1
|
Vo MC, Nguyen VT, Tran VDH, Oh HJ, Jung SH, Bae WK, Lee JJ, Oh IJ. Combination therapy with expanded natural killer cells and atezolizumab exerts potent antitumor immunity in small cell lung cancer. Cancer Immunol Immunother 2025; 74:143. [PMID: 40056167 PMCID: PMC11890499 DOI: 10.1007/s00262-025-03997-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 02/22/2025] [Indexed: 03/10/2025]
Abstract
Despite an initial response to platinum-based chemotherapy, most patients with extensive stage of small cell lung cancer (SCLC) have a poor prognosis due to recurrence. Additionally, the benefit of immune checkpoint inhibitors is more modest than non-small cell lung cancer. Natural killer (NK) cells can directly eliminate cancer cells without prior sensitization; this is largely governed by inflammatory cytokines, which serve as killing signals to cancer cells. Here, we investigated whether the combination of NK cells plus atezolizumab, a fully humanized monoclonal antibody that specifically targets the protein programmed death-ligand 1 (PD-L1), has a synergistic effect against SCLC. NK cells were expanded and activated using irradiated K562 feeder cells in the presence of interleukin (IL)-2/IL-15/IL-21/41BB ligand for 14 days. Expanded and activated NK cells (eNK) were combined with atezolizumab and used to treat SCLC cells in both in vitro and in vivo studies. The results revealed increased PD-L1 expression in SCLC cells after the eNK challenge. eNK cells plus atezolizumab demonstrated increased cytotoxicity toward target SCLC cells, as evidenced by increased interferon-γ and tumor necrosis factor-α production, and higher levels of SCLC stem cell (CD44+CD90+) suppression. Combined treatment with eNK and atezolizumab more effectively inhibited SCLC tumor growth and significantly prolonged the survival of treated mice. Our findings revealed that combining eNK with atezolizumab strongly increased cytotoxicity, significantly inhibited SCLC tumor growth, and prolonged the survival of treated mice. These results provide a framework for developing a more advanced immunotherapeutic modality for future clinical trials for patients with SCLC.
Collapse
Affiliation(s)
- Manh-Cuong Vo
- Institute of Research and Development, Duy Tan University, Danang, Vietnam
- VaxCell-Biotherapeutics, Hwasun, South Korea
- Immunotherapy Innovation Center, Chonnam National University Hwasun Hospital, Hwasun, South Korea
| | - Van-Tan Nguyen
- Department of Internal Medicine, Chonnam National University Hwasun Hospital, Chonnam National University Medical School, 322 Seoyang-Ro, Hwasun-Eup, Hwasun-gun, Jeollanam-do, 58128, Republic of Korea
| | - Van-Dinh-Huan Tran
- Department of Internal Medicine, Chonnam National University Hwasun Hospital, Chonnam National University Medical School, 322 Seoyang-Ro, Hwasun-Eup, Hwasun-gun, Jeollanam-do, 58128, Republic of Korea
| | - Hyung-Joo Oh
- Department of Internal Medicine, Chonnam National University Hwasun Hospital, Chonnam National University Medical School, 322 Seoyang-Ro, Hwasun-Eup, Hwasun-gun, Jeollanam-do, 58128, Republic of Korea
| | - Sung-Hoon Jung
- Department of Internal Medicine, Chonnam National University Hwasun Hospital, Chonnam National University Medical School, 322 Seoyang-Ro, Hwasun-Eup, Hwasun-gun, Jeollanam-do, 58128, Republic of Korea
| | - Woo Kyun Bae
- Department of Internal Medicine, Chonnam National University Hwasun Hospital, Chonnam National University Medical School, 322 Seoyang-Ro, Hwasun-Eup, Hwasun-gun, Jeollanam-do, 58128, Republic of Korea
- VaxCell-Biotherapeutics, Hwasun, South Korea
| | - Je-Jung Lee
- Department of Internal Medicine, Chonnam National University Hwasun Hospital, Chonnam National University Medical School, 322 Seoyang-Ro, Hwasun-Eup, Hwasun-gun, Jeollanam-do, 58128, Republic of Korea
- VaxCell-Biotherapeutics, Hwasun, South Korea
- Immunotherapy Innovation Center, Chonnam National University Hwasun Hospital, Hwasun, South Korea
| | - In-Jae Oh
- Department of Internal Medicine, Chonnam National University Hwasun Hospital, Chonnam National University Medical School, 322 Seoyang-Ro, Hwasun-Eup, Hwasun-gun, Jeollanam-do, 58128, Republic of Korea.
