1
|
Kim GS, Cho CW, Lee JH, Shin DY, Lee HS, Lee KW, Kwon Y, Kim JS, Yang HM, Kim SJ, Park JB. Optimal allogeneic islet dose for transplantation in insulin-dependent diabetic Macaca fascicularis monkeys. Sci Rep 2021; 11:8617. [PMID: 33883656 PMCID: PMC8060424 DOI: 10.1038/s41598-021-88166-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 04/08/2021] [Indexed: 11/09/2022] Open
Abstract
Many groups are working to improve the results of clinical allogeneic islet transplantation in a primate model. However, few studies have focused on the optimal islet dose for achieving normal glycemia without exogenous insulin after transplantation in primate models or on the relationship between rejection and islet amyloid polypeptide (IAPP) expression. We evaluated the dose (10,000, 20,000, and > 25,000 islet equivalents (IEQ)/kg) needed to achieve normal glycemia without exogenous insulin after transplantation using eleven cynomolgus monkeys, and we analyzed the characteristics exhibited in the islets after transplantation. 10,000 IEQ/kg (N = 2) failed to control blood glucose level, despite injection with the highest dose of exogenous insulin, and 20,000 IEQ/kg group (N = 5) achieved unstable control, with a high insulin requirement. However, 25,000 IEQ/kg (N = 4) achieved normal glycemia without exogenous insulin and maintained it for more than 60 days. Immunohistochemistry results from staining islets found in liver biopsies indicated that as the number of transplanted islets decreased, the amount of IAPP accumulation within the islets increased, which accelerated CD3+ T cell infiltration. In conclusion, the optimal transplantation dose for achieving a normal glycemia without exogenous insulin in our cynomolgus monkey model was > 25,000 IEQ/kg, and the accumulation of IAPP early after transplantation, which depends on the transplanted islet dose, can be considered one factor in rejection.
Collapse
Affiliation(s)
- Geun Soo Kim
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Graduate School, Sungkyunkwan University, Seoul, Republic of Korea.,Stem Cell and Regenerative Medicine Institute, Samsung Medical Center, Seoul, Republic of Korea.,Transplantation Research Center, Samsung Medical Center, Seoul, Republic of Korea
| | - Chan Woo Cho
- Department of Surgery, Yeungnam University College of Medicine, Daegu, Republic of Korea
| | | | - Du Yeon Shin
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Graduate School, Sungkyunkwan University, Seoul, Republic of Korea.,Stem Cell and Regenerative Medicine Institute, Samsung Medical Center, Seoul, Republic of Korea.,Transplantation Research Center, Samsung Medical Center, Seoul, Republic of Korea
| | - Han Sin Lee
- Stem Cell and Regenerative Medicine Institute, Samsung Medical Center, Seoul, Republic of Korea.,Division of Endocrinology and Metabolism, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Kyo Won Lee
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Republic of Korea.,Department of Medicine, Sungkyunkwan University School of Medicine, Gyeonggi, Republic of Korea
| | - Yeongbeen Kwon
- Transplantation Research Center, Samsung Medical Center, Seoul, Republic of Korea
| | - Jae Sung Kim
- Transplantation Research Center, Samsung Medical Center, Seoul, Republic of Korea.,GenNBio Inc, Gyeonggi, Republic of Korea
| | - Heung-Mo Yang
- Department of Medicine, Sungkyunkwan University School of Medicine, Gyeonggi, Republic of Korea.,GenNBio Inc, Gyeonggi, Republic of Korea
| | - Sung Joo Kim
- Department of Medicine, Sungkyunkwan University School of Medicine, Gyeonggi, Republic of Korea.,GenNBio Inc, Gyeonggi, Republic of Korea
| | - Jae Berm Park
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Graduate School, Sungkyunkwan University, Seoul, Republic of Korea. .,Stem Cell and Regenerative Medicine Institute, Samsung Medical Center, Seoul, Republic of Korea. .,Transplantation Research Center, Samsung Medical Center, Seoul, Republic of Korea. .,Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Republic of Korea. .,Department of Medicine, Sungkyunkwan University School of Medicine, Gyeonggi, Republic of Korea.
