1
|
Yuan H, Zhang Y, Liu F, Wu Y, Huang X, Liu X, Jiang L, Xiao B, Zhu Y, Chen Q, Wu P, Jiang K. Exploring the biological mechanism and clinical value of perineural invasion in pancreatic cancer. Cancer Lett 2025; 613:217515. [PMID: 39892698 DOI: 10.1016/j.canlet.2025.217515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/30/2025] [Accepted: 01/30/2025] [Indexed: 02/04/2025]
Abstract
Pancreatic cancer (PC) is an extremely aggressive malignancy, with a 5-year survival rate of only 13 %. Perineural invasion (PNI) is a hallmark pathological feature of PC and is observed in almost all cases. Accordingly, PC ranks highly among solid tumors in terms of PNI incidence. The interaction between PC and the nervous system plays a pivotal role in tumor growth and metastasis. In PC, PNI is a key driver of local tumor progression, distant metastasis, and poor prognosis. Clarification of tumor-nerve crosstalk and the underlying molecular mechanisms is needed to facilitate the development of new therapeutic strategies to slow PC progression and alleviate PNI-associated symptoms. In this review, we present a comprehensive overview of the manifestations and characteristics of PNI in PC, summarize the molecular networks that regulate PNI, examine the relationship between PNI and the tumor microenvironment, and discuss the current research challenges and future directions in this critical area.
Collapse
Affiliation(s)
- Hao Yuan
- Pancreas Centre, First Affiliated Hospital, Nanjing Medical University, Nanjing, China; Pancreas Institute, Nanjing Medical University, Nanjing, China
| | - Yufeng Zhang
- Pancreas Centre, First Affiliated Hospital, Nanjing Medical University, Nanjing, China; Pancreas Institute, Nanjing Medical University, Nanjing, China
| | - Fengyuan Liu
- Pancreas Centre, First Affiliated Hospital, Nanjing Medical University, Nanjing, China; Pancreas Institute, Nanjing Medical University, Nanjing, China
| | - Yang Wu
- Pancreas Centre, First Affiliated Hospital, Nanjing Medical University, Nanjing, China; Pancreas Institute, Nanjing Medical University, Nanjing, China
| | - Xumin Huang
- Pancreas Centre, First Affiliated Hospital, Nanjing Medical University, Nanjing, China; Pancreas Institute, Nanjing Medical University, Nanjing, China
| | - Xinjian Liu
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, China
| | - Luyang Jiang
- Pancreas Centre, First Affiliated Hospital, Nanjing Medical University, Nanjing, China; Pancreas Institute, Nanjing Medical University, Nanjing, China
| | - Bin Xiao
- Pancreas Centre, First Affiliated Hospital, Nanjing Medical University, Nanjing, China; Pancreas Institute, Nanjing Medical University, Nanjing, China
| | - Yi Zhu
- Pancreas Centre, First Affiliated Hospital, Nanjing Medical University, Nanjing, China; Pancreas Institute, Nanjing Medical University, Nanjing, China; Department of General Surgery, First Affiliated Hospital, Nanjing Medical University, Nanjing, China.
| | - Qun Chen
- Pancreas Centre, First Affiliated Hospital, Nanjing Medical University, Nanjing, China; Pancreas Institute, Nanjing Medical University, Nanjing, China.
| | - Pengfei Wu
- Pancreas Centre, First Affiliated Hospital, Nanjing Medical University, Nanjing, China; Pancreas Institute, Nanjing Medical University, Nanjing, China.
| | - Kuirong Jiang
- Pancreas Centre, First Affiliated Hospital, Nanjing Medical University, Nanjing, China; Pancreas Institute, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
2
|
Monje M, Winkler F. Cancer research needs neuroscience and neuroscientists. Nat Neurosci 2025:10.1038/s41593-025-01925-2. [PMID: 40113935 DOI: 10.1038/s41593-025-01925-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Affiliation(s)
- Michelle Monje
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA.
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA.
| | - Frank Winkler
- Department of Neurology, Heidelberg Medical Faculty of Heidelberg University, Heidelberg, Germany.
- German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
3
|
Zhang Y, Liao Q, Wen X, Fan J, Yuan T, Tong X, Jia R, Chai P, Fan X. Hijacking of the nervous system in cancer: mechanism and therapeutic targets. Mol Cancer 2025; 24:44. [PMID: 39915765 PMCID: PMC11800603 DOI: 10.1186/s12943-025-02246-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Accepted: 01/22/2025] [Indexed: 02/11/2025] Open
Abstract
The activity of neurons in the vicinity of tumors is linked to a spectrum of cellular mechanisms, including the facilitation of tumor cell proliferation, synapse formation, angiogenesis, and macrophage polarization. This review consolidates the current understanding of neuro-oncological regulation, underscoring the nuanced interplay between neurological and oncological processes (termed as Cancer-Neuroscience). First, we elucidated how the nervous system accelerates tumor growth, metastasis, and the tumor microenvironment both directly and indirectly through the action of signaling molecules. Importantly, neural activity is also implicated in modulating the efficacy of therapeutic interventions, including immunotherapy. On the contrary, the nervous system potentially has a suppressive effect on tumorigenesis, further underscoring a dual-edged role of neurons in cancer progression. Consequently, targeting specific signaling molecules within neuro-oncological regulatory pathways could potentially suppress tumor development. Future research is poised to explore the intricate mechanisms governing neuro-tumor interactions more deeply, while concurrently refining treatment strategies for tumors by targeting the crosstalk between cancer and neurons.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200001, People's Republic of China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200001, People's Republic of China
| | - Qili Liao
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200001, People's Republic of China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200001, People's Republic of China
| | - Xuyang Wen
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200001, People's Republic of China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200001, People's Republic of China
| | - Jiayan Fan
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200001, People's Republic of China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200001, People's Republic of China
| | - Tifei Yuan
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Xuemei Tong
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Renbing Jia
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200001, People's Republic of China.
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200001, People's Republic of China.
| | - Peiwei Chai
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200001, People's Republic of China.
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200001, People's Republic of China.
| | - Xianqun Fan
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200001, People's Republic of China.
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200001, People's Republic of China.
| |
Collapse
|
4
|
Li X, Ye C, Wang M, Kwan P, Tian X, Zhang Y. Crosstalk Between the Nervous System and Colorectal Cancer. Neurosci Bull 2025; 41:93-106. [PMID: 38879846 PMCID: PMC11748644 DOI: 10.1007/s12264-024-01238-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/22/2024] [Indexed: 01/05/2025] Open
Abstract
The nervous system is the dominant regulatory system in the human body. The traditional theory is that tumors lack innervation. However, an increasing number of studies have shown complex bidirectional interactions between tumors and the nervous system. Globally, colorectal cancer (CRC) is the third most common cancer. With the rise of tumor neuroscience, the role of nervous system imbalances in the occurrence and development of CRC has attracted increasing amounts of attention. However, there are still many gaps in the research on the interactions and mechanisms involved in the nervous system in CRC. This article systematically reviews emerging research on the bidirectional relationships between the nervous system and CRC, focusing on the following areas: (1) Effects of the nervous system on colon cancer. (2) Effects of CRC on the nervous system. (3) Treatment of CRC associated with the nervous system.
