1
|
Colella A, Biondi G, Marrano N, Francioso E, Fracassi L, Crovace AM, Recchia A, Natalicchio A, Paradies P. Generation of Insulin-Producing Cells from Canine Bone Marrow-Derived Mesenchymal Stem Cells: A Preliminary Study. Vet Sci 2024; 11:380. [PMID: 39195834 PMCID: PMC11359947 DOI: 10.3390/vetsci11080380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/07/2024] [Accepted: 08/13/2024] [Indexed: 08/29/2024] Open
Abstract
Cell-based therapy using insulin-producing cells (IPCs) is anticipated as an alternative treatment option to insulin injection or pancreatic islet transplantation for the treatment of diabetes mellitus in both human and veterinary medicine. Several protocols were reported for the differentiation of mesenchymal stem cells (MSCs) into IPCs; to date, glucose-responsive IPCs have only been obtained from canine adipose tissue-derived MSCs (cAD-MSCs), but not from canine bone marrow-derived MSCs (cBM-MSCs). Therefore, this study aims to generate in vitro glucose-responsive IPCs from cBM-MSCs using two differentiation protocols: a two-step protocol using trichostatin (TSA) and a three-step protocol using mercaptoethanol to induce pancreatic and duodenal homeobox gene 1 (PDX-1) expression. A single experiment was carried out for each protocol. BM-MSCs from one dog were successfully cultured and expanded. Cells exposed to the two-step protocol appeared rarely grouped to form small clusters; gene expression analysis showed a slight increase in PDX-1 and insulin expression, but no insulin protein production nor secretion in the culture medium was detected either under basal conditions or following glucose stimulation. Conversely, cells exposed to the three-step protocol under a 3D culture system formed colony-like structures; insulin gene expression was upregulated compared to undifferentiated control and IPCs colonies secreted insulin in the culture medium, although insulin secretion was not enhanced by high-glucose culture conditions. The single experiment results suggest that the three-step differentiation protocol could generate IPCs from cBM-MSCs; however, further experiments are needed to confirm these data. The ability of IPCs from cBM- MSCs to produce insulin, described here for the first time, is a preliminary interesting result. Nevertheless, the IPCs' unresponsiveness to glucose, if confirmed, would affect its clinical application. Further studies are necessary to establish a differentiation protocol in this perspective.
Collapse
Affiliation(s)
- Antonella Colella
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), Veterinary Clinics and Animal Production Section, University of Bari Aldo Moro, Valenzano, 70010 Bari, Italy; (A.C.); (E.F.); (L.F.); (A.R.)
| | - Giuseppina Biondi
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), Internal Medicine, Endocrinology, Andrology and Metabolic Diseases Section, University of Bari Aldo Moro, 70124 Bari, Italy; (G.B.); (N.M.); (A.N.)
| | - Nicola Marrano
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), Internal Medicine, Endocrinology, Andrology and Metabolic Diseases Section, University of Bari Aldo Moro, 70124 Bari, Italy; (G.B.); (N.M.); (A.N.)
| | - Edda Francioso
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), Veterinary Clinics and Animal Production Section, University of Bari Aldo Moro, Valenzano, 70010 Bari, Italy; (A.C.); (E.F.); (L.F.); (A.R.)
| | - Laura Fracassi
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), Veterinary Clinics and Animal Production Section, University of Bari Aldo Moro, Valenzano, 70010 Bari, Italy; (A.C.); (E.F.); (L.F.); (A.R.)
| | - Alberto M. Crovace
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy;
| | - Alessandra Recchia
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), Veterinary Clinics and Animal Production Section, University of Bari Aldo Moro, Valenzano, 70010 Bari, Italy; (A.C.); (E.F.); (L.F.); (A.R.)
| | - Annalisa Natalicchio
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), Internal Medicine, Endocrinology, Andrology and Metabolic Diseases Section, University of Bari Aldo Moro, 70124 Bari, Italy; (G.B.); (N.M.); (A.N.)
| | - Paola Paradies
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), Veterinary Clinics and Animal Production Section, University of Bari Aldo Moro, Valenzano, 70010 Bari, Italy; (A.C.); (E.F.); (L.F.); (A.R.)
