1
|
Li S, Duan Y, Luo S, Zhou F, Wu Q, Lu Z. Short-chain fatty acids and cancer. Trends Cancer 2025; 11:154-168. [PMID: 39638744 DOI: 10.1016/j.trecan.2024.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/04/2024] [Accepted: 11/04/2024] [Indexed: 12/07/2024]
Abstract
Short-chain fatty acids (SCFAs), derived from the diet and the microbiota, serve as crucial links between the diet, gut microbiota, metabolism, immunity, and cancer. They function as energy sources through β-oxidation and regulate macromolecular synthesis, G protein-coupled receptor (GPCR) and histone deacetylase (HDAC) activities, protein modifications, signaling pathways, and gene expression in cells within the tumor microenvironment, particularly in tumor and immune cells. The critical role of SCFAs in maintaining normal homeostasis and influencing tumor progression highlights the potential of targeting SCFA-mediated cellular processes for cancer prevention and treatment.
Collapse
Affiliation(s)
- Shan Li
- Zhejiang Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310029, China; Institute of Fundamental and Transdisciplinary Research, Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310029, China
| | - Yixin Duan
- Department of Oncology, Cancer Institute of The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong 266071, China
| | - Shudi Luo
- Zhejiang Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310029, China; Institute of Fundamental and Transdisciplinary Research, Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310029, China
| | - Fangxin Zhou
- Zhejiang Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310029, China; Institute of Fundamental and Transdisciplinary Research, Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310029, China
| | - Qingang Wu
- Zhejiang Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310029, China; Institute of Fundamental and Transdisciplinary Research, Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310029, China
| | - Zhimin Lu
- Zhejiang Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310029, China; Institute of Fundamental and Transdisciplinary Research, Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310029, China.
| |
Collapse
|
2
|
Anwer EKE, Ajagbe M, Sherif M, Musaibah AS, Mahmoud S, ElBanbi A, Abdelnaser A. Gut Microbiota Secondary Metabolites: Key Roles in GI Tract Cancers and Infectious Diseases. Biomedicines 2025; 13:100. [PMID: 39857684 PMCID: PMC11762448 DOI: 10.3390/biomedicines13010100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 12/23/2024] [Accepted: 12/27/2024] [Indexed: 01/27/2025] Open
Abstract
The gut microbiota, a dynamic ecosystem of trillions of microorganisms, produces secondary metabolites that profoundly influence host health. Recent research has highlighted the significant role of these metabolites, particularly short-chain fatty acids, indoles, and bile acids, in modulating immune responses, impacting epigenetic mechanisms, and contributing to disease processes. In gastrointestinal (GI) cancers such as colorectal, liver, and gastric cancer, microbial metabolites can drive tumorigenesis by promoting inflammation, DNA damage, and immune evasion. Conversely, these same metabolites hold therapeutic promise, potentially enhancing responses to chemotherapy and immunotherapy and even directly suppressing tumor growth. In addition, gut microbial metabolites play crucial roles in infectious disease susceptibility and resilience, mediating immune pathways that impact pathogen resistance. By consolidating recent insights into the gut microbiota's role in shaping disease and health, this review underscores the therapeutic potential of targeting microbiome-derived metabolites for treating GI cancers and infectious diseases and calls for further research into microbiome-based interventions.
Collapse
Affiliation(s)
- Eman K. E. Anwer
- Biotechnology Graduate Program, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt; (E.K.E.A.); (M.A.); (M.S.)
- Department of Microbiology and Immunology, Faculty of Pharmacy, Modern University for Technology and Information, Cairo 4411601, Egypt
| | - Muhammad Ajagbe
- Biotechnology Graduate Program, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt; (E.K.E.A.); (M.A.); (M.S.)
| | - Moustafa Sherif
- Biotechnology Graduate Program, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt; (E.K.E.A.); (M.A.); (M.S.)
| | - Abobaker S. Musaibah
- Institute of Global Health and Human Ecology, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt; (A.S.M.); (S.M.)
| | - Shuaib Mahmoud
- Institute of Global Health and Human Ecology, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt; (A.S.M.); (S.M.)
| | - Ali ElBanbi
- Biology Department, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt;
| | - Anwar Abdelnaser
- Institute of Global Health and Human Ecology, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt; (A.S.M.); (S.M.)
