1
|
Singh H, Pragasam SJ, Venkatesan V. Emerging Therapeutic Targets for Metabolic Syndrome: Lessons from Animal Models. Endocr Metab Immune Disord Drug Targets 2019; 19:481-489. [DOI: 10.2174/1871530319666181130142642] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Revised: 08/26/2018] [Accepted: 10/30/2018] [Indexed: 01/01/2023]
Abstract
Background:
Metabolic syndrome is a cluster of medical conditions that synergistically
increase the risk of heart diseases and diabetes. The current treatment strategy for metabolic syndrome
focuses on treating its individual components. A highly effective agent for metabolic syndrome has yet
to be developed. To develop a target for metabolic syndrome, the mechanism encompassing different
organs - nervous system, pancreas, skeletal muscle, liver and adipose tissue - needs to be understood.
Many animal models have been developed to understand the pathophysiology of metabolic syndrome.
Promising molecular targets have emerged while characterizing these animals. Modulating these targets
is expected to treat some components of metabolic syndrome.
Objective:
o discuss the emerging molecular targets in an animal model of metabolic syndrome.
Methods:
A literature search was performed for the retrieval of relevant articles.
Conclusion:
Multiple genes/pathways that play important role in the development of Metabolic Syndrome
are discussed.
Collapse
Affiliation(s)
- Himadri Singh
- Stem Cell Research/Biochemistry, National Institute of Nutrition, Hyderabad-500007, India
| | - Samuel Joshua Pragasam
- Stem Cell Research/Biochemistry, National Institute of Nutrition, Hyderabad-500007, India
| | | |
Collapse
|
2
|
Alatab S, Shekarchian S, Najafi I, Moghadasali R, Ahmadbeigi N, Pourmand MR, Bolurieh T, Jaroughi N, Pourmand G, Aghdami N. Systemic Infusion of Autologous Adipose Tissue-Derived Mesenchymal Stem Cells in Peritoneal Dialysis Patients: Feasibility and Safety. CELL JOURNAL 2018; 20:483-495. [PMID: 30123994 PMCID: PMC6099152 DOI: 10.22074/cellj.2019.5591] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 10/25/2017] [Indexed: 01/08/2023]
Abstract
Objective Using mesenchymal stem cells (MSCs) is regarded as a new therapeutic approach for improving fibrotic diseases.
the aim of this study to evaluate the feasibility and safety of systemic infusion of autologous adipose tissue-derived MSCs
(AD-MSCs) in peritoneal dialysis (PD) patients with expected peritoneal fibrosis.
Materials and Methods This study was a prospective, open-label, non-randomized, placebo-free, phase I clinical trial. Case
group consisted of nine eligible renal failure patients with more than two years of history of being on PD. Autologous AD-MSCs
were obtained through lipoaspiration and expanded under good manufacturing practice conditions. Patients received
1.2 ± 0.1×106 cell/kg of AD-MSCs via cubital vein and then were followed for six months at time points of baseline, and then 3
weeks, 6 weeks, 12 weeks, 16 weeks and 24 weeks after infusion. Clinical, biochemical and peritoneal equilibration test (PET)
were performed to assess the safety and probable change in peritoneal solute transport parameters.
Results No serious adverse events and no catheter-related complications were found in the participants. 14 minor
reported adverse events were self-limited or subsided after supportive treatment. One patient developed an episode
of peritonitis and another patient experienced exit site infection, which did not appear to be related to the procedure. A
significant decrease in the rate of solute transport across peritoneal membrane was detected by PET (D/P cr=0.77 vs.
0.73, P=0.02).
Conclusion This study, for the first time, showed the feasibility and safety of AD-MSCs in PD patients and the potentials
for positive changes in solute transport. Further studies with larger samples, longer follow-up, and randomized blind control
groups to elucidate the most effective route, frequency and dose of MSCs administration, are necessary (Registration Number:
IRCT2015052415841N2).