| |
Collapse
|
2
|
Dang Le Q, Rodprasert W, Kuncorojakti S, Pavasant P, Osathanon T, Sawangmake C. In vitro generation of transplantable insulin-producing cells from canine adipose-derived mesenchymal stem cells. Sci Rep 2022; 12:9127. [PMID: 35650303 PMCID: PMC9160001 DOI: 10.1038/s41598-022-13114-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 05/20/2022] [Indexed: 11/27/2022] Open
Abstract
Canine mesenchymal stem cells (cMSCs) have potential applications for regenerative therapy, including the generation of insulin-producing cells (IPCs) for studying and treating diabetes. In this study, we established a useful protocol for generating IPCs from canine adipose mesenchymal stem cells (cAD-MSCs). Subsequently, in vitro preservation of pluronic F127-coated alginate (ALGPA)-encapsulated cAD-MSC-derived IPCs was performed to verify ready-to-use IPCs. IPCs were induced from cAD-MSCs with the modulated three-stepwise protocol. The first step of definitive endoderm (DE) induction showed that the cooperation of Chir99021 and Activin A created the effective production of Sox17-expressed DE cells. The second step for pancreatic endocrine (PE) progenitor induction from DE indicated that the treatment with taurine, retinoic acid, FGF2, EGF, TGFβ inhibitor, dorsomorphin, nicotinamide, and DAPT showed the significant upregulation of the pancreatic endocrine precursor markers Pdx1 and Ngn3. The last step of IPC production, the combination of taurine, nicotinamide, Glp-1, forskolin, PI3K inhibitor, and TGFβ inhibitor, yielded efficiently functional IPCs from PE precursors. Afterward, the maintenance of ALGPA-encapsulated cAD-MSC-derived IPCs with VSCBIC-1, a specialized medium, enhanced IPC properties. Conclusion, the modulated three-stepwise protocol generates the functional IPCs. Together, the encapsulation of cAD-MSC-derived IPCs and the cultivation with VSCBIC-1 enrich the maturation of generated IPCs.
Collapse
Affiliation(s)
- Quynh Dang Le
- International Program of Veterinary Science and Technology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Veterinary Stem Cell and Bioengineering Innovation Center (VSCBIC), Veterinary Pharmacology and Stem Cell Research Laboratory, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Veterinary Stem Cell and Bioengineering Research Unit, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Watchareewan Rodprasert
- Veterinary Stem Cell and Bioengineering Innovation Center (VSCBIC), Veterinary Pharmacology and Stem Cell Research Laboratory, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Suryo Kuncorojakti
- Veterinary Stem Cell and Bioengineering Innovation Center (VSCBIC), Veterinary Pharmacology and Stem Cell Research Laboratory, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Department of Veterinary Science, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, East Java, Indonesia
| | - Prasit Pavasant
- Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Regenerative Dentistry (CERD), Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Thanaphum Osathanon
- Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
- Dental Stem Cell Biology Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Chenphop Sawangmake
- Veterinary Stem Cell and Bioengineering Innovation Center (VSCBIC), Veterinary Pharmacology and Stem Cell Research Laboratory, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand.
- Veterinary Stem Cell and Bioengineering Research Unit, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand.
- Department of Pharmacology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand.
- Center of Excellence in Regenerative Dentistry (CERD), Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
3
|
Sarnobat D, Charlotte Moffett R, Flatt PR, Irwin N, Tarasov AI. GABA and insulin but not nicotinamide augment α- to β-cell transdifferentiation in insulin-deficient diabetic mice. Biochem Pharmacol 2022; 199:115019. [DOI: 10.1016/j.bcp.2022.115019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/23/2022] [Accepted: 03/23/2022] [Indexed: 12/30/2022]
|
4
|
Camara BOS, Ocarino NM, Bertassoli BM, Malm C, Araújo FR, Reis AMS, Jorge EC, Alves EGL, Serakides R. Differentiation of canine adipose mesenchymal stem cells into insulin-producing cells: comparison of different culture medium compositions. Domest Anim Endocrinol 2021; 74:106572. [PMID: 33039930 DOI: 10.1016/j.domaniend.2020.106572] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 09/04/2020] [Accepted: 09/10/2020] [Indexed: 12/25/2022]
Abstract
The aim of this study was to differentiate canine adipose-derived mesenchymal stem cells (ADMSCs) into insulin-producing cells by using culture media with different compositions to determine the most efficient media. Stem cells isolated from the fat tissues close to the bitch uterus were distributed into 6 groups: (1) Dulbecco's modified Eagle medium (DMEM)-high glucose (HG), β-mercaptoethanol, and nicotinamide; (2) DMEM-HG, β-mercaptoethanol, nicotinamide, and exendin-4; (3) DMEM-HG, β-mercaptoethanol, nicotinamide, exendin-4, B27, nonessential amino acids, and l-glutamine; (4) DMEM-HG, β-mercaptoethanol, and nicotinamide (for the initial 8-d period), and DMEM-HG, β-mercaptoethanol, nicotinamide, exendin-4, B27, nonessential amino acids, l-glutamine, and basic fibroblast growth factor (for the remaining 8-d period); (5) DMEM-HG and fetal bovine serum; and (6) DMEM-low glucose and fetal bovine serum (standard control group). Adipose-derived mesenchymal stem cells from groups 1 to 5 gradually became round in shape and gathered in clusters. These changes differed between the groups. In group 3, the cell clusters were apparently more in numbers and gathered as bigger aggregates. Dithizone staining showed that groups 3 and 4 were similar in terms of the mean area of each aggregate stained for insulin. However, only in group 4, the number of insulin aggregates and the total area of aggregates stained were significantly bigger than in the other groups. The mRNA expression of PDX1, BETA2, MafA, and Insulin were also confirmed in all the groups. We conclude that by manipulating the composition of the culture medium it is possible to induce canine ADMSCs into insulin-producing cells, and the 2-staged protocol that was used promoted the best differentiation.
