1
|
Parrella A, Iannuzzi A, Annunziata M, Covetti G, Cavallaro R, Aliberti E, Tortori E, Iannuzzo G. Haematological Drugs Affecting Lipid Metabolism and Vascular Health. Biomedicines 2022; 10:biomedicines10081935. [PMID: 36009482 PMCID: PMC9405726 DOI: 10.3390/biomedicines10081935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/05/2022] [Accepted: 08/08/2022] [Indexed: 01/19/2023] Open
Abstract
Many drugs affect lipid metabolism and have side effects which promote atherosclerosis. The prevalence of cancer-therapy-related cardiovascular (CV) disease is increasing due to development of new drugs and improved survival of patients: cardio-oncology is a new field of interest and research. Moreover, drugs used in transplanted patients frequently have metabolic implications. Increasingly, internists, lipidologists, and angiologists are being consulted by haematologists for side effects on metabolism (especially lipid metabolism) and arterial circulation caused by drugs used in haematology. The purpose of this article is to review the main drugs used in haematology with side effects on lipid metabolism and atherosclerosis, detailing their mechanisms of action and suggesting the most effective therapies.
Collapse
Affiliation(s)
- Antonio Parrella
- Department of Medicine and Medical Specialties, A. Cardarelli Hospital, 80131 Naples, Italy
| | - Arcangelo Iannuzzi
- Department of Medicine and Medical Specialties, A. Cardarelli Hospital, 80131 Naples, Italy
| | | | - Giuseppe Covetti
- Department of Medicine and Medical Specialties, A. Cardarelli Hospital, 80131 Naples, Italy
| | - Raimondo Cavallaro
- Department of Medicine and Medical Specialties, A. Cardarelli Hospital, 80131 Naples, Italy
| | - Emilio Aliberti
- North Tees University Hospital, Stockton-on-Tees TS19 8PE, UK
| | - Elena Tortori
- Pharmacy Unit, Ospedale del Mare, 80147 Naples, Italy
| | - Gabriella Iannuzzo
- Department of Clinical Medicine and Surgery, Federico II University, 80131 Naples, Italy
- Correspondence:
| |
Collapse
|
2
|
Batty MJ, Chabrier G, Sheridan A, Gage MC. Metabolic Hormones Modulate Macrophage Inflammatory Responses. Cancers (Basel) 2021; 13:cancers13184661. [PMID: 34572888 PMCID: PMC8467249 DOI: 10.3390/cancers13184661] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/31/2021] [Accepted: 09/13/2021] [Indexed: 12/17/2022] Open
Abstract
Simple Summary Macrophages are a type of immune cell which play an important role in the development of cancer. Obesity increases the risk of cancer and obesity also causes disruption to the normal levels of hormones that are produced to coordinate metabolism. Recent research now shows that these metabolic hormones also play important roles in macrophage immune responses and so through macrophages, disrupted metabolic hormone levels may promote cancer. This review article aims to highlight and summarise these recent findings so that the scientific community may better understand how important this new area of research is, and how these findings can be capitalised on for future scientific studies. Abstract Macrophages are phagocytotic leukocytes that play an important role in the innate immune response and have established roles in metabolic diseases and cancer progression. Increased adiposity in obese individuals leads to dysregulation of many hormones including those whose functions are to coordinate metabolism. Recent evidence suggests additional roles of these metabolic hormones in modulating macrophage inflammatory responses. In this review, we highlight key metabolic hormones and summarise their influence on the inflammatory response of macrophages and consider how, in turn, these hormones may influence the development of different cancer types through the modulation of macrophage functions.
