1
|
Oda H, Nagamatsu T, Iriyama T, Osuga Y. Altered release of thrombomodulin and HMGB1 in the placenta complicated with preeclampsia. Placenta 2024; 148:12-19. [PMID: 38330539 DOI: 10.1016/j.placenta.2024.01.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 10/31/2023] [Accepted: 01/30/2024] [Indexed: 02/10/2024]
Abstract
INTRODUCTION Preeclampsia (PE) is a severe pregnancy complication due to placental dysfunction. Thrombomodulin (TM), a glycoprotein expressed on the trophoblast cell membrane, plays an organ-protective role in the placenta by regulating coagulation and inflammation. TM-mediated regulation of High Mobility Group Box1(HMGB1) is an essential mechanism that contributes to placental homeostasis and prevents pregnancy complications in mice. Here, we aimed to clarify the role of placental TM and HMGB1 in the pathophysiology of human PE. METHODS AND RESULTS In this study, maternal blood serum and placental tissue were obtained from 72 PE patients and 110 normal controls. Soluble TM(sTM) and HMGB1 levels in the maternal serum were assessed. The placental TM and HMGB1 expression levels were evaluated using immunohistochemistry and qPCR. Serum sTM and HMGB1 levels gradually increased with gestational age in normal pregnancies; however, both circulating sTM and HMGB1 levels were significantly higher in the PE group. Serum HMGB1/sTM ratio was elevated in PE patients compared to that in normal controls, which correlated positively with the clinical severity of PE. The immunohistochemistry analysis revealed the loss of TM and the increase in extranuclear HMGB1. TM mRNA expression was diminished in PE placentas, which negatively correlated with soluble fms-like tyrosine kinase-1 (sFlt-1) expression. DISCUSSION The increase in circulating sTM and HMGB1 could be attributed to the enhanced placental TM shedding in PE patients. The molecular events mediated by the imbalance in the placental TM and HMGB1 levels could be an underlying feature of PE; maternal serum HMGB1/sTM ratio could reflect this status.
Collapse
Affiliation(s)
- Hiroko Oda
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takeshi Nagamatsu
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan; Department of Obstetrics and Gynecology, International University of Health and Welfare, Chiba, Japan.
| | - Takayuki Iriyama
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yutaka Osuga
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
2
|
Norda S, Papadantonaki R. Regulation of cells of the arterial wall by hypoxia and its role in the development of atherosclerosis. VASA 2023; 52:6-21. [PMID: 36484144 DOI: 10.1024/0301-1526/a001044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The cell's response to hypoxia depends on stabilization of the hypoxia-inducible factor 1 complex and transactivation of nuclear factor kappa-B (NF-κB). HIF target gene transcription in cells resident to atherosclerotic lesions adjoins a complex interplay of cytokines and mediators of inflammation affecting cholesterol uptake, migration, and inflammation. Maladaptive activation of the HIF-pathway and transactivation of nuclear factor kappa-B causes monocytes to invade early atherosclerotic lesions, maintaining inflammation and aggravating a low-oxygen environment. Meanwhile HIF-dependent upregulation of the ATP-binding cassette transporter ABCA1 causes attenuation of cholesterol efflux and ultimately macrophages becoming foam cells. Hypoxia facilitates neovascularization by upregulation of vascular endothelial growth factor (VEGF) secreted by endothelial cells and vascular smooth muscle cells lining the arterial wall destabilizing the plaque. HIF-knockout animal models and inhibitor studies were able to show beneficial effects on atherogenesis by counteracting the HIF-pathway in the cell wall. In this review the authors elaborate on the up-to-date literature on regulation of cells of the arterial wall through activation of HIF-1α and its effect on atherosclerotic plaque formation.
Collapse
Affiliation(s)
- Stephen Norda
- Department of Cardiovascular Medicine, University Hospital Münster, Germany
| | - Rosa Papadantonaki
- Emergency Department, West Middlesex University Hospital, Chelsea and Westminster NHS Trust, London, United Kingdom
| |
Collapse
|
3
|
Xu Z, Yu Y, Zhao J, Liao Z, Sun Y, Cheng S, Gou S. A Unique Chemo-photodynamic Antitumor Approach to Suppress Hypoxia via Ultrathin Graphitic Carbon Nitride Nanosheets Supported a Platinum(IV) Prodrug. Inorg Chem 2022; 61:20346-20357. [DOI: 10.1021/acs.inorgchem.2c02806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Affiliation(s)
- Zichen Xu
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing211189, China
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing211189, China
| | - Yongzhi Yu
- National Engineering Research Center for Domestic & Building Ceramics, Jingdezhen Ceramic University, Jingdezhen333001, P.R. China
| | - Jian Zhao
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing211189, China
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing211189, China
| | - Zhixin Liao
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing211189, China
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing211189, China
| | - Yanyan Sun
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou215009, China
| | - Si Cheng
- National Engineering Research Center for Domestic & Building Ceramics, Jingdezhen Ceramic University, Jingdezhen333001, P.R. China
| | - Shaohua Gou
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing211189, China
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing211189, China
| |
Collapse
|
4
|
