1
|
Xu C, Guo R, Hou C, Ma M, Dong X, Ouyang C, Wu J, Huang T. Resveratrol regulates macrophage recruitment and M1 macrophage polarization and prevents corneal allograft rejection in rats. Front Med (Lausanne) 2023; 10:1250914. [PMID: 37937143 PMCID: PMC10626464 DOI: 10.3389/fmed.2023.1250914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/15/2023] [Indexed: 11/09/2023] Open
Abstract
Introduction Resveratrol is an immune modulator that can reduce M1 macrophage polarization in vitro. Reducing macrophage recruitment and M1 polarization can prevent corneal allograft rejection (CGR). In this study, rat corneal allograft rejection models were established to explore the effects of resveratrol on CGR and macrophages and the underlying mechanisms after corneal transplantation. Methods Corneal allograft models were established, and 100 mg/kg resveratrol was injected intraperitoneally. The corneal allografts were assessed clinically using the Holland rejection scoring system, anterior segment photography, and anterior segment optical coherence tomography. Corneal macrophages, pro-inflammatory cytokines, and corneal lymphatic vessels were detected using hematoxylin and eosin staining, immunofluorescence staining, and real-time quantitative polymerase chain reaction (qRT-PCR). Dendritic cells (DCs) in cervical lymph nodes were explored using flow cytometry. RNA sequencing experiments were conducted to identify the mechanisms through which resveratrol affected CGR. The results were verified using Simple Western analysis. Pro-inflammatory cytokines by macrophages in vitro were measured using qRT-PCR and enzyme-linked immunosorbent assays. Results Resveratrol significantly prolonged the survival of corneal grafts and reduced graft edema and central corneal thickness. Corneal macrophage recruitment and M1 macrophage polarization decreased significantly after corneal transplantation in the resveratrol group. Resveratrol also reduced pro-inflammatory cytokines in corneal grafts and suppressed the early generation of cornea lymphatic vessels and the recruitment of cornea inflammatory cells 14 days after surgery. Resveratrol decreased the proportion of DCs in ipsilateral cervical lymph nodes. The effect of resveratrol on CGR was related to the phosphatidylinositol 3-kinase/protein kinase-B (PI3K/Akt) pathway. Resveratrol reduced the secretion of pro-inflammatory cytokines by M1 macrophages in vitro. Conclusion Our findings suggest that resveratrol can reduce corneal macrophage recruitment and M1 macrophage polarization after corneal transplantation in rats and prevent CGR. The PI3K/Akt pathway may be an important mechanism that warrants further research.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Ting Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| |
Collapse
|
2
|
Bingul I, Olgac V, Bekpinar S, Uysal M. The protective effect of resveratrol against cyclosporine A-induced oxidative stress and hepatotoxicity. Arch Physiol Biochem 2021; 127:551-556. [PMID: 31475571 DOI: 10.1080/13813455.2019.1659826] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The immunosuppressive agent cyclosporine A (CsA) has hepatotoxic potential. Increased reactive oxygen species (ROS) formation is among the causes leading to hepatotoxicity. This study aimed to investigate the effect of resveratrol (RES) on CsA-induced oxidative stress and hepatotoxicity in rats. Rats were treated with RES (10 mg/kg/day; i.p.) for 14 days. CsA (25 mg/kg/day; s.c.) was given during the last seven days together with RES. Serum alanine aminotransferase and aspartate aminotransferase activities together with hepatic histopathological examinations were performed. ROS, thiobarbituric acid reactive substances (TBARS), advanced oxidation protein products (AOPPs), ferric reducing antioxidant power, and glutathione levels as well as superoxide dismutase, and glutathione peroxidase activities were measured in the liver tissue. RES ameliorated histopathological changes and decreased hepatic ROS, TBARS, and AOPP levels significantly. However, antioxidant parameters did not change in CsA-treated rats. Our results indicate that RES treatment may be effective in decreasing CsA-induced oxidative stress and hepatotoxicity.