Collapse
Affiliation(s)
- Sudabeh Alatab
- Urology Research Center, Sina Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Soroosh Shekarchian
- Department of Regenerative Biomedicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Iraj Najafi
- Urology Research Center, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Moghadasali
- Department of Regenerative Biomedicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.,Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Naser Ahmadbeigi
- Cell-based Therapies Research Center, Digestive Disease Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Pourmand
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Tina Bolurieh
- Department of Regenerative Biomedicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Neda Jaroughi
- Department of Regenerative Biomedicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Gholamreza Pourmand
- Urology Research Center, Sina Hospital, Tehran University of Medical Sciences, Tehran, Iran.
| | - Nasser Aghdami
- Department of Regenerative Biomedicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| |
Collapse
|
3
|
Della Bella E, Pagani S, Giavaresi G, Capelli I, Comai G, Donadei C, Cappuccilli M, La Manna G, Fini M. Uremic Serum Impairs Osteogenic Differentiation of Human Bone Marrow Mesenchymal Stromal Cells. J Cell Physiol 2017; 232:2201-2209. [DOI: 10.1002/jcp.25732] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 12/13/2016] [Indexed: 12/21/2022]
Affiliation(s)
- Elena Della Bella
- Laboratory of Preclinical and Surgical Studies; Rizzoli Orthopedic Institute; Bologna Italy
- Department of Experimental, Diagnostic and Specialty Medicine; University of Bologna; Bologna Italy
| | - Stefania Pagani
- Laboratory of Preclinical and Surgical Studies; Rizzoli Orthopedic Institute; Bologna Italy
- Laboratory of Biocompatibility, Innovative Technologies and Advanced Therapies; Department Rizzoli RIT; Bologna Italy
| | - Gianluca Giavaresi
- Laboratory of Preclinical and Surgical Studies; Rizzoli Orthopedic Institute; Bologna Italy
- Laboratory of Biocompatibility, Innovative Technologies and Advanced Therapies; Department Rizzoli RIT; Bologna Italy
| | - Irene Capelli
- Nephrology Dialysis and Transplantation Unit, Department of Experimental, Diagnostic and Specialty Medicine, S. Orsola Hospital; University of Bologna; Bologna Italy
| | - Giorgia Comai
- Nephrology Dialysis and Transplantation Unit, Department of Experimental, Diagnostic and Specialty Medicine, S. Orsola Hospital; University of Bologna; Bologna Italy
| | - Chiara Donadei
- Nephrology Dialysis and Transplantation Unit, Department of Experimental, Diagnostic and Specialty Medicine, S. Orsola Hospital; University of Bologna; Bologna Italy
| | - Maria Cappuccilli
- Nephrology Dialysis and Transplantation Unit, Department of Experimental, Diagnostic and Specialty Medicine, S. Orsola Hospital; University of Bologna; Bologna Italy
| | - Gaetano La Manna
- Nephrology Dialysis and Transplantation Unit, Department of Experimental, Diagnostic and Specialty Medicine, S. Orsola Hospital; University of Bologna; Bologna Italy
| | - Milena Fini
- Laboratory of Preclinical and Surgical Studies; Rizzoli Orthopedic Institute; Bologna Italy
- Laboratory of Biocompatibility, Innovative Technologies and Advanced Therapies; Department Rizzoli RIT; Bologna Italy
| |
Collapse
|
4
|
Liu Y, Tang SCW. Recent Progress in Stem Cell Therapy for Diabetic Nephropathy. KIDNEY DISEASES 2015; 2:20-7. [PMID: 27536688 DOI: 10.1159/000441913] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 10/18/2015] [Indexed: 12/14/2022]
Abstract
BACKGROUND Diabetic nephropathy (DN) represents the leading cause of end-stage renal disease. Current therapeutic strategies for DN are very limited, and none of them can stop end-stage renal disease progression. Stem cell-based therapy showed encouraging outcomes in kidney disease, including experimental DN. SUMMARY Both podocytes and proximal tubular epithelial cells play key roles in the pathogenesis of DN and, accordingly, could be regarded as treatment targets. Multiple kinds of stem cells contribute to the regeneration of the injured kidney, including embryonic stem cells (ESCs), mesenchymal stem cells, and induced pluripotent stem cells (iPSCs). Stem cells exert reparatory effects mainly by homing to injured sites, directing differentiation, paracrine action, and immunoregulation. However, poor survival after transplantation under diabetic conditions and unsatisfactory animal models of advanced DN are major obstacles for achieving an efficacious therapeutic effect from stem cell transplantation. Recently, remarkable progress has been made both in the direct differentiation of human ESCs and iPSCs into renal cells and in the generation of tissue- and patient-specific iPSCs, offering a powerful tool to investigate DN mechanisms and to identify the ideal candidate cell for future clinical application. KEY MESSAGE This review provides updated information on recent progress and limitations of stem cell-based therapy for DN.