Collapse
Affiliation(s)
- Xi Li
- Jining Medical University, Jining, 272000, China
- Department of Neurology, Affiliated Hospital of Jining Medical University, Jining, 272000, China
| | - Chunshui Ye
- Department of Gastrointestinal Surgery, Jining No. 1 People's Hospital, Jining, 272000, China
| | - Min Wang
- Department of Neurology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200127, China
| | - Patrick Kwan
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, 400016, China.
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, 3004, Australia.
- Department of Neurology, Alfred Health, Melbourne, VIC, 3004, Australia.
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Melbourne, VIC, 3004, Australia.
| | - Xin Tian
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, 400016, China.
| | - Yanke Zhang
- Department of Neurology, Affiliated Hospital of Jining Medical University, Jining, 272000, China.
- Department of Neurology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China.
| |
Collapse
|
5
|
Yaniv D, Mattson B, Talbot S, Gleber-Netto FO, Amit M. Targeting the peripheral neural-tumour microenvironment for cancer therapy. Nat Rev Drug Discov 2024; 23:780-796. [PMID: 39242781 DOI: 10.1038/s41573-024-01017-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2024] [Indexed: 09/09/2024]
Abstract
As the field of cancer neuroscience expands, the strategic targeting of interactions between neurons, cancer cells and other elements in the tumour microenvironment represents a potential paradigm shift in cancer treatment, comparable to the advent of our current understanding of tumour immunology. Cancer cells actively release growth factors that stimulate tumour neo-neurogenesis, and accumulating evidence indicates that tumour neo-innervation propels tumour progression, inhibits tumour-related pro-inflammatory cytokines, promotes neovascularization, facilitates metastasis and regulates immune exhaustion and evasion. In this Review, we give an up-to-date overview of the dynamics of the tumour microenvironment with an emphasis on tumour innervation by the peripheral nervous system, as well as current preclinical and clinical evidence of the benefits of targeting the nervous system in cancer, laying a scientific foundation for further clinical trials. Combining empirical data with a biomarker-driven approach to identify and hone neuronal targets implicated in cancer and its spread can pave the way for swift clinical integration.
Collapse
Affiliation(s)
- Dan Yaniv
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Brandi Mattson
- The Neurodegeneration Consortium, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sebastien Talbot
- Department of Physiology and Pharmacology, Karolinska Institutet, Solna, Sweden
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Frederico O Gleber-Netto
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Moran Amit
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- UTHealth Houston Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
6
|
Shen C, Geng R, Zhu S, Huang M, Liang J, Li B, Bai Y. Characterization of tumor suppressors and oncogenes evaluated from TCGA cancers. AMERICAN JOURNAL OF CLINICAL AND EXPERIMENTAL IMMUNOLOGY 2024; 13:187-194. [PMID: 39310123 PMCID: PMC11411158 DOI: 10.62347/xmzw6604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 08/14/2024] [Indexed: 09/25/2024]
Abstract
Mutations in oncogenes and tumor suppressor genes can significantly impact cellular function during cancer development. A comprehensive analysis of their mutation patterns and significant gene ontology terms can provide insights into cancer emergence and suggest potential targets for drug development. This study analyzes twelve cancer subtypes by focusing on significant genetic and molecular factors. Two common genetic mutations associated with cancer are single nucleotide variants (SNVs) and copy number alterations (CNAs). Oncogenes, derived from mutated proto-oncogenes, disrupt normal cell functions and promote cancer, while tumor suppressor genes, often inactivated by mutations, regulate cell processes like proliferation and DNA damage response. This study analyzed datasets from The Cancer Genome Atlas (TCGA), which provides extensive genomic data across various cancers. In our analysis results, many genes with significant p-values based on Kaplan Meier gene expression data were identified in eight cancers (BRCA, BLCA, HNSC, KIRC, LUAD, KIRP, LUSC, STAD). Moreover, STAD is the only cancer for genes with both significant p-values and functional terms reported. Interestingly, we found that LIHC was the cancer reported with only one CNA mutated gene and its survival plot p-value being significant. Additionally, KICH has no reported significant genes at all. Our study proposed the relationship between tumor suppressor and oncogenes and shed light on cancer tumorigenesis due to genetic mutations.
Collapse
Affiliation(s)
- Claire Shen
- Johns Hopkins UniversityBaltimore, MD 21218, USA
- Jordan High SchoolFulshear, TX 77441, USA
| | | | - Sissi Zhu
- Shady Side AcademyPittsburgh, PA 15238, USA
| | | | | | - Binze Li
- The University of California, Los AngelesLos Angeles, CA 90095, USA
| | - Yongsheng Bai
- Next-Gen Intelligent Science TrainingAnn Arbor, MI 48105, USA
- Eastern Michigan UniversityYpsilanti, MI 48197, USA
| |
Collapse
|
7
|
Ozturk K, Panwala R, Sheen J, Ford K, Jayne N, Portell A, Zhang DE, Hutter S, Haferlach T, Ideker T, Mali P, Carter H. Interface-guided phenotyping of coding variants in the transcription factor RUNX1. Cell Rep 2024; 43:114436. [PMID: 38968069 PMCID: PMC11345852 DOI: 10.1016/j.celrep.2024.114436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 05/15/2024] [Accepted: 06/19/2024] [Indexed: 07/07/2024] Open
Abstract
Single-gene missense mutations remain challenging to interpret. Here, we deploy scalable functional screening by sequencing (SEUSS), a Perturb-seq method, to generate mutations at protein interfaces of RUNX1 and quantify their effect on activities of downstream cellular programs. We evaluate single-cell RNA profiles of 115 mutations in myelogenous leukemia cells and categorize them into three functionally distinct groups, wild-type (WT)-like, loss-of-function (LoF)-like, and hypomorphic, that we validate in orthogonal assays. LoF-like variants dominate the DNA-binding site and are recurrent in cancer; however, recurrence alone does not predict functional impact. Hypomorphic variants share characteristics with LoF-like but favor protein interactions, promoting gene expression indicative of nerve growth factor (NGF) response and cytokine recruitment of neutrophils. Accessible DNA near differentially expressed genes frequently contains RUNX1-binding motifs. Finally, we reclassify 16 variants of uncertain significance and train a classifier to predict 103 more. Our work demonstrates the potential of targeting protein interactions to better define the landscape of phenotypes reachable by missense mutations.
Collapse
Affiliation(s)
- Kivilcim Ozturk
- Division of Medical Genetics, Department of Medicine, University of California, San Diego, La Jolla, CA, USA; Bioinformatics and Systems Biology Program, University of California, San Diego, La Jolla, CA, USA
| | - Rebecca Panwala
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Jeanna Sheen
- School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Kyle Ford
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Nathan Jayne
- School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA; Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - Andrew Portell
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Dong-Er Zhang
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - Stephan Hutter
- MLL Munich Leukemia Laboratory, Max-Lebsche-Platz 31, 81377 Munich, Germany
| | - Torsten Haferlach
- MLL Munich Leukemia Laboratory, Max-Lebsche-Platz 31, 81377 Munich, Germany
| | - Trey Ideker
- Division of Medical Genetics, Department of Medicine, University of California, San Diego, La Jolla, CA, USA; Bioinformatics and Systems Biology Program, University of California, San Diego, La Jolla, CA, USA; Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - Prashant Mali
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA.
| | - Hannah Carter
- Division of Medical Genetics, Department of Medicine, University of California, San Diego, La Jolla, CA, USA; Bioinformatics and Systems Biology Program, University of California, San Diego, La Jolla, CA, USA; Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
8
|
Xue Y, Friedl V, Ding H, Wong CK, Stuart JM. Single-cell signatures identify microenvironment factors in tumors associated with patient outcomes. CELL REPORTS METHODS 2024; 4:100799. [PMID: 38889686 PMCID: PMC11228369 DOI: 10.1016/j.crmeth.2024.100799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 04/30/2024] [Accepted: 05/21/2024] [Indexed: 06/20/2024]
Abstract
The cellular components of tumors and their microenvironment play pivotal roles in tumor progression, patient survival, and the response to cancer treatments. Unveiling a comprehensive cellular profile within bulk tumors via single-cell RNA sequencing (scRNA-seq) data is crucial, as it unveils intrinsic tumor cellular traits that elude identification through conventional cancer subtyping methods. Our contribution, scBeacon, is a tool that derives cell-type signatures by integrating and clustering multiple scRNA-seq datasets to extract signatures for deconvolving unrelated tumor datasets on bulk samples. Through the employment of scBeacon on the The Cancer Genome Atlas (TCGA) cohort, we find cellular and molecular attributes within specific tumor categories, many with patient outcome relevance. We developed a tumor cell-type map to visually depict the relationships among TCGA samples based on the cell-type inferences.