| |
Collapse
|
3
|
Ho IHT, Zou Y, Luo K, Qin F, Jiang Y, Li Q, Jin T, Zhang X, Chen H, Tan L, Zhang L, Gin T, Wu WKK, Chan MTV, Jiang C, Liu X. Sodium butyrate restored TRESK current controlling neuronal hyperexcitability in a mouse model of oxaliplatin-induced peripheral neuropathic pain. Neurotherapeutics 2025; 22:e00481. [PMID: 39542827 PMCID: PMC11742850 DOI: 10.1016/j.neurot.2024.e00481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 09/30/2024] [Accepted: 10/27/2024] [Indexed: 11/17/2024] Open
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) and its related pain are common challenges for patients receiving oxaliplatin chemotherapy. Oxaliplatin accumulation in dorsal root ganglion (DRGs) is known to impair gene transcription by epigenetic dysregulation. We hypothesized that sodium butyrate, a pro-resolution short-chain fatty acid, inhibited histone acetylation in DRGs and abolished K+ channel dysregulation-induced neuronal hyperexcitability after oxaliplatin treatment. Mechanical allodynia and cold hyperalgesia of mice receiving an accumulation of 15 mg/kg oxaliplatin, with or without intraperitoneal sodium butyrate supplementation, were assessed using von Frey test and acetone evaporation test. Differential expressions of histone deacetylases (HDACs) and pain-related K+ channels were quantified with rt-qPCR and protein assays. Immunofluorescence assays of histone acetylation at H3K9/14 were performed in primary DRG cultures treated with sodium butyrate. Current clamp recording of action potentials and persistent outward current of Twik-related-spinal cord K+ (TRESK) channel were recorded in DRG neurons with small diameters extract. Accompanied by mechanical allodynia and cold hyperalgesia, HDAC1 was upregulated in mice receiving oxaliplatin treatment. Sodium butyrate enhanced global histone acetylation at H3K9/14 in DRG neurons. In vivo sodium butyrate supplementation restored oxaliplatin-induced Kcnj9 and Kcnk18 expression and pain-related behaviors in mice for at least 14 days. Oxaliplatin-induced increase in action potentials frequencies and decrease in magnitudes of KCNK18-related current were reversed in mice receiving sodium butyrate supplementation. This study suggests that sodium butyrate was a useful agent to relieve oxaliplatin-mediated neuropathic pain.
Collapse
Affiliation(s)
- Idy H T Ho
- Department of Anaesthesia and Intensive Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China; Peter Hung Pain Research Institute, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Yidan Zou
- Department of Anaesthesia and Intensive Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China; Peter Hung Pain Research Institute, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Kele Luo
- The Chinese University of Hong Kong, Shenzhen, China
| | - Fenfen Qin
- Department of Anaesthesia and Intensive Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China; Peter Hung Pain Research Institute, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Yanjun Jiang
- Department of Anaesthesia and Intensive Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China; Peter Hung Pain Research Institute, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Qian Li
- Department of Anaesthesia and Intensive Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China; Peter Hung Pain Research Institute, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Tingting Jin
- Department of Anaesthesia and Intensive Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China; Peter Hung Pain Research Institute, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Xinyi Zhang
- Department of Anaesthesia and Intensive Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China; Peter Hung Pain Research Institute, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Huarong Chen
- Department of Anaesthesia and Intensive Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China; Peter Hung Pain Research Institute, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China; Institute of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China; State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Likai Tan
- Department of Anaesthesia and Intensive Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China; Peter Hung Pain Research Institute, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Lin Zhang
- State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China; Microbiota I Centre (MagIC), The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China; Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Tony Gin
- Department of Anaesthesia and Intensive Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China; Peter Hung Pain Research Institute, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - William K K Wu
- Department of Anaesthesia and Intensive Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China; Peter Hung Pain Research Institute, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China; The Chinese University of Hong Kong, Shenzhen, China; State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Matthew T V Chan
- Department of Anaesthesia and Intensive Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China; Peter Hung Pain Research Institute, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China.
| | - Changyu Jiang
- Department of Pain Medicine and Shenzhen Municipal Key Laboratory for Pain Medicine, The 6th Affiliated Hospital of Shenzhen University Medical School, Shenzhen, China.
| | - Xiaodong Liu
- Department of Anaesthesia and Intensive Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China; Peter Hung Pain Research Institute, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China.
