1
|
Li Q, Li X, Quan H, Wang Y, Qu G, Shen Z, He C. IL-10 -/- Enhances DCs Immunity Against Chlamydia psittaci Infection via OX40L/NLRP3 and IDO/Treg Pathways. Front Immunol 2021; 12:645653. [PMID: 34093535 PMCID: PMC8176032 DOI: 10.3389/fimmu.2021.645653] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 05/04/2021] [Indexed: 12/30/2022] Open
Abstract
Chlamydia psittaci (C. psittaci) is a common zoonotic agent that affects both poultry and humans. Interleukin 10 (IL-10) is an anti-inflammatory factor produced during chlamydial infection, while dendritic cells (DCs) are powerful antigen-presenting cells that induce a primary immune response in the host. However, IL-10 and DCs regulatory mechanisms in C. psittaci infection remain elusive. In vivo and in vitro investigations of the regulatory mechanisms were performed. IL-10−/− mice, conditional DCs depletion mice (zinc finger dendritic cell-diphtheria toxin receptor [zDC-DTR]), and double-deficient mice (DD, IL-10−/−/zDCDTR/DTR) were intranasally infected with C. psittaci. The results showed that more than 90% of IL-10−/− mice, 70% of wild-type mice, and 60% of double-deficient mice survived, whereas all zDC-DTR mice died. A higher lymphocyte proliferation index was found in the IL-10 inhibitor mice and IL-10−/− mice. Moreover, severe lesions and high bacterial loads were detected in the zDC-DTR mice compared with double-deficient mice. In vitro studies revealed increased OX40-OX40 ligand (OX40-OX40L) activation and CD4+T cell proliferation. Besides, the expression of indoleamine 2, 3-dioxygenase (IDO), and regulatory T cells were significantly reduced in the co-culture system of CD4+ T cells and IL-10−/− DCs in C. psittaci infection. Additionally, the activation of the NLR family pyrin domain-containing 3 (NLRP3) inflammasome increased to facilitate the apoptosis of DCs, leading to rapid clearance of C. psittaci. Our study showed that IL-10−/− upregulated the function of deficient DCs by activating OX40-OX40L, T cells, and the NLPR3 inflammasome, and inhibiting IDO, and regulatory T cells. These effects enhanced the survival rate of mice and C. psittaci clearance. Our research highlights the mechanism of IL-10 interaction with DCs, OX40-OX40L, and the NLPR3 inflammasome, as potential targets against C. psittaci infection.
Collapse
Affiliation(s)
- Qiang Li
- Key Lab of Animal Epidemiology and Zoonoses of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xiaohui Li
- Key Lab of Animal Epidemiology and Zoonoses of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Hongkun Quan
- Key Lab of Animal Epidemiology and Zoonoses of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yihui Wang
- Key Lab of Animal Epidemiology and Zoonoses of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Guanggang Qu
- Preventive Veterinary Research Group, Binzhou Animal Science and Veterinary Medicine Academy of Shandong Province, Binzhou, China
| | - Zhiqiang Shen
- Preventive Veterinary Research Group, Binzhou Animal Science and Veterinary Medicine Academy of Shandong Province, Binzhou, China
| | - Cheng He
- Key Lab of Animal Epidemiology and Zoonoses of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
2
|
Large-scale production and directed induction of functional dendritic cells ex vivo from serum-free expanded human hematopoietic stem cells. Cytotherapy 2019; 21:755-768. [PMID: 31105040 DOI: 10.1016/j.jcyt.2019.04.059] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 04/01/2019] [Accepted: 04/28/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND Dendritic cells (DCs) that are derived from hematopoietic stem cells (HSCs) are the most potent antigen-presenting cells and play a pivotal role in initiating the immune response. Hence, large-scale production and direct induction of functional DCs ex vivo from HSCs are crucial to HSC research and clinical potential, such as vaccines for cancer and immune therapy. METHODS In a previous study, we developed a serum-free HSC expansion system (SF-HSC medium) to expand large numbers of primitive HSCs ex vivo. Herein, a DC induction and expansion medium (DC medium) was proposed to further generate large numbers of functional DCs from serum-free expanded HSCs, which were developed and optimized by factorial design and the steepest ascent method. RESULTS The DC medium is composed of effective basal medium (Iscove's modified Dulbecco's medium [IMDM]) and cytokines (2.9 ng/mL stem cell factor [SCF], 2.1 ng/mL Flt-3 ligand, 3.6 ng/mL interleukin [IL]-1β, 19.3 ng/mL granulocyte-macrophage colony-stimulating factor [GM-CSF] and 20.0 ng/mL tumor necrosis factor-α [TNF-α]). After 10-day culture in DC medium, the maximum fold expansion for accumulated CD1a+CD11c+ DCs was more than 4000-fold, and the induced DCs were characterized and confirmed by analysis of growth kinetics, surface antigen expression, endocytosis ability, mixed lymphocyte reaction, specific cytokine secretion and lipopolysaccharide stimulation. DISCUSSION In conclusion, the combination of DC medium and SF-HSC medium can efficiently induce and expand a large amount of functional DCs from a small scale of HSCs and might be a promising source of DCs for vaccine and immune therapy in the near future.