Collapse
Affiliation(s)
- Ilknur Bingul
- Department of Medical Biochemistry, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Vakur Olgac
- Department of Pathology, Institute of Oncology, Istanbul University, Istanbul, Turkey
| | - Seldag Bekpinar
- Department of Medical Biochemistry, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Mujdat Uysal
- Department of Medical Biochemistry, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| |
Collapse
|
3
|
Rubio-Ruiz ME, Guarner-Lans V, Cano-Martínez A, Díaz-Díaz E, Manzano-Pech L, Gamas-Magaña A, Castrejón-Tellez V, Tapia-Cortina C, Pérez-Torres I. Resveratrol and Quercetin Administration Improves Antioxidant DEFENSES and reduces Fatty Liver in Metabolic Syndrome Rats. Molecules 2019; 24:E1297. [PMID: 30987086 PMCID: PMC6479544 DOI: 10.3390/molecules24071297] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 03/28/2019] [Accepted: 03/30/2019] [Indexed: 12/21/2022] Open
Abstract
Mixtures of resveratrol (RSV) + quercetin (QRC) have antioxidant properties that probably impact on fatty liver in metabolic syndrome (MS) individuals. Here, we study the effects of a mixture of RSV + QRC on oxidative stress (OS) and fatty liver in a rat model of MS. Weanling male Wistar rats were separated into four groups (n = 8): MS rats with 30% sucrose in drinking water plus RSV + QRC (50 and 0.95 mg/kg/day, respectively), MS rats without treatment, control rats (C), and C rats plus RSV + QRC. MS rats had increased systolic blood pressure, triglycerides, insulin levels, insulin resistance index homeostasis model (HOMA), adiponectin, and leptin. The RSV + QRC mixture compensated these variables to C values (p < 0.01) in MS rats. Lipid peroxidation and carbonylation were increased in MS. Total antioxidant capacity and glutathione (GSH) were decreased in MS and compensated in MS plus RVS + QRC rats. Catalase, superoxide dismutase isoforms, peroxidases, glutathione-S-transferase, glutathione reductase, and the expression of Nrf2 were decreased in MS and reversed in MS plus RVS + QRC rats (p < 0.01). In conclusion, the mixture of RSV + QRC has benefic effects on OS in fatty liver in the MS rats through the improvement of the antioxidant capacity and by the over-expression of the master factor Nrf2, which increases the antioxidant enzymes and GSH recycling.
Collapse
Affiliation(s)
- Maria Esther Rubio-Ruiz
- Department of Physiology, Instituto Nacional de Cardiología "Ignacio Chávez", Juan Badiano 1, Sección XVI, Tlalpan, Mexico City 14080, Mexico.
| | - Verónica Guarner-Lans
- Department of Physiology, Instituto Nacional de Cardiología "Ignacio Chávez", Juan Badiano 1, Sección XVI, Tlalpan, Mexico City 14080, Mexico.
| | - Agustina Cano-Martínez
- Department of Physiology, Instituto Nacional de Cardiología "Ignacio Chávez", Juan Badiano 1, Sección XVI, Tlalpan, Mexico City 14080, Mexico.
| | - Eulises Díaz-Díaz
- Department of Reproductive Biology, Instituto Nacional de Ciencias Médicas y Nutrición "Salvador Zubirán", Vasco de Quiroga 15, Sección XVI, Tlalpan, Mexico City 14000, Mexico.
| | - Linaloe Manzano-Pech
- Department of Pathology, Instituto Nacional de Cardiología "Ignacio Chávez", Juan Badiano 1, Sección XVI, Tlalpan, Mexico City 14080, Mexico.
| | - Anel Gamas-Magaña
- Department of Physiology, Instituto Nacional de Cardiología "Ignacio Chávez", Juan Badiano 1, Sección XVI, Tlalpan, Mexico City 14080, Mexico.
