1
|
Sabra MS, Sayed AEDH, Idriss SKA, Soliman HAM. Single and combined toxicity of tadalafil (Cilais) and microplastic in Tilapia fish (Oreochromis niloticus). Sci Rep 2024; 14:14576. [PMID: 38914580 PMCID: PMC11196265 DOI: 10.1038/s41598-024-64282-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 06/06/2024] [Indexed: 06/26/2024] Open
Abstract
The joint impact of tadalafil (Cilais) as a pharmaceutical residue and microplastics on fish is not well comprehended. The current study examined haematological, biochemical, and antioxidant parameters, along with immunohistochemical and histological indications in tilapia (Oreochromis niloticus) after being exposed to tadalafil, polyethylene microplastics (PE-MPs), and their mixtures for 15 days. The fish were distributed into 1st group control group (The fish was maintained in untreated water without any supplements); 2nd group exposed to 10 mg/L PE-MPs;3rd group exposed to 20 mg/l tadalafil (Cilais); 4th group exposed to 20 mg/l tadalafil (Cilais) + 10 mg/LPE-MPs (in triplicate). The levels of creatinine, uric acid, glucose, AST, ALT, and albumin in fish treated with tadalafil alone or in combination with PE-MPs were significantly higher than those in the control group. Fish exposed to PE-MPs, tadalafil, and tadalafil plus PE-MPs showed significantly lower levels of RBCs, Hb, Ht, neutrophils, and lymphocytes compared to the control group. Serum levels of total antioxidant capacity and reduced glutathione (GSH) were notably lowered in fish groups subjected to PE-MPs, tadalafil, and tadalafil + PE-MPs combinations in comparison to the control group. Malondialdehyde (MDA) serum levels were notably elevated in fish groups subjected to PE-MPs, tadalafil, and tadalafil + PE-MPs combinations compared to the control group. The most severe impact was observed in the tadalafil + PE-MPs combination group. Interleukin-6 (IL-6) levels were significantly increased in liver tissues following exposure to both tadalafil and microplastics compared to tissues exposed to only one substance or the control group. Changes in the gills, liver, and renal tissues were seen following exposure to PE-MPs, tadalafil, and tadalafil + PE-MPs combination in comparison to the control group of fish. Ultimately, the mixture of tadalafil and PE-MPs resulted in the most detrimental outcomes. Tadalafil and PE-MPs exhibited showed greater adverse effects, likely due to tadalafil being absorbed onto PE-MPs.
Collapse
Affiliation(s)
- Mahmoud S Sabra
- Pharmacology Department, Faculty of Veterinary Medicine, Assiut University, Assiut, 71516, Egypt
| | - Alaa El-Din H Sayed
- Zoology Department, Faculty of Science, Assiut University, Assiut, 71516, Egypt.
- Molecular Biology Research and Studies Institute, Assiut University, Assiut, 71516, Egypt.
| | - Shaimaa K A Idriss
- Department of Fish Disease and Management, Faculty of Veterinary of Medicine, Assiut University, Assiut, 71516, Egypt
| | - Hamdy A M Soliman
- Department of Zoology, Faculty of Science, Sohag University, Sohag, 8562, Egypt
| |
Collapse
|
2
|
Ammar E, Hamed M, Mohamed MS, Sayed AEDH. The synergetic effects of 4-nonylphenol and polyethylene microplastics in Cyprinus carpio juveniles using blood biomarkers. Sci Rep 2023; 13:11635. [PMID: 37468510 PMCID: PMC10356929 DOI: 10.1038/s41598-023-38636-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 07/12/2023] [Indexed: 07/21/2023] Open
Abstract
Microplastics are widely distributed in aquatic ecosystems along with other chemical pollutants. Therefore, it is vital to study the health-hazardous effects of MPs in combination with 4-nonylphenol (4-NP), which is a highly abundant industrial waste and a critical alkylphenol endocrine disruptor. We investigated the effects of the exposure to polyethylene microplastics (PE-MPs), 4-NP, and their combination on blood biomarkers in Cyprinus carpio juveniles. Four study groups were treated for 15 consecutive days: (1) control group, (2) 10 mg/L PE-MP group, (3) 10 mg/L PE-MPs + 200 µg/L 4-NP group, and (4) 200 µg/L 4-NP group, followed by 15 days of recovery. Biochemical analyses showed that creatine kinase, lactate dehydrogenase, glucose, liver enzymes, total protein, and A/G ratios were significantly increased after exposure to PE-MPs, 4-NP, and the combination. Hematological parameters (RBC's, Hb, Ht, neutrophil percentage, and WBC's) were significantly decreased in the three exposure groups, whereas mean corpuscular volume and lymphocyte percentages were significantly increased. The 15-day recovery period improved most hematobiochemical parameters and PE-MP accumulation indices. Taken together, we demonstrated the hazardous effects of PE-MP and 4-NP combinations on C. carpio blood parameters and highlighted their potential risk to human health.