Collapse
|
3
|
Abstract
Transforming growth factor beta (TGF-β) is a pleiotropic cytokine present in vertebrate and invertebrate organisms that functions in numerous physiological and pathological processes. TGF-β impacts all the cells of the immune system, and of the three known TGF-β isoforms, TGF-β1 is the predominant isoform expressed in immune cells. TGF-β1 is known to play a pivotal role in the function of all immune cells especially in the regulation of T cell development and in the induction of immunological tolerance in dendritic cells (DCs). Based on the importance of DCs in regulation of the innate and adaptive arms of the immune system, in this review we explore the regulatory functions of TGF-β required for establishment and maintenance of DC-mediated immune tolerance.
Collapse
|
4
|
Thepmalee C, Panya A, Junking M, Chieochansin T, Yenchitsomanus PT. Inhibition of IL-10 and TGF-β receptors on dendritic cells enhances activation of effector T-cells to kill cholangiocarcinoma cells. Hum Vaccin Immunother 2018; 14:1423-1431. [PMID: 29420117 DOI: 10.1080/21645515.2018.1431598] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Tumor escapes host immune responses by producing immunosuppressive cytokines, such as IL-10 and TGF-β, secreted into the tumor microenvironment. These cytokines play important roles in the suppression of dendritic cell (DC) function, leading to decreased immune responses of the effector CD4+ and CD8+ T cells. To improve DC functions and enhance cytolytic activity of activated effector T-cells, we suppressed the effect of these cytokines on DCs by using specific neutralizing antibodies that inhibit IL-10 and TGF-β receptors. Monocyte-derived DCs generated in vitro showed up-regulation of MHC (HLA-DR) and co-stimulatory molecules (CD40 and CD86). The IL-10 and TGF-β receptors were expressed and localized on cell membrane of DCs, as shown by Western blot analysis and immunofluorescence staining, whereas the IL-10 and TGF-β ligands were detected in the culture supernatants of DCs and cholangiocarcinoma (CCA) cell line, respectively. Inhibition of the IL-10 and TGF-β receptors on DCs by specific neutralizing antibodies significantly increased level of IFN-γ and enhanced cytolytic activity of the DC-activated effector T-cells against CCA cell line. These results indicate that the IL-10 and TGF-β receptors are the targets for inhibition to increase DC functions and enhance cytolytic activity of the DC-activated effector T-cells against CCA cells. Thus, inhibition of the IL-10 and TGF-β receptors on DCs is crucial in the preparation of DC-activated effector T cells for adoptive T-cell therapy.
