1
|
Zou Z, Wu F, Chen L, Yao H, Wang Z, Chen Y, Qi M, Jiang Y, Tang L, Gan X, Kong L, Yang Z, Huang X, Shu W, Li B, Tan X, Huang L, Bai S, Wu L, Mo J, Hu H, Liu H, Zou R, Wei Y. The J bs-5YP peptide can alleviate dementia in senile mice by restoring the transcription of Slc40a1 to secrete the excessive iron from brain. J Adv Res 2025; 69:51-59. [PMID: 38527587 PMCID: PMC11954793 DOI: 10.1016/j.jare.2024.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/04/2024] [Accepted: 03/21/2024] [Indexed: 03/27/2024] Open
Abstract
INTRODUCTION With age and ATP decrease in the body, the transcription factors hypophosphorylation weakens the transcription of Slc40a1 and hinders the expression of the iron discharger ferroportin. This may lead to iron accumulation in the brain and the catalysis of free radicals that damage cerebral neurons and eventually lead to Alzheimer's disease (AD). OBJECTIVES To prevent AD caused by brain iron excretion disorders and reveal the mechanism of J bs-5YP peptide restoring ferroportin. METHODS We prepared J bs-YP peptide and administered it to the senile mice with dementia. Then, the intelligence of the mice was tested using a Morris Water Maze. The ATP content in the body was detected using the ATP hydrophysis and Phosphate precipitation method. The activation of Slc40a1 transcription was assayed with ATAC seq and the ferroportin, as well as the phosphorylation levels of Ets1 in brain were detected by Western Blot. RESULTS The phosphorylation level of Ets1in brain was enhanced, and subsequently, the transcription of Slc40a1 was activated and ferroportin was increased in the brain, the levels of iron and free radicals were reduced, with the neurons protection, and the dementia was ultimately alleviated in the senile mice. CONCLUSION J bs-5YP can recover the expression of ferroportin to excrete excessive iron in the brain of senile mice with dementia by enhancing the transcription of Slc40a1 via phosphorylating Ets1, revealing the potential of J bs-5YP as a drug to alleviate senile dementia.
Collapse
Affiliation(s)
- Zhenyou Zou
- Liuzhou Key Lab of Psychosis Treatment, Brain Hospital of Guangxi Zhuang Autonomous Region, Liuzhou 545005, China; Department of Biochemistry, Purdue University, West Lafayette, IN 47006, USA.
| | - Fengyao Wu
- Liuzhou Key Lab of Psychosis Treatment, Brain Hospital of Guangxi Zhuang Autonomous Region, Liuzhou 545005, China; Laboratory Medicine School of Dalian Medical University, Dalian 116000, China
| | - Liguan Chen
- Medical School of Taizhou University, Taizhou 318000, China
| | - Hua Yao
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, 541199, China
| | - Zengxian Wang
- Medical School of Taizhou University, Taizhou 318000, China
| | - Yongfeng Chen
- Medical School of Taizhou University, Taizhou 318000, China
| | - Ming Qi
- Liuzhou Key Lab of Psychosis Treatment, Brain Hospital of Guangxi Zhuang Autonomous Region, Liuzhou 545005, China
| | - Yang Jiang
- Liuzhou Key Lab of Psychosis Treatment, Brain Hospital of Guangxi Zhuang Autonomous Region, Liuzhou 545005, China
| | - Longhua Tang
- Laboratory Department of Pingnan People's Hospital, Pingnan 537399, China
| | - Xinying Gan
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, 541199, China
| | - Lingjia Kong
- Laboratory of Xiaoshan Traditional Chinese Medicine Hospital, Hangzhou 311201, China
| | - Zhicheng Yang
- Liuzhou Key Lab of Psychosis Treatment, Brain Hospital of Guangxi Zhuang Autonomous Region, Liuzhou 545005, China
| | - Xiaolan Huang
- College of Public Health, Guangxi Medical University, Nanning 530021, China
| | - Wei Shu
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, 541199, China
| | - Bixue Li
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, 541199, China
| | - Xinyu Tan
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, 541199, China
| | - Liwen Huang
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, 541199, China
| | - Shi Bai
- Medical School of Taizhou University, Taizhou 318000, China
| | - Lijuan Wu
- Medical School of Taizhou University, Taizhou 318000, China
| | - Jinping Mo
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, 541199, China
| | - Huilin Hu
- Liuzhou Key Lab of Psychosis Treatment, Brain Hospital of Guangxi Zhuang Autonomous Region, Liuzhou 545005, China
| | - Huihua Liu
- Liuzhou Key Lab of Psychosis Treatment, Brain Hospital of Guangxi Zhuang Autonomous Region, Liuzhou 545005, China
| | - Ruyi Zou
- School Chemical and Environmental Engineering, Shangrao Normal University, Shangrao 334001, China.
