1
|
Buraschi S, Pascal G, Liberatore F, Iozzo RV. Comprehensive investigation of proteoglycan gene expression in breast cancer: Discovery of a unique proteoglycan gene signature linked to the malignant phenotype. PROTEOGLYCAN RESEARCH 2025; 3:e70014. [PMID: 40066261 PMCID: PMC11893098 DOI: 10.1002/pgr2.70014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 12/06/2024] [Indexed: 03/14/2025]
Abstract
Solid tumors present a formidable challenge in oncology, necessitating innovative approaches to improve therapeutic outcomes. Proteoglycans, multifaceted molecules within the tumor microenvironment, have garnered attention due to their diverse roles in cancer progression. Their unique ability to interact with specific membrane receptors, growth factors, and cytokines provides a promising avenue for the development of recombinant proteoglycan-based therapies that could enhance the precision and efficacy of cancer treatment. In this study, we performed a comprehensive analysis of the proteoglycan gene landscape in human breast carcinomas. Leveraging the available wealth of genomic and clinical data regarding gene expression in breast carcinoma and using a machine learning model, we identified a unique gene expression signature composed of five proteoglycans differentially modulated in the tumor tissue: Syndecan-1 and asporin (upregulated) and decorin, PRELP and podocan (downregulated). Additional query of the breast carcinoma data revealed that serglycin, previously shown to be increased in breast carcinoma patients and mouse models and to correlate with a poor prognosis, was indeed decreased in the vast majority of breast cancer patients and its levels inversely correlated with tumor progression and invasion. This proteoglycan gene signature could provide novel diagnostic capabilities in breast cancer biology and highlights the need for further utilization of publicly available datasets for the clinical validation of preclinical experimental results.
Collapse
Affiliation(s)
- Simone Buraschi
- Department of Pathology and Genomic Medicine, and the Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Gabriel Pascal
- Department of Pathology and Genomic Medicine, and the Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Federico Liberatore
- School of Computer Science and Informatics, Cardiff University, Cardiff CF24 4AG, UK
| | - Renato V Iozzo
- Department of Pathology and Genomic Medicine, and the Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
2
|
Zhang F, Wang L, Chen Q, Zhang F, Wang X, Yao F. Podocan unraveled: Understanding its role in tumor proliferation and smooth muscle regulation. Biomed Pharmacother 2024; 179:117416. [PMID: 39276398 DOI: 10.1016/j.biopha.2024.117416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/25/2024] [Accepted: 09/04/2024] [Indexed: 09/17/2024] Open
Abstract
Podocan, a small leucine-rich repeat protein, is expressed in HIV-associated nephropathy, the cardiovascular system, and smooth muscle. Studies have linked PODN and PODNL to cancers such as osteosarcoma, glioma, and stomach cancer. Research has primarily focused on podocan's role in renal podocytes, injured smooth muscle cells, and various tumor cells. Bioinformatics studies have examined the role of PODN as a biomarker in tumors. Our research summarizes the modulatory role of podocan in smooth muscle and tumor proliferation through its suppression of cell proliferation and promotion of cell differentiation via various signaling pathways, including Wnt/β-catenin, TGF-β, and Akt/mTOR. We aim to provide a comprehensive overview of PODN's involvement in smooth muscle, cardiovascular system, and tumors by integrating current and past research. This review aims to enhance understanding and inform in the diagnosis, prognosis, and treatment of various diseases.
Collapse
Affiliation(s)
| | - Li Wang
- Department of Cardiology, The First Affiliated Hospital of Soochow University, China.
| | - Qicai Chen
- Children's Hospital of Soochow University, China.
| | - Fuyong Zhang
- Children's Hospital of Soochow University, China.
| | | | - Feng Yao
- Children's Hospital of Soochow University, China.
| |
Collapse
|
3
|
Anglicheau D, Delville M, Lamarthee B. Non anti-HLA antibodies and acute rejection: A critical viewpoint. Nephrol Ther 2019; 15 Suppl 1:S53-S59. [PMID: 30981396 DOI: 10.1016/j.nephro.2019.03.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 03/04/2019] [Indexed: 10/27/2022]
Abstract
In solid organ transplantation, the deleterious effect of antibodies directed against donor HLA antigens, whether preformed or de novo, is well established. Anti-HLA antibodies have been associated not only with the risk of antibody-mediated rejection but also with late graft dysfunction and are now considered to be the leading cause of allograft loss after renal transplantation. In addition to HLA antibodies, the possible involvement of non-HLA antibodies targeting donor endothelial cells has long been the subject of intense research. The purpose of this review is to discuss current knowledge and remaining issues related to the involvement of non-HLA antibodies in solid organ transplantation. More specifically, the clinical data underlying the hypothesis of the role of non-HLA antibodies will be discussed, as well as the different techniques for antibody detection, their clinical relevance and their antigenic targets.
