1
|
Tedla MG, Wright N, Yolcu ES, Wang Y, Shirwan H. Protocol for transplanting pancreatic islets into the parametrial fat pad of female mice. STAR Protoc 2024; 5:102816. [PMID: 38180833 PMCID: PMC10801339 DOI: 10.1016/j.xpro.2023.102816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/13/2023] [Accepted: 12/18/2023] [Indexed: 01/07/2024] Open
Abstract
Although the male epididymal fat pad is an effective site for islet transplantation, females lack this tissue. Here, we present a protocol to assess the parametrial fat pad (PFP) adjacent to the uterine horn in females as an alternative site for islet transplantation. We describe steps for islet isolation from the pancreas, counting, transplantation into PFP, and monitoring for engraftment. Transplantation into PFP is minimally invasive, time efficient, and supports long-term engraftment of syngeneic islets and rejection of allogeneic islets. For complete details on the use and execution of this protocol, please refer to Zhang et al. (2022).1.
Collapse
Affiliation(s)
- Mebrahtu G Tedla
- Department of Pediatrics, Ellis Fischel Cancer Center, School of Medicine, University of Missouri, Columbia, MO 65211, USA; Department of Molecular Microbiology and Immunology, Ellis Fischel Cancer Center, School of Medicine, University of Missouri, Columbia, MO 65211, USA; NextGen Precision Health Institute, Ellis Fischel Cancer Center, School of Medicine, University of Missouri, Columbia, MO 65211, USA
| | - Nathaniel Wright
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Esma S Yolcu
- Department of Pediatrics, Ellis Fischel Cancer Center, School of Medicine, University of Missouri, Columbia, MO 65211, USA; Department of Molecular Microbiology and Immunology, Ellis Fischel Cancer Center, School of Medicine, University of Missouri, Columbia, MO 65211, USA; NextGen Precision Health Institute, Ellis Fischel Cancer Center, School of Medicine, University of Missouri, Columbia, MO 65211, USA
| | - Yadong Wang
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Haval Shirwan
- Department of Pediatrics, Ellis Fischel Cancer Center, School of Medicine, University of Missouri, Columbia, MO 65211, USA.
| |
Collapse
|
2
|
White AM, Shamul JG, Xu J, Stewart S, Bromberg JS, He X. Engineering Strategies to Improve Islet Transplantation for Type 1 Diabetes Therapy. ACS Biomater Sci Eng 2019; 6:2543-2562. [PMID: 33299929 DOI: 10.1021/acsbiomaterials.9b01406] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Type 1 diabetes is an autoimmune disease in which the immune system attacks insulin-producing beta cells of pancreatic islets. Type 1 diabetes can be treated with islet transplantation; however, patients must be administered immunosuppressants to prevent immune rejection of the transplanted islets if they are not autologous or not engineered with immune protection/isolation. To overcome biological barriers of islet transplantation, encapsulation strategies have been developed and robustly investigated. While islet encapsulation can prevent the need for immunosuppressants, these approaches have not shown much success in clinical trials due to a lack of long-term insulin production. Multiple engineering strategies have been used to improve encapsulation and post-transplantation islet survival. In addition, more efficient islet cryopreservation methods have been designed to facilitate the scaling-up of islet transplantation. Other islet sources have been identified including porcine islets and stem cell-derived islet-like aggregates. Overall, islet-laden capsule transplantation has greatly improved over the past 30 years and is moving towards becoming a clinically feasible treatment for type 1 diabetes.
Collapse
Affiliation(s)
- Alisa M White
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - James G Shamul
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Jiangsheng Xu
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Samantha Stewart
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Jonathan S Bromberg
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201.,Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201.,Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201.,Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, MD 21201
| | - Xiaoming He
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA.,Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, MD 21201.,Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, MD 20742, USA, Baltimore, MD 21201, USA
| |
Collapse
|
3
|
|
4
|
Zongyi Y, Funian Z, Hao L, Ying C, Jialin Z, Baifeng L. A rapid, efficient, and economic device and method for the isolation and purification of mouse islet cells. PLoS One 2017; 12:e0171618. [PMID: 28207765 PMCID: PMC5313167 DOI: 10.1371/journal.pone.0171618] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 01/23/2017] [Indexed: 11/28/2022] Open
Abstract
Rapid, efficient, and economic method for the isolation and purification of islets has been pursued by numerous islet-related researchers. In this study, we compared the advantages and disadvantages of our developed patented method with those of commonly used conventional methods (Ficoll-400, 1077, and handpicking methods). Cell viability was assayed using Trypan blue, cell purity and yield were assayed using diphenylthiocarbazone, and islet function was assayed using acridine orange/ethidium bromide staining and enzyme-linked immunosorbent assay-glucose stimulation testing 4 days after cultivation. The results showed that our islet isolation and purification method required 12 ± 3 min, which was significantly shorter than the time required in Ficoll-400, 1077, and HPU groups (34 ± 3, 41 ± 4, and 30 ± 4 min, respectively; P < 0.05). There was no significant difference in islet viability among the four groups. The islet purity, function, yield, and cost of our method were superior to those of the Ficoll-400 and 1077 methods, but inferior to the handpicking method. However, the handpicking method may cause wrist injury and visual impairment in researchers during large-scale islet isolation (>1000 islets). In summary, the MCT method is a rapid, efficient, and economic method for isolating and purifying murine islet cell clumps. This method overcomes some of the shortcomings of conventional methods, showing a relatively higher quality and yield of islets within a shorter duration at a lower cost. Therefore, the current method provides researchers with an alternative option for islet isolation and should be widely generalized.