Collapse
|
3
|
Nguyen VN, Abagyan R, Tsunoda SM. Mtor inhibitors associated with higher cardiovascular adverse events-A large population database analysis. Clin Transplant 2021; 35:e14228. [PMID: 33476406 DOI: 10.1111/ctr.14228] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/04/2021] [Accepted: 01/12/2021] [Indexed: 12/17/2022]
Abstract
There are limited real-world data available regarding adverse events (AEs) of immunosuppressants. We utilized the FDA Adverse Event Reporting System (FAERS) database from 2004 to 2018 to perform a retrospective database analysis. We analyzed AE reports due to the individual agents tacrolimus, sirolimus, or everolimus and compared reporting odds ratios of the mTOR inhibitors to tacrolimus. The mTOR inhibitors arm had 1282 reports with 4176 AEs, while the tacrolimus arm had a total of 7587 reports with 20 940 individual AEs. mTOR inhibitors had significantly higher incidences of cardiovascular (ROR 1.95, 95% CI 1.70, 2.23), dermatologic (ROR 1.34, 95% CI 1.04, 1.73), endocrine (ROR 1.52, 95% CI 1.26, 1.82), gastrointestinal (ROR 1.15, 95% CI 1.01, 1.30), infectious disease (ROR 1.35, 95% 1.20, 1.52), musculoskeletal (ROR 1.39, 95% CI 1.13, 1.70), pulmonary (ROR 3.46, 95% 2.97, 4.03), renal (ROR 1.27, 95% CI 1.10, 1.46), and vascular AEs (ROR 3.10, 95% CI 2.14, 4.49). Across every organ type, mTOR inhibitors had greater cardiovascular AEs compared to tacrolimus, specifically in arteriosclerosis, heart failure, hypotension, tachycardia, chest pain, edema, and pericardial disorders. mTOR inhibitors may be associated with higher cardiovascular AEs. Further investigation is required to determine the potential mechanism of this effect.
Collapse
Affiliation(s)
- Vi N Nguyen
- Department of Pharmacy, University of California San Diego, La Jolla, CA, USA
| | - Ruben Abagyan
- Skaggs School of Pharmacy and Pharmaceutical Sciences, La Jolla, CA, USA
| | - Shirley M Tsunoda
- Skaggs School of Pharmacy and Pharmaceutical Sciences, La Jolla, CA, USA
| |
Collapse
|
4
|
De Gennaro Colonna V, Pavanello C, Rusconi F, Sartore-Bianchi A, Siena S, Castelnuovo S, Sirtori CR, Mombelli G. Lipid-lowering therapy of everolimus-related severe hypertriglyceridaemia in a pancreatic neuroendocrine tumour (pNET). J Clin Pharm Ther 2018; 43:114-116. [DOI: 10.1111/jcpt.12588] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 06/06/2017] [Indexed: 01/18/2023]
Affiliation(s)
- V. De Gennaro Colonna
- Department of Clinical Sciences and Community Health; University of Milano; Milano Italy
- Dyslipidemia Center; ASST Grande Ospedale Metropolitano Niguarda; Milano Italy
| | - C. Pavanello
- Department of Pharmacological and Biomolecular Sciences and; University of Milano; Milano Italy
| | - F. Rusconi
- Department of Hematology and Oncology; Niguarda Cancer Center; ASST Grande Ospedale Metropolitano Niguarda; Milano Italy
| | - A. Sartore-Bianchi
- Department of Hematology and Oncology; Niguarda Cancer Center; ASST Grande Ospedale Metropolitano Niguarda; Milano Italy
| | - S. Siena
- Department of Hematology and Oncology; Niguarda Cancer Center; ASST Grande Ospedale Metropolitano Niguarda; Milano Italy
- Department of Oncology and Hematology; University of Milano; Milano Italy
| | - S. Castelnuovo
- Dyslipidemia Center; ASST Grande Ospedale Metropolitano Niguarda; Milano Italy
| | - C. R. Sirtori
- Dyslipidemia Center; ASST Grande Ospedale Metropolitano Niguarda; Milano Italy
| | - G. Mombelli
- Dyslipidemia Center; ASST Grande Ospedale Metropolitano Niguarda; Milano Italy
| |
Collapse
|
5
|
Abstract
Intracellular and extracellular interactions with proteins enables the functional and mechanistic diversity of lipids. Fatty acid-binding proteins (FABPs) were originally described as intracellular proteins that can affect lipid fluxes, metabolism and signalling within cells. As the functions of this protein family have been further elucidated, it has become evident that they are critical mediators of metabolism and inflammatory processes, both locally and systemically, and therefore are potential therapeutic targets for immunometabolic diseases. In particular, genetic deficiency and small molecule-mediated inhibition of FABP4 (also known as aP2) and FABP5 can potently improve glucose homeostasis and reduce atherosclerosis in mouse models. Further research has shown that in addition to their intracellular roles, some FABPs are found outside the cells, and FABP4 undergoes regulated, vesicular secretion. The circulating form of FABP4 has crucial hormonal functions in systemic metabolism. In this Review we discuss the roles and regulation of both intracellular and extracellular FABP actions, highlighting new insights that might direct drug discovery efforts and opportunities for management of chronic metabolic diseases.