| | - Vicente Castrejón-Tellez
- Department of Physiology, Instituto Nacional de Cardiología "Ignacio Chávez", Juan Badiano 1, Sección XVI, Tlalpan, Mexico City 14080, Mexico.
| | - Concepción Tapia-Cortina
- Colegio de Ciencias y Humanidades. Licenciatura en Promoción de la Salud. Academia de salud comunitaria. Universidad Autónoma de la Ciudad de México; Plantel San Lorenzo Tezonco, Mexico City 06720, Mexico.
| | - Israel Pérez-Torres
- Department of Pathology, Instituto Nacional de Cardiología "Ignacio Chávez", Juan Badiano 1, Sección XVI, Tlalpan, Mexico City 14080, Mexico.
| |
Collapse
|
4
|
Epigenetic alterations are associated with monocyte immune dysfunctions in HIV-1 infection. Sci Rep 2018; 8:5505. [PMID: 29615725 PMCID: PMC5882962 DOI: 10.1038/s41598-018-23841-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 03/20/2018] [Indexed: 01/28/2023] Open
Abstract
Monocytes are key cells in the immune dysregulation observed during human immunodeficiency virus (HIV) infection. The events that take place specifically in monocytes may contribute to the systemic immune dysfunction characterized by excessive immune activation in infected individuals, which directly correlates with pathogenesis and progression of the disease. Here, we investigated the immune dysfunction in monocytes from untreated and treated HIV + patients and associated these findings with epigenetic changes. Monocytes from HIV patients showed dysfunctional ability of phagocytosis and killing, and exhibited dysregulated cytokines and reactive oxygen species production after M. tuberculosis challenge in vitro. In addition, we showed that the expression of enzymes responsible for epigenetic changes was altered during HIV infection and was more prominent in patients that had high levels of soluble CD163 (sCD163), a newly identified plasmatic HIV progression biomarker. Among the enzymes, histone acetyltransferase 1 (HAT1) was the best epigenetic biomarker correlated with HIV - sCD163 high patients. In conclusion, we confirmed that HIV impairs effector functions of monocytes and these alterations are associated with epigenetic changes that once identified could be used as targets in therapies aiming the reduction of the systemic activation state found in HIV patients.
Collapse
|
5
|
Dias-Souza MV, Martins dos Santos R. Phytonutrients of Nutraceutical Importance. PHARMACEUTICAL SCIENCES 2017. [DOI: 10.4018/978-1-5225-1762-7.ch020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Phytotherapy re-emerged in the latest years as a healing system accepted and spread worldwide, and different molecules have been investigated due to their benefits to health. Nutraceutical formulations, which allow the intake of phytonutrients (generally in low levels in plant food) in concentrations that are enough to achieve the desired outcomes, represent feasible alternatives to improve general health and to prevent and treat varied diseases. Notwithstanding the incompleteness of an evidence-based clinical use of nutraceuticals, many questions remain unanswered regarding their global effects in humans and animals. Thus, the aim of this chapter is to provide recent evidence on chemical and pharmacological features of the main phytonutrients explored in nutraceutical formulations, focusing antimicrobial, antioxidant and antiproliferative potentials. Also, some insights on drug-phytonutrients interactions will be discussed.