Collapse
Affiliation(s)
- Dany Anglicheau
- Service de néphrologie et transplantation rénale adulte, hôpital Necker-Enfants-Malades, 149, rue de Sèvres, 75015 Paris, France; Université Paris Descartes Sorbonne Paris Cité, 12, rue de l'École-de-Médecine, 75006 Paris, France; Inserm, U1151, 149, rue de Sèvres, 75015 Paris, France.
| | - Marianne Delville
- Université Paris Descartes Sorbonne Paris Cité, 12, rue de l'École-de-Médecine, 75006 Paris, France; Service de biothérapie, hôpital Necker-Enfants-Malades, 149, rue de Sèvres, 75015 Paris, France; Inserm, U1163, 24, boulevard de Montparnasse, 75015 Paris, France
| | - Baptiste Lamarthee
- Service de néphrologie et transplantation rénale adulte, hôpital Necker-Enfants-Malades, 149, rue de Sèvres, 75015 Paris, France; Université Paris Descartes Sorbonne Paris Cité, 12, rue de l'École-de-Médecine, 75006 Paris, France; Inserm, U1151, 149, rue de Sèvres, 75015 Paris, France
| |
Collapse
|
4
|
Abstract
INTRODUCTION High-content protein microarrays in principle enable the functional interrogation of the human proteome in a broad range of applications, including biomarker discovery, profiling of immune responses, identification of enzyme substrates, and quantifying protein-small molecule, protein-protein and protein-DNA/RNA interactions. As with other microarrays, the underlying proteomic platforms are under active technological development and a range of different protein microarrays are now commercially available. However, deciphering the differences between these platforms to identify the most suitable protein microarray for the specific research question is not always straightforward. Areas covered: This review provides an overview of the technological basis, applications and limitations of some of the most commonly used full-length, recombinant protein and protein fragment microarray platforms, including ProtoArray Human Protein Microarrays, HuProt Human Proteome Microarrays, Human Protein Atlas Protein Fragment Arrays, Nucleic Acid Programmable Arrays and Immunome Protein Arrays. Expert commentary: The choice of appropriate protein microarray platform depends on the specific biological application in hand, with both more focused, lower density and higher density arrays having distinct advantages. Full-length protein arrays offer advantages in biomarker discovery profiling applications, although care is required in ensuring that the protein production and array fabrication methodology is compatible with the required downstream functionality.
Collapse
Affiliation(s)
- Jessica G Duarte
- a Cancer Immunobiology Laboratory, Olivia Newton-John Cancer Research Institute/School of Cancer Medicine , La Trobe University , Heidelberg , Australia
| | - Jonathan M Blackburn
- b Institute of Infectious Disease and Molecular Medicine & Department of Integrative Biomedical Sciences, Faculty of Health Sciences , University of Cape Town , Observatory, South Africa
| |
Collapse
|
5
|
Nio Y, Okawara M, Okuda S, Matsuo T, Furuyama N. Podocan Is Expressed in Blood and Adipose Tissue and Correlates Negatively With the Induction of Diabetic Nephropathy. J Endocr Soc 2017; 1:772-786. [PMID: 29264529 PMCID: PMC5686772 DOI: 10.1210/js.2017-00123] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 05/09/2017] [Indexed: 11/30/2022] Open
Abstract
Podocan, a member of the small leucine-rich repeat proteoglycans (SLRPs), is expressed in vascular endothelial cells with high levels of expression in the sclerotic glomerular lesions of experimental HIV-associated nephropathy. It is also found in vascular smooth muscle cells and is involved in atherosclerosis. Decorin, a protein similar to podocan, also belongs to the SLRP family and is highly expressed in adipose tissues. It is a secreted protein associated with obesity, type 2 diabetes, and diabetic nephropathy. Based on the similarity of podocan to decorin and its functions reported in the renal and cardiovascular systems, we hypothesized that podocan levels might correlate with the occurrence of metabolic syndromes such as obesity, diabetes, and diabetic nephropathy. We found that podocan was highly expressed in the adipose tissue of mice and humans and its expression was regulated by tumor necrosis factor-α in mouse 3T3-L1 adipocytes. In addition, podocan was detected in the plasma, and its levels tended to increase in diet-induced obese C57BL/6J mice and decrease in obese-diabetic KKAy and db/db mice. Podocan messenger RNA (mRNA) levels in the renal cortex correlated negatively with the urinary albumin-to-creatinine ratio, a surrogate marker of glomerular injury in uninephrectomized db/db mice used as a model of diabetic nephropathy. Our results suggest that podocan is involved in kidney function and could be a unique therapeutic target for diabetic nephropathy.