Gkouveris I, Hadaya D, Elzakra N, Soundia A, Bezouglaia O, Dry SM, Pirih F, Aghaloo T, Tetradis S. Inhibition of HMGB1/RAGE Signaling Reduces the Incidence of Medication-Related Osteonecrosis of the Jaw (MRONJ) in Mice. J Bone Miner Res 2022; 37:1775-1786. [PMID: 35711109 PMCID: PMC9474692 DOI: 10.1002/jbmr.4637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 05/07/2022] [Accepted: 06/04/2022] [Indexed: 11/06/2022]
Abstract
Medication-related osteonecrosis of the jaw (MRONJ) is a severe complication of antiresorptive or antiangiogenic medications, used in the treatment of bone malignancy or osteoporosis. Bone necrosis, mainly represented by osteocytic death, is always present in MRONJ sites; however, the role of osteocyte death in MRONJ pathogenesis is unknown. High mobility group box 1 (HMGB1) is a non-histone nucleoprotein that in its acetylated form accumulates in the cytoplasm, whereas non-acetylated HMGB1 localizes in the nucleus. SIRT1 deacetylase regulates cellular localization of HMGB1. Interestingly, HMGB1 is released during cell necrosis and promotes inflammation through signaling cascades, including activation of the RAGE receptor. Here, we utilized a well-established mouse MRONJ model that utilizes ligature-induced experimental periodontitis (EP) and treatment with either vehicle or zolendronic acid (ZA). Initially, we evaluated HMGB1-SIRT1 expression in osteocytes at 1, 2, and 4 weeks of treatment. Significantly increased cytoplasmic and perilacunar HMGB1 expression was observed at EP sites of ZA versus vehicle (Veh) animals at all time points. SIRT1 colocalized with cytoplasmic HMGB1 and presented a statistically significant increased expression at the EP sites of ZA animals for all time points. RAGE expression was significantly higher in the submucosal tissues EP sites of ZA animals compared with those in vehicle group. To explore the significance of increased cytoplasmic and extracellular HMGB1 and increased RAGE expression in MRONJ pathogenesis, we used pharmacologic inhibitors of these molecules. Combined HMGB1/RAGE inhibition resulted in lower MRONJ incidence with statistically significant decrease in osteonecrotic areas and bone exposure versus non-inhibitor treated ZA animals. Together, our data point to the role of HMGB1 as a central alarmin, overexpressed at early phase of MRONJ pathogenesis during osteocytic death. Moreover, HMGB1-RAGE pathway may represent a new promising therapeutic target in patients at high risk of MRONJ. © 2022 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Ioannis Gkouveris
- Division of Diagnostic and Surgical Sciences, UCLA School of Dentistry, Los Angeles, CA 90095, USA
| | - Danny Hadaya
- Division of Diagnostic and Surgical Sciences, UCLA School of Dentistry, Los Angeles, CA 90095, USA
| | - Naseim Elzakra
- Division of Diagnostic and Surgical Sciences, UCLA School of Dentistry, Los Angeles, CA 90095, USA
| | - Akrivoula Soundia
- Division of Diagnostic and Surgical Sciences, UCLA School of Dentistry, Los Angeles, CA 90095, USA
| | - Olga Bezouglaia
- Division of Diagnostic and Surgical Sciences, UCLA School of Dentistry, Los Angeles, CA 90095, USA
| | - Sarah M Dry
- UCLA Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Flavia Pirih
- Division of Constitutive and Regenerative Sciences, UCLA School of Dentistry, Los Angeles, CA, 90095, USA
| | - Tara Aghaloo
- Division of Diagnostic and Surgical Sciences, UCLA School of Dentistry, Los Angeles, CA 90095, USA
| | - Sotirios Tetradis
- Division of Diagnostic and Surgical Sciences, UCLA School of Dentistry, Los Angeles, CA 90095, USA
| |
Collapse
|
5
|
Peritumoral B cells drive proangiogenic responses in HMGB1-enriched esophageal squamous cell carcinoma. Angiogenesis 2021; 25:181-203. [PMID: 34617194 PMCID: PMC8494172 DOI: 10.1007/s10456-021-09819-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 08/04/2021] [Indexed: 01/15/2023]
Abstract
Several B-cell subsets with distinct functions and polarized cytokine profiles that extend beyond antibody production have been reported in different cancers. Here we have demonstrated that proliferating B cells were predominantly found in the peritumoral region of esophageal squamous cell carcinoma (ESCC). These B cells were enriched in tumor nests with high expression of high-mobility group box 1 (HMGB1). High densities of peritumoral proliferating B cells and concomitantly high intratumoral HMGB1 expression showed improved prognostic significance, surpassing prognostic stratification of ESCC patients based on HMGB1 positivity alone. This striking association led us to set up models to test whether cancer-derived HMGB1 could shape tumor microenvironment via modulation on B cells. Overexpression of HMGB1 in ESCC cell lines (KYSE510 and EC18) enhanced proliferation and migration of B cells. Transcriptomic analysis showed that migratory B cells exhibited high enrichment of proangiogenic genes. VEGF expression in proliferating B cells was induced upon co-culture of HMGB1-overexpressing tumor cells and B cells. Secretome array profiling of conditioned media (CM) from the co-culture revealed rich expression of proangiogenic proteins. Consequently, incubation of human umbilical vein endothelial cells with CM promoted angiogenesis in tube formation and migration assays. HMGB1 inhibitor, glycyrrhizin, abolishes all the observed proangiogenic phenotypes. Finally, co-injection of B cells and CM with HMGB1-overexpressing tumor cells, but not with glycyrrhizin, significantly enhanced tumor growth associated with increased microvascular density in ESCC xenograft mice model. Our results indicate that cancer-derived HMGB1 elevates angiogenesis in ESCC by shifting the balance toward proangiogenic signals in proliferating B cells.