Collapse
|
6
|
Rutledge KE, Cheng Q, Jabbarzadeh E. Modulation of Inflammatory Response and Induction of Bone Formation Based on Combinatorial Effects of Resveratrol. ACTA ACUST UNITED AC 2016; 7. [PMID: 27175310 DOI: 10.4172/2157-7439.1000350] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The success of bone tissue engineering strategies critically depends on the rapid formation of a mature vascular network in the scaffolds after implantation. Conventional methods to accelerate the infiltration of host vasculature into the scaffolds need to consider the role of host response in regulation of bone tissue ingrowth and extent of vascularization. The long term goal of this study was to harness the potential of inflammatory response to enhance angiogenesis and bone formation in three dimensional (3D) scaffolds. Towards this goal, we explored the use of resveratrol, a natural compound commonly used in complementary medicine, to enable the concurrently (i) mediate M1 to M2 macrophage plasticity, (ii) impart natural release of angiogenic factors by macrophages and (iii) enhance osteogenic differentiation of human mesenchymal stem cells (hMSCs). We mapped the time-dependent response of macrophage gene expression as well as hMSC osteogenic differentiation to varying doses of resveratrol. The utility of this approach was evaluated in 3D poly (lactide-co-glycolide) (PLGA) sintered microsphere scaffolds for bone tissue engineering applications. Our results altogether delineate the potential to synergistically accelerate angiogenic factor release and upregulate osteogenic signaling pathways by "dialing" the appropriate degree of resveratrol release.
Collapse
Affiliation(s)
- Katy E Rutledge
- Department of Chemical Engineering, University of South Carolina, Columbia, SC, 29208, USA
| | - Qingsu Cheng
- Biomedical Engineering Program, University of South Carolina, Columbia, SC, 29208, USA
| | - Ehsan Jabbarzadeh
- Department of Chemical Engineering, University of South Carolina, Columbia, SC, 29208, USA; Biomedical Engineering Program, University of South Carolina, Columbia, SC, 29208, USA; Department of Orthopaedic Surgery, University of South Carolina School of Medicine, Columbia, SC, 29209, USA
| |
Collapse
|
7
|
Faghihzadeh F, Hekmatdoost A, Adibi P. Resveratrol and liver: A systematic review. JOURNAL OF RESEARCH IN MEDICAL SCIENCES 2015; 20:797-810. [PMID: 26664429 PMCID: PMC4652315 DOI: 10.4103/1735-1995.168405] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Background: Recent studies demonstrated that resveratrol has many therapeutic effects on liver disorders. Resveratrol significantly increased survival after liver transplantation, decreased fat deposition, necrosis, and apoptosis which induced by ischemia in Wistar rats. It provided liver protection against chemical, cholestatic, and alcohol injury. Resveratrol can improve glucose metabolism and lipid profile and decrease liver fibrosis and steatosis. Furthermore, it was able to alter hepatic cell fatty acid composition. According to extension of liver disease around the world and necessity of finding new threat, this review critically examines the current preclinical in vitro and in vivo studies on the preventive and therapeutic effects of resveratrol in liver disorders. Materials and Methods: A search in PubMed, Google Scholar, and Scopus was undertaken to identify relevant literature using search terms, including “liver,” “hepatic,” and “Resveratrol.” Both in vivo and in vitro studies were included. No time limiting considered for this search. Results: A total of 76 articles were eligible for this review. In these articles, resveratrol shows antioxidative properties in different models of hepatitis resulting in reducing of hepatic fibrosis. Conclusion: Resveratrol could reduce hepatic steatosis through modulating the insulin resistance and lipid profile in animals. These high quality preclinical studies propose the potential therapeutic implication of resveratrol in liver disorders especially those with hepatic steatosis. Resveratrol can play a pivotal role in prevention and treatment of liver disorders by reducing hepatic fibrosis.