Collapse
Affiliation(s)
- Chutamas Thepmalee
- a Division of Molecular Medicine , Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University , Bangkok , Thailand.,b Graduate Program in Immunology , Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University , Bangkok , Thailand.,c Division of Biochemistry and Nutrition, School of Medical Science, University of Phayao , Phayao , Thailand
| | - Aussara Panya
- a Division of Molecular Medicine , Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University , Bangkok , Thailand.,d Department of Biology , Faculty of Science, Chiang Mai University , Chiang Mai , Thailand
| | - Mutita Junking
- a Division of Molecular Medicine , Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University , Bangkok , Thailand
| | - Thaweesak Chieochansin
- a Division of Molecular Medicine , Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University , Bangkok , Thailand
| | - Pa-Thai Yenchitsomanus
- a Division of Molecular Medicine , Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University , Bangkok , Thailand
| |
Collapse
|
5
|
Kim E, Yoon SY, Shin YJ. Oxidative Stress in Cornea. OXIDATIVE STRESS IN APPLIED BASIC RESEARCH AND CLINICAL PRACTICE 2015. [DOI: 10.1007/978-1-4939-1935-2_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
6
|
Immunosuppressive mechanisms of regulatory dendritic cells in cancer. CANCER MICROENVIRONMENT 2013; 6:159-67. [PMID: 23749739 DOI: 10.1007/s12307-013-0133-3] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Accepted: 05/07/2013] [Indexed: 12/20/2022]
Abstract
Three major functional subsets of dendritic cells (DCs) have been described in the tumor microenvironment in patients with cancer and tumor-bearing animals: (i) conventional DCs with intact antigen-presenting capabilities, (ii) functionally defective DCs with decreased motility and low ability to uptake, process and present antigens or produce cytokines and (iii) regulatory DCs with high capacity to suppress T cell proliferation, induce differentiation of regulatory T cells or support immune tolerance. Phenotypic characteristics of regulatory DCs (regDCs), as well as the mechanisms of T cell inhibition, vary in different experimental conditions and environments, suggesting high level of their plasticity and probably different origin. Although new data demonstrate that regDCs may play an important role at early stages of tumor development, functional differences and clinical significance of emergence of different myeloid regulatory cells (MDSCs, regDCs, M2 macrophages, N2 neutrophils, mast cells) in cancer remain to be determined.
Collapse
|
7
|
Koido S, Homma S, Okamoto M, Namiki Y, Takakura K, Takahara A, Odahara S, Tsukinaga S, Yukawa T, Mitobe J, Matsudaira H, Nagatsuma K, Kajihara M, Uchiyama K, Arihiro S, Imazu H, Arakawa H, Kan S, Hayashi K, Komita H, Kamata Y, Ito M, Hara E, Ohkusa T, Gong J, Tajiri H. Augmentation of antitumor immunity by fusions of ethanol-treated tumor cells and dendritic cells stimulated via dual TLRs through TGF-β1 blockade and IL-12p70 production. PLoS One 2013; 8:e63498. [PMID: 23717436 PMCID: PMC3663747 DOI: 10.1371/journal.pone.0063498] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Accepted: 04/02/2013] [Indexed: 12/13/2022] Open
Abstract
The therapeutic efficacy of fusion cell (FC)-based cancer vaccine generated with whole tumor cells and dendritic cells (DCs) requires the improved immunogenicity of both cells. Treatment of whole tumor cells with ethanol resulted in blockade of immune-suppressive soluble factors such as transforming growth factor (TGF)-β1, vascular endothelial growth factor, and IL-10 without decreased expression of major histocompatibility complex (MHC) class I and the MUC1 tumor-associated antigen. Moreover, the ethanol-treated tumor cells expressed “eat-me” signals such as calreticulin (CRT) on the cell surface and released immunostimulatory factors such as heat shock protein (HSP)90α and high-mobility group box 1 (HMGB1). A dual stimulation of protein-bound polysaccharides isolated from Coriolus versicolor (TLR2 agonist) and penicillin-inactivated Streptococcus pyogenes (TLR4 agonist) led human monocyte-derived DCs to produce HSP90α and multiple cytokines such as IL-12p70 and IL-10. Interestingly, incorporating ethanol-treated tumor cells and TLRs-stimulated DCs during the fusion process promoted fusion efficiency and up-regulated MHC class II molecules on a per fusion basis. Moreover, fusions of ethanol-treated tumor cells and dual TLRs-stimulated DCs (E-tumor/FCs) inhibited the production of multiple immune-suppressive soluble factors including TGF-β1 and up-regulated the production of IL-12p70 and HSP90α. Most importantly, E-tumor/FCs activated T cells capable of producing high levels of IFN-γ, resulting in augmented MUC1-specific CTL induction. Collectively, our results illustrate the synergy between ethanol-treated whole tumor cells and dual TLRs-stimulated DCs in inducing augmented CTL responses in vitro by FC preparations. The alternative system is simple and may provide a platform for adoptive immunotherapy.