Collapse
Affiliation(s)
- Yasunori Nio
- Extra Value Generation and General Medicine Drug Discovery Unit, Fujisawa, Kanagawa 251-8555, Japan
| | - Mitsugi Okawara
- Extra Value Generation and General Medicine Drug Discovery Unit, Fujisawa, Kanagawa 251-8555, Japan
| | - Shoki Okuda
- Cardiovascular and Metabolic Drug Discovery Unit, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa 251-8555, Japan
| | - Takanori Matsuo
- Extra Value Generation and General Medicine Drug Discovery Unit, Fujisawa, Kanagawa 251-8555, Japan
| | - Naoki Furuyama
- Japan Medical Affairs, Japan Pharma Business Unit, Takeda Pharmaceutical Company Limited, Chuo-ku, Tokyo 103-8686, Japan
| |
Collapse
|
6
|
Pathogenesis of non-HLA antibodies in solid organ transplantation: Where do we stand? Hum Immunol 2016; 77:1055-1062. [PMID: 27237040 DOI: 10.1016/j.humimm.2016.05.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 04/29/2016] [Accepted: 05/23/2016] [Indexed: 11/20/2022]
Abstract
Antibody-mediated rejection (ABMR) is associated with poor transplant outcome. Pathogenic alloantibodies are usually directed against human leukocyte antigens (HLAs). Histological findings suggestive of ABMR usually demonstrate an anti-HLA donor-specific antibody (DSA)-mediated injury, while a small subset of patients develop acute dysfunction with histological lesions suggestive of ABMR in the absence of anti-HLA DSAs. Although this non-HLA ABMR is not well recognized by current diagnostic classifications, it is associated with graft dysfunction and allograft loss. These clinical descriptions suggest a pathogenic role for non-HLA anti-endothelial cell antibodies. Diverse antigenic targets have been described during the last decade. This review discusses recent findings in the field and addresses the clinical relevance of anti-endothelial cell antibodies (AECAs).
Collapse
|
7
|
Intragraft transcriptional profiling of renal transplant patients with tubular dysfunction reveals mechanisms underlying graft injury and recovery. Hum Genomics 2016; 10:2. [PMID: 26742487 PMCID: PMC4705764 DOI: 10.1186/s40246-015-0059-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 12/30/2015] [Indexed: 12/13/2022] Open
Abstract
Background Proximal tubular dysfunction (PTD) is associated with a decreased long-term graft survival in renal transplant patients and can be detected by the elevation of urinary tubular proteins. This study investigated transcriptional changes in biopsies from renal transplant patients with PTD to disclose molecular mechanisms underlying graft injury and functional recovery. Methods Thirty-three renal transplant patients with high urinary levels of retinol-binding protein, a biomarker of PTD, were enrolled in the study. The initial immunosuppressive scheme included azathioprine, cyclosporine, and steroids. After randomization, 18 patients (group 2) had their treatment modified by reducing cyclosporine dosage and substituting azathioprine for mycophenolate mofetil, while the other 15 patients (group 1) remained under the initial scheme. Patients were biopsied at enrollment and after 12 months of follow-up, and paired comparisons were performed between their intragraft gene expression profiles. The differential transcriptome profiles were analyzed by constructing gene co-expression networks and identifying enriched functions and central nodes in each network. Results Only the alternative immunosuppressive scheme used in group 2 ameliorated renal function and tubular proteinuria after 12 months of follow-up. Intragraft molecular changes observed in group 2 were linked to autophagy, extracellular matrix, and adaptive immunity. Conversely, gene expression changes in group 1 were related to fibrosis, endocytosis, ubiquitination, and endoplasmic reticulum stress. Conclusion These results suggest that molecular networks associated with the control of endocytosis, autophagy, protein overload, fibrosis, and adaptive immunity may be involved in improvement of graft function. Electronic supplementary material The online version of this article (doi:10.1186/s40246-015-0059-6) contains supplementary material, which is available to authorized users.