| | - Yuhua Wei
- Liuzhou Key Lab of Psychosis Treatment, Brain Hospital of Guangxi Zhuang Autonomous Region, Liuzhou 545005, China.
| |
Collapse
|
2
|
Alassaf M, Rajan A. Adipocyte metabolic state regulates glial phagocytic function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.24.614765. [PMID: 39386724 PMCID: PMC11463506 DOI: 10.1101/2024.09.24.614765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Obesity and type 2 diabetes are well-established risk factors for neurodegenerative disorders1-4, yet the underlying mechanisms remain poorly understood. The adipocyte-brain axis is crucial for brain function, as adipocytes secrete signaling molecules, including lipids and adipokines, that impinge on neural circuits to regulate feeding and energy expenditure5. Disruptions in the adipocyte-brain axis are associated with neurodegenerative conditions6, but the causal links are not fully understood. Neural debris accumulates with age and injury, and glial phagocytic function is crucial for clearing this debris and maintaining a healthy brain microenvironment7-9. Using adult Drosophila, we investigate how adipocyte metabolism influences glial phagocytic activity in the brain. We demonstrate that a prolonged obesogenic diet increases adipocyte fatty acid oxidation and ketogenesis. Genetic manipulations that mimic obesogenic diet-induced changes in adipocyte lipid and mitochondrial metabolism unexpectedly reduce the expression of the phagocytic receptor Draper in Drosophila microglia-like cells in the brain. We identify Apolpp-the Drosophila equivalent of human apolipoprotein B (ApoB)-as a critical adipocyte-derived signal that regulates glial phagocytosis. Additionally, we show that Lipoprotein Receptor 1 (LpR1), the LDL receptor on phagocytic glia, is required for glial capacity to clear injury-induced neuronal debris. Our findings establish that adipocyte-brain lipoprotein signaling regulates glial phagocytic function, revealing a novel pathway that links adipocyte metabolic disorders with neurodegeneration.
Collapse
Affiliation(s)
- Mroj Alassaf
- Basic Sciences Division, Fred Hutch, Seattle, WA-98109. The USA
| | - Akhila Rajan
- Basic Sciences Division, Fred Hutch, Seattle, WA-98109. The USA
| |
Collapse
|
3
|
Han Q, Sun L, Xiang K. Research progress of ferroptosis in Alzheimer disease: A review. Medicine (Baltimore) 2023; 102:e35142. [PMID: 37682127 PMCID: PMC10489260 DOI: 10.1097/md.0000000000035142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 08/18/2023] [Indexed: 09/09/2023] Open
Abstract
Ferroptosis is an emerging form of programmed cell death triggered by iron-dependent lipid peroxidation and reactive oxygen species (ROS). Alzheimer disease (AD), a neurodegenerative disorder, is characterized by the degeneration of nerve cells. Recent research has indicated a significant association between ferroptosis and AD; however, the precise underlying mechanism remains elusive. It is postulated that ferroptosis may impact the accumulation of iron ions within the body by influencing iron metabolism, amino acid metabolism, and lipid metabolism, ultimately leading to the induction of ferroptosis in nerve cells. This article centers on the attributes and regulatory mechanism of ferroptosis, the correlation between ferroptosis and AD, and the recent advancements in the therapeutic approach of targeting ferroptosis for the treatment of AD. These results suggest that ferroptosis could potentially serve as a pivotal focus in future research on AD.
Collapse
Affiliation(s)
- Qi Han
- Doctor from Changchun University of Chinese Medicine, Changchun City, Jilin Province, China
| | - Li Sun
- Chief Physician of Jilin Academy of Chinese Medicine, Chaoyang District, Changchun City, Jilin Province, China
| | - Ke Xiang
- Chief Physician of Jilin Academy of Chinese Medicine, Chaoyang District, Changchun City, Jilin Province, China
| |
Collapse
|
4
|
Foster D, Larsen J. Polymeric Metal Contrast Agents for T 1-Weighted Magnetic Resonance Imaging of the Brain. ACS Biomater Sci Eng 2023; 9:1224-1242. [PMID: 36753685 DOI: 10.1021/acsbiomaterials.2c01386] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Imaging plays an integral role in diagnostics and treatment monitoring for conditions affecting the brain; enhanced brain imaging capabilities will improve upon both while increasing the general understanding of how the brain works. T1-weighted magnetic resonance imaging is the preferred modality for brain imaging. Commercially available contrast agents, which are often required to render readable brain images, have considerable toxicity concerns. In recent years, much progress has been made in developing new contrast agents based on the magnetic features of gadolinium, iron, or magnesium. Nanotechnological approaches for these systems allow for the protected integration of potentially harmful metals with added benefits like reduced dosage and improved transport. Polymeric enhancement of each design further improves biocompatibility while allowing for specific brain targeting. This review outlines research on polymeric nanomedicine designs for T1-weighted contrast agents that have been evaluated for performance in the brain.