| |
Collapse
|
2
|
Vahidi S, Zabeti Touchaei A, Samadani AA. IL-15 as a key regulator in NK cell-mediated immunotherapy for cancer: From bench to bedside. Int Immunopharmacol 2024; 133:112156. [PMID: 38669950 DOI: 10.1016/j.intimp.2024.112156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/04/2024] [Accepted: 04/23/2024] [Indexed: 04/28/2024]
Abstract
Interleukin 15 (IL-15) has emerged as a crucial factor in the relationship between natural killer (NK) cells and immunotherapy for cancer. This review article aims to provide a comprehensive understanding of the role of IL-15 in NK cell-mediated immunotherapy. First, the key role of IL-15 signaling in NK cell immunity is discussed, highlighting its regulation of NK cell functions and antitumor properties. Furthermore, the use of IL-15 or its analogs in clinical trials as a therapeutic strategy for various cancers, including the genetic modification of NK cells to produce IL-15, has been explored. The potential of IL-15-based therapies, such as chimeric antigen receptor (CAR) T and NK cell infusion along with IL-15 in combination with checkpoint inhibitors and other treatments, has been examined. This review also addresses the challenges and advantages of incorporating IL-15 in cell-based immunotherapy. Additionally, unresolved questions regarding the detection and biological significance of the soluble IL-15/IL-15Rα complex, as well as the potential role of IL-15/IL-15Rα in human cancer and the immunological consequences of prolonged exposure to soluble IL-15 for NK cells, are discussed.
Collapse
Affiliation(s)
- Sogand Vahidi
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | | | - Ali Akbar Samadani
- Guilan Road Trauma Research Center, Trauma Institute, Guilan University of Medical Sciences, Rasht, Iran.
| |
Collapse
|
3
|
Vo MC, Jung SH, Nguyen VT, Tran VDH, Ruzimurodov N, Kim SK, Nguyen XH, Kim M, Song GY, Ahn SY, Ahn JS, Yang DH, Kim HJ, Lee JJ. Exploring cellular immunotherapy platforms in multiple myeloma. Heliyon 2024; 10:e27892. [PMID: 38524535 PMCID: PMC10957441 DOI: 10.1016/j.heliyon.2024.e27892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 03/07/2024] [Accepted: 03/07/2024] [Indexed: 03/26/2024] Open
Abstract
Despite major advances in therapeutic platforms, most patients with multiple myeloma (MM) eventually relapse and succumb to the disease. Among the novel therapeutic options developed over the past decade, genetically engineered T cells have a great deal of potential. Cellular immunotherapies, including chimeric antigen receptor (CAR) T cells, are rapidly becoming an effective therapeutic modality for MM. Marrow-infiltrating lymphocytes (MILs) derived from the bone marrow of patients with MM are a novel source of T cells for adoptive T-cell therapy, which robustly and specifically target myeloma cells. In this review, we examine the recent innovations in cellular immunotherapies, including the use of dendritic cells, and cellular tools based on MILs, natural killer (NK) cells, and CAR T cells, which hold promise for improving the efficacy and/or reducing the toxicity of treatment in patients with MM.