Collapse
Affiliation(s)
- B O S Camara
- Núcleo de Células Tronco e Terapia Celular Animal (NCT-TCA) da Escola de Veterinária da Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - N M Ocarino
- Núcleo de Células Tronco e Terapia Celular Animal (NCT-TCA) da Escola de Veterinária da Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - B M Bertassoli
- Universidade de Uberaba (UNIUBE), Uberaba, Minas Gerais, Brazil
| | - C Malm
- Núcleo de Células Tronco e Terapia Celular Animal (NCT-TCA) da Escola de Veterinária da Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - F R Araújo
- Núcleo de Células Tronco e Terapia Celular Animal (NCT-TCA) da Escola de Veterinária da Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - A M S Reis
- Núcleo de Células Tronco e Terapia Celular Animal (NCT-TCA) da Escola de Veterinária da Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - E C Jorge
- Laboratório de Biologia Oral e do Desenvolvimento, Departamento de Morfologia do Instituto de Ciências Biológicas da Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - E G L Alves
- Universidade de Uberaba (UNIUBE), Uberaba, Minas Gerais, Brazil
| | - R Serakides
- Núcleo de Células Tronco e Terapia Celular Animal (NCT-TCA) da Escola de Veterinária da Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
5
|
Generation of Insulin-Producing Cells from Canine Adipose Tissue-Derived Mesenchymal Stem Cells. Stem Cells Int 2020; 2020:8841865. [PMID: 33133196 PMCID: PMC7591982 DOI: 10.1155/2020/8841865] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 09/30/2020] [Accepted: 10/03/2020] [Indexed: 12/18/2022] Open
Abstract
The potential of mesenchymal stem cells (MSCs) to differentiate into nonmesodermal cells such as pancreatic beta cells has been reported. New cell-based therapy using MSCs for diabetes mellitus is anticipated as an alternative treatment option to insulin injection or islet transplantation in both human and veterinary medicine. Several protocols were reported for differentiation of MSCs into insulin-producing cells (IPCs), but no studies have reported IPCs generated from canine MSCs. The purpose of this study was to generate IPCs from canine adipose tissue-derived MSCs (AT-MSCs) in vitro and to investigate the effects of IPC transplantation on diabetic mice in vivo. Culturing AT-MSCs with the differentiation protocol under a two-dimensional culture system did not produce IPCs. However, spheroid-like small clusters consisting of canine AT-MSCs and human recombinant peptide μ-pieces developed under a three-dimensional (3D) culture system were successfully differentiated into IPCs. The generated IPCs under 3D culture condition were stained with dithizone and anti-insulin antibody. Canine IPCs also showed gene expression typical for pancreatic beta cells and increased insulin secretion in response to glucose stimulation. The blood glucose levels in streptozotocin-induced diabetic mice were decreased after injection with the supernatant of canine IPCs, but the hyperglycemic states of diabetic mice were not improved after transplanting IPCs subcutaneously or intramesenterically. The histological examination showed that the transplanted small clusters of IPCs were successfully engrafted to the mice and included cells positive for insulin by immunofluorescence. Several factors, such as the transplanted cell number, the origin of AT-MSCs, and the differentiation protocol, were considered potential reasons for the inability to improve the hyperglycemic state after IPC transplantation. These findings suggest that canine AT-MSCs can be differentiated into IPCs under a 3D culture system and IPC transplantation may be a new treatment option for dogs with diabetes mellitus.