Collapse
Affiliation(s)
- Yuanqing Xue
- UC Santa Cruz Department, Biomolecular Engineering, Genomics Institute, Santa Cruz, CA, USA
| | - Verena Friedl
- UC Santa Cruz Department, Biomolecular Engineering, Genomics Institute, Santa Cruz, CA, USA
| | - Hongxu Ding
- UC Santa Cruz Department, Biomolecular Engineering, Genomics Institute, Santa Cruz, CA, USA
| | - Christopher K Wong
- UC Santa Cruz Department, Biomolecular Engineering, Genomics Institute, Santa Cruz, CA, USA
| | - Joshua M Stuart
- UC Santa Cruz Department, Biomolecular Engineering, Genomics Institute, Santa Cruz, CA, USA.
| |
Collapse
|
9
|
Mandal AS, Wiener C, Assem M, Romero-Garcia R, Coelho P, McDonald A, Woodberry E, Morris RC, Price SJ, Duncan J, Santarius T, Suckling J, Hart MG, Erez Y. Tumour-infiltrated cortex participates in large-scale cognitive circuits. Cortex 2024; 173:1-15. [PMID: 38354669 PMCID: PMC10988771 DOI: 10.1016/j.cortex.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/03/2024] [Accepted: 01/11/2024] [Indexed: 02/16/2024]
Abstract
The extent to which tumour-infiltrated brain tissue contributes to cognitive function remains unclear. We tested the hypothesis that cortical tissue infiltrated by diffuse gliomas participates in large-scale cognitive circuits using a unique combination of intracranial electrocorticography (ECoG) and resting-state functional magnetic resonance (fMRI) imaging in four patients. We also assessed the relationship between functional connectivity with tumour-infiltrated tissue and long-term cognitive outcomes in a larger, overlapping cohort of 17 patients. We observed significant task-related high gamma (70-250 Hz) power modulations in tumour-infiltrated cortex in response to increased cognitive effort (i.e., switch counting compared to simple counting), implying preserved functionality of neoplastic tissue for complex tasks probing executive function. We found that tumour locations corresponding to task-responsive electrodes exhibited functional connectivity patterns that significantly co-localised with canonical brain networks implicated in executive function. Specifically, we discovered that tumour-infiltrated cortex with larger task-related high gamma power modulations tended to be more functionally connected to the dorsal attention network (DAN). Finally, we demonstrated that tumour-DAN connectivity is evident across a larger cohort of patients with gliomas and that it relates to long-term postsurgical outcomes in goal-directed attention. Overall, this study contributes convergent fMRI-ECoG evidence that tumour-infiltrated cortex participates in large-scale neurocognitive circuits that support executive function in health. These findings underscore the potential clinical utility of mapping large-scale connectivity of tumour-infiltrated tissue in the care of patients with diffuse gliomas.
Collapse
Affiliation(s)
- Ayan S Mandal
- Brain-Gene Development Lab, Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, USA; Brain Mapping Unit, Department of Psychiatry, University of Cambridge, UK.
| | - Chemda Wiener
- Faculty of Engineering, Bar-Ilan University, Ramat-Gan, Israel
| | - Moataz Assem
- Medical Research Council, Cognition and Brain Sciences Unit, University of Cambridge, UK
| | - Rafael Romero-Garcia
- Brain Mapping Unit, Department of Psychiatry, University of Cambridge, UK; Department of Medical Physiology and Biophysics, Instituto de Biomedicina de Sevilla (IBiS) HUVR/CSIC/Universidad de Sevilla/CIBERSAM, ISCIII, Sevilla, Spain
| | | | - Alexa McDonald
- Department of Neuropsychology, Cambridge University Hospitals NHS Foundation Trust, UK
| | - Emma Woodberry
- Department of Neuropsychology, Cambridge University Hospitals NHS Foundation Trust, UK
| | - Robert C Morris
- Department of Neuropsychology, Cambridge University Hospitals NHS Foundation Trust, UK
| | - Stephen J Price
- Department of Neurosurgery, Cambridge University Hospitals NHS Foundation Trust, UK
| | - John Duncan
- Medical Research Council, Cognition and Brain Sciences Unit, University of Cambridge, UK; Department of Experimental Psychology, University of Oxford, UK
| | - Thomas Santarius
- Department of Neurosurgery, Cambridge University Hospitals NHS Foundation Trust, UK; Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, UK; Department of Physiology, Development and Neuroscience, University of Cambridge, UK
| | - John Suckling
- Brain Mapping Unit, Department of Psychiatry, University of Cambridge, UK; Behavioural and Clinical Neuroscience Institute, University of Cambridge, UK; Cambridge and Peterborough NHS Foundation Trust, UK
| | - Michael G Hart
- St George's, University of London & St George's University Hospitals NHS Foundation Trust, Institute of Molecular and Clinical Sciences, Neurosciences Research Centre, Cranmer Terrace, London, UK
| | - Yaara Erez
- Faculty of Engineering, Bar-Ilan University, Ramat-Gan, Israel; Medical Research Council, Cognition and Brain Sciences Unit, University of Cambridge, UK; Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, Israel.
| |
Collapse
|
10
|
Godthi A, Min S, Das S, Cruz-Corchado J, Deonarine A, Misel-Wuchter K, Issuree PD, Prahlad V. Neuronal IL-17 controls Caenorhabditis elegans developmental diapause through CEP-1/p53. Proc Natl Acad Sci U S A 2024; 121:e2315248121. [PMID: 38483995 PMCID: PMC10963014 DOI: 10.1073/pnas.2315248121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 02/06/2024] [Indexed: 03/19/2024] Open
Abstract
During metazoan development, how cell division and metabolic programs are coordinated with nutrient availability remains unclear. Here, we show that nutrient availability signaled by the neuronal cytokine, ILC-17.1, switches Caenorhabditis elegans development between reproductive growth and dormancy by controlling the activity of the tumor suppressor p53 ortholog, CEP-1. Specifically, upon food availability, ILC-17.1 signaling by amphid neurons promotes glucose utilization and suppresses CEP-1/p53 to allow growth. In the absence of ILC-17.1, CEP-1/p53 is activated, up-regulates cell-cycle inhibitors, decreases phosphofructokinase and cytochrome C expression, and causes larvae to arrest as stress-resistant, quiescent dauers. We propose a model whereby ILC-17.1 signaling links nutrient availability and energy metabolism to cell cycle progression through CEP-1/p53. These studies describe ancestral functions of IL-17 s and the p53 family of proteins and are relevant to our understanding of neuroimmune mechanisms in cancer. They also reveal a DNA damage-independent function of CEP-1/p53 in invertebrate development and support the existence of a previously undescribed C. elegans dauer pathway.