| |
Collapse
|
4
|
Chen WJ, Chen YT, Ko JL, Chen JY, Zheng JY, Liao JW, Ou CC. Butyrate modulates gut microbiota and anti-inflammatory response in attenuating cisplatin-induced kidney injury. Biomed Pharmacother 2024; 181:117689. [PMID: 39581143 DOI: 10.1016/j.biopha.2024.117689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 11/08/2024] [Accepted: 11/12/2024] [Indexed: 11/26/2024] Open
Abstract
In our previous research, we reported that administering probiotics Lactobacillus reuteri and Clostridium butyricum (LCs) before cisplatin treatment effectively modifies structures of the gut microbiota and restore ecological balance and significantly increases butyrate levels, a process closely associated with reducing cisplatin-induced nephrotoxicity. This study aims to investigate further whether the elevation of metabolite butyrate in the gut, promoted by probiotics LCs, can effectively mitigate the nephrotoxic effects of cisplatin and the progression of renal senescence in rats. Results show that butyrate administration significantly improved kidney function and decreased renal fibrosis in a dose-dependent manner compared to the cisplatin group. Its effects were associated with reductions in inflammatory responses, evidenced by decreased levels of key inflammatory markers, including KIM-1, MPO, NOX2, F4/80, and TGF-β1, alongside increased production of the anti-inflammatory cytokine IL-10. Furthermore, the butyrate intervention ameliorated cisplatin-induced gut microbiota dysbiosis, preserving the structure and diversity of healthy microbial communities. Specifically, we observed a decrease in the abundance of Escherichia_Shigella and Blautia, alongside an increase in the abundance of the butyrate-producing genus Roseburia. Notably, Escherichia_Shigella exhibited a positive correlation with the pro-inflammatory factor MPO, while displaying a negative correlation with the anti-inflammatory cytokine IL-10. Butyrate also attenuated the cisplatin-induced expression of senescence markers p21 and p16 in kidney tissue. It alleviated the cisplatin-increased senescence-associated beta-galactosidase activity and reactive oxygen species production in SV40 MES-13 cells. These results indicate that butyrate, derived from the gut microbiota, may exert a protective effect against cisplatin-induced kidney damage by regulating microbiota balance and anti-inflammatory effects.
Collapse
Affiliation(s)
- Wen-Jung Chen
- Department of Urology, Chung Shan Medical University Hospital, Taichung, Taiwan; School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Yng-Tay Chen
- Graduate Institute of Food Safety, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung, Taiwan; Department of Food Science and Biotechnology, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung, Taiwan; Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Jiunn-Liang Ko
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan; Department of Medical Oncology and Chest Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Jian-Yuan Chen
- Department of Food Science and Biotechnology, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung, Taiwan
| | - Jun-Yao Zheng
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Jiunn-Wang Liao
- Department of Food Science and Biotechnology, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung, Taiwan; Graduate Institute of Veterinary Pathobiology, National Chung Hsing University, Taichung, Taiwan.
| | - Chu-Chyn Ou
- Department of Nutrition, Chung Shan Medical University Hospital, Taichung, Taiwan; Department of Nutrition, Chung Shan Medical University, Taichung, Taiwan.
| |
Collapse
|
5
|
Kalyanaraman B, Cheng G, Hardy M. The role of short-chain fatty acids in cancer prevention and cancer treatment. Arch Biochem Biophys 2024; 761:110172. [PMID: 39369836 PMCID: PMC11784870 DOI: 10.1016/j.abb.2024.110172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/25/2024] [Accepted: 10/03/2024] [Indexed: 10/08/2024]
Abstract
Short-chain fatty acids (SCFAs) are microbial metabolites in the gut that may play a role in cancer prevention and treatment. They affect the metabolism of both normal and cancer cells, regulating various cellular energetic processes. SCFAs also inhibit histone deacetylases, which are targets for cancer therapy. The three main SCFAs are acetate, propionate, and butyrate, which are transported into cells through specific transporters. SCFAs may enhance the efficacy of chemotherapeutic agents and modulate immune cell metabolism, potentially reprogramming the tumor microenvironment. Although SCFAs and SCFA-generating microbes enhance therapeutic efficacy of several forms of cancer therapy, published data also support the opposing viewpoint that SCFAs mitigate the efficacy of some cancer therapies. Therefore, the relationship between SCFAs and cancer is more complex, and this review discusses some of these aspects. Clearly, further research is needed to understand the role of SCFAs, their mechanisms, and applications in cancer prevention and treatment.
Collapse
Affiliation(s)
- Balaraman Kalyanaraman
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, United States.