Collapse
Affiliation(s)
- Manh-Cuong Vo
- Institute of Research and Development, Duy Tan University, Danang, Viet Nam
- Research Center for Cancer Immunotherapy, Chonnam National University Hwasun Hospital, Hwasun, Jeollanamdo, Republic of Korea
- Vaxcell-Bio Therapeutics, Hwasun, Jeollanamdo, Republic of Korea
| | - Sung-Hoon Jung
- Research Center for Cancer Immunotherapy, Chonnam National University Hwasun Hospital, Hwasun, Jeollanamdo, Republic of Korea
- Department of Hematology-Oncology, Chonnam National University Hwasun Hospital and Chonnam National University Medical School, Hwasun, Jeollanamdo, Republic of Korea
| | - Van-Tan Nguyen
- Research Center for Cancer Immunotherapy, Chonnam National University Hwasun Hospital, Hwasun, Jeollanamdo, Republic of Korea
| | - Van-Dinh-Huan Tran
- Research Center for Cancer Immunotherapy, Chonnam National University Hwasun Hospital, Hwasun, Jeollanamdo, Republic of Korea
| | - Nodirjon Ruzimurodov
- Institute of Immunology and Human Genomics of the Academy of Sciences of the Republic of Uzbekistan, Uzbekistan
| | - Sang Ki Kim
- Research Center for Cancer Immunotherapy, Chonnam National University Hwasun Hospital, Hwasun, Jeollanamdo, Republic of Korea
- Department of Laboratory and Companion Animal Science, College of Industrial Science, Kongju National University, Yesan-eup, Yesan-gun, Chungnam, Republic of Korea
- Vaxcell-Bio Therapeutics, Hwasun, Jeollanamdo, Republic of Korea
| | - Xuan-Hung Nguyen
- Hi-Tech Center and Vinmec-VinUni Institute of Immunology, Vinmec Healthcare system, Hanoi, Vietnam
| | - Mihee Kim
- Department of Hematology-Oncology, Chonnam National University Hwasun Hospital and Chonnam National University Medical School, Hwasun, Jeollanamdo, Republic of Korea
| | - Ga-Young Song
- Department of Hematology-Oncology, Chonnam National University Hwasun Hospital and Chonnam National University Medical School, Hwasun, Jeollanamdo, Republic of Korea
| | - Seo-Yeon Ahn
- Department of Hematology-Oncology, Chonnam National University Hwasun Hospital and Chonnam National University Medical School, Hwasun, Jeollanamdo, Republic of Korea
| | - Jae-Sook Ahn
- Department of Hematology-Oncology, Chonnam National University Hwasun Hospital and Chonnam National University Medical School, Hwasun, Jeollanamdo, Republic of Korea
| | - Deok-Hwan Yang
- Department of Hematology-Oncology, Chonnam National University Hwasun Hospital and Chonnam National University Medical School, Hwasun, Jeollanamdo, Republic of Korea
| | - Hyeoung-Joon Kim
- Department of Hematology-Oncology, Chonnam National University Hwasun Hospital and Chonnam National University Medical School, Hwasun, Jeollanamdo, Republic of Korea
| | - Je-Jung Lee
- Research Center for Cancer Immunotherapy, Chonnam National University Hwasun Hospital, Hwasun, Jeollanamdo, Republic of Korea
- Department of Hematology-Oncology, Chonnam National University Hwasun Hospital and Chonnam National University Medical School, Hwasun, Jeollanamdo, Republic of Korea
- Vaxcell-Bio Therapeutics, Hwasun, Jeollanamdo, Republic of Korea
| |
Collapse
|
4
|
Wang X, Luo K, Xu Q, Chi L, Guo Y, Jia C, Quan L. Prognostic marker CD27 and its micro-environmental in multiple myeloma. BMC Cancer 2024; 24:352. [PMID: 38504180 PMCID: PMC10949675 DOI: 10.1186/s12885-024-11945-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 02/01/2024] [Indexed: 03/21/2024] Open
Abstract
BACKGROUND The Cluster of Differentiation 27 (CD27) is aberrantly expressed in multiple myeloma (MM) -derived. This expression facilitates the interaction between tumor and immune cells within TME via the CD27-CD70 pathway, resulting in immune evasion and subsequent tumor progression. The objective of this study is to investigate the correlation between CD27 expression and the prognosis of MM, and to elucidate its potential relationship with the immune microenvironment. METHODS In this research, CD27 expression in T cells within the 82 newly diagnosed MM microenvironment was assessed via flow cytometry. We then examined the association between CD27 expression levels and patient survival. Subsequent a series of bioinformatics and in vitro experiments were conducted to reveal the role of CD27 in MM. RESULTS Clinical evidence suggests that elevated CD27 expression in T cells within the bone marrow serves as a negative prognostic marker for MM survival. Data analysis from the GEO database has demonstrated a strong association between MM-derived CD27 and the immune response, as well as the hematopoietic system. Importantly, patients with elevated levels of CD27 expression were also found to have an increased presence of MDSCs and macrophages in the bone marrow microenvironment. Furthermore, the PERK-ATF4 signaling pathway has been implicated in mediating the effects of CD27 in MM. CONCLUSIONS We revealed that CD27 expression levels serve as an indicative marker for the prognosis of MM patients. The CD27- PERK-ATF4 is a promising target for the treatment of MM.