Collapse
Affiliation(s)
- Gökhan S Hotamisligil
- Department of Genetics and Complex Diseases and Sabri Ülker Center, Harvard T.H. Chan School of Public Health, 677 Huntington Avenue, Boston, MA 02115, USA
| | - David A Bernlohr
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, 321 Church Street SE, Minneapolis, MN 55455, USA
| |
Collapse
|
6
|
Ding T, Zhu C, Yin JB, Zhang T, Lu YC, Ren J, Li YQ. Slow-releasing rapamycin-coated bionic peripheral nerve scaffold promotes the regeneration of rat sciatic nerve after injury. Life Sci 2015; 122:92-9. [DOI: 10.1016/j.lfs.2014.12.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 11/17/2014] [Accepted: 12/08/2014] [Indexed: 01/28/2023]
|
7
|
Zaza G, Granata S, Tomei P, Masola V, Gambaro G, Lupo A. mTOR inhibitors and renal allograft: Yin and Yang. J Nephrol 2014; 27:495-506. [PMID: 24804854 DOI: 10.1007/s40620-014-0103-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 04/22/2014] [Indexed: 02/06/2023]
Abstract
Mammalian target of rapamycin inhibitors (mTOR-I), everolimus and sirolimus, are immunosuppressive drugs extensively used in renal transplantation. Their main mechanism of action is the inhibition of cell signaling through the PI3 K/Akt/mTOR pathway. This interesting mechanism of action confers to these medications both great immunosuppressive potential and important anti-neoplastic properties. Although the clinical utility of this drug category, as with other antineoplastic/immunosuppressants, is clear, the use of mTOR-I commonly results in the development of several complications. In particular, these agents may determine severe renal toxicity that, as recent studies report, seems clearly correlated to dose and duration of drug use. The mTOR-I-induced renal allograft spectrum of toxicity includes the enhanced incidence of delayed graft function, nephrotoxicity in particular when co-administered with calcineurin inhibitors (CNI) and onset of proteinuria. The latter effect appears highly frequent in patients undergoing mTOR-I treatment and significantly associated with a rapid graft lost. The damage leading to this complication interests both the glomerular and tubular area. mTOR-I cause an inhibition of proliferation in podocytes and the epithelial-to-mesenchymal transition in tubular cells. Interestingly, all these side effects are mostly reversible and dose related. Therefore, it is unquestionable that these particular drugs should be administered at the lowest dose able to maintain relatively low trough levels, in order to maximize their important and specific therapeutic effects while minimizing or avoiding drug toxicities. Utilization of low dosages of mTOR-I should be encouraged not only in CNI-combined schemas, but also when administered alone in a CNI-free immunosuppressive protocol.