Collapse
|
6
|
Griffin SM, Pickard MR, Hawkins CP, Williams AC, Fricker RA. Nicotinamide restricts neural precursor proliferation to enhance catecholaminergic neuronal subtype differentiation from mouse embryonic stem cells. PLoS One 2020; 15:e0233477. [PMID: 32925933 PMCID: PMC7489539 DOI: 10.1371/journal.pone.0233477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 08/28/2020] [Indexed: 11/19/2022] Open
Abstract
Emerging evidence indicates that a strong relationship exists between brain regenerative therapies and nutrition. Early life nutrition plays an important role during embryonic brain development, and there are clear consequences to an imbalance in nutritional factors on both the production and survival of mature neuronal populations and the infant’s risk of diseases in later life. Our research and that of others suggest that vitamins play a fundamental role in the formation of neurons and their survival. There is a growing body of evidence that nicotinamide, the water-soluble amide form of vitamin B3, is implicated in the conversion of pluripotent stem cells to clinically relevant cells for regenerative therapies. This study investigated the ability of nicotinamide to promote the development of mature catecholaminergic neuronal populations (associated with Parkinson’s disease) from mouse embryonic stem cells, as well as investigating the underlying mechanisms of nicotinamide’s action. Nicotinamide selectively enhanced the production of tyrosine hydroxylase-expressing neurons and serotonergic neurons from mouse embryonic stem cell cultures (Sox1GFP knock-in 46C cell line). A 5-Ethynyl-2´-deoxyuridine (EdU) assay ascertained that nicotinamide, when added in the initial phase, reduced cell proliferation. Nicotinamide drove tyrosine hydroxylase-expressing neuron differentiation as effectively as an established cocktail of signalling factors, reducing the proliferation of neural progenitors and accelerating neuronal maturation, neurite outgrowth and neurotransmitter expression. These novel findings show that nicotinamide enhanced and enriched catecholaminergic differentiation and inhibited cell proliferation by directing cell cycle arrest in mouse embryonic stem cell cultures, thus driving a critical neural proliferation-to-differentiation switch from neural progenitors to neurons. Further research into the role of vitamin metabolites in embryogenesis will significantly advance cell-based regenerative medicine, and help realize their role as crucial developmental signalling molecules in brain development.
Collapse
Affiliation(s)
- Síle M. Griffin
- Keele Medical School and Institute for Science and Technology in Medicine, Keele University, Keele, Staffordshire, England, United Kingdom
- * E-mail:
| | - Mark R. Pickard
- Chester Medical School, University Centre Shrewsbury, University of Chester, Shrewsbury, England, United Kingdom
| | - Clive P. Hawkins
- Keele Medical School and Institute for Science and Technology in Medicine, Keele University, Keele, Staffordshire, England, United Kingdom
- Department of Neurology, Royal Stoke University Hospital, Stoke-on-Trent, Staffordshire, England, United Kingdom
| | - Adrian C. Williams
- Department of Neurosciences, University of Birmingham, Birmingham, England, United Kingdom
| | - Rosemary A. Fricker
- Keele Medical School and Institute for Science and Technology in Medicine, Keele University, Keele, Staffordshire, England, United Kingdom
| |
Collapse
|
7
|
Pavathuparambil Abdul Manaph N, Sivanathan KN, Nitschke J, Zhou XF, Coates PT, Drogemuller CJ. An overview on small molecule-induced differentiation of mesenchymal stem cells into beta cells for diabetic therapy. Stem Cell Res Ther 2019; 10:293. [PMID: 31547868 PMCID: PMC6757413 DOI: 10.1186/s13287-019-1396-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 07/23/2019] [Accepted: 08/26/2019] [Indexed: 12/17/2022] Open
Abstract
The field of regenerative medicine provides enormous opportunities for generating beta cells from different stem cell sources for cellular therapy. Even though insulin-secreting cells can be generated from a variety of stem cell types like pluripotent stem cells and embryonic stem cells, the ideal functional cells should be generated from patients' own cells and expanded to considerable levels by non-integrative culture techniques. In terms of the ease of isolation, plasticity, and clinical translation to generate autologous cells, mesenchymal stem cell stands superior. Furthermore, small molecules offer a great advantage in terms of generating functional beta cells from stem cells. Research suggests that most of the mesenchymal stem cell-based protocols to generate pancreatic beta cells have small molecules in their cocktail. However, most of the protocols generate cells that mimic the characteristics of human beta cells, thereby generating "beta cell-like cells" as opposed to mature beta cells. Diabetic therapy becomes feasible only when there are robust, functional, and safe cells for replacing the damaged or lost beta cells. In this review, we discuss the current protocols used to generate beta cells from mesenchymal cells, with emphasis on small molecule-mediated conversion into insulin-producing beta cell-like cells. Our data and the data presented from the references within this review would suggest that although mesenchymal stem cells are an attractive cell type for cell therapy they are not readily converted into functional mature beta cells.