Collapse
|
6
|
Peng T, Du SY, Son M, Diamond B. HIF-1α is a negative regulator of interferon regulatory factors: Implications for interferon production by hypoxic monocytes. Proc Natl Acad Sci U S A 2021; 118:e2106017118. [PMID: 34108245 PMCID: PMC8256008 DOI: 10.1073/pnas.2106017118] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Patients with severe COVID-19 infection exhibit a low level of oxygen in affected tissue and blood. To understand the pathophysiology of COVID-19 infection, it is therefore necessary to understand cell function during hypoxia. We investigated aspects of human monocyte activation under hypoxic conditions. HMGB1 is an alarmin released by stressed cells. Under normoxic conditions, HMGB1 activates interferon regulatory factor (IRF)5 and nuclear factor-κB in monocytes, leading to expression of type I interferon (IFN) and inflammatory cytokines including tumor necrosis factor α, and interleukin 1β, respectively. When hypoxic monocytes are activated by HMGB1, they produce proinflammatory cytokines but fail to produce type I IFN. Hypoxia-inducible factor-1α, induced by hypoxia, functions as a direct transcriptional repressor of IRF5 and IRF3. As hypoxia is a stressor that induces secretion of HMGB1 by epithelial cells, hypoxia establishes a microenvironment that favors monocyte production of inflammatory cytokines but not IFN. These findings have implications for the pathogenesis of COVID-19.
Collapse
Affiliation(s)
- Travis Peng
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, Feinstein Institutes for Medical Research, Manhasset, NY 11030
| | - Shin-Yi Du
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, Feinstein Institutes for Medical Research, Manhasset, NY 11030
| | - Myoungsun Son
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, Feinstein Institutes for Medical Research, Manhasset, NY 11030;
- Department of Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549
| | - Betty Diamond
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, Feinstein Institutes for Medical Research, Manhasset, NY 11030
- Department of Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549
| |
Collapse
|
7
|
Cai XH, Wang GQ, Liang R, Wang L, Liu TL, Zou JQ, Liu N, Liu Y, Wang SS, Shen ZY. CORM-2 Pretreatment Attenuates Inflammation-mediated Islet Dysfunction. Cell Transplant 2021; 29:963689720903691. [PMID: 32364405 PMCID: PMC7444228 DOI: 10.1177/0963689720903691] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
During the process of human islet isolation a cascade of stressful events are
triggered and negatively influence islet yield, viability, and function,
including the production of proinflammatory cytokines and activation of
apoptosis. Carbon monoxide-releasing molecule 2 (CORM-2) is a donor of carbon
monoxide (CO) and can release CO spontaneously. Accumulating studies suggest
that CORM-2 exerts cytoprotective and anti-inflammatory properties. However, the
effect of CORM-2 on islet isolation is still unclear. In this study, we found
that CORM-2 pretreatment significantly decreased the expression of critical
inflammatory genes, including tissue factor,
intercellular adhesion molecule-1,
chemokine (C-C motif) ligand
2, C-X-C motif chemokine 10, Toll-like
receptor 4, interleukin-1β,
interleukin-6, and tumor necrosis factor-α
(TNF-α). The isolated islets of the CORM-2 pretreatment
group showed reduced apoptotic rate, improved viability, and higher
glucose-stimulated insulin secretion, and functional gene expression in
comparison to control group. Importantly, CORM-2 pretreatment prevented the
impairment caused by TNF-α, evidenced by the improved glucose-stimulated index
and transplantation outcomes. The present study demonstrated the
anti-inflammatory property of CORM-2 during human islet isolation, and we
suggest that CORM-2 pretreatment is an appealing treatment to mitigate
inflammation-mediated islet dysfunction during isolation and culture ex vivo and
to preserve long-term islet survival and function.
Collapse
Affiliation(s)
- Xiang-Heng Cai
- The First Central Clinical College, Tianjin Medical University, Tianjin, China.,State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
| | - Guan-Qiao Wang
- Organ Transplant Center, Tianjin First Central Hospital, Nankai University, Tianjin, China.,NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Tianjin, China
| | - Rui Liang
- NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Tianjin, China.,Key Laboratory of Transplant Medicine, Chinese Academy of Medical Sciences, Tianjin, China
| | - Le Wang
- NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Tianjin, China.,Key Laboratory of Transplant Medicine, Chinese Academy of Medical Sciences, Tianjin, China
| | - Teng-Li Liu
- NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Tianjin, China.,Key Laboratory of Transplant Medicine, Chinese Academy of Medical Sciences, Tianjin, China
| | - Jia-Qi Zou
- NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Tianjin, China.,Key Laboratory of Transplant Medicine, Chinese Academy of Medical Sciences, Tianjin, China
| | - Na Liu
- NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Tianjin, China.,Key Laboratory of Transplant Medicine, Chinese Academy of Medical Sciences, Tianjin, China
| | - Yan Liu
- NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Tianjin, China.,Key Laboratory of Transplant Medicine, Chinese Academy of Medical Sciences, Tianjin, China
| | - Shu-Sen Wang
- NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Tianjin, China
| | - Zhong-Yang Shen
- Organ Transplant Center, Tianjin First Central Hospital, Nankai University, Tianjin, China.,Key Laboratory of Transplant Medicine, Chinese Academy of Medical Sciences, Tianjin, China.,Tianjin Clinical Research Center for Organ Transplantation, Tianjin First Central Hospital, Tianjin, China
| |
Collapse
|
8
|
Chung H, Hong SJ, Choi SW, Park CG. The effect of preexisting HMGB1 within fetal bovine serum on murine pancreatic beta cell biology. Islets 2020; 12:1-8. [PMID: 31935155 PMCID: PMC7064295 DOI: 10.1080/19382014.2019.1696128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
High-mobility group box 1 (HMGB1) can act as a structural protein of the chromatin and at the same time as a mediator of the immune system. Its high correlation with the graft acceptance in pancreatic islet recipients makes it a biomarker in islet transplantation. With the suspicion that preexisting HMGB1 in the fetal bovine serum (FBS) would be detrimental to the viability and function of murine beta cells, HMGB1 was removed from FBS and its impact was investigated. Interestingly, the elimination of HMGB1 from FBS seemed unfavorable to the viability and function of cultured murine beta cells, suggesting that the preexisting HMGB1 in the FBS may be an indispensable component of islet cell culture.