| |
Collapse
|
2
|
Kim GS, Lee JH, Shin DY, Lee HS, Park H, Lee KW, Yang HM, Kim SJ, Park JB. Integrated whole liver histologic analysis of the allogeneic islet distribution and characteristics in a nonhuman primate model. Sci Rep 2020; 10:793. [PMID: 31964980 PMCID: PMC6972963 DOI: 10.1038/s41598-020-57701-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 01/06/2020] [Indexed: 12/21/2022] Open
Abstract
The most obvious method to observe transplanted islets in the liver is direct biopsy, but the distribution and location of the best biopsy site in the recipient's liver are poorly understood. Islets transplanted into the whole liver of five diabetic cynomolgus monkeys that underwent insulin-independent survival for an extended period of time after allo-islet transplantation were analyzed for characteristics and distribution tendency. The liver was divided into segments (S1-S8), and immunohistochemistry analysis was performed to estimate the diameter, beta cell area, and islet location. Islets were more distributed in S2 depending on tissue size; however, the number of islets per tissue size was high in S1 and S8. Statistical analysis revealed that the characteristics of islets in S1 and S8 were relatively similar to other segments despite various transplanted islet dosages and survival times. In conclusion, S1, which exhibited high islet density and reflected the overall characteristics of transplanted islets, can be considered to be a reasonable candidate for a liver biopsy site in this monkey model. The findings obtained from the five monkey livers with similar anatomical features to human liver can be used as a reference for monitoring transplanted islets after clinical islet transplantation.
Collapse
Affiliation(s)
- Geun Soo Kim
- Samsung Advanced Institute for Health Sciences & Technology, Graduate School, Department of Health Sciences & Technology, Sungkyunkwan University, Seoul, Republic of Korea.,Stem Cell & Regenerative Medicine Institute, Samsung Medical Center, Seoul, Republic of Korea.,Transplantation Research Center, Samsung Medical Center, Seoul, Republic of Korea
| | | | - Du Yeon Shin
- Samsung Advanced Institute for Health Sciences & Technology, Graduate School, Department of Health Sciences & Technology, Sungkyunkwan University, Seoul, Republic of Korea.,Stem Cell & Regenerative Medicine Institute, Samsung Medical Center, Seoul, Republic of Korea.,Transplantation Research Center, Samsung Medical Center, Seoul, Republic of Korea
| | - Han Sin Lee
- Stem Cell & Regenerative Medicine Institute, Samsung Medical Center, Seoul, Republic of Korea.,Division of Endocrinology and Metabolism, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Hyojun Park
- Department of Medicine, Sungkyunkwan University School of Medicine, Gyeonggi, Republic of Korea.,GenNBio Inc, Seoul, Republic of Korea
| | - Kyo Won Lee
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.,Department of Medicine, Sungkyunkwan University School of Medicine, Gyeonggi, Republic of Korea
| | - Heung-Mo Yang
- Department of Medicine, Sungkyunkwan University School of Medicine, Gyeonggi, Republic of Korea.,GenNBio Inc, Seoul, Republic of Korea
| | - Sung Joo Kim
- Department of Medicine, Sungkyunkwan University School of Medicine, Gyeonggi, Republic of Korea.,GenNBio Inc, Seoul, Republic of Korea
| | - Jae Berm Park
- Samsung Advanced Institute for Health Sciences & Technology, Graduate School, Department of Health Sciences & Technology, Sungkyunkwan University, Seoul, Republic of Korea. .,Stem Cell & Regenerative Medicine Institute, Samsung Medical Center, Seoul, Republic of Korea. .,Transplantation Research Center, Samsung Medical Center, Seoul, Republic of Korea. .,Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea. .,Department of Medicine, Sungkyunkwan University School of Medicine, Gyeonggi, Republic of Korea.