Collapse
Affiliation(s)
- Shigeo Koido
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Wang YZ, Tian FF, Liu H, Zhang W, Li J, Xiao B, Zhou WB. Macrophage migration inhibitory factor is necessary for the Lipo-oligosaccharide-induced response by modulation of Toll-like receptor 4 in monocytes from GBS patients. J Neuroimmunol 2013; 257:67-75. [DOI: 10.1016/j.jneuroim.2013.01.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2012] [Revised: 01/08/2013] [Accepted: 01/17/2013] [Indexed: 10/27/2022]
|
9
|
Koido S, Homma S, Okamoto M, Namiki Y, Takakura K, Takahara A, Odahara S, Tsukinaga S, Yukawa T, Mitobe J, Matsudaira H, Nagatsuma K, Uchiyama K, Kajihara M, Arihiro S, Imazu H, Arakawa H, Kan S, Komita H, Ito M, Ohkusa T, Gong J, Tajiri H. Combined TLR2/4-activated dendritic/tumor cell fusions induce augmented cytotoxic T lymphocytes. PLoS One 2013; 8:e59280. [PMID: 23555011 PMCID: PMC3598755 DOI: 10.1371/journal.pone.0059280] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Accepted: 02/13/2013] [Indexed: 12/01/2022] Open
Abstract
Induction of antitumor immunity by dendritic cell (DC)-tumor fusion cells (DC/tumor) can be modulated by their activation status. In this study, to address optimal status of DC/tumor to induce efficient antigen-specific cytotoxic T lymphocytes (CTLs), we have created various types of DC/tumor: 1) un-activated DC/tumor; 2) penicillin-killed Streptococcus pyogenes (OK-432; TLR4 agonist)-activated DC/tumor; 3) protein-bound polysaccharides isolated from Coriolus versicolor (PSK; TLR2 agonist)-activated DC/tumor; and 4) Combined OK-432- and PSK-activated DC/tumor. Moreover, we assessed the effects of TGF-β1 derived from DC/tumor on the induction of MUC1-specific CTLs. Combined TLR2- and TLR4-activated DC/tumor overcame immune-suppressive effect of TGF-β1 in comparison to those single activated or un-activated DC/tumor as demonstrated by: 1) up-regulation of MHC class II and CD86 expression on DC/tumor; 2) increased fusion efficiency; 3) increased production of fusions derived IL-12p70; 4) activation of CD4+ and CD8+ T cells that produce high levels of IFN-γ; 5) augmented induction of CTL activity specific for MUC1; and 6) superior efficacy in inhibiting CD4+CD25+Foxp3+ T cell generation. However, DC/tumor-derived TGF-β1 reduced the efficacy of DC/tumor vaccine in vitro. Incorporating combined TLRs-activation and TGF-β1-blockade of DC/tumor may enhance the effectiveness of DC/tumor-based cancer vaccines and have the potential applicability to the field of adoptive immunotherapy.