Collapse
Affiliation(s)
- Nimshitha Pavathuparambil Abdul Manaph
- Central Northern Adelaide Renal and Transplantation Service, Royal Adelaide Hospital, Adelaide, South Australia, 5000, Australia. .,School of Pharmacy and Medical Sciences, Sansom Institute, University of South Australia, Adelaide, South Australia, 5000, Australia. .,School of Medicine, Faculty of Health Sciences, University of Adelaide, Adelaide, South Australia, 5000, Australia. .,Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar.
| | - Kisha N Sivanathan
- Central Northern Adelaide Renal and Transplantation Service, Royal Adelaide Hospital, Adelaide, South Australia, 5000, Australia.,School of Pharmacy and Medical Sciences, Sansom Institute, University of South Australia, Adelaide, South Australia, 5000, Australia.,School of Medicine, Faculty of Health Sciences, University of Adelaide, Adelaide, South Australia, 5000, Australia.,Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
| | - Jodie Nitschke
- Central Northern Adelaide Renal and Transplantation Service, Royal Adelaide Hospital, Adelaide, South Australia, 5000, Australia.,School of Medicine, Faculty of Health Sciences, University of Adelaide, Adelaide, South Australia, 5000, Australia
| | - Xin-Fu Zhou
- School of Medicine, Faculty of Health Sciences, University of Adelaide, Adelaide, South Australia, 5000, Australia
| | - Patrick T Coates
- Central Northern Adelaide Renal and Transplantation Service, Royal Adelaide Hospital, Adelaide, South Australia, 5000, Australia.,School of Medicine, Faculty of Health Sciences, University of Adelaide, Adelaide, South Australia, 5000, Australia
| | - Christopher John Drogemuller
- Central Northern Adelaide Renal and Transplantation Service, Royal Adelaide Hospital, Adelaide, South Australia, 5000, Australia.,School of Medicine, Faculty of Health Sciences, University of Adelaide, Adelaide, South Australia, 5000, Australia
| |
Collapse
|
8
|
Ojaghi M, Soleimanifar F, Kazemi A, Ghollasi M, Soleimani M, Nasoohi N, Enderami SE. Electrospun poly‐
l
‐lactic acid/polyvinyl alcohol nanofibers improved insulin‐producing cell differentiation potential of human adipose‐derived mesenchymal stem cells. J Cell Biochem 2018; 120:9917-9926. [DOI: 10.1002/jcb.28274] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Accepted: 10/24/2018] [Indexed: 12/17/2022]
Affiliation(s)
- Mohammad Ojaghi
- Department of Molecular and Cellular Sciences Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University Tehran Iran
| | - Fatemeh Soleimanifar
- Dietary Supplements and Probiotic Research Center, Alborz University of Medical Sciences Karaj Iran
| | - Alireza Kazemi
- Department of Hematology and Blood Banking School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Marzieh Ghollasi
- Department of Cell and Molecular Biology Faculty of Biological Science, Kharazmi University Tehran Iran
| | - Masoud Soleimani
- Department of Hematology Faculty of Medical Sciences, Tarbiat Modares University Tehran Iran
| | - Nikoo Nasoohi
- Department of Molecular and Cellular Sciences Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University Tehran Iran
| | | |
Collapse
|
9
|
Hoveizi E, Tavakol S. Therapeutic potential of human mesenchymal stem cells derived beta cell precursors on a nanofibrous scaffold: An approach to treat diabetes mellitus. J Cell Physiol 2018; 234:10196-10204. [PMID: 30387142 DOI: 10.1002/jcp.27689] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 10/09/2018] [Indexed: 12/31/2022]
Abstract
Diabetes mellitus is an autoimmune and chronic disorder that is rapidly expanding worldwide due to increasing obesity. In the current study, we were able to design a reliable 3-dimensional differentiation process of human Wharton's jelly mesenchymal stem cells into pancreatic beta cell precursors (PBCPs) and detected that transplanted PBCPs could improve hyperglycemia in a diabetes-induced model in mice. Polylactic acid/chitosan nanofibrous scaffold was prepared using an electrospinning method. Quantitative real-time reverse transcription-polymerase chain reaction and immunocytochemistry analysis were carried out to assess pancreatic marker expression in the differentiated cells. PBCPs were transplanted under the kidney capsule of diabetic mice that induced streptozotocin injection 14 days before the transplantation. Moreover, an intraperitoneal glucose tolerance