| | - Gang Cheng
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, United States
| | - Micael Hardy
- Aix-Marseille Univ, CNRS, ICR, UMR 7273, Marseille, 13013, France
| |
Collapse
|
6
|
Jian C, Yinhang W, Jing Z, Zhanbo Q, Zefeng W, Shuwen H. Escherichia coli on colorectal cancer: A two-edged sword. Microb Biotechnol 2024; 17:e70029. [PMID: 39400440 PMCID: PMC11472651 DOI: 10.1111/1751-7915.70029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 09/26/2024] [Indexed: 10/15/2024] Open
Abstract
Escherichia coli (E. coli) is a ubiquitous symbiotic bacterium in the gut, and the diversity of E. coli genes determines the diversity of its functions. In this review, the two-edged sword theory was innovatively proposed. For the question 'how can we harness the ambivalent nature of E. coli to screen and treat CRC?', in terms of CRC screening, the variations in the abundance and subtypes of E. coli across different populations present an opportunity to utilise it as a biomarker, while in terms of CRC treatment, the natural beneficial effect of E. coli on CRC may be limited, and engineered E. coli, particularly certain subtypes with probiotic potential, can indeed play a significant role in CRC treatment. It seems that the favourable role of E. coli as a genetic tool lies not in its direct impact on CRC but its potential as a research platform that can be integrated with various technologies such as nanoparticles, imaging methods, and synthetic biology modification. The relationship between gut microflora and CRC remains unclear due to the complex diversity and interaction of gut microflora. Therefore, the application of E. coli should be based on the 'One Health' view and take the interactions between E. coli and other microorganisms, host, and environmental factors, as well as its own changes into account. In this paper, the two-edged sword role of E. coli in CRC is emphasised to realise the great potential of E. coli in CRC screening and treatment.
Collapse
Affiliation(s)
- Chu Jian
- Huzhou Central HospitalAffiliated Central Hospital Huzhou UniversityHuzhouZhejiangPeople's Republic of China
- Huzhou Central HospitalFifth Affiliated Clinical Medical College of Zhejiang Chinese Medical UniversityHuzhouZhejiangPeople's Republic of China
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer of HuzhouHuzhouZhejiangPeople's Republic of China
| | - Wu Yinhang
- Huzhou Central HospitalAffiliated Central Hospital Huzhou UniversityHuzhouZhejiangPeople's Republic of China
- Huzhou Central HospitalFifth Affiliated Clinical Medical College of Zhejiang Chinese Medical UniversityHuzhouZhejiangPeople's Republic of China
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer of HuzhouHuzhouZhejiangPeople's Republic of China
| | - Zhuang Jing
- Huzhou Central HospitalAffiliated Central Hospital Huzhou UniversityHuzhouZhejiangPeople's Republic of China
- Huzhou Central HospitalFifth Affiliated Clinical Medical College of Zhejiang Chinese Medical UniversityHuzhouZhejiangPeople's Republic of China
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer of HuzhouHuzhouZhejiangPeople's Republic of China
| | - Qu Zhanbo
- Huzhou Central HospitalAffiliated Central Hospital Huzhou UniversityHuzhouZhejiangPeople's Republic of China
- Huzhou Central HospitalFifth Affiliated Clinical Medical College of Zhejiang Chinese Medical UniversityHuzhouZhejiangPeople's Republic of China
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer of HuzhouHuzhouZhejiangPeople's Republic of China
| | - Wang Zefeng
- Huzhou UniversityHuzhouZhejiangPeople's Republic of China
| | - Han Shuwen
- Huzhou Central HospitalAffiliated Central Hospital Huzhou UniversityHuzhouZhejiangPeople's Republic of China
- Huzhou Central HospitalFifth Affiliated Clinical Medical College of Zhejiang Chinese Medical UniversityHuzhouZhejiangPeople's Republic of China
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer of HuzhouHuzhouZhejiangPeople's Republic of China
- ASIR (Institute ‐ Association of intelligent systems and robotics)Rueil‐MalmaisonFrance
| |
Collapse
|
7
|
Britten O, Tosi S. The role of diet in cancer: the potential of shaping public policy and clinical outcomes in the UK. GENES & NUTRITION 2024; 19:15. [PMID: 39097687 PMCID: PMC11298086 DOI: 10.1186/s12263-024-00750-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 07/30/2024] [Indexed: 08/05/2024]
Abstract
Cancer universally represents one of the largest public health concerns, substantially contributing to global disease burden and mortality. The multifaceted interplay of environmental and genetic factors in the disease aetiology and progression has required comprehensive research to elucidate modifiable elements which can reduce the risk of incidence and improve prognosis. Among these factors, diet and nutrition have emerged as the most fundamental with a significant potential for influence and effect. Nutrition is not only an essential part of human survival, but also a vital determinant of overall health. Certain dietary requirements are necessary to support normal physiology. This includes individualised levels of macronutrients (proteins, carbohydrates and fats) and specific micronutrients (vitamins and minerals). Extensive research has demonstrated that diet plays a role in cancer pathogenesis at the genetic, epigenetic and cellular level. Therefore, its potential as a modifiable determinant of cancer pathogenesis for the purpose of prevention and improving management of disease must be further explored and implemented. The ability to influence cancer incidence and outcomes through dietary changes is underutilised in clinical practice and insufficiently recognised among the general public, healthcare professionals and policy-makers. Dietary changes offer the opportunity for autonomy and control over individuals health outcomes. Research has revealed that particular dietary components, as well as cultural behaviours and epidemiological patterns may act as causative or protective factors in cancer development. This review aims to comprehensively synthesise this research to further explore how to best utilise this knowledge within the community and clinical environment for more effective cancer prevention and therapeutic strategies. The identified key areas for improvement include the development of more specific, widely accepted guidelines, promoting increased involvement of dieticians within cancer multidisciplinary teams, enhancing nutritional education for healthcare professionals and exploring the potential implementation of personalised nutrition tools. A greater understanding of the complex interactions between diet and cancer will facilitate informed clinical interventions and public health policies to reduce global cancer burden and improve care for cancer patients and survivors.