| |
Collapse
|
3
|
Jin SM, Lee HS, Haque MR, Kim HN, Kim HJ, Oh BJ, Lee KW, Kim G, Kim HS, Lee DY, Park JB, Kim SJ, Byun Y, Kim JH. Multi-layer surface modification of pancreatic islets for magnetic resonance imaging using ferumoxytol. Biomaterials 2019; 214:119224. [PMID: 31153093 DOI: 10.1016/j.biomaterials.2019.119224] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 05/20/2019] [Accepted: 05/21/2019] [Indexed: 12/18/2022]
Abstract
Ferumoxytol is the only clinically available ultrasmall superparamagnetic iron oxide. However, the labeling efficacy of islet magnetic resonance imaging (MRI) using ferumoxytol is not suitable for use in clinical pancreatic islet transplantation (PIT). We evaluated the feasibility of pancreatic islet MRI using ferumoxytol through multi-layer surface modification. A four-layer nanoshield with poly (ethylene) glycol (PEG, 2 layers), ferumoxytol, and heparin was formed on the pancreatic islets. We compared pancreatic islet function, viability, and labeling efficacy of control, ferumoxytol alone-labeled, heparin-PEGylated, and ferumoxytol-heparin-PEGylated islets. With optimization of the ferumoxytol concentration during the ferumoxytol-heparin-PEGylation process, the labeling contrast in ex vivo MRI of ferumoxytol-heparin-PEGylated pancreatic islets was stronger than that of pancreatic islets labeled with ferumoxytol alone, without decreasing ex vivo islet viability or function. In a syngeneic mouse renal subcapsular PIT model, heparin-PEGylation and ferumoxytol-heparin-PEGylation delayed the revascularization of pancreatic islet grafts but did not impair glucose tolerance or revascularization of pancreatic islet grafts four weeks post-transplantation. Pancreatic islet visibility after labeling was also confirmed in a syngeneic mouse intraportal PIT model and in preliminary analysis of a non-human primate intraportal PIT model. In conclusion, multi-layer islet surface modification is a promising option for pancreatic islet MRI in intraportal PIT.
Collapse
Affiliation(s)
- Sang-Man Jin
- Division of Endocrinology and Metabolism, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Han Sin Lee
- Stem Cell & Regenerative Medicine Institute, Samsung Medical Center, Seoul, Republic of Korea; Medical Research Institute, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Muhammad R Haque
- Research Institute of Pharmaceutical Science, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Hun Nyun Kim
- Animal Research and Molecular Imaging Center, Samsung Medical Center, Seoul, Republic of Korea
| | - Hyun Jin Kim
- Stem Cell & Regenerative Medicine Institute, Samsung Medical Center, Seoul, Republic of Korea
| | - Bae Jun Oh
- Stem Cell & Regenerative Medicine Institute, Samsung Medical Center, Seoul, Republic of Korea; New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu, Republic of Korea
| | - Kyo Won Lee
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, Republic of Korea
| | - Gyuri Kim
- Division of Endocrinology and Metabolism, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Hyung Shik Kim
- Department of Bioengineering, College of Engineering, and BK21 PLUS Team, and Institute of Nano Science & Technology (INST), Hanyang University, Seoul, 04763, Republic of Korea
| | - Dong Yun Lee
- Department of Bioengineering, College of Engineering, and BK21 PLUS Team, and Institute of Nano Science & Technology (INST), Hanyang University, Seoul, 04763, Republic of Korea
| | - Jae Berm Park
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, Republic of Korea
| | - Sung Joo Kim
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, Republic of Korea
| | - Youngro Byun
- Research Institute of Pharmaceutical Science, College of Pharmacy, Seoul National University, Seoul, Republic of Korea.
| | - Jae Hyeon Kim
- Division of Endocrinology and Metabolism, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea; Stem Cell & Regenerative Medicine Institute, Samsung Medical Center, Seoul, Republic of Korea; Department of Health Science and Technology, SAIHST, Sungkyunkwan University, Seoul, Republic of Korea.