Collapse
Affiliation(s)
- Forouzan Faghihzadeh
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Azita Hekmatdoost
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Payman Adibi
- Department of Medicine, Integrative Functional Gastroenterology Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
8
|
Expanding the chemical space of polyketides through structure-guided mutagenesis of Vitis vinifera stilbene synthase. Biochimie 2015; 115:136-43. [PMID: 26048582 DOI: 10.1016/j.biochi.2015.05.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 05/22/2015] [Indexed: 01/08/2023]
Abstract
Several natural polyketides (PKs) have been associated with important pharmaceutical properties. Type III polyketide synthases (PKS) that generate aromatic PK polyketides have been studied extensively for their substrate promiscuity and product diversity. Stilbene synthase-like (STS) enzymes are unique in the type III PKS class as they possess a hydrogen bonding network, furnishing them with thioesterase-like properties, resulting in aldol condensation of the polyketide intermediates formed. Chalcone synthases (CHS) in contrast, lack this hydrogen-bonding network, resulting primarily in the Claisen condensation of the polyketide intermediates formed. We have attempted to expand the chemical space of this interesting class of compounds generated by creating structure-guided mutants of Vitis vinifera STS. Further, we have utilized a previously established workflow to quickly compare the wild-type reaction products to those generated by the mutants and identify novel PKs formed by using XCMS analysis of LC-MS and LC-MS/MS data. Based on this approach, we were able to generate 15 previously unreported PK molecules by exploring the substrate promiscuity of the wild-type enzyme and all mutants using unnatural substrates. These structures were specific to STSs and cannot be formed by their closely related CHS-like counterparts.
Collapse
|
9
|
Loukopoulos I, Sfiniadakis I, Pillai A, Konstantoulakis M, Androulakis G, Bonatsos V, Zografos G, Papalois A. Mycophenolate Mofetil and Sirolimus in Hepatocyte Transplantation in an Experimental Model of Toxic Acute Liver Failure. J INVEST SURG 2014; 27:205-13. [DOI: 10.3109/08941939.2013.879967] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
10
|
Bhan N, Xu P, Khalidi O, Koffas MA. Redirecting carbon flux into malonyl-CoA to improve resveratrol titers: Proof of concept for genetic interventions predicted by OptForce computational framework. Chem Eng Sci 2013. [DOI: 10.1016/j.ces.2012.10.009] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
11
|
Iwasaki K, Miwa Y, Haneda M, Kuzuya T, Ogawa H, Onishi A, Kobayashi T. AMP-activated protein kinase as a promoting factor, but complement and thrombin as limiting factors for acquisition of cytoprotection: implications for induction of accommodation. Transpl Int 2013; 26:1138-48. [PMID: 24047401 DOI: 10.1111/tri.12186] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 05/08/2013] [Accepted: 08/19/2013] [Indexed: 01/11/2023]
Abstract
Accommodation has been termed as a condition without graft rejection even in the presence of antidonor antibody. We previously reported an in vitro accommodation model, which demonstrated that preincubation of A/B antigen-expressing endothelial cells with anti-A/B antibody resulted in ERK inactivation followed by resistance to complement-mediated cytotoxicity through the induction of complement regulatory genes. However, under the in vivo condition, the effects of complement and coagulation system cannot be ignored. The purpose of this study is to find effective ways to navigate accommodation by exploring the relevant signal transduction. Preincubation with a low level of complement or thrombin failed to induce resistance to complement-mediated cytotoxicity. AMP-activated protein kinase (AMPK) activators such as resveratrol, AICAR and metformin protected endothelial cells against complement-mediated cytotoxicity through the increase in CD55, CD59, haem oxygenase-1 (HO-1) and ferritin heavy chain (ferritin H) genes, all of which were attenuated by AMPKα knock-down. Resveratrol counteracted the inhibitory effect of pretreated complement and thrombin on acquisition of resistance to complement-mediated cytotoxicity through AMPKα. AMPK regulation in endothelial cells could become the potential strategy to induce accommodation in clinical pro-inflammation and pro-coagulation.