Collapse
Affiliation(s)
- Yang Liu
- Division of Nephrology, Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong, SAR, China
| | - Sydney C W Tang
- Division of Nephrology, Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong, SAR, China
| |
Collapse
|
5
|
Abstract
PURPOSE OF REVIEW We provide an overview of the recent progress in kidney regeneration with a particular focus on our previous study, which used developing xenoembryos for differentiating human mesenchymal stem cells (hMSCs). The principle of the methodology, recent advances, and limitations and challenges associated with kidney regeneration are outlined. RECENT FINDINGS Our primary study objective is to generate neokidney from dialysis patient-derived hMSCs. We previously showed that glial cell-derived neurotrophic factor-expressing hMSCs can differentiate into functional chimeric nephrons in developing mammalian embryos. Recently, we succeeded in eliminating xenotissues in transgenic oestrogen receptor-E2F transcription factor 1 (ER-E2F1) mice by introducing a suicide gene. We also showed MSCs derived from dialysis patients can be used for kidney regeneration. Blastocyst complementation strategy was used to generate chimeric nephrons by injecting mouse pluripotent stem cells into spalt-like transcription factor 1 (Sall1) knockout mouse blastocysts. SUMMARY Kidney tissue can be generated from human mouse pluripotent stem cells or MSCs by several methods. The size and function of regenerated kidney tissue do not meet the transplantation requirements for clinical applications. Although many outstanding problems remain for kidney regeneration, including ethical issues and the formation of chimeric structures, the neokidney generation exclusively from dialysis patient-derived cells is expected to be a reality in the future.
Collapse
|
6
|
Abstract
Regenerative medicine has recently been established as an emerging interdisciplinary field focused on the repair; replacement or regeneration of cells, tissues and organs. It involves various disciplines, which are focused on different aspects of the regeneration process such as cell biology, gene therapy, bioengineering, material science and pharmacology. In this article, we will outline progress on tissue engineering of specific tissues and organs relevant to paediatric surgery.
Collapse
Affiliation(s)
- Panagiotis Maghsoudlou
- Surgery Unit, Institute of Child Health and Great Ormond Street Hospital, University College London, 30 Guilford St, London WC1N 1EH, UK
| | - Luca Urbani
- Surgery Unit, Institute of Child Health and Great Ormond Street Hospital, University College London, 30 Guilford St, London WC1N 1EH, UK
| | - Paolo De Coppi
- Surgery Unit, Institute of Child Health and Great Ormond Street Hospital, University College London, 30 Guilford St, London WC1N 1EH, UK.
