1
|
Saha A, Palchaudhuri R, Lanieri L, Hyzy S, Riddle MJ, Panthera J, Eide CR, Tolar J, Panoskaltsis-Mortari A, Gorfinkel L, Tkachev V, Gerdemann U, Alvarez-Calderon F, Palato ER, MacMillan ML, Wagner JE, Kean LS, Osborn MJ, Kiem HP, Scadden DT, Olson LM, Blazar BR. Alloengraftment without significant toxicity or GVHD in CD45 antibody-drug conjugate-conditioned Fanconi anemia mice. Blood 2024; 143:2201-2216. [PMID: 38447038 PMCID: PMC11143525 DOI: 10.1182/blood.2023023549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/09/2024] [Accepted: 02/25/2024] [Indexed: 03/08/2024] Open
Abstract
ABSTRACT Fanconi anemia (FA) is an inherited DNA repair disorder characterized by bone marrow (BM) failure, developmental abnormalities, myelodysplasia, leukemia, and solid tumor predisposition. Allogeneic hematopoietic stem cell transplantation (allo-HSCT), a mainstay treatment, is limited by conditioning regimen-related toxicity and graft-versus-host disease (GVHD). Antibody-drug conjugates (ADCs) targeting hematopoietic stem cells (HSCs) can open marrow niches permitting donor stem cell alloengraftment. Here, we report that single dose anti-mouse CD45-targeted ADC (CD45-ADC) facilitated stable, multilineage chimerism in 3 distinct FA mouse models representing 90% of FA complementation groups. CD45-ADC profoundly depleted host stem cell enriched Lineage-Sca1+cKit+ cells within 48 hours. Fanca-/- recipients of minor-mismatched BM and single dose CD45-ADC had peripheral blood (PB) mean donor chimerism >90%; donor HSCs alloengraftment was verified in secondary recipients. In Fancc-/- and Fancg-/- recipients of fully allogeneic grafts, PB mean donor chimerism was 60% to 80% and 70% to 80%, respectively. The mean percent donor chimerism in BM and spleen mirrored PB results. CD45-ADC-conditioned mice did not have clinical toxicity. A transient <2.5-fold increase in hepatocellular enzymes and mild-to-moderate histopathological changes were seen. Under GVHD allo-HSCT conditions, wild-type and Fanca-/- recipients of CD45-ADC had markedly reduced GVHD lethality compared with lethal irradiation. Moreover, single dose anti-human CD45-ADC given to rhesus macaque nonhuman primates on days -6 or -10 was at least as myeloablative as lethal irradiation. These data suggest that CD45-ADC can potently promote donor alloengraftment and hematopoiesis without significant toxicity or severe GVHD, as seen with lethal irradiation, providing strong support for clinical trial considerations in highly vulnerable patients with FA.
Collapse
Affiliation(s)
- Asim Saha
- Division of Blood and Marrow Transplant & Cellular Therapy, Department of Pediatrics and Masonic Cancer Center, University of Minnesota, Minneapolis, MN
| | | | | | | | - Megan J. Riddle
- Division of Blood and Marrow Transplant & Cellular Therapy, Department of Pediatrics and Masonic Cancer Center, University of Minnesota, Minneapolis, MN
| | - Jamie Panthera
- Division of Blood and Marrow Transplant & Cellular Therapy, Department of Pediatrics and Masonic Cancer Center, University of Minnesota, Minneapolis, MN
| | - Cindy R. Eide
- Division of Blood and Marrow Transplant & Cellular Therapy, Department of Pediatrics and Masonic Cancer Center, University of Minnesota, Minneapolis, MN
| | - Jakub Tolar
- Division of Blood and Marrow Transplant & Cellular Therapy, Department of Pediatrics and Masonic Cancer Center, University of Minnesota, Minneapolis, MN
| | - Angela Panoskaltsis-Mortari
- Division of Blood and Marrow Transplant & Cellular Therapy, Department of Pediatrics and Masonic Cancer Center, University of Minnesota, Minneapolis, MN
| | - Lev Gorfinkel
- Boston Children's Hospital, Dana-Farber Cancer Institute, Boston, MA
| | - Victor Tkachev
- Massachusetts General Hospital Center for Transplantation Sciences, Mass General Brigham and Massachusetts General Hospital, Boston, MA