Collapse
Affiliation(s)
- Hyunwoo Chung
- Xenotransplantation Research Center, Seoul National University College of Medicine, Seoul, Korea
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Sung Ji Hong
- Xenotransplantation Research Center, Seoul National University College of Medicine, Seoul, Korea
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - So Won Choi
- Xenotransplantation Research Center, Seoul National University College of Medicine, Seoul, Korea
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Chung-Gyu Park
- Xenotransplantation Research Center, Seoul National University College of Medicine, Seoul, Korea
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
- Biomedical Research Institute, Seoul National University College of Medicine, Seoul, Korea
- Institute of Endemic Diseases, Seoul National University College of Medicine, Seoul, Korea
- CONTACT Chung-Gyu Park Department of Microbiology and Immunology, Department of Biomedical Sciences, Xenotransplantation Research Center, Seoul National University College of Medicine, 103 Daehak-ro Jongno-gu, Seoul 110-799, Korea
| |
Collapse
|
9
|
Navarro-Tableros V, Gomez Y, Brizzi MF, Camussi G. Generation of Human Stem Cell-Derived Pancreatic Organoids (POs) for Regenerative Medicine. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1212:179-220. [PMID: 31025308 DOI: 10.1007/5584_2019_340] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Insulin-dependent diabetes mellitus or type 1 diabetes mellitus (T1DM) is an auto-immune condition characterized by the loss of pancreatic β-cells. The curative approach for highly selected patients is the pancreas or the pancreatic islet transplantation. Nevertheless, these options are limited by a growing shortage of donor organs and by the requirement of immunosuppression.Xenotransplantation of porcine islets has been extensively investigated. Nevertheless, the strong xenoimmunity and the risk of transmission of porcine endogenous retroviruses, have limited their application in clinic. Generation of β-like cells from stem cells is one of the most promising strategies in regenerative medicine. Embryonic, and more recently, adult stem cells are currently the most promising cell sources exploited to generate functional β-cells in vitro. A number of studies demonstrated that stem cells could generate functional pancreatic organoids (POs), able to restore normoglycemia when implanted in different preclinical diabetic models. Nevertheless, a gradual loss of function and cell dead are commonly detected when POs are transplanted in immunocompetent animals. So far, the main issue to be solved is the post-transplanted islet loss, due to the host immune attack. To avoid this hurdle, nanotechnology has provided a number of polymers currently under investigation for islet micro and macro-encapsulation. These new approaches, besides conferring PO immune protection, are able to supply oxygen and nutrients and to preserve PO morphology and long-term viability.Herein, we summarize the current knowledge on bioengineered POs and the stem cell differentiation platforms. We also discuss the in vitro strategies used to generate functional POs, and the protocols currently used to confer immune-protection against the host immune attack (micro- and macro-encapsulation). In addition, the most relevant ongoing clinical trials, and the most relevant hurdles met to move towards clinical application are revised.
Collapse
Affiliation(s)
- Victor Navarro-Tableros
- 2i3T Società per la gestione dell'incubatore di imprese e per il trasferimento tecnologico Scarl, University of Turin, Turin, Italy
| | - Yonathan Gomez
- Department of Medical Sciences, University of Turin, Turin, Italy
| | | | - Giovanni Camussi
- Department of Medical Sciences, University of Turin, Turin, Italy.
- Fondazione per la Ricerca Biomedica-ONLUS, Turin, Italy.