| |
Collapse
|
7
|
Yamanaka S, Yokote S, Yamada A, Katsuoka Y, Izuhara L, Shimada Y, Omura N, Okano HJ, Ohki T, Yokoo T. Adipose tissue-derived mesenchymal stem cells in long-term dialysis patients display downregulation of PCAF expression and poor angiogenesis activation. PLoS One 2014; 9:e102311. [PMID: 25025381 PMCID: PMC4099219 DOI: 10.1371/journal.pone.0102311] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 06/17/2014] [Indexed: 12/23/2022] Open
Abstract
We previously demonstrated that mesenchymal stem cells (MSCs) differentiate into functional kidney cells capable of urine and erythropoietin production, indicating that they may be used for kidney regeneration. However, the viability of MSCs from dialysis patients may be affected under uremic conditions. In this study, we isolated MSCs from the adipose tissues of end-stage kidney disease (ESKD) patients undergoing long-term dialysis (KD-MSCs; mean: 72.3 months) and from healthy controls (HC-MSCs) to compare their viability. KD-MSCs and HC-MSCs were assessed for their proliferation potential, senescence, and differentiation capacities into adipocytes, osteoblasts, and chondrocytes. Gene expression of stem cell-specific transcription factors was analyzed by PCR array and confirmed by western blot analysis at the protein level. No significant differences of proliferation potential, senescence, or differentiation capacity were observed between KD-MSCs and HC-MSCs. However, gene and protein expression of p300/CBP-associated factor (PCAF) was significantly suppressed in KD-MSCs. Because PCAF is a histone acetyltransferase that mediates regulation of hypoxia-inducible factor-1α (HIF-1α), we examined the hypoxic response in MSCs. HC-MSCs but not KD-MSCs showed upregulation of PCAF protein expression under hypoxia. Similarly, HIF-1α and vascular endothelial growth factor (VEGF) expression did not increase under hypoxia in KD-MSCs but did so in HC-MSCs. Additionally, a directed in vivo angiogenesis assay revealed a decrease in angiogenesis activation of KD-MSCs. In conclusion, long-term uremia leads to persistent and systematic downregulation of PCAF gene and protein expression and poor angiogenesis activation of MSCs from patients with ESKD. Furthermore, PCAF, HIF-1α, and VEGF expression were not upregulated by hypoxic stimulation of KD-MSCs. These results suggest that the hypoxic response may be blunted in MSCs from ESKD patients.
Collapse
Affiliation(s)
- Shuichiro Yamanaka
- Division of Regenerative Medicine, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Shinya Yokote
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Akifumi Yamada
- Department of Pediatrics, The Jikei University School of Medicine, Tokyo, Japan
| | - Yuichi Katsuoka
- Division of Regenerative Medicine, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Luna Izuhara
- Division of Regenerative Medicine, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Yohta Shimada
- Department of Gene Therapy, Institute of DNA Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Nobuo Omura
- Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan
| | - Hirotaka James Okano
- Division of Regenerative Medicine, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Takao Ohki
- Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan
| | - Takashi Yokoo
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
8
|
Klinkhammer BM, Kramann R, Mallau M, Makowska A, van Roeyen CR, Rong S, Buecher EB, Boor P, Kovacova K, Zok S, Denecke B, Stuettgen E, Otten S, Floege J, Kunter U. Mesenchymal stem cells from rats with chronic kidney disease exhibit premature senescence and loss of regenerative potential. PLoS One 2014; 9:e92115. [PMID: 24667162 PMCID: PMC3965415 DOI: 10.1371/journal.pone.0092115] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 02/17/2014] [Indexed: 12/14/2022] Open
Abstract
Mesenchymal stem cell (MSC) transplantation has the potential for organ repair. Nevertheless, some factors might lessen the regenerative potential of MSCs, e.g. donor age or systemic disease. It is thus important to carefully assess the patient's suitability for autologous MSC transplantation. Here we investigated the effects of chronic kidney disease (CKD) on MSC function. We isolated bone marrow MSCs from remnant kidney rats (RK) with CKD (CKD-RK-MSC) and found signs of premature senescence: spontaneous adipogenesis, reduced proliferation capacity, active senescence-associated-β-galactosidase, accumulation of actin and a modulated secretion profile. The functionality of CKD-RK-MSCs in vivo was tested in rats with acute anti-Thy1.1-nephritis, where healthy MSCs have been shown to be beneficial. Rats received healthy MSCs, CKD-RK-MSC or medium by injection into the left renal artery. Kidneys receiving healthy MSCs exhibited accelerated healing of glomerular lesions, whereas CKD-RK-MSC or medium exerted no benefit. The negative influence of advanced CKD/uremia on MSCs was confirmed in a second model of CKD, adenine nephropathy (AD). MSCs from rats with adenine nephropathy (CKD-AD-MSC) also exhibited cellular modifications and functional deficits in vivo. We conclude that CKD leads to a sustained loss of in vitro and in vivo functionality in MSCs, possibly due to premature cellular senescence. Considering autologous MSC therapy in human renal disease, studies identifying uremia-associated mechanisms that account for altered MSC function are urgently needed.