Collapse
Affiliation(s)
- Gianluigi Zaza
- Renal Unit, Department of Medicine, University-Hospital of Verona, Piazzale A. Stefani 1, 37126, Verona, VR, Italy,
| | | | | | | | | | | |
Collapse
|
8
|
Systemic and nonrenal adverse effects occurring in renal transplant patients treated with mTOR inhibitors. Clin Dev Immunol 2013; 2013:403280. [PMID: 24151517 PMCID: PMC3789319 DOI: 10.1155/2013/403280] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 07/08/2013] [Accepted: 08/04/2013] [Indexed: 02/07/2023]
Abstract
The mammalian target of rapamycin inhibitors (mTOR-I), sirolimus and everolimus, are immunosuppressive drugs largely used in renal transplantation. The main mechanism of action of these drugs is the inhibition of the mammalian target of rapamycin (mTOR), a regulatory protein kinase involved in lymphocyte proliferation. Additionally, the inhibition of the crosstalk among mTORC1, mTORC2, and PI3K confers the antineoplastic activities of these drugs. Because of their specific pharmacological characteristics and their relative lack of nephrotoxicity, these inhibitors are valid option to calcineurine inhibitors (CNIs) for maintenance immunosuppression in renal transplant recipients with chronic allograft nephropathy. However, as other immunosuppressive drugs, mTOR-I may induce the development of several adverse effects that need to be early recognized and treated to avoid severe illness in renal transplant patients. In particular, mTOR-I may induce systemic nonnephrological side effects including pulmonary toxicity, hematological disorders, dysmetabolism, lymphedema, stomatitis, cutaneous adverse effects, and fertility/gonadic toxicity. Although most of the adverse effects are dose related, it is extremely important for clinicians to early recognize them in order to reduce dosage or discontinue mTOR-I treatment avoiding the onset and development of severe clinical complications.
Collapse
|
9
|
Lu L, Wang YN, Sun WH, Liu ZH, Zhang Q, Pu LJ, Yang K, Wang LJ, Zhu ZB, Meng H, Yang P, Du R, Chen QJ, Wang LS, Yu H, Shen WF. Two-dimensional fluorescence in-gel electrophoresis of coronary restenosis tissues in minipigs: increased adipocyte fatty acid binding protein induces reactive oxygen species-mediated growth and migration in smooth muscle cells. Arterioscler Thromb Vasc Biol 2013; 33:572-80. [PMID: 23372061 DOI: 10.1161/atvbaha.112.301016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE We aimed to uncover the protein changes of coronary artery in-stent restenosis (ISR) tissue in minipigs with and without streptozotocin-induced diabetes mellitus by quantitative 2-dimensional fluorescence in-gel electrophoresis (2D-DIGE), and to investigate the influences of crucial proteins identified, particularly adipocyte fatty acid binding protein (AFABP), in human arterial smooth muscle cells. METHODS AND RESULTS Sirolimus-eluting stents were implanted in the coronary arteries of 15 diabetic and 26 nondiabetic minipigs, and angiography was repeated after 6 months. The intima tissue of significant ISR and non-ISR segments in both diabetic and nondiabetic minipigs was analyzed by 2D-DIGE and MALDI-TOF/TOF mass spectrometry. AFABP level was significantly increased in ISR tissue than in non-ISR tissue in both diabetic and nondiabetic minipigs, with level being higher in diabetic ISR than in nondiabetic ISR tissue. In human arterial smooth muscle cells, overexpression of AFABP significantly altered phenotype and promoted growth and migration, with effects more prominent in high-glucose than in low-glucose medium, whereas AFABP knockdown inhibited these effects. AFABP overexpression increased reactive oxygen species production by upregulating the expression of NADPH oxidase subunits Nox1, Nox4, and P22 through multiple pathways, with elevation of downstream gene cyclin D1, matrix metalloproteinase-2, and monocyte chemoattractant protein-1. However, AFABP-induced effects were inhibited by diphenyleneiodonium, pathway inhibitors, and small interfering RNA. In addition, the supernatant from AFABP-expressing human arterial smooth muscle cells and recombinant AFABP also promoted cellular growth and migration. CONCLUSIONS This study has demonstrated that AFABP is significantly increased in coronary artery ISR segments of both diabetic and nondiabetic minipigs. Increased AFABP expression and secretory AFABP of human arterial smooth muscle cells promote growth and migration via reactive oxygen species-mediated activation.