Collapse
Affiliation(s)
- Abhishiktha Godthi
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY14263
- Department of Biology, The University of Iowa, Iowa City, IA52242-1324
| | - Sehee Min
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY14263
- Department of Biology, The University of Iowa, Iowa City, IA52242-1324
| | - Srijit Das
- Department of Biology, The University of Iowa, Iowa City, IA52242-1324
| | - Johnny Cruz-Corchado
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY14263
- Department of Biology, The University of Iowa, Iowa City, IA52242-1324
| | - Andrew Deonarine
- Department of Biology, The University of Iowa, Iowa City, IA52242-1324
| | - Kara Misel-Wuchter
- Department of Internal Medicine, The University of Iowa, Iowa City, IA52242
| | - Priya D. Issuree
- Department of Internal Medicine, The University of Iowa, Iowa City, IA52242
| | - Veena Prahlad
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY14263
- Department of Biology, The University of Iowa, Iowa City, IA52242-1324
| |
Collapse
|
11
|
Wang J, Liao N, Du X, Chen Q, Wei B. A semi-supervised approach for the integration of multi-omics data based on transformer multi-head self-attention mechanism and graph convolutional networks. BMC Genomics 2024; 25:86. [PMID: 38254021 PMCID: PMC10802018 DOI: 10.1186/s12864-024-09985-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/07/2024] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Comprehensive analysis of multi-omics data is crucial for accurately formulating effective treatment plans for complex diseases. Supervised ensemble methods have gained popularity in recent years for multi-omics data analysis. However, existing research based on supervised learning algorithms often fails to fully harness the information from unlabeled nodes and overlooks the latent features within and among different omics, as well as the various associations among features. Here, we present a novel multi-omics integrative method MOSEGCN, based on the Transformer multi-head self-attention mechanism and Graph Convolutional Networks(GCN), with the aim of enhancing the accuracy of complex disease classification. MOSEGCN first employs the Transformer multi-head self-attention mechanism and Similarity Network Fusion (SNF) to separately learn the inherent correlations of latent features within and among different omics, constructing a comprehensive view of diseases. Subsequently, it feeds the learned crucial information into a self-ensembling Graph Convolutional Network (SEGCN) built upon semi-supervised learning methods for training and testing, facilitating a better analysis and utilization of information from multi-omics data to achieve precise classification of disease subtypes. RESULTS The experimental results show that MOSEGCN outperforms several state-of-the-art multi-omics integrative analysis approaches on three types of omics data: mRNA expression data, microRNA expression data, and DNA methylation data, with accuracy rates of 83.0% for Alzheimer's disease and 86.7% for breast cancer subtyping. Furthermore, MOSEGCN exhibits strong generalizability on the GBM dataset, enabling the identification of important biomarkers for related diseases. CONCLUSION MOSEGCN explores the significant relationship information among different omics and within each omics' latent features, effectively leveraging labeled and unlabeled information to further enhance the accuracy of complex disease classification. It also provides a promising approach for identifying reliable biomarkers, paving the way for personalized medicine.
Collapse
Affiliation(s)
- Jiahui Wang
- School of Computer and Information Security, Guilin University of Electronic Technology, No. 1 Jinji Road, Guilin City, 541004, Guangxi Zhuang Autonomous Region, China
| | - Nanqing Liao
- School of Medical, Guangxi University, No. 100 East University Road, Nanning, 530004, Guangxi, China
| | - Xiaofei Du
- School of Computer and Information Security, Guilin University of Electronic Technology, No. 1 Jinji Road, Guilin City, 541004, Guangxi Zhuang Autonomous Region, China
| | - Qingfeng Chen
- School of Computer, Electronics and Information, Guangxi University, No. 100 East University Road, Nanning, 530004, Guangxi, China.
| | - Bizhong Wei
- School of Computer and Information Security, Guilin University of Electronic Technology, No. 1 Jinji Road, Guilin City, 541004, Guangxi Zhuang Autonomous Region, China.
| |
Collapse
|
12
|
Taylor KR, Monje M. Neuron-oligodendroglial interactions in health and malignant disease. Nat Rev Neurosci 2023; 24:733-746. [PMID: 37857838 PMCID: PMC10859969 DOI: 10.1038/s41583-023-00744-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/14/2023] [Indexed: 10/21/2023]
Abstract
Experience sculpts brain structure and function. Activity-dependent modulation of the myelinated infrastructure of the nervous system has emerged as a dimension of adaptive change during childhood development and in adulthood. Myelination is a richly dynamic process, with neuronal activity regulating oligodendrocyte precursor cell proliferation, oligodendrogenesis and myelin structural changes in some axonal subtypes and in some regions of the nervous system. This myelin plasticity and consequent changes to conduction velocity and circuit dynamics can powerfully influence neurological functions, including learning and memory. Conversely, disruption of the mechanisms mediating adaptive myelination can contribute to cognitive impairment. The robust effects of neuronal activity on normal oligodendroglial precursor cells, a putative cellular origin for many forms of glioma, indicates that dysregulated or 'hijacked' mechanisms of myelin plasticity could similarly promote growth in this devastating group of brain cancers. Indeed, neuronal activity promotes the pathogenesis of many forms of glioma in preclinical models through activity-regulated paracrine factors and direct neuron-to-glioma synapses. This synaptic integration of glioma into neural circuits is central to tumour growth and invasion. Thus, not only do neuron-oligodendroglial interactions modulate neural circuit structure and function in the healthy brain, but neuron-glioma interactions also have important roles in the pathogenesis of glial malignancies.
Collapse
Affiliation(s)
- Kathryn R Taylor
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Michelle Monje
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA.
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
13
|
Kumaria A, Ashkan K. Novel therapeutic strategies in glioma targeting glutamatergic neurotransmission. Brain Res 2023; 1818:148515. [PMID: 37543066 DOI: 10.1016/j.brainres.2023.148515] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 07/11/2023] [Accepted: 07/30/2023] [Indexed: 08/07/2023]
Abstract
High grade gliomas carry a poor prognosis despite aggressive surgical and adjuvant approaches including chemoradiotherapy. Recent studies have demonstrated a mitogenic association between neuronal electrical activity and glioma growth involving the PI3K-mTOR pathway. As the predominant excitatory neurotransmitter of the brain, glutamate signalling in particular has been shown to promote glioma invasion and growth. The concept of the neurogliomal synapse has been established whereby glutamatergic receptors on glioma cells have been shown to promote tumour propagation. Targeting glutamatergic signalling is therefore a potential treatment option in glioma. Antiepileptic medications decrease excess neuronal electrical activity and some may possess anti-glutamate effects. Although antiepileptic medications continue to be investigated for an anti-glioma effect, good quality randomised trial evidence is lacking. Other pharmacological strategies that downregulate glutamatergic signalling include riluzole, memantine and anaesthetic agents. Neuromodulatory interventions possessing potential anti-glutamate activity include deep brain stimulation and vagus nerve stimulation - this contributes to the anti-seizure efficacy of the latter and the possible neuroprotective effect of the former. A possible role of neuromodulation as a novel anti-glioma modality has previously been proposed and that hypothesis is extended to include these modalities. Similarly, the significant survival benefit in glioblastoma attributable to alternating electrical fields (Tumour Treating Fields) may be a result of disruption to neurogliomal signalling. Further studies exploring excitatory neurotransmission and glutamatergic signalling and their role in glioma origin, growth and propagation are therefore warranted.