Collapse
Affiliation(s)
| | - Rafael Kramann
- Division of Nephrology and Immunology, RWTH Aachen University Hospital, Aachen, Germany
| | - Monika Mallau
- Division of Nephrology and Immunology, RWTH Aachen University Hospital, Aachen, Germany
| | - Anna Makowska
- Division of Nephrology and Immunology, RWTH Aachen University Hospital, Aachen, Germany
| | | | - Song Rong
- Division of Nephrology and Immunology, RWTH Aachen University Hospital, Aachen, Germany
| | - Eva Bettina Buecher
- Division of Nephrology and Immunology, RWTH Aachen University Hospital, Aachen, Germany
| | - Peter Boor
- Division of Nephrology and Immunology, RWTH Aachen University Hospital, Aachen, Germany
- Institute of Pathology, RWTH Aachen University Hospital, Aachen, Germany
- Institute of Molecular Biomedicine, Comenius University, Bratislava, Slovakia
| | - Katarina Kovacova
- Division of Nephrology and Immunology, RWTH Aachen University Hospital, Aachen, Germany
| | - Stephanie Zok
- Division of Nephrology and Immunology, RWTH Aachen University Hospital, Aachen, Germany
| | - Bernd Denecke
- Interdisciplinary Centre for Clinical Research, RWTH Aachen University Hospital, Aachen, Germany
| | - Esther Stuettgen
- Division of Nephrology and Immunology, RWTH Aachen University Hospital, Aachen, Germany
| | - Simon Otten
- Division of Nephrology and Immunology, RWTH Aachen University Hospital, Aachen, Germany
| | - Juergen Floege
- Division of Nephrology and Immunology, RWTH Aachen University Hospital, Aachen, Germany
| | - Uta Kunter
- Division of Nephrology and Immunology, RWTH Aachen University Hospital, Aachen, Germany
- * E-mail:
| |
Collapse
|
9
|
Yamada A, Yokoo T, Yokote S, Yamanaka S, Izuhara L, Katsuoka Y, Shimada Y, Shukuya A, Okano HJ, Ohashi T, Ida H. Comparison of multipotency and molecular profile of MSCs between CKD and healthy rats. Hum Cell 2014; 27:59-67. [DOI: 10.1007/s13577-013-0082-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 10/04/2013] [Indexed: 12/26/2022]
|
10
|
van Koppen A, Joles JA, Bongartz LG, van den Brandt J, Reichardt HM, Goldschmeding R, Nguyen TQ, Verhaar MC. Healthy bone marrow cells reduce progression of kidney failure better than CKD bone marrow cells in rats with established chronic kidney disease. Cell Transplant 2013; 21:2299-312. [PMID: 23231961 DOI: 10.3727/096368912x636795] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Chronic kidney disease (CKD) is a major health care problem. New interventions to slow or prevent disease progression are urgently needed. We studied functional and structural effects of infusion of healthy and CKD bone marrow cells (BMCs) in a rat model of established CKD. CKD was induced by 5/6 nephrectomy (SNX) in Lewis rats, and disease progression was accelerated with L-NNA and 6% NaCl diet. Six weeks after SNX, CKD rats received healthy eGFP(+) BMCs, CKD eGFP(+) BMCs, or vehicle by single renal artery injection. Healthy BMCs were functionally effective 6 weeks after administration: glomerular filtration rate (GFR; inulin clearance) (0.48±0.16 vs. 0.26±0.14 ml/min/100 g) and effective renal plasma flow (RPF; PAH clearance) (1.6±0.40 vs. 1.0±0.62 ml/min/100 g) were higher in healthy BMC- versus vehicle-treated rats (both p < 0.05). Systolic blood pressure (SBP) and proteinuria were lower 5 weeks after treatment with healthy BMCs versus vehicle (SBP, 151±13 vs. 186±25 mmHg; proteinuria, 33±20 vs. 59±39 mg/day, both p < 0.05). Glomerular capillary density was increased, and less sclerosis was detected after healthy BMCs (both p < 0.05). Tubulointerstitial inflammation was also decreased after healthy BMCs. eGFP(+) cells were present in the glomeruli and peritubular capillaries of the remnant kidney in all BMC-treated rats. CKD BMCs also reduced SBP, proteinuria, glomerulosclerosis, and tubular atrophy versus vehicle in CKD rats. However, CKD BMC therapy was not functionally effective versus vehicle [GFR: 0.28±0.09 vs. 0.26±0.16 ml/min/100 g (NS), RPF: 1.15±0.36 vs. 0.78±0.44 ml/min/100 g (NS)], and failed to decrease tubulointerstitial inflammation and fibrosis. Single intrarenal injection of healthy BMCs in rats with established CKD slowed progression of the disease, associated with increased glomerular capillary density and less sclerosis, whereas injection of CKD BMCs was less effective.