Collapse
Affiliation(s)
- Yin Zongyi
- Department of Hepatobiliary Surgery and Organ Transplantation, the First Hospital of China Medical University, Shenyang, China
| | - Zou Funian
- Department of Hepatobiliary Surgery and Organ Transplantation, the First Hospital of China Medical University, Shenyang, China
| | - Li Hao
- Department of Hepatobiliary Surgery and Organ Transplantation, the First Hospital of China Medical University, Shenyang, China
| | - Cheng Ying
- Department of Hepatobiliary Surgery and Organ Transplantation, the First Hospital of China Medical University, Shenyang, China.,National Key Lab. of General Surgery, the First Hospital of China Medical University, Shenyang, China.,Multiple Organ Transplantation Institute of the First Hospital of China Medical University, Shenyang, China
| | - Zhang Jialin
- Department of Hepatobiliary Surgery and Organ Transplantation, the First Hospital of China Medical University, Shenyang, China.,National Key Lab. of General Surgery, the First Hospital of China Medical University, Shenyang, China.,Multiple Organ Transplantation Institute of the First Hospital of China Medical University, Shenyang, China
| | - Li Baifeng
- Department of Hepatobiliary Surgery and Organ Transplantation, the First Hospital of China Medical University, Shenyang, China.,National Key Lab. of General Surgery, the First Hospital of China Medical University, Shenyang, China.,Multiple Organ Transplantation Institute of the First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
5
|
Zhu HT, Wang WL, Yu L, Wang B. Pig-islet xenotransplantation: recent progress and current perspectives. Front Surg 2014; 1:7. [PMID: 25593932 PMCID: PMC4287008 DOI: 10.3389/fsurg.2014.00007] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 03/07/2014] [Indexed: 01/23/2023] Open
Abstract
Islet xenotransplantation is one prospective treatment to bridge the gap between available human cells and needs of patients with diabetes. Pig represents an ideal candidate for obtaining such available cells. However, potential clinical application of pig islet still faces obstacles including inadequate yield of high-quality functional islets and xenorejection of the transplants. Adequate amounts of available islets can be obtained by selection of a suitable pathogen-free source herd and the development of isolation and purification method. Several studies demonstrated the feasibility of successful preclinical pig-islet xenotransplantation and provided insights and possible mechanisms of xenogeneic immune recognition and rejection. Particularly promising is the achievement of long-term insulin independence in diabetic models by means of distinct islet products and novel immunotherapeutic strategies. Nonetheless, further efforts are needed to obtain much more safety and efficacy data to translate these findings into clinic.
Collapse
Affiliation(s)
- Hai-Tao Zhu
- Department of Hepatobiliary Surgery, First Affiliated Hospital, Medical College, Xi’an Jiaotong University, Xi’an, China
| | - Wan-Li Wang
- Department of Hepatobiliary Surgery, First Affiliated Hospital, Medical College, Xi’an Jiaotong University, Xi’an, China
| | - Liang Yu
- Department of Hepatobiliary Surgery, First Affiliated Hospital, Medical College, Xi’an Jiaotong University, Xi’an, China
| | - Bo Wang
- Department of Hepatobiliary Surgery, First Affiliated Hospital, Medical College, Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
6
|
Tian M, Lv Y, Zhai C, Zhu H, Yu L, Wang B. Alternative immunomodulatory strategies for xenotransplantation: CD80/CD86-CTLA4 pathway-modified immature dendritic cells promote xenograft survival. PLoS One 2013; 8:e69640. [PMID: 23922766 PMCID: PMC3726660 DOI: 10.1371/journal.pone.0069640] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2012] [Accepted: 06/10/2013] [Indexed: 12/26/2022] Open
Abstract
Background Xenotransplantation is a promising approach to circumventing the current organ shortage. However, T-cell-dependent anti-xenoresponses are a major challenge to successful xenografts. Given the advantages of the use of CTLA4-Ig in the survival of allografts, the purpose of the study was to investigate the therapeutic potential of CTLA4-IgG4 modified immature dendritic cells (imDCs) in the prevention of islets xenograft rejection. Methods CTLA4-IgG4 was constructed by the fusion of the extracellular regions of porcine CTLA4 to human the hIgG4 Fc region. The imDCs were induced and cultured from porcine peripheral blood mononuclear cells (PBMC). The CTLA4-IgG4 modified imDCs were delivered via the portal vein to the liver of diabetic mice (insulin-dependent diabetes mellitus) before islet xenografting, and mCTLA4-Ig was administered intravenously after xenotransplantation. Results The xenograft survival of mice receiving unmodified imDCs was approximately 30 days. However, following administration of CTLA4-IgG4 modified imDCs before grafting and mCTLA4-Ig after grafting, xenografts survived for more than 100 days. Flow cytometric analysis showed that the CD4+CD25+Foxp3+ Treg population was increased in spleens. The efficacy of donor CTLA4-IgG4 modified imDCs correlated partially with the amplification of Tregs. Conclusions These results confirm that selective inhibition of the direct and indirect pathways of T-cell activation by donor CTLA4-IgG4 modified imDCs and receptor CTLA4-Ig is a highly effective strategy to promote survival of xenografts.