Collapse
Affiliation(s)
- Oliver Britten
- Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Turner St, London, E1 2AD, UK
| | - Sabrina Tosi
- Leukaemia and Chromosome Laboratory, College of Health, Medicine and Life Sciences, Brunel University London, Kingston Lane, Uxbridge, UB8 3PH, UK.
| |
Collapse
|
8
|
Zhou Y, Han W, Feng Y, Wang Y, Sun T, Xu J. Microbial metabolites affect tumor progression, immunity and therapy prediction by reshaping the tumor microenvironment (Review). Int J Oncol 2024; 65:73. [PMID: 38847233 PMCID: PMC11173369 DOI: 10.3892/ijo.2024.5661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 04/30/2024] [Indexed: 06/12/2024] Open
Abstract
Several studies have indicated that the gut microbiome and tumor microbiota may affect tumors. Emerging metabolomics research illustrates the need to examine the variations in microbial metabolite composition between patients with cancer and healthy individuals. Microbial metabolites can impact the progression of tumors and the immune response by influencing a number of mechanisms, including modulation of the immune system, cancer or immune‑related signaling pathways, epigenetic modification of proteins and DNA damage. Microbial metabolites can also alleviate side effects and drug resistance during chemotherapy and immunotherapy, while effectively activating the immune system to exert tumor immunotherapy. Nevertheless, the impact of microbial metabolites on tumor immunity can be both beneficial and harmful, potentially influenced by the concentration of the metabolites or the specific cancer type. The present review summarizes the roles of various microbial metabolites in different solid tumors, alongside their influence on tumor immunity and treatment. Additionally, clinical trials evaluating the therapeutic effects of microbial metabolites or related microbes on patients with cancer have been listed. In summary, studying microbial metabolites, which play a crucial role in the interaction between the microbiota and tumors, could lead to the identification of new supplementary treatments for cancer. This has the potential to improve the effectiveness of cancer treatment and enhance patient prognosis.
Collapse
Affiliation(s)
- Yuhang Zhou
- Department of Breast Medicine 1, Cancer Hospital of China Medical University, Liaoning Cancer Hospital, Shenyang, Liaoning 110042, P.R. China
- Department of Pharmacology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital, Shenyang, Liaoning 110042, P.R. China
| | - Wenjie Han
- Department of Breast Medicine 1, Cancer Hospital of China Medical University, Liaoning Cancer Hospital, Shenyang, Liaoning 110042, P.R. China
- Department of Pharmacology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital, Shenyang, Liaoning 110042, P.R. China
| | - Yun Feng
- Department of Breast Medicine 1, Cancer Hospital of China Medical University, Liaoning Cancer Hospital, Shenyang, Liaoning 110042, P.R. China
- Department of Pharmacology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital, Shenyang, Liaoning 110042, P.R. China
| | - Yue Wang
- Department of Breast Medicine 1, Cancer Hospital of China Medical University, Liaoning Cancer Hospital, Shenyang, Liaoning 110042, P.R. China
- Department of Pharmacology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital, Shenyang, Liaoning 110042, P.R. China
| | - Tao Sun
- Department of Breast Medicine 1, Cancer Hospital of China Medical University, Liaoning Cancer Hospital, Shenyang, Liaoning 110042, P.R. China
- Department of Oncology Medicine, Key Laboratory of Liaoning Breast Cancer Research, Shenyang, Liaoning 110042, P.R. China
- Department of Breast Medicine, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital, Shenyang, Liaoning 110042, P.R. China
| | - Junnan Xu
- Department of Breast Medicine 1, Cancer Hospital of China Medical University, Liaoning Cancer Hospital, Shenyang, Liaoning 110042, P.R. China
- Department of Pharmacology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital, Shenyang, Liaoning 110042, P.R. China
- Department of Breast Medicine, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital, Shenyang, Liaoning 110042, P.R. China
| |
Collapse
|
9
|