| |
Collapse
|
4
|
Pharmacological Signatures of the Exenatide Nanoparticles Against Hepatic Ischemia/Reperfusion-induced Pancreatic Injury. Transplant Proc 2019; 51:960-965. [DOI: 10.1016/j.transproceed.2019.01.031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Accepted: 01/04/2019] [Indexed: 01/05/2023]
|
5
|
Oh BJ, Jin SM, Hwang Y, Choi JM, Lee HS, Kim G, Kim G, Park HJ, Kim P, Kim SJ, Kim JH. Highly Angiogenic, Nonthrombogenic Bone Marrow Mononuclear Cell-Derived Spheroids in Intraportal Islet Transplantation. Diabetes 2018; 67:473-485. [PMID: 29298810 DOI: 10.2337/db17-0705] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Accepted: 12/24/2017] [Indexed: 11/13/2022]
Abstract
Highly angiogenic bone marrow mononuclear cell-derived spheroids (BM-spheroids), formed by selective proliferation of the CD31+CD14+CD34+ monocyte subset via three-dimensional (3D) culture, have had robust angiogenetic capacity in rodent syngeneic renal subcapsular islet transplantation. We wondered whether the efficacy of BM-spheroids could be demonstrated in clinically relevant intraportal islet transplantation models without increasing the risk of portal thrombosis. The thrombogenic potential of intraportally infused BM-spheroids was compared with that of mesenchymal stem cells (MSCs) and MSC-derived spheroids (MSC-spheroids). The angiogenic efficacy and persistence in portal sinusoids of BM-spheroids were examined in rodent syngeneic and primate allogeneic intraportal islet transplantation models. In contrast to MSCs and MSC-spheroids, intraportal infusion of BM-spheroids did not evoke portal thrombosis. BM-spheroids had robust angiogenetic capacity in both the rodent and primate intraportal islet transplantation models and improved posttransplant glycemic outcomes. MRI and intravital microscopy findings revealed the persistence of intraportally infused BM-spheroids in portal sinusoids. Intraportal cotransplantation of allogeneic islets with autologous BM-spheroids in nonhuman primates further confirmed the clinical feasibility of this approach. In conclusion, cotransplantation of BM-spheroids enhances intraportal islet transplantation outcome without portal thrombosis in mice and nonhuman primates. Generating BM-spheroids by 3D culture prevented the rapid migration and disappearance of intraportally infused therapeutic cells.
Collapse
MESH Headings
- Animals
- Biomarkers/blood
- Biomarkers/metabolism
- Bone Marrow Transplantation/adverse effects
- Cell Tracking
- Cells, Cultured
- Diabetes Mellitus, Experimental/immunology
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/pathology
- Diabetes Mellitus, Experimental/therapy
- Green Fluorescent Proteins/genetics
- Green Fluorescent Proteins/metabolism
- Islets of Langerhans Transplantation/adverse effects
- Islets of Langerhans Transplantation/immunology
- Leukocytes, Mononuclear/cytology
- Leukocytes, Mononuclear/immunology
- Leukocytes, Mononuclear/transplantation
- Liver/immunology
- Liver/metabolism
- Liver/pathology
- Macaca fascicularis
- Male
- Mesenchymal Stem Cell Transplantation/adverse effects
- Mice, Inbred C57BL
- Mice, Transgenic
- Neovascularization, Pathologic/etiology
- Neovascularization, Pathologic/immunology
- Neovascularization, Pathologic/pathology
- Neovascularization, Pathologic/prevention & control
- Portal Vein
- Spheroids, Cellular/cytology
- Spheroids, Cellular/immunology
- Spheroids, Cellular/transplantation
- Streptozocin
- Thrombosis/etiology
- Thrombosis/immunology
- Thrombosis/pathology
- Thrombosis/prevention & control
- Transplantation, Heterotopic/adverse effects
- Transplantation, Isogeneic/adverse effects
Collapse
Affiliation(s)
- Bae Jun Oh
- Division of Endocrinology and Metabolism, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Stem Cell and Regenerative Medicine Institute, Samsung Medical Center, Seoul, Republic of Korea
| | - Sang-Man Jin
- Division of Endocrinology and Metabolism, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Stem Cell and Regenerative Medicine Institute, Samsung Medical Center, Seoul, Republic of Korea
| | - Yoonha Hwang
- Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Jin Myung Choi
- Division of Endocrinology and Metabolism, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Stem Cell and Regenerative Medicine Institute, Samsung Medical Center, Seoul, Republic of Korea
| | - Han-Sin Lee
- Division of Endocrinology and Metabolism, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Stem Cell and Regenerative Medicine Institute, Samsung Medical Center, Seoul, Republic of Korea
| | - Gyuri Kim
- Division of Endocrinology and Metabolism, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Stem Cell and Regenerative Medicine Institute, Samsung Medical Center, Seoul, Republic of Korea
| | - Geunsoo Kim
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Hyo Jun Park
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Pilhan Kim
- Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Sung Joo Kim
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Jae Hyeon Kim
- Division of Endocrinology and Metabolism, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Stem Cell and Regenerative Medicine Institute, Samsung Medical Center, Seoul, Republic of Korea
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Seoul, Republic of Korea
| |
Collapse
|