Collapse
Affiliation(s)
- Min Tian
- Department of Hepatobiliary Surgery, First Affiliated Hospital, Medical College, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Yi Lv
- Department of Hepatobiliary Surgery, First Affiliated Hospital, Medical College, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Chao Zhai
- Department of Hepatobiliary Surgery, First Affiliated Hospital, Medical College, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Haitao Zhu
- Department of Hepatobiliary Surgery, First Affiliated Hospital, Medical College, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Liang Yu
- Department of Hepatobiliary Surgery, First Affiliated Hospital, Medical College, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Bo Wang
- Department of Hepatobiliary Surgery, First Affiliated Hospital, Medical College, Xi'an Jiaotong University, Xi'an, People's Republic of China
- * E-mail:
| |
Collapse
|
7
|
Abstract
Pig islet xenotransplantation is effective in treating diabetes. Nowadays, the research of islet xenotransplantation is still in the research phase, and its clinical use is mainly restricted by the shortage of functional islets and graft rejection. In recent years, several studies have demonstrated the feasibility of successful preclinical pig islet xenotransplantation. Moreover, promising results concerning prolonged insulin independence were achieved with the improvement of islet isolation technologies, application of novel immunotherapeutic strategies, and the development of transplantation surgery. This review aims to elucidate the advances in the separation and preparation of transplanted pig islet, immunological rejection and treatments, potential safety problems, and clinical studies.
Collapse
|
8
|
Jahansouz C, Jahansouz C, Kumer SC, Brayman KL. Evolution of β-Cell Replacement Therapy in Diabetes Mellitus: Islet Cell Transplantation. J Transplant 2011; 2011:247959. [PMID: 22013505 PMCID: PMC3195999 DOI: 10.1155/2011/247959] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2011] [Accepted: 08/08/2011] [Indexed: 12/12/2022] Open
Abstract
Diabetes mellitus remains one of the leading causes of morbidity and mortality worldwide. According to the Centers for Disease Control and Prevention, approximately 23.6 million people in the United States are affected. Of these individuals, 5 to 10% have been diagnosed with Type 1 diabetes mellitus (T1DM), an autoimmune disease. Although it often appears in childhood, T1DM may manifest at any age, leading to significant morbidity and decreased quality of life. Since the 1960s, the surgical treatment for diabetes mellitus has evolved to become a viable alternative to insulin administration, beginning with pancreatic transplantation. While islet cell transplantation has emerged as another potential alternative, its role in the treatment of T1DM remains to be solidified as research continues to establish it as a truly viable alternative for achieving insulin independence. In this paper, the historical evolution, procurement, current status, benefits, risks, and ongoing research of islet cell transplantation are explored.
Collapse
Affiliation(s)
- Cyrus Jahansouz
- School of Medicine, University of Virginia, Charlottesville, VA 22102, USA
| | | | | | | |
Collapse
|
9
|
Zhai C, Yu L, Zhu H, Tian M, Xiaogang Z, Bo W. Porcine CTLA4-Ig prolong islet xenografts in rats by downregulating the direct pathway of T-cell activation. Xenotransplantation 2011; 18:40-5. [PMID: 21342286 DOI: 10.1111/j.1399-3089.2011.00627.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
AIM Porcine pancreatic islets fused with pCTLA4-Ig were transplanted into diabetic rats. Xenografts survival was observed, and the underlying immunological rejection mechanisms were investigated. METHODS Control porcine islets, empty vector (Adv-GFP)-transfected, and gene-modified porcine islets were transplanted into the renal capsule of diabetic rats. The survival rates of the xenografts were observed. Changes in serum levels of IL-4 and γ-IFN in the recipients were assessed. RESULTS The survival time of xenografts in the gene-modified porcine islets group was 34.50 ± 4.14 days, which was longer than those in the control group (34.50 ± 4.14 days vs. 7.43 ± 1.72 days and 7.22 ± 1.72 days; P < 0.01). Changes in the serum levels of IL-4 and γ-IFN between the groups of rats post-transplantation indicated the differentiation bias of T helper cells. CONCLUSIONS The donor-originated pCTLA-IgG4 fusion protein inhibits the direct pathway of recipient T-cell priming, which might prolong xenograft survival.
Collapse
Affiliation(s)
- Chao Zhai
- Department of Hepatobiliary Surgery, First Affiliated Hospital, Medical College, Xi'an Jiaotong University, Xi'an, China
| | | | | | | | | | | |
Collapse
|