Collapse
Affiliation(s)
- Xinya Wang
- Hematology Department, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, People's Republic of China
| | - Keyang Luo
- Hematology Department, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, People's Republic of China
| | - Qiuting Xu
- Hematology Department, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, People's Republic of China
| | - Liqun Chi
- Hematology Department, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, People's Republic of China
| | - Yiwei Guo
- Hematology Department, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, People's Republic of China
| | - Chuiming Jia
- Hematology Department, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, People's Republic of China.
| | - Lina Quan
- Hematology Department, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, People's Republic of China.
| |
Collapse
|
5
|
Jung EK, Chu TH, Kim SA, Vo MC, Nguyen VT, Lee KH, Jung SH, Yoon M, Cho D, Lee JJ, Yoon TM. Efficacy of natural killer cell therapy combined with chemoradiotherapy in murine models of head and neck squamous cell carcinoma. Cytotherapy 2024; 26:242-251. [PMID: 38142382 DOI: 10.1016/j.jcyt.2023.11.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 10/24/2023] [Accepted: 11/08/2023] [Indexed: 12/25/2023]
Abstract
BACKGROUND AIMS Natural killer (NK) cell-based cancer immunotherapy is effective when combined with other treatment modalities such as irradiation and chemotherapy. NK cell's antitumor function to treat solid tumor, including head and neck squamous cell carcinoma (HNSCC), has been targeted recently. This study assessed NK cell recruitment in response to chemoradiation therapy (CRT) in HNSCC. METHODS Ex vivo expansion of NK cell, flow cytometry, cell viability assay, cytotoxicity assay, immunohistochemistry, and animal model were performed. RESULTS Mouse NK cells were recruited to the tumor site by CRT in a nude mouse model. Furthermore, expanded and activated human NK cells (eNKs) were recruited to the tumor site in response to CRT, and CRT enhanced the anti-tumor activity of eNK in an NOD/SCID IL-2Rγnull mouse model. Various HNSCC cancer cell lines exhibited different NK cell ligand activation patterns in response to CRT that correlated with NK cell-mediated cytotoxicity. CONCLUSIONS Identifying the activation patterns of NK cell ligands during CRT might improve patient selection for adjuvant NK cell immunotherapy combined with CRT. This is the first study to investigate the NK cell's antitumor function and recruitment with CRT in HNSCC mouse model.
Collapse
Affiliation(s)
- Eun Kyung Jung
- Department of Otolaryngology-Head and Neck Surgery, Chonnam National University Medical School and Hwasun Hospital, Hwasun, Jeollanamdo, Korea
| | - Tan-Huy Chu
- Department of Hematology-Oncology, Chonnam National University Medical School and Hwasun Hospital, Hwasun, Jeollanamdo, Korea; Department of Hematology, Pham Ngoc Thach University of Medicine, Ho Chi Minh City, Vietnam
| | - Sun-Ae Kim
- Department of Otolaryngology-Head and Neck Surgery, Chonnam National University Medical School and Hwasun Hospital, Hwasun, Jeollanamdo, Korea
| | - Manh-Cuong Vo
- Department of Hematology-Oncology, Chonnam National University Medical School and Hwasun Hospital, Hwasun, Jeollanamdo, Korea
| | - Van-Tan Nguyen
- Department of Hematology-Oncology, Chonnam National University Medical School and Hwasun Hospital, Hwasun, Jeollanamdo, Korea
| | - Kyung-Hwa Lee
- Department of Pathology, Chonnam National University Medical School and Hwasun Hospital, Hwasun, Jeollanamdo, Korea
| | - Sung-Hoon Jung
- Department of Hematology-Oncology, Chonnam National University Medical School and Hwasun Hospital, Hwasun, Jeollanamdo, Korea
| | - Meesun Yoon
- Department of Radiation Oncology, Chonnam National University Medical School and Hwasun Hospital, Hwasun, Jeollanamdo, Korea
| | - Duck Cho
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Je-Jung Lee
- Department of Hematology-Oncology, Chonnam National University Medical School and Hwasun Hospital, Hwasun, Jeollanamdo, Korea.
| | - Tae Mi Yoon
- Department of Otolaryngology-Head and Neck Surgery, Chonnam National University Medical School and Hwasun Hospital, Hwasun, Jeollanamdo, Korea.