Collapse
|
8
|
Abstract
The use of peptide microarrays for epitope mapping of autoantibodies greatly facilitates the early diagnosis of allergic, cytotoxin-associated diseases and especially inflammatory diseases. A common approach to create the microarrays utilizes nitrocellulose-coated glass slides for peptide probe binding, which is based on surface adsorption. Advantages of this method include excellent peptide binding capacity and long-term stability. To ensure equal accessibility to all antibodies on the peptide microarray during epitope mapping, all probes are immobilized in a random manner, thus avoiding concentration-dependent effects on signal intensity.In this chapter, we provide a step-by-step protocol on how to construct the peptide microarrays and perform epitope mapping of autoantibodies using them. Finally we present a comparative approach for the evaluation of the data.
Collapse
|
9
|
Furukawa H, Oka S, Shimada K, Masuo K, Nakajima F, Funano S, Tanaka Y, Komiya A, Fukui N, Sawasaki T, Tadokoro K, Nose M, Tsuchiya N, Tohma S. Autoantibody Profiles in Collagen Disease Patients with Interstitial Lung Disease (ILD): Antibodies to Major Histocompatibility Complex Class I-Related Chain A (MICA) as Markers of ILD. Biomark Insights 2015; 10:63-73. [PMID: 26327779 PMCID: PMC4539100 DOI: 10.4137/bmi.s28209] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 06/14/2015] [Accepted: 06/19/2015] [Indexed: 11/05/2022] Open
Abstract
Interstitial lung disease (ILD) is frequently associated with collagen disease. It is then designated as collagen vascular disease-associated ILD (CVD-ILD), and influences patients' prognosis. The prognosis of acute-onset diffuse ILD (AoDILD) occurring in patients with collagen disease is quite poor. Here, we report our investigation of auto-antibody (Ab) profiles to determine whether they may be useful in diagnosing CVD-ILD or AoDILD in collagen disease. Auto-Ab profiles were analyzed using the Lambda Array Beads Multi-Analyte System, granulocyte immunofluorescence test, Proto-Array Human Protein Microarray, AlphaScreen assay, and glutathione S-transferase capture enzyme-linked immunosorbent assay in 34 patients with rheumatoid arthritis (RA) with or without CVD-ILD and in 15 patients with collagen disease with AoDILD. The average anti-major histocompatibility complex class I-related chain A (MICA) Ab levels were higher in RA patients with CVD-ILD than in those without (P = 0.0013). The ratio of the average anti-MICA Ab level to the average anti-human leukocyte antigen class I Ab level (ie, MICA/Class I) was significantly higher in RA patients with CVD-ILD compared with those without (P = 4.47 × 10(-5)). To the best of our knowledge, this is the first report of auto-Ab profiles in CVD-ILD. The MICA/Class I ratio could be a better marker for diagnosing CVD-ILD than KL-6 (Krebs von den lungen-6).