Li W, Zhou Q, Lv B, Li N, Bian X, Chen L, Kong M, Shen Y, Zheng W, Zhang J, Luo F, Luo Z, Liu J, Wu JL. Ganoderma lucidum Polysaccharide Supplementation Significantly Activates T-Cell-Mediated Antitumor Immunity and Enhances Anti-PD-1 Immunotherapy Efficacy in Colorectal Cancer. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:12072-12082. [PMID: 38750669 DOI: 10.1021/acs.jafc.3c08385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Ganoderma lucidum polysaccharide (GLP) is a prebiotic with immunomodulatory effects. However, the therapeutic potential of GLP in tumor immunotherapy has not been fully explored, especially in T cell-mediated antitumor immunity. In this study, we found that GLP significantly inhibited tumor growth and activated antitumor immunity in colorectal cancer (CRC). In the spleens and tumor tissues, the proportion of cytotoxic CD8+T cells and Th1 helper cells increased, while immunosuppressive Tregs decreased. Additionally, microbiota dysbiosis was alleviated by GLP, and short-chain fatty acid production was increased. Meanwhile, GLP decreased the ratio of kynurenine and tryptophan (Kyn/Trp) in the serum, which contributed to antitumor immunity of T cells. More importantly, the combination of GLP and the immune checkpoint inhibitor anti-PD-1 monoclonal antibody further enhanced the efficacy of anti-PD-1 immunotherapy. Thus, GLP as a prebiotic has the potential to be used in tumor immunotherapy.
Collapse
Affiliation(s)
- Wenshuai Li
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macao 999078, China
- Department of Digestive Diseases, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Qi Zhou
- Department of Digestive Diseases, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Bin Lv
- Department of Digestive Diseases, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Na Li
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macao 999078, China
| | - Xiqing Bian
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macao 999078, China
| | - Lirong Chen
- Department of Digestive Diseases, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Mingjia Kong
- Department of Digestive Diseases, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Yuru Shen
- Department of Digestive Diseases, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Wanwei Zheng
- Department of Digestive Diseases, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Jun Zhang
- Department of Digestive Diseases, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Feifei Luo
- Department of Digestive Diseases, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Zhongguang Luo
- Department of Digestive Diseases, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Jie Liu
- Department of Digestive Diseases, Huashan Hospital, Fudan University, Shanghai 200040, China
- Department of Digestive Diseases, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China
| | - Jian-Lin Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macao 999078, China
| |
Collapse
|
10
|
Garvey M. Intestinal Dysbiosis: Microbial Imbalance Impacts on Colorectal Cancer Initiation, Progression and Disease Mitigation. Biomedicines 2024; 12:740. [PMID: 38672096 PMCID: PMC11048178 DOI: 10.3390/biomedicines12040740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
The human gastrointestinal tract houses a diverse range of microbial species that play an integral part in many biological functions. Several preclinical studies using germ-free mice models have demonstrated that the gut microbiome profoundly influences carcinogenesis and progression. Colorectal cancer appears to be associated with microbial dysbiosis involving certain bacterial species, including F. nucleatum, pks+ E. coli, and B. fragilis, with virome commensals also disrupted in patients. A dysbiosis toward these pro-carcinogenic species increases significantly in CRC patients, with reduced numbers of the preventative species Clostridium butyicum, Roseburia, and Bifidobacterium evident. There is also a correlation between Clostridium infection and CRC. F. nucleatum, in particular, is strongly associated with CRC where it is associated with therapeutic resistance and poor outcomes in patients. The carcinogenic mode of action of pathogenic bacteria in CRC is a result of genotoxicity, epigenetic alterations, ROS generation, and pro-inflammatory activity. The aim of this review is to discuss the microbial species and their impact on colorectal cancer in terms of disease initiation, progression, and metastasis. The potential of anticancer peptides as anticancer agents or adjuvants is also discussed, as novel treatment options are required to combat the high levels of resistance to current pharmaceutical options.