| |
Collapse
|
6
|
Banga R, Procopio FA, Lana E, Gladkov GT, Roseto I, Parsons EM, Lian X, Armani-Tourret M, Bellefroid M, Gao C, Kauzlaric A, Foglierini M, Alfageme-Abello O, Sluka SHM, Munoz O, Mastrangelo A, Fenwick C, Muller Y, Mkindi CG, Daubenberger C, Cavassini M, Trunfio R, Déglise S, Corpataux JM, Delorenzi M, Lichterfeld M, Pantaleo G, Perreau M. Lymph node dendritic cells harbor inducible replication-competent HIV despite years of suppressive ART. Cell Host Microbe 2023; 31:1714-1731.e9. [PMID: 37751747 PMCID: PMC11068440 DOI: 10.1016/j.chom.2023.08.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 06/02/2023] [Accepted: 08/30/2023] [Indexed: 09/28/2023]
Abstract
Although gut and lymph node (LN) memory CD4 T cells represent major HIV and simian immunodeficiency virus (SIV) tissue reservoirs, the study of the role of dendritic cells (DCs) in HIV persistence has long been limited to the blood due to difficulties to access lymphoid tissue samples. In this study, we show that LN migratory and resident DC subpopulations harbor distinct phenotypic and transcriptomic profiles. Interestingly, both LN DC subpopulations contain HIV intact provirus and inducible replication-competent HIV despite the expression of the antiviral restriction factor SAMHD1. Notably, LN DC subpopulations isolated from HIV-infected individuals treated for up to 14 years are transcriptionally silent but harbor replication-competent virus that can be induced upon TLR7/8 stimulation. Taken together, these results uncover a potential important contribution of LN DCs to HIV infection in the presence of ART.
Collapse
Affiliation(s)
- Riddhima Banga
- Services of Immunology and Allergy, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland
| | - Francesco Andrea Procopio
- Services of Immunology and Allergy, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland
| | - Erica Lana
- Services of Immunology and Allergy, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland
| | | | | | - Elizabeth M Parsons
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA; Infectious Disease Division, Brigham and Women's Hospital, Boston, MA, USA
| | - Xiaodong Lian
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA; Infectious Disease Division, Brigham and Women's Hospital, Boston, MA, USA
| | | | | | - Ce Gao
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Annamaria Kauzlaric
- Translational Bioinformatics and Statistics Department of Oncology, University of Lausanne Swiss Cancer Center, Lausanne, Switzerland
| | - Mathilde Foglierini
- Services of Immunology and Allergy, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland
| | - Oscar Alfageme-Abello
- Services of Immunology and Allergy, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland
| | - Susanna H M Sluka
- Newborn Screening Switzerland, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Olivia Munoz
- Services of Immunology and Allergy, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland
| | - Andrea Mastrangelo
- Services of Immunology and Allergy, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland
| | - Craig Fenwick
- Services of Immunology and Allergy, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland
| | - Yannick Muller
- Services of Immunology and Allergy, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland
| | - Catherine Gerald Mkindi
- Ifakara Health Institute, Bagamoyo, United Republic of Tanzania; Department of Medical Parasitology and Infection Biology, Clinical Immunology Unit, Swiss Tropical and Public Health Institute, Basel, Switzerland
| | - Claudia Daubenberger
- Department of Medical Parasitology and Infection Biology, Clinical Immunology Unit, Swiss Tropical and Public Health Institute, Basel, Switzerland; University of Basel, 4001 Basel, Switzerland
| | - Matthias Cavassini
- Services of Infectious Diseases, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland
| | - Rafael Trunfio
- Services of Vascular Surgery, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland
| | - Sébastien Déglise
- Services of Vascular Surgery, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland
| | - Jean-Marc Corpataux
- Services of Vascular Surgery, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland
| | - Mauro Delorenzi
- Translational Bioinformatics and Statistics Department of Oncology, University of Lausanne Swiss Cancer Center, Lausanne, Switzerland
| | - Mathias Lichterfeld
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA; Infectious Disease Division, Brigham and Women's Hospital, Boston, MA, USA
| | - Giuseppe Pantaleo
- Services of Immunology and Allergy, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland; Swiss Vaccine Research Institute, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland
| | - Matthieu Perreau
- Services of Immunology and Allergy, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland.
| |
Collapse
|