Collapse
Affiliation(s)
- Kenta Iwasaki
- Department of Transplant Immunology, Nagoya University School of Medicine, Nagoya, Japan
| | | | | | | | | | | | | |
Collapse
|
12
|
Suárez-Álvarez B, Baragaño Raneros A, Ortega F, López-Larrea C. Epigenetic modulation of the immune function: a potential target for tolerance. Epigenetics 2013; 8:694-702. [PMID: 23803720 PMCID: PMC3781188 DOI: 10.4161/epi.25201] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Great efforts in the field of solid organ transplantation are being devoted to identifying biomarkers that allow a transplanted patient's immune status to be established. Recently, it has been well documented that epigenetic mechanisms like DNA methylation and histone modifications regulate the expression of immune system-related genes, modifying the development of the innate and adaptive immune responses. An in-depth knowledge of these epigenetic mechanisms could modulate the immune response after transplantation and to develop new therapeutic strategies. Epigenetic modifiers, such as histone deacetylase (HDAC) inhibitors have considerable potential as anti-inflammatory and immunosuppressive agents, but their effect on transplantation has not hitherto been known. Moreover, the detection of epigenetic marks in key immune genes could be useful as biomarkers of rejection and progression among transplanted patients. Here, we describe recent discoveries concerning the epigenetic regulation of the immune system, and how this knowledge could be translated to the field of transplantation.
Collapse
|
13
|
FARGHALI H, KUTINOVÁ CANOVÁ N, LEKIĆ N. Resveratrol and Related Compounds as Antioxidants With an Allosteric Mechanism of Action in Epigenetic Drug Targets. Physiol Res 2013; 62:1-13. [DOI: 10.33549/physiolres.932434] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The present review is intended to focus on naturally occurring cytoprotective agents such as resveratrol (trans-3,4’,5-trihydroxystilbene) and other related compounds, probably with similar molecular mechanisms of action and high capacity to find applications in medical fields. Several physiological aspects have been ascribed to resveratrol and similar compounds. Resveratrol, among others, has been recently described as a silent information regulator T1 (SIRT1) activator that increases AMP-activated protein kinase (AMPK) phosphorylation and reduces the oxidative damage biomarkers during aging in laboratory settings. The reports on resveratrol and other SIRT1 activators from various sources are encouraging. The pharmacological strategies for modulation of sirtuins by small molecules through allosteric mechanisms should gain a greater momentum including human research. Resveratrol and resveratrol-like molecules seem to fulfill the requirement of a new horizon in drug research since these molecules cover a growing research means as antioxidants with allosteric mechanism in epigenetic drug targets. However, one should keep in mind the challenges of extrapolation of basic research into clinical results. Overall, the issue of sirtuins in biology and disease provides an insight on therapeutic potentials of sirtuin-based therapeutics and demonstrates the high complexity of drug-targeting these modalities for human applications.
Collapse
Affiliation(s)
- H. FARGHALI
- Institute of Pharmacology, First Faculty of Medicine, Charles University in Prague, Czech Republic
| | | | | |
Collapse
|
14
|
Li D, Dammer EB, Sewer MB. Resveratrol stimulates cortisol biosynthesis by activating SIRT-dependent deacetylation of P450scc. Endocrinology 2012; 153:3258-68. [PMID: 22585829 PMCID: PMC3380297 DOI: 10.1210/en.2011-2088] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In the human adrenal cortex, cortisol is synthesized from cholesterol by members of the cytochrome P450 superfamily and hydroxysteroid dehydrogenases. Both the first and last steps of cortisol biosynthesis occur in mitochondria. Based on our previous findings that activation of ACTH signaling changes the ratio of nicotinamide adenine dinucleotide (NAD) phosphate to reduced NAD phosphate in adrenocortical cells, we hypothesized that pyridine nucleotide metabolism may regulate the activity of the mitochondrial NAD(+)-dependent sirtuin (SIRT) deacetylases. We show that resveratrol increases the protein expression and half-life of P450 side chain cleavage enzyme (P450scc). The effects of resveratrol on P450scc protein levels and acetylation status are dependent on SIRT3 and SIRT5 expression. Stable overexpression of SIRT3 abrogates the cellular content of acetylated P450scc, concomitant with an increase in P450scc protein expression and cortisol secretion. Mutation of K148 and K149 to alanine stabilizes the expression of P450scc and results in a 1.5-fold increase in pregnenolone biosynthesis. Finally, resveratrol also increases the protein expression of P450 11β, another mitochondrial enzyme required for cortisol biosynthesis. Collectively, this study identifies a role for NAD(+)-dependent SIRT deacetylase activity in regulating the expression of mitochondrial steroidogenic P450.