Collapse
Affiliation(s)
- Mary Garvey
- Department of Life Science, Atlantic Technological University, F91 YW50 Sligo, Ireland;
- Centre for Precision Engineering, Materials and Manufacturing Research (PEM), Atlantic Technological University, F91 YW50 Sligo, Ireland
| |
Collapse
|
11
|
Kim N, Yang C. Sodium Butyrate Inhibits the Expression of Thymidylate Synthase and Induces Cell Death in Colorectal Cancer Cells. Int J Mol Sci 2024; 25:1572. [PMID: 38338851 PMCID: PMC10855029 DOI: 10.3390/ijms25031572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 01/22/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
The most commonly used chemotherapy for colorectal cancer (CRC) is the application of 5-fluorouracil (5-FU). Inhibition of thymidylate synthase (TYMS) expression appears to be a promising strategy to overcome the decreased sensitivity to 5-FU caused by high expression of TYMS, which can be induced by 5-FU treatment. Several compounds have been shown to potentially inhibit the expression of TYMS, but it is unclear whether short-chain fatty acids (SCFAs), which are naturally produced by bacteria in the human intestine, can regulate the expression of TYMS. Sodium butyrate (NaB) is the most widely known SCFA for its beneficial effects. Therefore, we investigated the enhancing effects on inhibition of cell viability and induction of apoptosis after co-treatment of NaB with 5-FU in two CRC cell lines, HCT116 and LoVo. This study suggests that the effect of NaB in improving therapeutic sensitivity to 5-FU in CRC cells may result from a mechanism that strongly inhibits the expression of TYMS. This study also shows that NaB inhibits the migration of CRC cells and can cause cell cycle arrest in the G2/M phase. These results suggest that NaB could be developed as a potential therapeutic adjuvant to improve the therapeutic effect of 5-FU in CRC.
Collapse
Affiliation(s)
| | - Changwon Yang
- Department of Science Education, Ewha Womans University, Seoul 03760, Republic of Korea;
| |
Collapse
|
12
|
Cruz MS, Tintelnot J, Gagliani N. Roles of microbiota in pancreatic cancer development and treatment. Gut Microbes 2024; 16:2320280. [PMID: 38411395 PMCID: PMC10900280 DOI: 10.1080/19490976.2024.2320280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 02/14/2024] [Indexed: 02/28/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive disease with poor prognosis. This is due to the fact that most cases are only diagnosed at an advanced and palliative disease stage, and there is a high incidence of therapy resistance. Despite ongoing efforts, to date, the mechanisms underlying PDAC oncogenesis and its poor responses to treatment are still largely unclear. As the study of the microbiome in cancer progresses, growing evidence suggests that bacteria or fungi might be key players both in PDAC oncogenesis as well as in its resistance to chemo- and immunotherapy, for instance through modulation of the tumor microenvironment and reshaping of the host immune response. Here, we review how the microbiota exerts these effects directly or indirectly via microbial-derived metabolites. Finally, we further discuss the potential of modulating the microbiota composition as a therapy in PDAC.
Collapse
Affiliation(s)
- Mariana Santos Cruz
- II. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), Hamburg, Germany
| | - Joseph Tintelnot
- II. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), Hamburg, Germany
| | - Nicola Gagliani
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), Hamburg, Germany
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
13
|
Celiberto F, Aloisio A, Girardi B, Pricci M, Iannone A, Russo F, Riezzo G, D’Attoma B, Ierardi E, Losurdo G, Di Leo A. Fibres and Colorectal Cancer: Clinical and Molecular Evidence. Int J Mol Sci 2023; 24:13501. [PMID: 37686308 PMCID: PMC10488173 DOI: 10.3390/ijms241713501] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/30/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023] Open
Abstract
Colorectal cancer (CRC) is one of the leading causes of mortality for cancer in industrialized countries. The link between diet and CRC is well-known, and presumably CRC is the type of cancer which is most influenced by dietary habits. In Western countries, an inadequate dietary intake of fibers is endemic, and this could be a driving factor in the increase of CRC incidence. Indeed, several epidemiologic studies have elucidated an inverse relationship between daily fiber intake and risk of CRC. Long-term prognosis in CRC survivors is also dependent on dietary fibers. Several pathogenetic mechanisms may be hypothesized. Fibers may interfere with the metabolism of bile acids, which may promote colon carcinogenesis. Further, fibers are often contained in vegetables which, in turn, contain large amounts of antioxidant agents like resveratrol, polyphenols, or phytoestrogens. Moreover, fibers can be digested by commensal flora, thus producing compounds such as butyrate, which exerts an antiproliferative effect. Finally, fibers may modulate gut microbiota, whose composition has shown to be associated with CRC onset. In this regard, dietary interventions based on high-fiber-containing diets are ongoing to prevent CRC development, especially in patients with high potential for this type of tumor. Despite the fact that outcomes are preliminary, encouraging results have been observed.