Collapse
|
5
|
Lu Z, Sun N, Dong L, Gao Y, Lin S. Production of Bioactive Peptides from Sea Cucumber and Its Potential Health Benefits: A Comprehensive Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:7607-7625. [PMID: 35715003 DOI: 10.1021/acs.jafc.2c02696] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Bioactive peptides from food have been widely studied due to their potential applications as functional foods and pharmaceuticals. Sea cucumber, a traditional tonic food, is characterized by high protein and low fat, thereby substrates are being studied to release sea cucumber peptides (SCPs). Although recent studies have shown that SCPs have various bioactive functions, there is no literature reviewing the development status of SCPs. In this review, we summarized the production of SCPs, including their purification and identification, then mainly focused on the comprehensive potential health benefits of SCP in vivo and in vitro, and finally discussed the challenge facing the development of SCPs. We found that SCPs have well-documented health benefits due to their antioxidation, anti-diabetes, ACE inhibitory, immunomodulatory, anti-cancer, anti-fatigue, anti-aging, neuroprotection, micromineral-chelating, etc. However, the structure-activity relationships of SCPs and the functional molecular mechanisms underlying their regulation in vivo need further investigation. Research on the safety of SCP and its potential regulation mechanism will contribute to transferring these findings into commercial applications. Hopefully, this review could promote the development and application of SCPs in further investigation and commercialization.
Collapse
Affiliation(s)
- Zhiqiang Lu
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Na Sun
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Liu Dong
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Yuanhong Gao
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Songyi Lin
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
| |
Collapse
|
6
|
Exogenous Bioactive Peptides Have a Potential Therapeutic Role in Delaying Aging in Rodent Models. Int J Mol Sci 2022; 23:ijms23031421. [PMID: 35163342 PMCID: PMC8835817 DOI: 10.3390/ijms23031421] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/18/2022] [Accepted: 01/20/2022] [Indexed: 02/01/2023] Open
Abstract
In recent years, some exogenous bioactive peptides have been shown to have promising anti-aging effects. These exogenous peptides may have a mechanism similar to endogenous peptides, and some can even regulate the release of endogenous active peptides and play a synergistic role with endogenous active peptides. Most aging studies use rodents that are easy to maintain in the laboratory and have relatively homogenous genotypes. Moreover, many of the anti-aging studies using bioactive peptides in rodent models only focus on the activity of single endogenous or exogenous active peptides, while the regulatory effects of exogenous active peptides on endogenous active peptides remain largely under-investigated. Furthermore, the anti-aging activity studies only focus on the effects of these bioactive peptides in individual organs or systems. However, the pathological changes of one organ can usually lead to multi-organ complications. Some anti-aging bioactive peptides could be used for rescuing the multi-organ damage associated with aging. In this paper, we review recent reports on the anti-aging effects of bioactive peptides in rodents and summarize the mechanism of action for these peptides, as well as discuss the regulation of exogenous active peptides on endogenous active peptides.
Collapse
|
7
|
Qin Z, Han X, Ran J, Guo S, Lv L. Exercise-Mediated Alteration of miR-192-5p Is Associated with Cognitive Improvement in Alzheimer's Disease. Neuroimmunomodulation 2022; 29:36-43. [PMID: 34256371 DOI: 10.1159/000516928] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 04/13/2021] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION Physical exercise is an important component of managing Alzheimer's disease (AD). miRNAs can be modulated by exercise intervention. OBJECTIVE The study explored the involvement and potential mechanism of miR-192-5p in the protective effect of physical exercise on AD. METHODS Ninety AD patients were enrolled, in which 45 cases accepted cycling training for continuous 3 months. The expression changes of miR-192-5p before and after exercise were analyzed by reverse transcription-quantitative PCR. 8-month-old APP/PS1 double Tg mice were used as the AD animal model. Mice in the voluntary exercise (VE) group received VE for 4 weeks. Morris water maze (MWM) test was used to evaluate the learning and memory function. Enzyme-linked immunosorbent assay was used to calculate the level of IL-1β, IL-6, and TNF-α. RESULTS AD patients showed elevated MMSE scores, decreased ADAS-cog and NPI-Q scores after 3 months of exercise. miR-192-5p was downregulated in the serum of AD patients and correlated with the levels of MMSE score, ADAS-cog, and NPI-Q score. A positive association was detected between serum miR-192-5p with TNF-α, IL-6, and IL-1β levels. MiR-192-5p is downregulated in the hippocampus tissues of mice after VE. Overexpression of miR-192-5p reversed the neuroprotective effect of exercise on AD in mice and promoted the inflammatory response of AD mice. CONCLUSION MiR-192-5p can be modulated by the exercise intervention and involved in the protective effect of exercise on AD.