Collapse
Affiliation(s)
- Ashwin Kumaria
- Department of Neurosurgery, Queen's Medical Centre, Nottingham University Hospitals, Nottingham, UK.
| | | |
Collapse
|
14
|
Sun A, Cai F, Xiong Q, Xie T, Li X, Xie Y, Luo R, Hu W, Zhong F, Wang S. Comprehensive pan-cancer investigation: unraveling the oncogenic, prognostic, and immunological significance of Abelson interactor family member 3 gene in human malignancies. Front Mol Biosci 2023; 10:1277830. [PMID: 37942289 PMCID: PMC10628744 DOI: 10.3389/fmolb.2023.1277830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 10/09/2023] [Indexed: 11/10/2023] Open
Abstract
Background: Abelson interactor Family Member 3 (ABI3) encodes protein that not only suppresses the ectopic metastasis of tumor cells but also hinders their migration. Although ABI3 had been found to modulate the advancement of diverse neoplasms, there is no comprehensive pan-cancer analysis of its effects. Methods: The transcriptomics data of neoplasm and normal tissues were retrieved from the Genomic Data Commons (GDC) data portal, and UCSC XENA database. To gather protein information for ABI3, Human Protein Atlas (HPA) and GeneMANIA websites were utilized. Additionally, Tumor Immune Single-cell Hub (TISCH) database was consulted to determine the primary cell types expressing ABI3 in cancer microenvironments. Univariate Cox regression approach was leveraged to evaluate ABI3's prognostic role across cancers. The Cbioportal and Gene Set Cancer Analysis (GSCA) website were leveraged to scrutinize the genomic landscape information across cancers. TIMER2.0 was leveraged to probe the immune cell infiltrations associated with ABI3 across cancers. The associations of ABI3 with immune-related genes were analyzed through Spearman correlation method. Gene Set Enrichment Analysis (GSEA) and Gene Set Variation Analysis (GSVA) were utilized to search associated biological pathways. The CellMiner database and molecular docking were implemented to identify potential interactions between the ABI3 protein and specific anticarcinogen. Findings: ABI3 expression and its ability to predict prognosis varied distinct tumor, with particularly high expression observed in Tprolif cells and monocytes/macrophages. Copy number variation (CNV) and methylation negatively correlated with ABI3 expression in the majority of malignancies. Corresponding mutation survival analysis indicated that the mutation status of ABI3 was strongly connected to the prognosis of LGG patients. ABI3 expression was linked to immunotherapeutic biomarkers and response in cancers. ESTIMATE and immune infiltrations analyses presented ABI3 association with immunosuppression. ABI3 was significantly correlated with immunoregulators and immune-related pathways. Lastly, prospective ABI3-targeted drugs were filtered and docked to ABI3 protein. Interpretation: Our study reveals that ABI3 acts as a robust tumor biomarker. Its functions are vital that could inhibit ectopic metastasis of tumor cells and modulate cellular adhesion and migration. The discoveries presented here may have noteworthy consequences for the creation of fresh anticancer suppressors, especially those targeting BRCA.
Collapse
Affiliation(s)
- Aijun Sun
- Department of Thyroid and Breast Oncological Surgery, The Affiliated Huaian Hospital of Xuzhou Medical University and Huai’an Second People’s Hospital, Huai’an, Jiangsu, China
| | - Fengze Cai
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai’an, Jiangsu, China
| | - Qingping Xiong
- Jiangsu Key Laboratory of Regional Resource Exploitation and Medicinal Research, Huaiyin Institute of Technology, Huai’an, Jiangsu, China
| | - Tong Xie
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai’an, Jiangsu, China
| | - Xiang Li
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai’an, Jiangsu, China
| | - Yanteng Xie
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai’an, Jiangsu, China
| | - Ruiyang Luo
- Jiangsu Key Laboratory of Regional Resource Exploitation and Medicinal Research, Huaiyin Institute of Technology, Huai’an, Jiangsu, China
| | - Wenwen Hu
- Third Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, Henan, China
| | - Fei Zhong
- Department of Laboratory Medicine, The Affiliated Huaian Hospital of Xuzhou Medical University and Huai’an Second People’s Hospital, Huai’an, Jiangsu, China
| | - Shiyan Wang
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai’an, Jiangsu, China
| |
Collapse
|
15
|
Gao P, Sun Y, Zhang G, Li C, Wang L. A transducer positioning method for transcranial focused ultrasound treatment of brain tumors. Front Neurosci 2023; 17:1277906. [PMID: 37904813 PMCID: PMC10613465 DOI: 10.3389/fnins.2023.1277906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 09/28/2023] [Indexed: 11/01/2023] Open
Abstract
Purpose As a non-invasive method for brain diseases, transcranial focused ultrasound (tFUS) offers higher spatial precision and regulation depth. Due to the altered path and intensity of sonication penetrating the skull, the focus and intensity in the skull are difficult to determine, making the use of ultrasound therapy for cancer treatment experimental and not widely available. The deficiency can be effectively addressed by numerical simulation methods, which enable the optimization of sonication modulation parameters and the determination of precise transducer positioning. Methods A 3D skull model was established using binarized brain CT images. The selection of the transducer matrix was performed using the radius positioning (RP) method after identifying the intracranial target region. Simulations were performed, encompassing acoustic pressure (AP), acoustic field, and temperature field, in order to provide compelling evidence of the safety of tFUS in sonication-induced thermal effects. Results It was found that the angle of sonication path to the coronal plane obtained at all precision and frequency models did not exceed 10° and 15° to the transverse plane. The results of thermal effects illustrated that the peak temperatures of tFUS were 43.73°C, which did not reach the point of tissue degeneration. Once positioned, tFUS effectively delivers a Full Width at Half Maximum (FWHM) stimulation that targets tumors with diameters of up to 3.72 mm in a one-off. The original precision model showed an attenuation of 24.47 ± 6.13 mm in length and 2.40 ± 1.42 mm in width for the FWHM of sonication after penetrating the skull. Conclusion The vector angles of the sonication path in each direction were determined based on the transducer positioning results. It has been suggested that when time is limited for precise transducer positioning, fixing the transducer on the horizontal surface of the target region can also yield positive results for stimulation. This framework used a new transducer localization method to offer a reliable basis for further research and offered new methods for the use of tFUS in brain tumor-related research.
Collapse
Affiliation(s)
- Penghao Gao
- Artificial Intelligence Laboratory, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Yue Sun
- Department of Biomedical Engineering, Shenyang University of Technology, Shenyang, Liaoning, China
| | - Gongsen Zhang
- Artificial Intelligence Laboratory, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Chunsheng Li
- Department of Biomedical Engineering, Shenyang University of Technology, Shenyang, Liaoning, China
| | - Linlin Wang
- Artificial Intelligence Laboratory, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| |
Collapse
|
16
|
Ceol CJ. Microenvironmental GABA Signaling Regulates Melanomagenesis through Reciprocal Melanoma-Keratinocyte Communication. Cancer Discov 2023; 13:2128-2130. [PMID: 37794841 PMCID: PMC10860381 DOI: 10.1158/2159-8290.cd-23-0843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
SUMMARY GABA signaling by melanoma cells was found by Tagore and colleagues to trigger keratinocyte-driven growth of melanomas. This study reveals new roles for nonneuronal signaling by a neurotransmitter in regulating tumor initiation and outgrowth. See related article by Tagore et al., p. 2270 (4).