Collapse
Affiliation(s)
- Shigeo Koido
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Helminth excreted/secreted antigens repress expression of LPS-induced Let-7i but not miR-146a and miR-155 in human dendritic cells. BIOMED RESEARCH INTERNATIONAL 2012; 2013:972506. [PMID: 23509825 PMCID: PMC3591137 DOI: 10.1155/2013/972506] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Accepted: 10/01/2012] [Indexed: 12/04/2022]
Abstract
MicroRNAs have emerged as key regulators of immune responses. They influence immune cells' function and probably the outcome of several infections. Currently, it is largely unknown if helminth parasites and their antigens modify host microRNAs expression. The aim of this study was to explore if excreted/secreted antigens of Taenia crassiceps regulate LPS-induced miRNAs expression in human Dendritic Cells. We found that these antigens repressed LPS-let-7i induction but not mir-146a or mir-155 and this correlates with a diminished inflammatory response. This let-7i downregulation in Dendritic Cells constitutes a novel feature of the modulatory activity that helminth-derived antigens exert on their host.
Collapse
|
11
|
Lee NJ, Choi DY, Song JK, Jung YY, Kim DH, Kim TM, Kim DJ, Kwon SM, Kim KB, Choi KE, Moon DC, Kim Y, Han SB, Hong JT. Deficiency of C–C chemokine receptor 5 suppresses tumor development via inactivation of NF–ĸB and inhibition of monocyte chemoattractant protein-1 in urethane-induced lung tumor model. Carcinogenesis 2012; 33:2520-8. [DOI: 10.1093/carcin/bgs265] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
12
|
Peng H, Guerau-de-Arellano M, Mehta VB, Yang Y, Huss DJ, Papenfuss TL, Lovett-Racke AE, Racke MK. Dimethyl fumarate inhibits dendritic cell maturation via nuclear factor κB (NF-κB) and extracellular signal-regulated kinase 1 and 2 (ERK1/2) and mitogen stress-activated kinase 1 (MSK1) signaling. J Biol Chem 2012; 287:28017-26. [PMID: 22733812 DOI: 10.1074/jbc.m112.383380] [Citation(s) in RCA: 154] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Dimethyl fumarate (DMF) is an effective novel treatment for multiple sclerosis in clinical trials. A reduction of IFN-γ-producing CD4(+) T cells is observed in DMF-treated patients and may contribute to its clinical efficacy. However, the cellular and molecular mechanisms behind this clinical observation are unclear. In this study, we investigated the effects of DMF on dendritic cell (DC) maturation and subsequent DC-mediated T cell responses. We show that DMF inhibits DC maturation by reducing inflammatory cytokine production (IL-12 and IL-6) and the expression of MHC class II, CD80, and CD86. Importantly, this immature DC phenotype generated fewer activated T cells that were characterized by decreased IFN-γ and IL-17 production. Further molecular studies demonstrated that DMF impaired nuclear factor κB (NF-κB) signaling via reduced p65 nuclear translocalization and phosphorylation. NF-κB signaling was further decreased by DMF-mediated suppression of extracellular signal-regulated kinase 1 and 2 (ERK1/2) and its downstream kinase mitogen stress-activated kinase 1 (MSK1). MSK1 suppression resulted in decreased p65 phosphorylation at serine 276 and reduced histone phosphorylation at serine 10. As a consequence, DMF appears to reduce p65 transcriptional activity both directly and indirectly by promoting a silent chromatin environment. Finally, treatment of DCs with the MSK1 inhibitor H89 partially mimicked the effects of DMF on the DC signaling pathway and impaired DC maturation. Taken together, these studies indicate that by suppression of both NF-κB and ERK1/2-MSK1 signaling, DMF inhibits maturation of DCs and subsequently Th1 and Th17 cell differentiation.
Collapse
Affiliation(s)
- Haiyan Peng
- Neuroscience Graduate Studies Program, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Fear VS, Burchell JT, Lai SP, Wikstrom ME, Blank F, von Garnier C, Turner DJ, Sly PD, Holt PG, Strickland DS, Stumbles PA. Restricted Aeroallergen Access to Airway Mucosal Dendritic Cells In Vivo Limits Allergen-Specific CD4+ T Cell Proliferation during the Induction of Inhalation Tolerance. THE JOURNAL OF IMMUNOLOGY 2011; 187:4561-70. [DOI: 10.4049/jimmunol.1004189] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|