Collapse
Affiliation(s)
- Arianne van Koppen
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Madhira SL, Challa SS, Chalasani M, Nappanveethl G, Bhonde RR, Ajumeera R, Venkatesan V. Promise(s) of mesenchymal stem cells as an in vitro model system to depict pre-diabetic/diabetic milieu in WNIN/GR-Ob mutant rats. PLoS One 2012; 7:e48061. [PMID: 23144726 PMCID: PMC3483309 DOI: 10.1371/journal.pone.0048061] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Accepted: 09/20/2012] [Indexed: 12/13/2022] Open
Abstract
Background Development of model systems have helped to a large extent, in bridging gap to understand the mechanism(s) of disease including diabetes. Interestingly, WNIN/GR-Ob rats (Mutants), established at National Centre for Laboratory Animals (NCLAS) of National Institute of Nutrition (NIN), form a suitable model system to study obesity with Type 2 diabetes (T2D) demonstrating several secondary complications (cataract, cardiovascular complications, infertility, nephropathy etc). The present study has been carried out to explore the potent application(s) of multipotent stem cells such as bone marrow mesenchymal stem cells (BM-MSCs), to portray features of pre-diabetic/T2D vis-à-vis featuring obesity, with impaired glucose tolerance (IGT), hyperinsulinemia (HI) and insulin resistance (IR) seen with Mutant rats akin to human situation. Methodology/Principal Findings Primary cultures of BM-MSCs (third passage) from Mutants, its lean littermate (Lean) and parental control (Control) were characterized for: proliferation markers, disease memory to mark obesity/T2D/HI/IR which included phased gene expression studies for adipogenic/pancreatic lineages, inflammatory markers and differentiation ability to form mature adipocytes/Insulin-like cellular aggregates (ILCAs). The data showed that BM-MSCs from Mutant demonstrated a state of disease memory, depicted by an upregulated expression of inflammatory markers (IL-6, TNFα); increased stem cell recruitment (Oct-4, Sox-2) and proliferation rates (CD90+/CD29+, PDA, ‘S’ phase of cell cycle by FACS and BrdU incorporation); accelerated preadipocyte induction (Dact-1, PPARγ2) with a quantitative increase in mature adipocyte formation (Leptin); ILCAs, which were non-responsive to high glucose did confer the Obese/T2D memory in Mutants. Further, these observations were in compliance with the anthropometric data. Conclusions Given the ease of accessibility and availability of MSCs, the present study form the basis to report for the first time, application of BM-MSCs as a feasible in vitro model system to portray the disease memory of pre-clinical/T2D with IR - a major metabolic disorder of global concern.