test (ipGTT) was carried out 2 and 4 weeks after the transplantation to measure the reaction to a sudden increase of the blood glucose level in the transplanted animals. The results indicated that the expression of SRY (sex determining region Y)-box (Sox17), forkhead box A2 (FoxA2), pancreatic and duodenal homeobox 1 (Pdx1), neurogenin 3 (Ngn3), hepatic nuclear factor 4, alpha (Hnf4α), and NK2 homeobox 2 (Nkx2.2) were increased significantly in the differentiated cells compared with that of the control group. In the current study, the diabetic disease was confirmed by measuring blood glucose and proved by conducting some other behavioral tests. After the PBCPs transplantation in a diabetic model, the ipGTT and hyperglycemia investigation during the determinant times confirmed the disease's significant improvement in the experimental models. In this study, some preclinical data suggested that the transplantation of PBCPs associated with appropriate nanofiber scaffold can be utilized for the treatment of diabetes models. In addition, studies are required to elucidate the molecular mechanism of PBCPs acting in diabetes models before being used for patients with diabetes.
Collapse
Affiliation(s)
- Elham Hoveizi
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran.,Stem Cells and Transgenic Technology Research Center (STTRC), Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Shima Tavakol
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Peng SY, Chou CW, Kuo YH, Shen PC, Shaw SWS. Potential differentiation of islet-like cells from pregnant cow-derived placental stem cells. Taiwan J Obstet Gynecol 2017; 56:306-311. [PMID: 28600038 DOI: 10.1016/j.tjog.2017.04.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2017] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE Type 1 diabetes is an autoimmune disease that destroys islet cells and results in insufficient insulin secretion by pancreatic β-cells. Islet transplantation from donors is an approach used for treating patients with diabetes; however, this therapy is difficult to implement because of the lack of donors. Nevertheless, several stem cells have the potential to differentiate from islet-like cells and enable insulin secretion for treating diabetes in animal models. For example, placenta is considered a waste material and can be harvested noninvasively during delivery without ethical or moral concerns. To date, the differentiation of islet-like cells from cow-derived placental stem cells (CPSCs) has yet to be demonstrated. MATERIALS AND METHODS The investigation of potential differentiation of islet-like cells from CPSCs was conducted by supplementation with nicotinamide, exendin-4, glucose, and poly-d-lysine and was detected through reverse transcription polymerase chain reaction, dithizone staining, and immunocytochemical methods. RESULTS Our results indicated that CPSCs are established and express mesenchymal stem cell surface antigen markers, such as CD73, CD166, β-integrin, and Oct-4, but not hematopoietic stem cell surface antigen markers, such as CD45. After induction, the CPSCs successfully differentiated into islet-like cells. The CPSC-derived islet-like cells expressed islet cell development-related genes, such as insulin, glucagon, pax-4, Nkx6.1, pax-6, and Fox. Moreover, CPSC-derived islet-like cells can be stained with zinc ions, which are widely distributed in the islet cells and enable insulin secretion. CONCLUSION Altogether, islet-like cells have the potential to be differentiated from CPSCs without gene manipulation, and can be used in diabetic animal models in the future for preclinical and drug testing trial investigations.
Collapse
Affiliation(s)
- Shao-Yu Peng
- Department of Animal Science, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Chien-Wen Chou
- Department of Animal Science, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Yu-Hsuan Kuo
- Department of Animal Science, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Perng-Chih Shen
- Department of Animal Science, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - S W Steven Shaw
- Department of Obstetrics and Gynaecology, Chang Gung Memorial Hospital at Linkou and Chang Gung University, College of Medicine, Taoyuan, Taiwan; Prenatal Cell and Gene Therapy Group, Institute for Women's Health, University College London, London, UK.
| |
Collapse
|
11
|
|