Collapse
Affiliation(s)
- Esraa Ammar
- Department of Molecular Biology, Molecular Biology Research and Studies Institute, Assiut University, Assiut, 71516, Egypt
| | - Mohamed Hamed
- Department of Zoology, Faculty of Science, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt
| | - Mahmoud S Mohamed
- Zoology Department, Faculty of Science, Assiut University, Assiut, 71516, Egypt
| | - Alaa El-Din H Sayed
- Department of Molecular Biology, Molecular Biology Research and Studies Institute, Assiut University, Assiut, 71516, Egypt.
- Zoology Department, Faculty of Science, Assiut University, Assiut, 71516, Egypt.
| |
Collapse
|
3
|
Sayed AEDH, Hamed M, Badrey AEA, Soliman HAM. Bioremediation of hemotoxic and oxidative stress induced by polyethylene microplastic in Clarias gariepinus using lycopene, citric acid, and chlorella. Comp Biochem Physiol C Toxicol Pharmacol 2021; 250:109189. [PMID: 34517132 DOI: 10.1016/j.cbpc.2021.109189] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 09/03/2021] [Accepted: 09/06/2021] [Indexed: 02/07/2023]
Abstract
Despite extensive research on the toxic effects of microplastics (MPs), there is no obtainable data on the use of phytobioremediation against MPs toxicity in fish. This study aimed to investigate the protective role of lycopene, citric acid, and chlorella against the toxic effects of MPs in African catfish (Clarias gariepinus) using hematology, biochemical, antioxidants, erythron profiles (poikilocytosis and nuclear abnormalities) and the accumulation of MPs in tissues as biomarkers. Five groups of fish received: normal diet (control); MPs (500 mg/kg diet) (Group 2); MPs (500 mg/kg diet) + lycopene (500 mg/kg diet) (Group 3); MPs (500 mg/kg diet) + citric acid (30 g/kg diet) (Group 4); and MPs (500 mg/kg diet) + chlorella (50 g/kg diet) (Group 5) for 15 days. Group 2 had significantly higher amounts of MPs in the stomach, gills, and feces, electrolyte imbalances (HCO3, Fe, Na+, K+, Ca+2, Cl-, and anion gap, hematobiochemical alterations, and decreases in the activities of superoxide dismutase, catalase, total antioxidant capacity, and glutathione S-transferases compared to the control group. Additionally, Group 2 had significant increase in the percentage of poikilocytosis, and nuclear abnormalities in RBC's compared to the control group. The co-treatment of MPs-exposed fish with lycopene, citric acid, and chlorella-supplemented diets ameliorated the hematological, biochemical, and erythron profile alterations, but only slightly enhanced the antioxidant activity. Overall, lycopene, citric acid, and chlorella can be recommended as a feed supplement to improve hematobiochemical alterations and oxidative damage induced by MPs toxicity in the African catfish (C. gariepinus).
Collapse
Affiliation(s)
- Alaa El-Din H Sayed
- Zoology Department, Faculty of Science, Assiut University, 71516 Assiut, Egypt.
| | - Mohamed Hamed
- Department of Zoology, Faculty of Science, Al Azhar University, Assiut Branch, 71524 Assiut, Egypt
| | - Ahmed E A Badrey
- Department of Zoology, Faculty of Science, Al Azhar University, Assiut Branch, 71524 Assiut, Egypt
| | - Hamdy A M Soliman
- Department of Zoology, Faculty of Science, Sohag University, 8562 Sohag, Egypt
| |
Collapse
|
4
|
Micro and Nano Plastics Distribution in Fish as Model Organisms: Histopathology, Blood Response and Bioaccumulation in Different Organs. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11135768] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Micro- and nano-plastic (MP/NP) pollution represents a threat not only to marine organisms and ecosystems, but also a danger for humans. The effects of these small particles resulting from the fragmentation of waste of various types have been well documented in mammals, although the consequences of acute and chronic exposure are not fully known yet. In this review, we summarize the recent results related to effects of MPs/NPs in different species of fish, both saltwater and freshwater, including zebrafish, used as model organisms for the evaluation of human health risk posed by MNPs. The expectation is that discoveries made in the model will provide insight regarding the risks of plastic particle toxicity to human health, with a focus on the effect of long-term exposure at different levels of biological complexity in various tissues and organs, including the brain. The current scientific evidence shows that plastic particle toxicity depends not only on factors such as particle size, concentration, exposure time, shape, and polymer type, but also on co-factors, which make the issue extremely complex. We describe and discuss the possible entry pathways of these particles into the fish body, as well as their uptake mechanisms and bioaccumulation in different organs and the role of blood response (hematochemical and hematological parameters) as biomarkers of micro- and nano-plastic water pollution.