Collapse
Affiliation(s)
- Soundarya L. Madhira
- Department of Biochemistry/Stem Cell Research, National Institute of Nutrition, Hyderabad, Andhra Pradesh, India
| | - Satya S. Challa
- Department of Biochemistry/Stem Cell Research, National Institute of Nutrition, Hyderabad, Andhra Pradesh, India
| | - Maniprabha Chalasani
- Department of Biochemistry/Stem Cell Research, National Institute of Nutrition, Hyderabad, Andhra Pradesh, India
| | - Giridharan Nappanveethl
- National Centre for Laboratory Animal Sciences, National Institute of Nutrition, Hyderabad, Andhra Pradesh, India
| | - Ramesh R. Bhonde
- Manipal Institute of Regenerative Medicine, Bangalore, Karnataka, India
| | - Rajanna Ajumeera
- Department of Biochemistry/Stem Cell Research, National Institute of Nutrition, Hyderabad, Andhra Pradesh, India
| | - Vijayalakshmi Venkatesan
- Department of Biochemistry/Stem Cell Research, National Institute of Nutrition, Hyderabad, Andhra Pradesh, India
- * E-mail:
| |
Collapse
|
12
|
Adamowicz J, Juszczak K, Bajek A, Tworkiewicz J, Nowacki M, Marszalek A, Thor PJ, Chlosta P, Drewa T. Morphological and urodynamic evaluation of urinary bladder wall regeneration: muscles guarantee contraction but not proper function--a rat model research study. Transplant Proc 2012; 44:1429-34. [PMID: 22664029 DOI: 10.1016/j.transproceed.2012.01.144] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2010] [Revised: 01/14/2012] [Accepted: 01/31/2012] [Indexed: 11/26/2022]
Abstract
BACKGROUND Numerous studies are ungoing to develop a substitute for the native urinary bladder wall. The principals of tissue engineering approaches to urinary bladder wall augmentation require a favorable environment for smooth muscle regeneration, which is crucial for bladder function. This study was performed to evaluate bone marrow mesenchymal stem cells (BMSC) seeded on to amniotic membranes fixed to Tachosil sponges as grafts for urinary bladder muscle layer augmentation in a syngenic rat model. MATERIALS AND METHODS Amniotic membranes seeded with BMSC and covered by Tachosil sponges were implanted as multilayer grafts into nine rats to regenerate the urinary bladder wall. The control group consisted of 12 healthy rats. Urodynamic examinations included contraction, elasticity, compliance, and urinary bladder motor activity. Hematocylin and eosin and Masson's trichrome stains were used to evaluate muscle regeneration; histological data were digitally analyzed with the ImageJ tool. RESULTS The area of muscle bundles ranged from 5% to 25% or 32% to 41% in control versus reconstructed bladders, respectively. Among nine animals with reconstructed urinary bladders, urodynamic evaluation revealed bladder motor hyperactivity with regular (n = 4) or irregular (n = 1) storage and voiding phases, as well as proper bladder motor activity with a large bladder capacity (n = 1). No bladder contractility was recorded in one case and large stones developed in two animals, which made functional studies impossible. CONCLUSIONS Regenerated smooth muscle cells created an autonomic cell population that was poorly assimilated to the rest of the urinary bladder wall. The histological presence of a regenerated muscle layer did not guarantee proper urinary bladder function.
Collapse
Affiliation(s)
- J Adamowicz
- Department of Tissue Engineering, Medical College, N Copernicus University, Torun, Poland
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Flisinski M, Brymora A, Bartlomiejczyk I, Wisniewska E, Golda R, Stefanska A, Paczek L, Manitius J. Decreased Hypoxia-Inducible Factor-1a in Gastrocnemius Muscle in Rats with Chronic Kidney Disease. ACTA ACUST UNITED AC 2012; 35:608-18. [DOI: 10.1159/000339706] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2010] [Accepted: 05/23/2012] [Indexed: 01/13/2023]
|
14
|
Shokeir AA, Harraz AM, El-Din ABS. Tissue engineering and stem cells: basic principles and applications in urology. Int J Urol 2010; 17:964-73. [PMID: 20969644 DOI: 10.1111/j.1442-2042.2010.02643.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
To overcome problems of damaged urinary tract tissues and complications of current procedures, tissue engineering (TE) techniques and stem cell (SC) research have achieved great progress. Although diversity of techniques is used, urologists should know the basics. We carried out a literature review regarding the basic principles and applications of TE and SC technologies in the genitourinary tract. We carried out MEDLINE/PubMed searches for English articles until March 2010 using a combination of the following keywords: bladder, erectile dysfunction, kidney, prostate, Peyronie's disease, stem cells, stress urinary incontinence, testis, tissue engineering, ureter, urethra and urinary tract. Retrieved abstracts were checked, and full versions of relevant articles were obtained. Scientists have achieved great advances in basic science research. This is obvious by the tremendous increase in the number of publications. We divided this review in two topics; the first discusses basic science principles of TE and SC, whereas the second part delineates current clinical applications and advances in urological literature. TE and SC applications represent an alternative resource for treating complicated urological diseases. Despite the paucity of clinical trials, the promising results of animal models and continuous work represents the hope of treating various urological disorders with this technology.