Collapse
Affiliation(s)
- Francesca Celiberto
- Section of Gastroenterology, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari, 70124 Bari, Italy
- Ph.D. Course in Organs and Tissues Transplantation and Cellular Therapies, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari, 70124 Bari, Italy
| | - Adriana Aloisio
- Section of Gastroenterology, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari, 70124 Bari, Italy
| | | | | | - Andrea Iannone
- Section of Gastroenterology, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari, 70124 Bari, Italy
| | - Francesco Russo
- Functional Gastrointestinal Disorders Research Group, National Institute of Gastroenterology IRCCS “Saverio de Bellis”, 70013 Castellana Grotte, Italy; (F.R.); (G.R.); (B.D.)
| | - Giuseppe Riezzo
- Functional Gastrointestinal Disorders Research Group, National Institute of Gastroenterology IRCCS “Saverio de Bellis”, 70013 Castellana Grotte, Italy; (F.R.); (G.R.); (B.D.)
| | - Benedetta D’Attoma
- Functional Gastrointestinal Disorders Research Group, National Institute of Gastroenterology IRCCS “Saverio de Bellis”, 70013 Castellana Grotte, Italy; (F.R.); (G.R.); (B.D.)
| | - Enzo Ierardi
- Section of Gastroenterology, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari, 70124 Bari, Italy
| | - Giuseppe Losurdo
- Section of Gastroenterology, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari, 70124 Bari, Italy
| | - Alfredo Di Leo
- Section of Gastroenterology, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari, 70124 Bari, Italy
| |
Collapse
|
14
|
Thoda C, Touraki M. Probiotic-Derived Bioactive Compounds in Colorectal Cancer Treatment. Microorganisms 2023; 11:1898. [PMID: 37630458 PMCID: PMC10456921 DOI: 10.3390/microorganisms11081898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/14/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023] Open
Abstract
Colorectal cancer (CRC) is a multifactorial disease with increased morbidity and mortality rates globally. Despite advanced chemotherapeutic approaches for the treatment of CRC, low survival rates due to the regular occurrence of drug resistance and deleterious side effects render the need for alternative anticancer agents imperative. Accumulating evidence supports that gut microbiota imbalance precedes the establishment of carcinogenesis, subsequently contributing to cancer progression and response to anticancer therapy. Manipulation of the gut microbiota composition via the administration of probiotic-derived bioactive compounds has gradually attained the interest of scientific communities as a novel therapeutic strategy for CRC. These compounds encompass miscellaneous metabolic secreted products of probiotics, including bacteriocins, short-chain fatty acids (SCFAs), lactate, exopolysaccharides (EPSs), biosurfactants, and bacterial peptides, with profound anti-inflammatory and antiproliferative properties. This review provides a classification of postbiotic types and a comprehensive summary of the current state of research on their biological role against CRC. It also describes how their intricate interaction with the gut microbiota regulates the proper function of the intestinal barrier, thus eliminating gut dysbiosis and CRC development. Finally, it discusses the future perspectives in precision-medicine approaches as well as the challenges of their synthesis and optimization of administration in clinical studies.
Collapse
Affiliation(s)
| | - Maria Touraki
- Laboratory of General Biology, Department of Genetics, Development and Molecular Biology, School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, 54 124 Thessaloniki, Greece;
| |
Collapse
|
15
|
Dong Y, Zhang K, Wei J, Ding Y, Wang X, Hou H, Wu J, Liu T, Wang B, Cao H. Gut microbiota-derived short-chain fatty acids regulate gastrointestinal tumor immunity: a novel therapeutic strategy? Front Immunol 2023; 14:1158200. [PMID: 37122756 PMCID: PMC10140337 DOI: 10.3389/fimmu.2023.1158200] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 03/17/2023] [Indexed: 05/02/2023] Open
Abstract
Tumor immune microenvironment (TIME), a tumor-derived immune component, is proven to be closely related to the development, metastasis, and recurrence of tumors. Gut microbiota and its fermented-metabolites short-chain fatty acids (SCFAs) play a critical role in maintaining the immune homeostasis of gastrointestinal tumors. Consisting mainly of acetate, propionate, and butyrate, SCFAs can interact with G protein-coupled receptors 43 of T helper 1 cell or restrain histone deacetylases (HDACs) of cytotoxic T lymphocytes to exert immunotherapy effects. Studies have shed light on SCFAs can mediate the differentiation and function of regulatory T cells, as well as cytokine production in TIME. Additionally, SCFAs can alter epigenetic modification of CD8+ T cells by inhibiting HDACs to participate in the immune response process. In gastrointestinal tumors, the abundance of SCFAs and their producing bacteria is significantly reduced. Direct supplementation of dietary fiber and probiotics, or fecal microbiota transplantation to change the structure of gut microbiota can both increase the level of SCFAs and inhibit tumor development. The mechanism by which SCFAs modulate the progression of gastrointestinal tumors has been elucidated in this review, aiming to provide prospects for the development of novel immunotherapeutic strategies.
Collapse
|