Collapse
|
5
|
Hamed M, Soliman HAM, Osman AGM, Sayed AEDH. Assessment the effect of exposure to microplastics in Nile Tilapia (Oreochromis niloticus) early juvenile: I. blood biomarkers. CHEMOSPHERE 2019; 228:345-350. [PMID: 31039541 DOI: 10.1016/j.chemosphere.2019.04.153] [Citation(s) in RCA: 145] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/19/2019] [Accepted: 04/20/2019] [Indexed: 02/07/2023]
Abstract
There is a scarcity of knowledge about the impacts of microplastics (MPs) on the early juvenile stage of freshwater fish. The current study aims to inspect the exposure and post-exposure recovery of microplastics (MPs) on accumulation and blood biomarkers of Nile Tilapia (Oreochromis niloticus) early juvenile. Four groups of fishes were used; the first group was the control group, the second group was exposed to (1 mg/L of MPs), the third group was exposed to (10 mg/L of MPs), and the fourth group was exposed to (100 mg/L of MPs) for 15 days and 15 days of recovery. The results showed that significantly higher numbers of microplastics were observed in microplastics-exposed groups compared to control group. Biochemical parameters (creatinine, uric acid, AST, ALT, ALP, glucose, cholesterol, total protein, albumin, globulin, and A/G ratio) showed significant increment after exposure to microplastics for 15 days compared to control group in dose dependent manner. The hematological indices (RBC's count, Hb, Ht, MCHC, Platelets, WBC's count, and monocytes) showed a significant decline after exposure to microplastics for 15 days compared to control group, while MCV and MCH showed a significant increase after exposure to microplastics for 15 days. After the recovery period, microplastics accumulations, hemato-biochemical alterations were still detected in microplastics exposed groups compared to the control group except for WBC's count and MCV which return to normal levels. MPs caused anemia and perturbations in hemato-biochemical parameters which may cause mortality of tilapia early juvenile and should be considered in a program for monitoring hazard materials in the ecosystem.
Collapse
Affiliation(s)
- Mohamed Hamed
- Department of Zoology, Faculty of Science, Al-AzharUniversity (Assiut Branch), 71524, Assiut, Egypt.
| | - Hamdy A M Soliman
- Department of Zoology, Faculty of Science, Sohag University, 8562, Sohag, Egypt.
| | - Alaa G M Osman
- Department of Zoology, Faculty of Science, Al-AzharUniversity (Assiut Branch), 71524, Assiut, Egypt
| | - Alaa El-Din H Sayed
- Department of Zoology, Faculty of Science, Assiut University, 71516, Assiut, Egypt
| |
Collapse
|
6
|
Espinosa C, Cuesta A, Esteban MÁ. Effects of dietary polyvinylchloride microparticles on general health, immune status and expression of several genes related to stress in gilthead seabream (Sparus aurata L.). FISH & SHELLFISH IMMUNOLOGY 2017; 68:251-259. [PMID: 28684324 DOI: 10.1016/j.fsi.2017.07.006] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Revised: 06/30/2017] [Accepted: 07/02/2017] [Indexed: 05/20/2023]
Abstract
It is a long-recognized fact that marine plastic debris contaminates the oceans and seas of the entire world. Even though their effects on the aquatic biota are not well documented or understood. The effects of dietary polyvinylchloride microparticles (PVC-MPs) on the general health, immune status and some stress markers were studied using gilthead seabream (Sparus aurata) as a model of marine fish. Thirty specimens were randomly placed in three running sea water aquaria and fish in each aquarium received an experimental diet containing 0 (control), 100 or 500 mg kg-1 of PVC-MPs for 30 days. Metabolic parameters in serum indicated that the dietary intake of PVC-MPs negatively affected several vital organs. Humoral immune parameters were determined in serum and skin mucus. Cellular immune parameters were determined in head-kidney leucocytes. Concomitantly, the expression of different genes related to stress was studied in head-kidney and liver. Regarding head-kidney gene expression, prdx5 was significantly decreased by PVC-MPs intake for 15 and 30 days, respect to the values found in control fish. On the other hand, the expression of prdx1 and prdx3 were significantly increased by the PVC-MPs intake during 15 and 30 days, compared with the values found in control fish. Furthermore, the expression of hsp90 and ucp1 genes decreased and increased, respectively, in the liver of fish fed 500 mg kg-1 of PVC-MPs for 30 days. Although ingestion of PVC-MPs provoked few significant effects (mostly increases) in the main immune activities of gilthead seabream compared with the values found in control fish, PVC-MPs are recognized by the fish as stressors. Continued exposure of fish to high concentrations of PVC-MPs could have a negative impact on fish physiology due to the chronic stress produced.
Collapse
Affiliation(s)
- Cristóbal Espinosa
- Fish Innate Immune System Group, Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, 30100 Murcia, Spain
| | - Alberto Cuesta
- Fish Innate Immune System Group, Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, 30100 Murcia, Spain
| | - María Ángeles Esteban
- Fish Innate Immune System Group, Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, 30100 Murcia, Spain.
| |
Collapse
|