Collapse
Affiliation(s)
- Craig J. Ceol
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, Massachusetts
| |
Collapse
|
17
|
Martínez-Pacheco ML, Hernández-Lemus E, Mejía C. Analysis of High-Risk Neuroblastoma Transcriptome Reveals Gene Co-Expression Signatures and Functional Features. BIOLOGY 2023; 12:1230. [PMID: 37759629 PMCID: PMC10525871 DOI: 10.3390/biology12091230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/01/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023]
Abstract
Neuroblastoma represents a neoplastic expansion of neural crest cells in the developing sympathetic nervous system and is childhood's most common extracranial solid tumor. The heterogeneity of gene expression in different types of cancer is well-documented, and genetic features of neuroblastoma have been described by classification, development stage, malignancy, and progression of tumors. Here, we aim to analyze RNA sequencing datasets, publicly available in the GDC data portal, of neuroblastoma tumor samples from various patients and compare them with normal adrenal gland tissue from the GTEx data portal to elucidate the gene expression profile and regulation networks they share. Our results from the differential expression, weighted correlation network, and functional enrichment analyses that we performed with the count data from neuroblastoma and standard normal gland samples indicate that the analysis of transcriptome data from 58 patients diagnosed with high-risk neuroblastoma shares the expression pattern of 104 genes. More importantly, our analyses identify the co-expression relationship and the role of these genes in multiple biological processes and signaling pathways strongly associated with this disease phenotype. Our approach proposes a group of genes and their biological functions to be further investigated as essential molecules and possible therapeutic targets of neuroblastoma regardless of the etiology of individual tumors.
Collapse
Affiliation(s)
| | | | - Carmen Mejía
- Faculty of Natural Sciences, Autonomous University of Queretaro, Queretaro 76010, Mexico;
| |
Collapse
|
18
|
Ozturk K, Panwala R, Sheen J, Ford K, Payne N, Zhang DE, Hutter S, Haferlach T, Ideker T, Mali P, Carter H. Interface-guided phenotyping of coding variants in the transcription factor RUNX1 with SEUSS. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.03.551876. [PMID: 37577681 PMCID: PMC10418284 DOI: 10.1101/2023.08.03.551876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Understanding the consequences of single amino acid substitutions in cancer driver genes remains an unmet need. Perturb-seq provides a tool to investigate the effects of individual mutations on cellular programs. Here we deploy SEUSS, a Perturb-seq like approach, to generate and assay mutations at physical interfaces of the RUNX1 Runt domain. We measured the impact of 115 mutations on RNA profiles in single myelogenous leukemia cells and used the profiles to categorize mutations into three functionally distinct groups: wild-type (WT)-like, loss-of-function (LOF)-like and hypomorphic. Notably, the largest concentration of functional mutations (non-WT-like) clustered at the DNA binding site and contained many of the more frequently observed mutations in human cancers. Hypomorphic variants shared characteristics with loss of function variants but had gene expression profiles indicative of response to neural growth factor and cytokine recruitment of neutrophils. Additionally, DNA accessibility changes upon perturbations were enriched for RUNX1 binding motifs, particularly near differentially expressed genes. Overall, our work demonstrates the potential of targeting protein interaction interfaces to better define the landscape of prospective phenotypes reachable by amino acid substitutions.
Collapse
|
19
|
Venkatesh HS. Targeting electrochemical communication between neurons and cancer. Sci Transl Med 2023; 15:eadi5170. [PMID: 37494471 DOI: 10.1126/scitranslmed.adi5170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Neuronal activity drives cancer progression through functional integration of malignant cell networks into neural circuitry.
Collapse
Affiliation(s)
- Humsa S Venkatesh
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
20
|
Sansone G, Pini L, Salvalaggio A, Gaiola M, Volpin F, Baro V, Padovan M, Anglani M, Facchini S, Chioffi F, Zagonel V, D’Avella D, Denaro L, Lombardi G, Corbetta M. Patterns of gray and white matter functional networks involvement in glioblastoma patients: indirect mapping from clinical MRI scans. Front Neurol 2023; 14:1175576. [PMID: 37409023 PMCID: PMC10318144 DOI: 10.3389/fneur.2023.1175576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/22/2023] [Indexed: 07/07/2023] Open
Abstract
Background Resting-state functional-MRI studies identified several cortical gray matter functional networks (GMNs) and white matter functional networks (WMNs) with precise anatomical localization. Here, we aimed at describing the relationships between brain's functional topological organization and glioblastoma (GBM) location. Furthermore, we assessed whether GBM distribution across these networks was associated with overall survival (OS). Materials and methods We included patients with histopathological diagnosis of IDH-wildtype GBM, presurgical MRI and survival data. For each patient, we recorded clinical-prognostic variables. GBM core and edema were segmented and normalized to a standard space. Pre-existing functional connectivity-based atlases were used to define network parcellations: 17 GMNs and 12 WMNs were considered in particular. We computed the percentage of lesion overlap with GMNs and WMNs, both for core and edema. Differences between overlap percentages were assessed through descriptive statistics, ANOVA, post-hoc tests, Pearson's correlation tests and canonical correlations. Multiple linear and non-linear regression tests were employed to explore relationships with OS. Results 99 patients were included (70 males, mean age 62 years). The most involved GMNs included ventral somatomotor, salient ventral attention and default-mode networks; the most involved WMNs were ventral frontoparietal tracts, deep frontal white matter, and superior longitudinal fasciculus system. Superior longitudinal fasciculus system and dorsal frontoparietal tracts were significantly more included in the edema (p < 0.001). 5 main patterns of GBM core distribution across functional networks were found, while edema localization was less classifiable. ANOVA showed significant differences between mean overlap percentages, separately for GMNs and WMNs (p-values<0.0001). Core-N12 overlap predicts higher OS, although its inclusion does not increase the explained OS variance. Discussion and conclusion Both GBM core and edema preferentially overlap with specific GMNs and WMNs, especially associative networks, and GBM core follows five main distribution patterns. Some inter-related GMNs and WMNs were co-lesioned by GBM, suggesting that GBM distribution is not independent of the brain's structural and functional organization. Although the involvement of ventral frontoparietal tracts (N12) seems to have some role in predicting survival, network-topology information is overall scarcely informative about OS. fMRI-based approaches may more effectively demonstrate the effects of GBM on brain networks and survival.