Collapse
Affiliation(s)
- Donghui Li
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093-0704, USA
| | | | | |
Collapse
|
15
|
Švajger U, Jeras M. Anti-inflammatory Effects of Resveratrol and Its Potential Use in Therapy of Immune-mediated Diseases. Int Rev Immunol 2012; 31:202-22. [DOI: 10.3109/08830185.2012.665108] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
16
|
Lu CC, Chen JK. Resveratrol enhances perforin expression and NK cell cytotoxicity through NKG2D-dependent pathways. J Cell Physiol 2010; 223:343-51. [PMID: 20082299 DOI: 10.1002/jcp.22043] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
In a previous report, we showed that the in vivo cytotoxic activity of the natural killer (NK) cells isolated from resveratrol-pretreated rats is significantly enhanced compared with that of the non-pretreated rats; however, the underlying mechanism remains unclear. In the present study, we use cultured NK92 cell line to examine the possible signaling pathways underlying the resveratrol-induced activation. Using cultured K562, HepG2, and A549 cells as targets, we show that resveratrol pretreatment increases NK cell cytotoxicity in a dose-dependent manner. The enhanced cytotoxic effect is accompanied by increases in JNK and ERK-1/2 MAP kinase activity and perforin expression. Moreover, the expression of NKG2D, an upstream signaling molecule of the MAP kinases pathway, is also enhanced. Resveratrol-enhanced perforin expression and cytotoxic activity are effectively inhibited by pretreatment with the inhibitors of JNK (SP600125), ERK-1/2 (PD98059), or by siRNAs against JNK-1 and ERK-2. However, the inhibitors or siRNA to p38 exhibits no effect. Since IL-2 has been shown to induce NKG2D expression and perforin release, we therefore, examined whether IL-2 and resveratrol act in parallel. We show that IL-2 also stimulates perforin expression, however, when treated together with resveratrol, they exhibit no additive effect. The results suggest that in NK92 cells, resveratrol may act via a similar or overlapping pathway as that of IL-2, to enhance perforin expression and cytotoxic activity. Data presented strongly indicate that resveratrol act via NKG2D-dependent JNK and ERK-1/2 pathways.
Collapse
Affiliation(s)
- Chia-Chen Lu
- Department of Physiology, College of Medicine, Chang Gung University, Kweishan, Taoyuan 333, Taiwan
| | | |
Collapse
|
17
|
Svajger U, Obermajer N, Jeras M. Dendritic cells treated with resveratrol during differentiation from monocytes gain substantial tolerogenic properties upon activation. Immunology 2010; 129:525-35. [PMID: 20002210 PMCID: PMC2842499 DOI: 10.1111/j.1365-2567.2009.03205.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2009] [Revised: 10/20/2009] [Accepted: 10/21/2009] [Indexed: 12/13/2022] Open
Abstract
Resveratrol is a polyphenol that acts on multiple molecular targets important for cell differentiation and activation. Dendritic cells (DCs) are a functionally diverse cell type and represent the most potent antigen-presenting cells of the immune system. In this study, we investigated resveratrol-induced effects on DCs during their differentiation and maturation. Our results show that resveratrol induces DC-associated tolerance, particularly when applied during DC differentiation. Costimulatory molecules CD40, CD80 and CD86 were down-regulated, as was the expression of major histocompatibility complex (MHC) class II molecules. Surface expression of inhibitory immunoglobulin-like transcript 3 (ILT3) and ILT4 molecules was induced, while human leucocyte antigen (HLA)-G expression was not affected. Resveratrol-treated DCs lost the ability to produce interleukin (IL)-12p70 after activation, but had an increased ability to produce IL-10. Such DCs were poor stimulators of allogeneic T cells and had lowered ability to induce CD4(+) T-cell migration. Furthermore, treated cells were able to generate allogeneic IL-10-secreting T cells, but were not competent in inducing FoxP3 expression These tolerogenic effects are probably associated with the effect of resveratrol on multiple molecular targets through which it interferes with DC differentiation and nuclear factor (NF)-kappaB translocation. Our data provide new insights into the molecular and functional mechanisms of the tolerogenic effects that resveratrol exerts on DCs.