Collapse
Affiliation(s)
- Lin Lu
- Institute of Cardiovascular Diseases, Rui Jin Hospital, Medical School of Jiaotong University, Shanghai, PR China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Yang CC, Deng SJ, Hsu CC, Liu BH, Lin EC, Cheng WTK, Wang PH, Ding ST. Visfatin regulates genes related to lipid metabolism in porcine adipocytes. J Anim Sci 2010; 88:3233-41. [PMID: 20562354 DOI: 10.2527/jas.2010-2799] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Visfatin is a visceral adipose tissue-specific adipocytokine that plays a positive role in attenuating insulin resistance by binding to the insulin receptor. Visfatin has been suggested to play a role in the regulation of lipid metabolism and inflammation; however, the mechanism remains unclear. We investigated the effects of visfatin on the regulation of gene expression in cultured porcine preadipocytes and differentiated adipocytes. In preadipocytes, the mRNA abundance of lipoprotein lipase and PPARgamma were significantly increased by visfatin or insulin treatment after 8 d (all P < 0.05). In the presence of insulin, the mRNA abundance of adipocyte fatty acid-binding protein was 24.7-fold greater than in the untreated group (P < 0.05), whereas visfatin alone had no effect on adipocyte fatty acid-binding protein mRNA abundance. Adipocyte differentiation was induced by insulin treatment for 8 d. In differentiated porcine adipocytes, exposure to insulin or visfatin for 24 h increased (P < 0.05) fatty acid synthase mRNA abundance but had no effect on the expression of sterol regulatory element binding-protein 1c mRNA. We also found a 5.8-fold upregulation of IL-6 expression in porcine adipocytes after 24 h of treatment with visfatin (P < 0.05). These results demonstrated that visfatin upregulated lipoprotein lipase expression in preadipocytes, potentially facilitating lipid uptake, and increased the gene expression of fatty acid synthase in differentiated adipocytes to potentially enhance lipogenic activity. Furthermore, visfatin can upregulate IL-6 expression in differentiated porcine adipocytes. The information presented in this study provides insights into the roles of visfatin in lipid metabolism in pigs.
Collapse
Affiliation(s)
- C C Yang
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan, ROC
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
PURPOSE OF REVIEW The global prevalence of obesity is increasing epidemically. Obesity causes an array of health problems, reduces life expectancy, and costs over US dollar 100 billion annually. More than a quarter of the population suffers from an aggregation of co-morbidities, including obesity, atherosclerosis, insulin resistance, dyslipidemias, coagulopathies, hypertension, and a pro-inflammatory state known as the metabolic syndrome. Patients with metabolic syndrome have high risk of atherosclerosis as well as type 2 diabetes and other health problems. Like obesity, atherosclerosis has very limited therapeutic options. RECENT FINDINGS Fatty acid binding proteins integrate metabolic and immune responses and link the inflammatory and lipid-mediated pathways that are critical in the metabolic syndrome. This review will highlight recent studies on fatty acid binding protein-deficient models and several fatty acid binding protein-mediated pathways specifically modified in macrophages, cells that are paramount to the initiation and persistence of cardiovascular lesions. SUMMARY Adipocyte/macrophage fatty acid binding proteins, aP2 and mal1, act at the interface of metabolic and inflammatory pathways. These fatty acid binding proteins are involved in the formation of atherosclerosis predominantly through the direct modification of macrophage cholesterol trafficking and inflammatory responses. In addition to atherosclerosis, these fatty acid binding proteins also exert a dramatic impact on obesity, insulin resistance, type 2 diabetes and fatty liver disease. The creation of pharmacological agents to modify fatty acid binding protein function will provide tissue or cell-type-specific control of these lipid signaling pathways, inflammatory responses, atherosclerosis, and the other components of the metabolic syndrome, therefore offering a new class of multi-indication therapeutic agents.
Collapse
Affiliation(s)
- Liza Makowski
- Sarah W. Stedman Nutrition and Metabolism Center, Department of Medicine, Division of Endocrinology, Metabolism, and Nutrition, Duke University Medical Center, Durham, NC 27704, USA
| | - Gökhan S. Hotamisligil
- Department of Genetics and Complex Diseases, Harvard School of Public Health, Boston, MA 02115, USA
| |
Collapse
|