| |
Collapse
|
10
|
Delaune V, Lacotte S, Gex Q, Slits F, Kahler-Quesada A, Lavallard V, Peloso A, Orci LA, Berney T, Toso C. Effects of remote ischaemic preconditioning on intraportal islet transplantation in a rat model. Transpl Int 2018; 32:323-333. [PMID: 30318858 DOI: 10.1111/tri.13360] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 07/23/2018] [Accepted: 10/08/2018] [Indexed: 12/29/2022]
Abstract
Remote ischaemic preconditioning (RIPC), which is the intermittent interruption of blood flow to a site distant from the target organ, is known to improve solid organ resistance to ischaemia-reperfusion injury. This procedure could be of interest in islet transplantation to mitigate hypoxia-related loss of islet mass after isolation and transplantation. Islets isolated from control or RIPC donors were analyzed for yield, metabolic activity, gene expression and high mobility group box-1 (HMGB1) content. Syngeneic marginal mass transplantation was performed in four streptozotocin-induced diabetic groups: control, RIPC in donor only, RIPC in recipient only, and RIPC in donor and recipient. Islets isolated from RIPC donors had an increased yield of 20% after 24 h of culture compared to control donors (P = 0.007), linked to less cell death (P = 0.08), decreased expression of hypoxia-related genes (Hif1a P = 0.04; IRP94 P = 0.008), and increased intra-cellular (P = 0.04) and nuclear HMGB1. The use of RIPC in recipients only did not allow for reversal of diabetes, with increased serum HMGB1 at day 1; the three other groups demonstrated significantly better outcomes. Performing RIPC in the donors increases islet yield and resistance to hypoxia. Validation is needed, but this strategy could help to decrease the number of donors per islet recipient.
Collapse
Affiliation(s)
- Vaihere Delaune
- Hepatology and Transplantation Laboratory, Department of Surgery, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Divisions of Abdominal and Transplantation Surgery, Department of Surgery, Geneva University Hospitals, Geneva, Switzerland
| | - Stéphanie Lacotte
- Hepatology and Transplantation Laboratory, Department of Surgery, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Quentin Gex
- Hepatology and Transplantation Laboratory, Department of Surgery, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Florence Slits
- Hepatology and Transplantation Laboratory, Department of Surgery, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Arianna Kahler-Quesada
- Hepatology and Transplantation Laboratory, Department of Surgery, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Vanessa Lavallard
- Cell Transplantation Laboratory, Department of Surgery, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Andrea Peloso
- Divisions of Abdominal and Transplantation Surgery, Department of Surgery, Geneva University Hospitals, Geneva, Switzerland
| | - Lorenzo A Orci
- Hepatology and Transplantation Laboratory, Department of Surgery, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Divisions of Abdominal and Transplantation Surgery, Department of Surgery, Geneva University Hospitals, Geneva, Switzerland
| | - Thierry Berney
- Cell Transplantation Laboratory, Department of Surgery, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Transplantation Division, Department of Surgery, Geneva University Hospitals, Geneva, Switzerland
| | - Christian Toso
- Hepatology and Transplantation Laboratory, Department of Surgery, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Divisions of Abdominal and Transplantation Surgery, Department of Surgery, Geneva University Hospitals, Geneva, Switzerland
| |
Collapse
|
11
|
Early TLR4 Blockade Attenuates Sterile Inflammation-mediated Stress in Islets During Isolation and Promotes Successful Transplant Outcomes. Transplantation 2018; 102:1505-1513. [DOI: 10.1097/tp.0000000000002287] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
12
|
Cho HJ, Kim CH. Oxygen matters: hypoxia as a pathogenic mechanism in rhinosinusitis. BMB Rep 2018; 51:59-64. [PMID: 29366441 PMCID: PMC5836558 DOI: 10.5483/bmbrep.2018.51.2.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Indexed: 12/21/2022] Open
Abstract
The airway epithelium is the first place, where a defense mechanism is initiated against environmental stimuli. Mucociliary transport (MCT), which is the defense mechanism of the airway and the role of airway epithelium as mechanical barriers are essential in innate immunity. To maintain normal physiologic function, normal oxygenation is critical for the production of energy for optimal cellular functions. Several pathologic conditions are associated with a decrease in oxygen tension in airway epithelium and chronic sinusitis is one of the airway diseases, which is associated with the hypoxic condition, a potent inflammatory stimulant. We have observed the overexpression of the hypoxia-inducible factor 1 (HIF-1), an essential factor for oxygen homeostasis, in the epithelium of sinus mucosa in sinusitis patients. In a series of previous reports, we have found hypoxia-induced mucus hyperproduction, especially by MUC5AC hyperproduction, disruption of epithelial barrier function by the production of VEGF, and down-regulation of junctional proteins such as ZO-1 and E-cadherin. Furthermore, hypoxia-induced inflammation by HMGB1 translocation into the cytoplasm results in the release of IL-8 through a ROS-dependent mechanism in upper airway epithelium. In this mini-review, we briefly introduce and summarize current progress in the pathogenesis of sinusitis related to hypoxia. The investigation of hypoxia-related pathophysiology in airway epithelium will suggest new insights on airway inflammatory diseases, such as rhinosinusitis for clinical application and drug development.
