OC therapy is not solely governed by the intrinsic characteristics of the OC cells (OCCs) themselves, but is also largely dependent on the dynamic communication between OCCs and various components of their surrounding microenvironment. The present review attempts to describe the mutual interplay between OCCs and their surrounding microenvironment. Tumor‑associated macrophages (TAMs) and cancer‑associated fibroblasts (CAFs) are the most abundant stromal cell types in OC. Soluble factors derived from CAFs steadily nourish both the OCCs and TAMs, facilitating their proliferation and immune evasion. ATP binding cassette transporters facilitate the extrusion of cytotoxic molecules, eventually promoting cell survival and multidrug resistance. Extracellular vesicles fulfill their role as genetic exchange vectors, transferring cargo from the donor cells to the recipient cells and propagating oncogenic signaling. A greater understanding of the vital roles of the tumor microenvironment will allow researchers to be open to the prospect of developing therapeutic approaches for combating OC chemoresistance.
Collapse
Affiliation(s)
- Qiaoling Zhang
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Jiashan Ding
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Yingmei Wang
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Linsheng He
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Fengxia Xue
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| |
Collapse
|
27
|
Popova NV, Jücker M. The Functional Role of Extracellular Matrix Proteins in Cancer. Cancers (Basel) 2022; 14:238. [PMID: 35008401 PMCID: PMC8750014 DOI: 10.3390/cancers14010238] [Citation(s) in RCA: 118] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/23/2021] [Accepted: 12/27/2021] [Indexed: 02/04/2023] Open
Abstract
The extracellular matrix (ECM) is highly dynamic as it is constantly deposited, remodeled and degraded to maintain tissue homeostasis. ECM is a major structural component of the tumor microenvironment, and cancer development and progression require its extensive reorganization. Cancerized ECM is biochemically different in its composition and is stiffer compared to normal ECM. The abnormal ECM affects cancer progression by directly promoting cell proliferation, survival, migration and differentiation. The restructured extracellular matrix and its degradation fragments (matrikines) also modulate the signaling cascades mediated by the interaction with cell-surface receptors, deregulate the stromal cell behavior and lead to emergence of an oncogenic microenvironment. Here, we summarize the current state of understanding how the composition and structure of ECM changes during cancer progression. We also describe the functional role of key proteins, especially tenascin C and fibronectin, and signaling molecules involved in the formation of the tumor microenvironment, as well as the signaling pathways that they activate in cancer cells.
Collapse
Affiliation(s)
- Nadezhda V. Popova
- Laboratory of Receptor Cell Biology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str., 16/10, 117997 Moscow, Russia;
| | - Manfred Jücker
- Institute of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| |
Collapse
|
28
|
Sabnis RW. Novel Indole Compounds as TEAD Inhibitors for Treating Cancer. ACS Med Chem Lett 2021; 12:1885-1886. [PMID: 34917246 DOI: 10.1021/acsmedchemlett.1c00609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Indexed: 11/28/2022] Open
Affiliation(s)
- Ram W. Sabnis
- Smith, Gambrell & Russell LLP, 1105 West Peachtree Street NE, Suite 1000, Atlanta, Georgia30309, United States
| |
Collapse
|