Collapse
Affiliation(s)
- Giulio Sansone
- Department of Neuroscience, University of Padova, Padova, Italy
| | - Lorenzo Pini
- Padova Neuroscience Center (PNC), University of Padova, Padova, Italy
| | - Alessandro Salvalaggio
- Department of Neuroscience, University of Padova, Padova, Italy
- Padova Neuroscience Center (PNC), University of Padova, Padova, Italy
| | - Matteo Gaiola
- Department of Neuroscience, University of Padova, Padova, Italy
| | - Francesco Volpin
- Division of Neurosurgery, Azienda Ospedaliera Università di Padova, Padova, Italy
| | - Valentina Baro
- Academic Neurosurgery, Department of Neurosciences, University of Padova, Padova, Italy
| | - Marta Padovan
- Department of Oncology, Oncology 1, Veneto Institute of Oncology IOV-IRCCS, Padova, Italy
| | | | - Silvia Facchini
- Department of Neuroscience, University of Padova, Padova, Italy
| | - Franco Chioffi
- Division of Neurosurgery, Azienda Ospedaliera Università di Padova, Padova, Italy
| | - Vittorina Zagonel
- Department of Oncology, Oncology 1, Veneto Institute of Oncology IOV-IRCCS, Padova, Italy
| | - Domenico D’Avella
- Academic Neurosurgery, Department of Neurosciences, University of Padova, Padova, Italy
| | - Luca Denaro
- Academic Neurosurgery, Department of Neurosciences, University of Padova, Padova, Italy
| | - Giuseppe Lombardi
- Department of Oncology, Oncology 1, Veneto Institute of Oncology IOV-IRCCS, Padova, Italy
| | - Maurizio Corbetta
- Department of Neuroscience, University of Padova, Padova, Italy
- Padova Neuroscience Center (PNC), University of Padova, Padova, Italy
- Venetian Institute of Molecular Medicine (VIMM), Fondazione Biomedica, Padova, Italy
| |
Collapse
|
21
|
Miyai M, Iwama T, Hara A, Tomita H. Exploring the Vital Link Between Glioma, Neuron, and Neural Activity in the Context of Invasion. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:669-679. [PMID: 37286277 DOI: 10.1016/j.ajpath.2023.02.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 02/15/2023] [Accepted: 02/23/2023] [Indexed: 06/09/2023]
Abstract
Because of their ability to infiltrate normal brain tissue, gliomas frequently evade microscopic surgical excision. The histologic infiltrative property of human glioma has been previously characterized as Scherer secondary structures, of which the perivascular satellitosis is a prospective target for anti-angiogenic treatment in high-grade gliomas. However, the mechanisms underlying perineuronal satellitosis remain unclear, and therapy remains lacking. Our knowledge of the mechanism underlying Scherer secondary structures has improved over time. New techniques, such as laser capture microdissection and optogenetic stimulation, have advanced our understanding of glioma invasion mechanisms. Although laser capture microdissection is a useful tool for studying gliomas that infiltrate the normal brain microenvironment, optogenetics and mouse xenograft glioma models have been extensively used in studies demonstrating the unique role of synaptogenesis in glioma proliferation and identification of potential therapeutic targets. Moreover, a rare glioma cell line is established that, when transplanted in the mouse brain, can replicate and recapitulate the human diffuse invasion phenotype. This review discusses the primary molecular causes of glioma, its histopathology-based invasive mechanisms, and the importance of neuronal activity and interactions between glioma cells and neurons in the brain microenvironment. It also explores current methods and models of gliomas.
Collapse
Affiliation(s)
- Masafumi Miyai
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu, Japan; Department of Neurosurgery, Hashima City Hospital, Gifu, Japan; Department of Neurosurgery, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Toru Iwama
- Department of Neurosurgery, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Akira Hara
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Hiroyuki Tomita
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu, Japan.
| |
Collapse
|
22
|
Liu S, Dharanipragada P, Lomeli SH, Wang Y, Zhang X, Yang Z, Lim RJ, Dumitras C, Scumpia PO, Dubinett SM, Moriceau G, Johnson DB, Moschos SJ, Lo RS. Multi-organ landscape of therapy-resistant melanoma. Nat Med 2023; 29:1123-1134. [PMID: 37106167 PMCID: PMC10202813 DOI: 10.1038/s41591-023-02304-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 03/14/2023] [Indexed: 04/29/2023]
Abstract
Metastasis and failure of present-day therapies represent the most common causes of mortality in patients with cutaneous melanoma. To identify the underlying genetic and transcriptomic landscapes, in this study we analyzed multi-organ metastases and tumor-adjacent tissues from 11 rapid autopsies after treatment with MAPK inhibitor (MAPKi) and/or immune checkpoint blockade (ICB) and death due to acquired resistance. Either treatment elicits shared genetic alterations that suggest immune-evasive, cross-therapy resistance mechanisms. Large, non-clustered deletions, inversions and inter-chromosomal translocations dominate rearrangements. Analyzing data from separate melanoma cohorts including 345 therapy-naive patients and 35 patients with patient-matched pre-treatment and post-acquired resistance tumor samples, we performed cross-cohort analyses to identify MAPKi and ICB as respective contributors to gene amplifications and deletions enriched in autopsy versus therapy-naive tumors. In the autopsy cohort, private/late mutations and structural variants display shifted mutational and rearrangement signatures, with MAPKi specifically selecting for signatures of defective homologous-recombination, mismatch and base-excision repair. Transcriptomic signatures and crosstalks with tumor-adjacent macroenvironments nominated organ-specific adaptive pathways. An immune-desert, CD8+-macrophage-biased archetype, T-cell exhaustion and type-2 immunity characterized the immune contexture. This multi-organ analysis of therapy-resistant melanoma presents preliminary insights with potential to improve therapeutic strategies.
Collapse
Affiliation(s)
- Sixue Liu
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Prashanthi Dharanipragada
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Shirley H Lomeli
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Yan Wang
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Xiao Zhang
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Zhentao Yang
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Raymond J Lim
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Camelia Dumitras
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Philip O Scumpia
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Dermatology, Veterans Administration Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| | - Steve M Dubinett
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Gatien Moriceau
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Douglas B Johnson
- Division of Hematology/Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Stergios J Moschos
- Division of Medical Oncology, Department of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Roger S Lo
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
23
|
Xie M, Su C. Microenvironment and the progress of immunotherapy in clinical practice of NSCLC brain metastasis. Front Oncol 2023; 12:1006284. [PMID: 36761422 PMCID: PMC9902941 DOI: 10.3389/fonc.2022.1006284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 12/28/2022] [Indexed: 01/25/2023] Open
Abstract
One of the most frequent distant metastases of lung cancer occurs in the brain. The average natural survival duration for patients with lung cancer who have brain metastases is about 1 to 2 months. Knowledge about brain metastases is currently restricted since they are more difficult to acquire than other metastases. This review begins with an analysis of the immune microenvironment of brain metastases; focuses primarily on the functions of microglia, astrocytes, neurons, and tumor-infiltrating lymphocytes in the microenvironment of brain metastases; and offers an atlas of the immune microenvironment of brain metastases involving significant cells. In an effort to give researchers new research ideas, the study also briefly covers how immunotherapy for non-small cell lung cancer with brain metastases is currently faring.
Collapse
|
24
|
Anastasaki C, Gao Y, Gutmann DH. Neurons as stromal drivers of nervous system cancer formation and progression. Dev Cell 2023; 58:81-93. [PMID: 36693322 PMCID: PMC9883043 DOI: 10.1016/j.devcel.2022.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/24/2022] [Accepted: 12/27/2022] [Indexed: 01/24/2023]
Abstract
Similar to their pivotal roles in nervous system development, neurons have emerged as critical regulators of cancer initiation, maintenance, and progression. Focusing on nervous system tumors, we describe the normal relationships between neurons and other cell types relevant to normal nerve function, and discuss how disruptions of these interactions promote tumor evolution, focusing on electrical (gap junctions) and chemical (synaptic) coupling, as well as the establishment of new paracrine relationships. We also review how neuron-tumor communication contributes to some of the complications of cancer, including neuropathy, chemobrain, seizures, and pain. Finally, we consider the implications of cancer neuroscience in establishing risk for tumor penetrance and in the design of future anti-tumoral treatments.