| | - Ulrike Gerdemann
- Boston Children's Hospital, Dana-Farber Cancer Institute, Boston, MA
| | | | | | - Margaret L. MacMillan
- Division of Blood and Marrow Transplant & Cellular Therapy, Department of Pediatrics and Masonic Cancer Center, University of Minnesota, Minneapolis, MN
| | - John E. Wagner
- Division of Blood and Marrow Transplant & Cellular Therapy, Department of Pediatrics and Masonic Cancer Center, University of Minnesota, Minneapolis, MN
| | - Leslie S. Kean
- Boston Children's Hospital, Dana-Farber Cancer Institute, Boston, MA
| | - Mark J. Osborn
- Division of Blood and Marrow Transplant & Cellular Therapy, Department of Pediatrics and Masonic Cancer Center, University of Minnesota, Minneapolis, MN
| | - Hans-Peter Kiem
- Department of Medicine, Fred Hutchinson Cancer Research Center, University of Washington, Seattle, WA
| | - David T. Scadden
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA
- Harvard Stem Cell Institute, Cambridge, MA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA
| | | | - Bruce R. Blazar
- Division of Blood and Marrow Transplant & Cellular Therapy, Department of Pediatrics and Masonic Cancer Center, University of Minnesota, Minneapolis, MN
| |
Collapse
|
2
|
Chakkaramakkil Verghese S, Goloviznina NA, Kurre P. Phenotypic correction of Fanconi anemia cells in the murine bone marrow after carrier cell mediated delivery of lentiviral vector. Stem Cell Res Ther 2016; 7:170. [PMID: 27865213 PMCID: PMC5116221 DOI: 10.1186/s13287-016-0431-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Revised: 10/14/2016] [Accepted: 10/26/2016] [Indexed: 11/16/2022] Open
Abstract
Fanconi anemia (FA) is an autosomal-recessive disorder associated with hematopoietic failure and it is a candidate for hematopoietic stem cell (HSC)-directed gene therapy. However, the characteristically reduced HSC numbers found in FA patients, their ineffective mobilization from the marrow, and re-oxygenation damage during ex vivo manipulation have precluded clinical success using conventional in vitro approaches. We previously demonstrated that lentiviral vector (LV) particles reversibly attach to the cell surface where they gain protection from serum complement neutralization. We reasoned that cellular delivery of LV to the bone marrow niche could avoid detrimental losses during FA HSC mobilization and in vitro modification. Here, we demonstrate that a VSV-G pseudotyped lentivector, carrying the FANCC transgene, can be transmitted from carrier to bystander cells. In cell culture and transplantation models of FA, we further demonstrate that LV carrier cells migrate along SDF-1α gradients and transfer vector particles that stably integrate and phenotypically correct the characteristic DNA alkylator sensitivity in murine and human FA-deficient target bystander cells. Altogether, we demonstrate that cellular homing mechanisms can be harnessed for the functional phenotype correction in murine FA hematopoietic cells.
Collapse
Affiliation(s)
- Santhosh Chakkaramakkil Verghese
- Department of Pediatrics, Oregon Health & Science University, Portland, OR, 97239, USA. .,Papé Family Pediatric Research Institute, Oregon Health & Science University, L321, Portland, OR, 97239, USA.
| | - Natalya A Goloviznina
- Department of Pediatrics, Oregon Health & Science University, Portland, OR, 97239, USA.,Papé Family Pediatric Research Institute, Oregon Health & Science University, L321, Portland, OR, 97239, USA.,Present address: Molecular, Cellular, Developmental Biology and Genetics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Peter Kurre
- Department of Pediatrics, Oregon Health & Science University, Portland, OR, 97239, USA.,Papé Family Pediatric Research Institute, Oregon Health & Science University, L321, Portland, OR, 97239, USA
| |
Collapse
|