Collapse
Affiliation(s)
- Zhaomei Qin
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xingjun Han
- Department of Preventive Treatment Disease Center, The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jing Ran
- Department of Pediatrics, The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Shanshan Guo
- Department of Psychosomatic Medicine, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lina Lv
- Department of Neurosurgery, The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
8
|
Gao X, Chen Q, Yao H, Tan J, Liu Z, Zhou Y, Zou Z. Epigenetics in Alzheimer's Disease. Front Aging Neurosci 2022; 14:911635. [PMID: 35813941 PMCID: PMC9260511 DOI: 10.3389/fnagi.2022.911635] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 05/24/2022] [Indexed: 12/19/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease with unknown pathogenesis and complex pathological manifestations. At present, a large number of studies on targeted drugs for the typical pathological phenomenon of AD (Aβ) have ended in failure. Although there are some drugs on the market that indirectly act on AD, their efficacy is very low and the side effects are substantial, so there is an urgent need to develop a new strategy for the treatment of AD. An increasing number of studies have confirmed epigenetic changes in AD. Although it is not clear whether these epigenetic changes are the cause or result of AD, they provide a new avenue of treatment for medical researchers worldwide. This article summarizes various epigenetic changes in AD, including DNA methylation, histone modification and miRNA, and concludes that epigenetics has great potential as a new target for the treatment of AD.
Collapse
Affiliation(s)
- Xiaodie Gao
- Guangxi Key Lab of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, China
- Department of Scientific Research, Brain Hospital of Guangxi Zhuang Autonomous Region, Liuzhou, China
| | - Qiang Chen
- Department of Scientific Research, Brain Hospital of Guangxi Zhuang Autonomous Region, Liuzhou, China
| | - Hua Yao
- Guangxi Key Lab of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, China
| | - Jie Tan
- Guangxi Key Lab of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, China
| | - Zheng Liu
- Guangxi Key Lab of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, China
- *Correspondence: Zheng Liu,
| | - Yan Zhou
- Guangxi Key Lab of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, China
- Yan Zhou,
| | - Zhenyou Zou
- Guangxi Key Lab of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, China
- Department of Scientific Research, Brain Hospital of Guangxi Zhuang Autonomous Region, Liuzhou, China
- Zhenyou Zou,
| |
Collapse
|
9
|
Lu Z, Xu X, Li D, Sun N, Lin S. Comprehensive Analysis of Mouse Hippocampal Lysine Acetylome Mediated by Sea Cucumber Peptides Preventing Memory Impairment. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:12333-12343. [PMID: 34633809 DOI: 10.1021/acs.jafc.1c05155] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Memory impairment is becoming a potential health issue with the delicacy of diet and social stress. Sea cucumber peptides (SCP) prevent memory impairment, as previously reported. In this study, further research was performed using hippocampal lysine-acetylome to explore molecular regulation mechanisms. C57BL/6 mice were treated with scopolamine via intraperitoneal injection to simulate memory impairment. To determine the influence of SCP on the total acetylated-protein level of the hippocampus, acetylated-proteomics was performed. SCP increased the acetylation level of histone (H3 and H4). Meanwhile, for non-histones, the differentially acetylated proteins were involved in multiple memory-related pathways, as shown by KEGG enrichment analysis. Additionally, long-term potentiation was confirmed by western blotting. Finally, a combined analysis of proteome and lysine acetylome revealed that SCP contributed to synaptic vesicle cycle regulation and dopamine metabolism. Consequently, our findings revealed that SCP was potentially neuroprotective by regulating post-transcriptional hippocampal protein acetylation.
Collapse
Affiliation(s)
- Zhiqiang Lu
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P.R. China
| | - Xiaomeng Xu
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P.R. China
| | - Dongmei Li
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P.R. China
| | - Na Sun
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P.R. China
| | - Songyi Lin
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P.R. China
| |
Collapse
|
10
|
Azarmi M, Maleki H, Nikkam N, Malekinejad H. Transcellular brain drug delivery: A review on recent advancements. Int J Pharm 2020; 586:119582. [DOI: 10.1016/j.ijpharm.2020.119582] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 06/08/2020] [Accepted: 06/23/2020] [Indexed: 02/07/2023]
|