Collapse
Affiliation(s)
- Ahmed A Shokeir
- Mansoura Urology and Nephrology Center, Urology Department, Mansoura, Egypt.
| | | | | |
Collapse
|
15
|
Phadnis SM, Ghaskadbi SM, Hardikar AA, Bhonde RR. Mesenchymal stem cells derived from bone marrow of diabetic patients portrait unique markers influenced by the diabetic microenvironment. Rev Diabet Stud 2009; 6:260-70. [PMID: 20043038 DOI: 10.1900/rds.2009.6.260] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cellular microenvironment is known to play a critical role in the maintenance of human bone marrow-derived mesenchymal stem cells (BM-MSCs). It was uncertain whether BM-MSCs obtained from a 'diabetic milieu' (dBM-MSCs) offer the same regenerative potential as those obtained from healthy (non-diabetic) individuals (hBM-MSCs). To investigate the effect of diabetic microenvironment on human BM-MSCs, we isolated and characterized these cells from diabetic patients (dBM-MSCs). We found that dBM-MSCs expressed mesenchymal markers such as vimentin, smooth muscle actin, nestin, fibronectin, CD29, CD44, CD73, CD90, and CD105. These cells also exhibited multilineage differentiation potential, as evident from the generation of adipocytes, osteocytes, and chondrocytes when exposed to lineage specific differentiation media. Although the cells were similar to hBM-MSCs, 6% (3/54) of dBM-MSCs expressed proinsulin/C-peptide. Emanating from the diabetic microenvironmental milieu, we analyzed whether in vitro reprogramming could afford the maturation of the islet-like clusters (ICAs) derived from dBM-MSCs. Upon mimicking the diabetic hyperglycemic niche and the supplementation of fetal pancreatic extract, to differentiate dBM-MSCs into pancreatic lineage in vitro, we observed rapid differentiation and maturation of dBM-MSCs into islet-like cell aggregates. Thus, our study demonstrated that diabetic hyperglycemic microenvironmental milieu plays a major role in inducing the differentiation of human BM-MSCs in vivo and in vitro.
Collapse
Affiliation(s)
- Smruti M Phadnis
- Tissue Engineering and Banking Laboratory, National Center for Cell Science, Ganeshkhind Road, Pune MH 411007, India
| | | | | | | |
Collapse
|
16
|
Little MH, Rae FK. Review article: Potential cellular therapies for renal disease: can we translate results from animal studies to the human condition? Nephrology (Carlton) 2009. [PMID: 19712255 DOI: 10.1111/j.1440-1797.2009.01144.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The incidence of chronic kidney disease is increasing worldwide, prompting considerable research into potential regenerative therapies. These have included studies to determine whether an endogenous renal stem cell exists in the postnatal kidney and whether non-renal adult stem cells, such as mesenchymal stem cell, can ameliorate renal damage. Such stem cells will either need to be recruited to the damaged kidney to repair the damage in situ or be differentiated into the desired cell type and delivered into the damaged kidney to subsequently elicit repair without maldifferentiation. To date, these studies have largely been performed using experimental and genetic models of renal damage in rodents. The translation of such research into a therapy applicable to human disease faces many challenges. In this review, we examine which animal models have been used to evaluate potential cellular therapies and how valid these are to human chronic kidney disease.
Collapse
Affiliation(s)
- Melissa H Little
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, Australia.
| | | |
Collapse
|