Collapse
Affiliation(s)
- Hiroshi Furukawa
- Clinical Research Center for Allergy and Rheumatology, Sagamihara Hospital, National Hospital Organization, Sagamihara, Japan. ; Molecular and Genetic Epidemiology Laboratory, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Shomi Oka
- Clinical Research Center for Allergy and Rheumatology, Sagamihara Hospital, National Hospital Organization, Sagamihara, Japan. ; Molecular and Genetic Epidemiology Laboratory, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Kota Shimada
- Department of Rheumatology, Sagamihara Hospital, National Hospital Organization, Sagamihara, Japan. ; Department of Rheumatic Diseases, Tokyo Metropolitan Tama Medical Center, Fuchu, Japan
| | - Kiyoe Masuo
- Technical Marketing Department, VERITAS Corporation, Tokyo, Japan
| | - Fumiaki Nakajima
- Research and Development Department, Central Blood Institute, Japanese Red Cross Society, Tokyo, Japan
| | | | - Yuki Tanaka
- Intergated Center for Science, Ehime University, Toon
| | - Akiko Komiya
- Clinical Research Center for Allergy and Rheumatology, Sagamihara Hospital, National Hospital Organization, Sagamihara, Japan
| | - Naoshi Fukui
- Clinical Research Center for Allergy and Rheumatology, Sagamihara Hospital, National Hospital Organization, Sagamihara, Japan
| | - Tatsuya Sawasaki
- Cell-Free Science and Technology Research Center, Ehime University, Matsuyama, Japan
| | - Kenji Tadokoro
- Research and Development Department, Central Blood Institute, Japanese Red Cross Society, Tokyo, Japan
| | - Masato Nose
- Proteo-Medicine Research Center, Ehime University, Toon
| | - Naoyuki Tsuchiya
- Molecular and Genetic Epidemiology Laboratory, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Shigeto Tohma
- Clinical Research Center for Allergy and Rheumatology, Sagamihara Hospital, National Hospital Organization, Sagamihara, Japan
| |
Collapse
|
10
|
Koo BK, Chae S, Kim KM, Kang MJ, Kim EG, Kwak SH, Jung HS, Cho YM, Choi SH, Park YJ, Shin CH, Jang HC, Shin CS, Hwang D, Yi EC, Park KS. Identification of novel autoantibodies in type 1 diabetic patients using a high-density protein microarray. Diabetes 2014; 63:3022-32. [PMID: 24947363 DOI: 10.2337/db13-1566] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Autoantibodies can facilitate diagnostic and therapeutic means for type 1 diabetes (T1DM). We profiled autoantibodies from serum samples of 16 T1DM patients, 16 type 2 diabetic (T2DM) patients, and 27 healthy control subjects with normal glucose tolerance (NGT) by using protein microarrays containing 9,480 proteins. Two novel autoantibodies, anti-EEF1A1 and anti-UBE2L3, were selected from microarrays followed by immunofluorescence staining of pancreas. We then tested the validity of the candidates by ELISA in two independent test cohorts: 1) 95 adults with T1DM, 49 with T2DM, 11 with latent autoimmune diabetes in adults (LADA), 20 with Graves disease, and 66 with NGT and 2) 33 children with T1DM and 34 healthy children. Concentrations of these autoantibodies were significantly higher in T1DM patients than in NGT and T2DM subjects (P < 0.01), which was also confirmed in the test cohort of children (P < 0.05). Prevalence of anti-EEF1A1 and anti-UBE2L3 antibodies was 29.5% and 35.8% in T1DM, respectively. Of note, 40.9% of T1DM patients who lack anti-GAD antibodies (GADA) had anti-EEF1A1 and/or anti-UBE2L3 antibodies. These were also detected in patients with fulminant T1DM but not LADA. Our approach identified autoantibodies that can provide a new dimension of information indicative of T1DM independent of GADA and new insights into diagnosis and classification of T1DM.
Collapse
Affiliation(s)
- Bo Kyung Koo
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea Department of Internal Medicine, Boramae Medical Center, Seoul, Korea
| | - Sehyun Chae
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, Korea
| | - Kristine M Kim
- Department of Systems Immunology, College of Biomedical Science, and Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon, Korea
| | - Min Jueng Kang
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, and College of Medicine or College of Pharmacy, Seoul National University, Seoul, Korea
| | - Eunhee G Kim
- Department of Systems Immunology, College of Biomedical Science, and Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon, Korea
| | - Soo Heon Kwak
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Hye Seung Jung
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Young Min Cho
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Sung Hee Choi
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Young Joo Park
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Choong Ho Shin
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Korea
| | - Hak C Jang
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Chan Soo Shin
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Daehee Hwang
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, Korea Center for Systems Biology of Plant Aging Research, Institute for Basic Science, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Korea
| | - Eugene C Yi
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, and College of Medicine or College of Pharmacy, Seoul National University, Seoul, Korea
| | - Kyong Soo Park
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, and College of Medicine or College of Pharmacy, Seoul National University, Seoul, Korea
| |
Collapse
|