Collapse
Affiliation(s)
- Hyung-Ju Cho
- Department of Otorhinolaryngology, and The Airway Mucus Institute, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Chang-Hoon Kim
- Department of Otorhinolaryngology, and The Airway Mucus Institute, Yonsei University College of Medicine, Seoul 03722, Korea
| |
Collapse
|
13
|
Molecular characterization and expression of suppressor of cytokine signaling (SOCS) 1, 2 and 3 under acute hypoxia and reoxygenation in pufferfish, Takifugu fasciatus. Genes Genomics 2018; 40:1225-1235. [PMID: 30039384 DOI: 10.1007/s13258-018-0719-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 07/08/2018] [Indexed: 01/11/2023]
Abstract
Hypoxia seriously affects the innate immune system of fish. However, the roles of suppressor of cytokine signaling (SOCS), pivotal anti-inflammatory genes, in response to hypoxia/reoxygenation remain largely unexplored. The primary objective of this study was to elucidate the function of SOCS genes under acute hypoxia and reoxygenation in pufferfish (Takifugu fasciatus). In the present study, SOCS1, 2 and 3 were identified in T. fasciatus referred to as TfSOCS1, 2 and 3. Then, qRT-PCR and western blot analysis were employed to assess their expressions at both the mRNA and protein levels. Tissue distribution demonstrated that the three SOCS genes were predominantly distributed in gill, brain and liver. Under hypoxia challenge (1.63 ± 0.2 mg/L DO for 2, 4, 6 and 8 h), the expressions of TfSOCS1 and 3 in brain and liver at the mRNA and protein levels were significantly decreased, while their expressions showed an opposite trend in gill. Different from the expressions of TfSOCS1 and 3, the expression of TfSOCS2 was inhibited in gill, along with its increased expression in brain and liver. After normoxic recovery (7.0 ± 0.3 mg/L of DO for 4 and 12 h), most of TfSOCS genes were significantly altered at R4 (reoxygenation for 4 h) and returned to the normal level at R12 (reoxygenation for 12 h). SOCS genes played vital roles in response to hypoxia/reoxygenation challenge. Our findings greatly strengthened the relation between innate immune and hypoxia stress in T. fasciatus.
Collapse
|
14
|
Min HJ, Kim JH, Yoo JE, Oh JH, Kim KS, Yoon JH, Kim CH. ROS-dependent HMGB1 secretion upregulates IL-8 in upper airway epithelial cells under hypoxic condition. Mucosal Immunol 2017; 10:685-694. [PMID: 27624778 DOI: 10.1038/mi.2016.82] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 08/15/2016] [Indexed: 02/06/2023]
Abstract
High-mobility group box 1 (HMGB1) mediates various functions according to the location. We tried to investigate the role of HMGB1 in upper airway under hypoxic conditions. We cultured primary normal human nasal epithelium (NHNE) cells under hypoxic conditions and evaluated the movement of HMGB1 by western blotting, immunofluorescence, and enzyme-linked immunosorbent assay (ELISA). Reactive oxygen species (ROS) level was evaluated to estimate the translocation mechanism of HMGB1. The role of secreted HMGB1 was evaluated by ELISA assay. Furthermore, we collected human nasal mucosa samples and nasal lavage fluids from patients conditioned under hypoxic and non-hypoxic environment, and compared the expression of HMGB1 in human nasal mucosa samples by immunohistochemistry and the levels of HMGB1 in lavage fluids using ELISA assay. Hypoxia induced translocation of HMGB1 into the extracellular area and it was dependent on ROS produced by dual oxidase 2. Secreted HMGB1 was involved in the upregulation of interleukin (IL)-8. In human samples, HMGB1 was translocated from nucleus to the cytoplasm in hypoxic-conditioned nasal mucosa. HMGB1 was increased in nasal lavage samples of chronic rhinosinusitis patients, whose sinus mucosa was supposed to be hypoxic as compared with controls. We suggest that HMGB1 is secreted in hypoxic condition via ROS-dependent mechanism and secreted HMGB1 participates in IL-8 upregulation mediating inflammatory response.
Collapse
Affiliation(s)
- H J Min
- Department of Otorhinolaryngology-Head and Neck Surgery, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| | - J-H Kim
- The Research Center for Human Natural Defense System, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - J E Yoo
- The Research Center for Human Natural Defense System, Yonsei University College of Medicine, Seoul, Republic of Korea.,The Airway Mucus Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - J-H Oh
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - K S Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| | - J-H Yoon
- The Research Center for Human Natural Defense System, Yonsei University College of Medicine, Seoul, Republic of Korea.,The Airway Mucus Institute, Yonsei University College of Medicine, Seoul, Republic of Korea.,Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - C-H Kim
- The Airway Mucus Institute, Yonsei University College of Medicine, Seoul, Republic of Korea.,Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
15
|
Singh B, Biswas I, Bhagat S, Surya Kumari S, Khan GA. HMGB1 facilitates hypoxia-induced vWF upregulation through TLR2-MYD88-SP1 pathway. Eur J Immunol 2016; 46:2388-2400. [PMID: 27480067 DOI: 10.1002/eji.201646386] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 06/27/2016] [Accepted: 07/29/2016] [Indexed: 12/14/2022]
Abstract
Increased plasma level of von Willebrand Factor (vWF) is associated with major cardiovascular diseases. We previously reported that multimeric vWF binds to NO synthase and inhibits insulin-induced production of NO, thus promoting insulin resistance during acute hypoxia (AH). However, the transcriptional regulation of vWF during AH is not clearly understood. Here, we investigated the mechanisms underlying the upregulation of vwf in mice. AH significantly upregulates the tlr2, tlr3, myd88, and vwf expression and phosphorylation of specificity protein 1 (SP1). Furthermore, AH significantly upregulates high mobility group box-1 (HMGB1) in a time-dependent manner. Moreover, a TLR2 agonist upregulates vWF but a TLR3 agonist does not. Pretreatment with an HMGB1 inhibitor, TLR2-immunoneutralizing antibody, or SP1 inhibitor significantly inhibits vWF expression. Furthermore, Tlr2 silencing completely inhibited MYD88, vWF expression, and SP1 phosphorylation. However, pretreatment with glycyrrhizic acid or silencing of Tlr2 completely blocks binding of Sp1 to the Vwf promoter, thus inhibiting its expression, and enhances insulin resistance during AH. Patients with type 2 diabetes mellitus also showed significantly elevated levels of HMGB1, TLR2, SP1, and vWF, thereby supporting the results of the murine model of AH. Taken together, HMGB1 upregulates vWF in vivo through the TLR2-MYD88-SP1 pathway in mice.