Collapse
Affiliation(s)
- Urban Svajger
- Blood Transfusion Center of Slovenia, Slajmerjeva 6, Ljubljana, Slovenia.
| | | | | |
Collapse
|
18
|
Resveratrol attenuates lipopolysaccharide-induced hepatitis in D-galactosamine sensitized rats: role of nitric oxide synthase 2 and heme oxygenase-1. Nitric Oxide 2009; 21:216-25. [PMID: 19796704 DOI: 10.1016/j.niox.2009.09.004] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2009] [Revised: 07/28/2009] [Accepted: 09/23/2009] [Indexed: 12/11/2022]
Abstract
The goal of study was directed to investigate the effects of resveratrol (RES) pretreatment on the enhancing action of D-galactosamine (D-GalN; 800 mg/kg) on lipopolysaccharide (LPS; 0.5 microg/kg) inducing liver failure in rats. Liver function was assessed by determination of plasma alanine aminotransferase (ALT), aspartate aminotransferase (AST), alpha-glutathione S-transferase (alpha GST) and bilirubin (BILI). Plasma NO(2)(-) was assessed by NO(2)(-)/NO(3)(-) colorimetric kit. The estimation of nonenzymatic and enzymatic antioxidants (glutathione and catalase) was performed in plasma and liver homogenate. Lipid peroxidation was evaluated by the thiobarbituric acid reacting substances (TBARS) and the conjugated dienes (CD). Morphological examinations using light and electron microscopy were performed. Observations related to pharmacological increases of inducible nitric oxide synthase (NOS-2)/nitric oxide (NO) and inducible heme oxygenase (HO-1) in fulminant hepatic failure and modulation by resveratrol were followed up by real-time reverse transcription PCR (RT-PCR) in liver tissue. In the present study we found that among the mechanisms responsible for the hepatoprotective effect of resveratrol in the LPS/D-GalN liver toxicity model are reduction in NO, downregulation of NOS-2, modification of oxidative stress parameters and modulation of HO-1 which led to overall improvement in hepatotoxic markers and morphology after the hepatic insult.
Collapse
|
19
|
Černý D, Canová NK, Martínek J, Hořínek A, Kmoníčková E, Zídek Z, Farghali H. Effects of resveratrol pretreatment on tert-butylhydroperoxide induced hepatocyte toxicity in immobilized perifused hepatocytes: Involvement of inducible nitric oxide synthase and hemoxygenase-1. Nitric Oxide 2009; 20:1-8. [DOI: 10.1016/j.niox.2008.08.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2008] [Revised: 08/07/2008] [Accepted: 08/21/2008] [Indexed: 01/15/2023]
|
20
|
Abstract
Resveratrol, a constituent of red wine, has long been suspected to have cardioprotective effects. Interest in this compound has been renewed in recent years, first from its identification as a chemopreventive agent for skin cancer, and subsequently from reports that it activates sirtuin deacetylases and extends the lifespans of lower organisms. Despite scepticism concerning its bioavailability, a growing body of in vivo evidence indicates that resveratrol has protective effects in rodent models of stress and disease. Here, we provide a comprehensive and critical review of the in vivo data on resveratrol, and consider its potential as a therapeutic for humans.
Collapse
Affiliation(s)
- Joseph A Baur
- Paul F. Glenn Laboratories for the Biological Mechanisms of Aging, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, Massachusetts 02115, USA
| | | |
Collapse
|