Collapse
Affiliation(s)
- Bandana Singh
- Department of Physiology, Defence Institute of Physiology and Allied Sciences, Lucknow Road, Timarpur, Delhi, India
| | - Indranil Biswas
- Department of Physiology, Defence Institute of Physiology and Allied Sciences, Lucknow Road, Timarpur, Delhi, India
| | - Saumya Bhagat
- Department of Physiology, Defence Institute of Physiology and Allied Sciences, Lucknow Road, Timarpur, Delhi, India
| | - Sarada Surya Kumari
- Department of Physiology, Defence Institute of Physiology and Allied Sciences, Lucknow Road, Timarpur, Delhi, India
| | - Gausal A Khan
- Department of Physiology, Defence Institute of Physiology and Allied Sciences, Lucknow Road, Timarpur, Delhi, India.
| |
Collapse
|
16
|
Basu M, Paichha M, Lenka SS, Chakrabarty R, Samanta M. Hypoxic stress: impact on the modulation of TLR2, TLR4, NOD1 and NOD2 receptor and their down-stream signalling genes expression in catla (Catla catla). Mol Biol Rep 2015; 43:1-9. [DOI: 10.1007/s11033-015-3932-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 11/13/2015] [Indexed: 01/06/2023]
|
17
|
Jo EH, Hwang YH, Lee DY. Encapsulation of pancreatic islet with HMGB1 fragment for attenuating inflammation. Biomater Res 2015; 19:21. [PMID: 26504589 PMCID: PMC4620643 DOI: 10.1186/s40824-015-0042-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 10/01/2015] [Indexed: 12/22/2022] Open
Abstract
Background Pancreatic islet encapsulation is one way to address the disadvantages of islet transplantation. Not only does encapsulation involve bidirectional diffusion of nutrients, oxygen, and glucose, but also it protects the graft from the recipient’s immune reaction. The high mobility group box 1 (HMGB1), one of higher expression proteins in islet, can be secreted from transplanted islets and induce the inflammation. Therefore, the regulation of HMGB1-mediated inflammation is very important for successful islet transplantation. In this study, we used the HMGB1 A box, an antagonist of HMGB1 receptor in the immune cells, in the encapsulation of isolated islets as a new strategy. Result For co-encapsulation of HMGB1 A box protein with islets, we evaluated the distribution of alginate bead diameter. The average diameter of empty alginate bead was similar to that of alginate bead with islets. When different concentrations of HMGB1 A box protein was co-encapsulated with islets, it did not affect the viability and insulin secretion function of the islets. When the alginate beads with islets plus HMGB1 A box protein were cultured with macrophage, the amount of TNF-α secreted from the macrophages was significantly attenuated when compared to cultivation of unencapsulated islets or encapsulated islets. When the alginate beads with islets plus HMGB1 A box protein were intraperitoneally xenotransplanted into the diabetic mice, the survival rate of the islets was strongly improved with 2-fold. Conclusion Collectively, these results suggested that the encapsulation of HMGB1 A box protein might offer a protective effect in islet transplantation.
Collapse
Affiliation(s)
- Eun Hee Jo
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul, 133-791 Republic of Korea.,BK21 PLUS Future Biopharmaceutical Human Resources Training and Research Team, Hanyang University, Seoul, 133-791 Republic of Korea
| | - Yong Hwa Hwang
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul, 133-791 Republic of Korea.,BK21 PLUS Future Biopharmaceutical Human Resources Training and Research Team, Hanyang University, Seoul, 133-791 Republic of Korea
| | - Dong Yun Lee
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul, 133-791 Republic of Korea.,BK21 PLUS Future Biopharmaceutical Human Resources Training and Research Team, Hanyang University, Seoul, 133-791 Republic of Korea
| |
Collapse
|
18
|
Nano R, Racanicchi L, Melzi R, Mercalli A, Maffi P, Sordi V, Ling Z, Scavini M, Korsgren O, Celona B, Secchi A, Piemonti L. Human Pancreatic Islet Preparations Release HMGB1: (Ir)Relevance for Graft Engraftment. Cell Transplant 2013; 22:2175-86. [DOI: 10.3727/096368912x657783] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
High levels of donor-derived high-mobility group box 1 (HMGB1) protein have been associated with poor islet graft outcome in mouse models. The aim of our work was to determine whether HMGB1 released by human islets had independent proinflammatory effects that influence engraftment in humans. Human islet preparations contained and released HMGB1 in different amounts, as determined by Western blot and ELISA (median 17 pg/ml/IEQ/24 h; min–max 0–211, n = 74). HMGB1 release directly correlated with brain death, donor hyperamilasemia, and factors related to the pancreas digestion procedure (collagenase and digestion time). HMGB1 release was significantly positively associated with the release of other cytokines/chemokines, particularly with the highly released “proinflammatory” CXCL8/IL-8, CXCL1/GRO-α, and the IFN-γ-inducible chemokines CXCL10/IP-10 and CXCL9/MIG. HMGB1 release was not modulated by Toll-like receptor 2, 3, 4, 5, and 9 agonists or by exposure to IL-1β. When evaluated after islet transplantation, pretransplant HMGB1 release was weakly associated with the activation of the coagulation cascade (evaluated as serum cross-linked fibrin products), but not with the immediate posttransplant inflammatory response. Concordantly, HMGB1 did not affect short-term human islet function. Our data show that human islet HMGB1 release is a sign of “damaged” islets, although without any independent direct role in graft failure.
Collapse
Affiliation(s)
- Rita Nano
- San Raffaele Diabetes Research Institute (HSR-DRI), San Raffaele Scientific Institute, Milan, Italy
| | - Leda Racanicchi
- San Raffaele Diabetes Research Institute (HSR-DRI), San Raffaele Scientific Institute, Milan, Italy
| | - Raffaella Melzi
- San Raffaele Diabetes Research Institute (HSR-DRI), San Raffaele Scientific Institute, Milan, Italy
| | - Alessia Mercalli
- San Raffaele Diabetes Research Institute (HSR-DRI), San Raffaele Scientific Institute, Milan, Italy
| | - Paola Maffi
- Transplant Unit, Department of Medicine, San Raffaele Scientific Institute, Milan, Italy
| | - Valeria Sordi
- San Raffaele Diabetes Research Institute (HSR-DRI), San Raffaele Scientific Institute, Milan, Italy
| | - Zhidong Ling
- Diabetes Research Center, Brussels Free University-VUB, Brussels, Belgium
| | - Marina Scavini
- San Raffaele Diabetes Research Institute (HSR-DRI), San Raffaele Scientific Institute, Milan, Italy
| | - Olle Korsgren
- Department of Immunology, Genetics and Pathology, Division of Immunology, Uppsala University, Uppsala, Sweden
| | - Barbara Celona
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy
| | - Antonio Secchi
- Transplant Unit, Department of Medicine, San Raffaele Scientific Institute, Milan, Italy
- University Vita-Salute San Raffaele, Milan, Italy
| | - Lorenzo Piemonti
- San Raffaele Diabetes Research Institute (HSR-DRI), San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
19
|
Asavarut P, Zhao H, Gu J, Ma D. The role of HMGB1 in inflammation-mediated organ injury. ACTA ACUST UNITED AC 2013; 51:28-33. [PMID: 23711603 DOI: 10.1016/j.aat.2013.03.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 10/29/2012] [Accepted: 11/01/2012] [Indexed: 02/09/2023]
Abstract
HMGB1 is a chromosome-binding protein that also acts as a damage-associated molecular pattern molecule. It has potent proinflammatory effects and is one of key mediators of organ injury. Evidence from research has revealed its involvement in the signaling mechanisms of Toll-like receptors and the receptor for advanced glycation end-products in organ injury. HMGB1-mediated organ injuries are acute damage including ischemic, mechanical, allograft rejection and toxicity, and chronic diseases of the heart, kidneys, lungs, and brain. Strategies against HMGB1 and its associated cellular signal pathways need to be developed and may have preventive and therapeutic potentials in organ injury.
Collapse
Affiliation(s)
- Paladd Asavarut
- Section of Anaesthetics, Pain Medicine & Intensive Care, Department of Surgery and Cancer, Imperial College London, Chelsea and Westminster Hospital, London, UK
| | | | | | | |
Collapse
|
20
|
Itoh T, Iwahashi S, Kanak MA, Shimoda M, Takita M, Chujo D, Tamura Y, Rahman AM, Chung WY, Onaca N, Coates PTH, Dennison AR, Naziruddin B, Levy MF, Matsumoto S. Elevation of high-mobility group box 1 after clinical autologous islet transplantation and its inverse correlation with outcomes. Cell Transplant 2012; 23:153-65. [PMID: 23211332 DOI: 10.3727/096368912x658980] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
A major problem after clinical autologous islet transplantation (AIT) is the difficulty in achieving insulin independence. To follow up on our demonstration in a murine model that high-mobility group box 1 (HMGB1) was released from islets and involved in early loss of transplanted islets, we tested the role of HMGB1 in clinical AIT. Serum HMGB1 levels from 15 AIT patients were significantly elevated during islet infusion (7.6 ± 1.2 ng/ml) and 24 h after infusion (8.0 ± 1.4 ng/ml) compared to admission levels (2.4 ± 0.6 ng/ml). The first elevation of HMGB1 was associated with islet damage, but the later elevation was not. The change in the HMGB1 level from admission to first peak (ΔHMGB1) was significantly higher in the AIT group (8.1 ± 1.1 ng/ml) than in the pancreatectomy-only control (2.2 ± 0.5 ng/ml) (p < 0.05). Circulating serum levels of soluble receptor for advanced glycation end products (sRAGE) were also elevated during islet infusion. In vitro studies demonstrated that damaged human islets released HMGB1 but not sRAGE. In terms of outcomes, the insulin-free group showed significantly lower ΔHMGB1 (5.2 ± 0.6 ng/ml) and higher ΔsRAGE (2.3 ± 0.6 ng/ml) than the insulin-dependent group (10.6 ± 1.9 ng/ml and 0.7 ± 0.2 ng/ml, respectively). The ΔHMGB1 correlated with the number of white blood cell, IP-10, EGF, and eotaxin. In conclusion, serum HMGB1 was elevated in AIT and could be associated with inflammatory reactions that deteriorate islet engraftment. Therefore, anti-HMGB1 therapy might be a candidate for further improving the outcomes of clinical AIT.
Collapse
|