Collapse
Affiliation(s)
- Corina Anastasaki
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Yunqing Gao
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - David H Gutmann
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
25
|
Savchuk S, Gentry K, Wang W, Carleton E, Yalçın B, Liu Y, Pavarino EC, LaBelle J, Toland AM, Woo PJ, Qu F, Filbin MG, Krasnow MA, Sabatini BL, Sage J, Monje M, Venkatesh HS. Neuronal-Activity Dependent Mechanisms of Small Cell Lung Cancer Progression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.19.524430. [PMID: 36711554 PMCID: PMC9882339 DOI: 10.1101/2023.01.19.524430] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Neural activity is increasingly recognized as a critical regulator of cancer growth. In the brain, neuronal activity robustly influences glioma growth both through paracrine mechanisms and through electrochemical integration of malignant cells into neural circuitry via neuron-to-glioma synapses, while perisynaptic neurotransmitter signaling drives breast cancer brain metastasis growth. Outside of the CNS, innervation of tumors such as prostate, breast, pancreatic and gastrointestinal cancers by peripheral nerves similarly regulates cancer progression. However, the extent to which the nervous system regulates lung cancer progression, either in the lung or when metastatic to brain, is largely unexplored. Small cell lung cancer (SCLC) is a lethal high-grade neuroendocrine tumor that exhibits a strong propensity to metastasize to the brain. Here we demonstrate that, similar to glioma, metastatic SCLC cells in the brain co-opt neuronal activity-regulated mechanisms to stimulate growth and progression. Optogenetic stimulation of cortical neuronal activity drives proliferation and invasion of SCLC brain metastases. In the brain, SCLC cells exhibit electrical currents and consequent calcium transients in response to neuronal activity, and direct SCLC cell membrane depolarization is sufficient to promote the growth of SCLC tumors. In the lung, vagus nerve transection markedly inhibits primary lung tumor formation, progression and metastasis, highlighting a critical role for innervation in overall SCLC initiation and progression. Taken together, these studies illustrate that neuronal activity plays a crucial role in dictating SCLC pathogenesis in both primary and metastatic sites.
Collapse
|
26
|
Bioelectronic medicines: Therapeutic potential and advancements in next-generation cancer therapy. Biochim Biophys Acta Rev Cancer 2022; 1877:188808. [DOI: 10.1016/j.bbcan.2022.188808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/07/2022] [Accepted: 09/27/2022] [Indexed: 11/22/2022]
|
27
|
Yang Y, Schubert MC, Kuner T, Wick W, Winkler F, Venkataramani V. Brain Tumor Networks in Diffuse Glioma. Neurotherapeutics 2022; 19:1832-1843. [PMID: 36357661 PMCID: PMC9723066 DOI: 10.1007/s13311-022-01320-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2022] [Indexed: 11/12/2022] Open
Abstract
Diffuse gliomas are primary brain tumors associated with a poor prognosis. Cellular and molecular mechanisms driving the invasive growth patterns and therapeutic resistance are incompletely understood. The emerging field of cancer neuroscience offers a novel approach to study these brain tumors in the context of their intricate interactions with the nervous system employing and combining methodological toolsets from neuroscience and oncology. Increasing evidence has shown how neurodevelopmental and neuronal-like mechanisms are hijacked leading to the discovery of multicellular brain tumor networks. Here, we review how gap junction-coupled tumor-tumor-astrocyte networks, as well as synaptic and paracrine neuron-tumor networks drive glioma progression. Molecular mechanisms of these malignant, homo- and heterotypic networks, and their complex interplay are reviewed. Lastly, potential clinical-translational implications and resulting therapeutic strategies are discussed.
Collapse
Affiliation(s)
- Yvonne Yang
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, INF 400, 69120, Heidelberg, Germany
- Clinical Cooperation Unit Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), INF 280, 69120, Heidelberg, Germany
| | - Marc C Schubert
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, INF 400, 69120, Heidelberg, Germany
- Clinical Cooperation Unit Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), INF 280, 69120, Heidelberg, Germany
- Department of Functional Neuroanatomy, Institute for Anatomy and Cell Biology, Heidelberg University, INF 307, 69120, Heidelberg, Germany
| | - Thomas Kuner
- Department of Functional Neuroanatomy, Institute for Anatomy and Cell Biology, Heidelberg University, INF 307, 69120, Heidelberg, Germany
| | - Wolfgang Wick
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, INF 400, 69120, Heidelberg, Germany
- Clinical Cooperation Unit Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), INF 280, 69120, Heidelberg, Germany
| | - Frank Winkler
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, INF 400, 69120, Heidelberg, Germany
- Clinical Cooperation Unit Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), INF 280, 69120, Heidelberg, Germany
| | - Varun Venkataramani
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, INF 400, 69120, Heidelberg, Germany.
- Clinical Cooperation Unit Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), INF 280, 69120, Heidelberg, Germany.
- Department of Functional Neuroanatomy, Institute for Anatomy and Cell Biology, Heidelberg University, INF 307, 69120, Heidelberg, Germany.
| |
Collapse
|
28
|
Duffau H. White Matter Tracts and Diffuse Lower-Grade Gliomas: The Pivotal Role of Myelin Plasticity in the Tumor Pathogenesis, Infiltration Patterns, Functional Consequences and Therapeutic Management. Front Oncol 2022; 12:855587. [PMID: 35311104 PMCID: PMC8924360 DOI: 10.3389/fonc.2022.855587] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 02/14/2022] [Indexed: 12/18/2022] Open
Abstract
For many decades, interactions between diffuse lower-grade glioma (LGG) and brain connectome were neglected. However, the neoplasm progression is intimately linked to its environment, especially the white matter (WM) tracts and their myelin status. First, while the etiopathogenesis of LGG is unclear, this tumor seems to appear during the adolescence, and it is mostly located within anterior and associative cerebral areas. Because these structures correspond to those which were myelinated later in the brain maturation process, WM myelination could play a role in the development of LGG. Second, WM fibers and the myelin characteristics also participate in LGG diffusion, since glioma cells migrate along the subcortical pathways, especially when exhibiting a demyelinated phenotype, which may result in a large invasion of the parenchyma. Third, such a migratory pattern can induce functional (neurological, cognitive and behavioral) disturbances, because myelinated WM tracts represent the main limitation of neuroplastic potential. These parameters are critical for tailoring an individualized therapeutic strategy, both (i) regarding the timing of active treatment(s) which must be proposed earlier, before a too wide glioma infiltration along the WM bundles, (ii) and regarding the anatomic extent of surgical resection and irradiation, which should take account of the subcortical connectivity. Therefore, the new science of connectomics must be integrated in LGG management, based upon an improved understanding of the interplay across glioma dissemination within WM and reactional neural networks reconfiguration, in order to optimize long-term oncological and functional outcomes. To this end, mechanisms of activity-dependent myelin plasticity should be better investigated.
Collapse
Affiliation(s)
- Hugues Duffau
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, Montpellier, France.,Team "Plasticity of Central Nervous System, Stem Cells and Glial Tumors", Institute of Functional Genomics, National Institute for Health and Medical Research (INSERM) U1191, University of Montpellier, Montpellier, France
| |
Collapse
|
29
|
Abstract
Nervous system activity regulates development, homeostasis, and plasticity of the brain as well as other organs in the body. These mechanisms are subverted in cancer to propel malignant growth. In turn, cancers modulate neural structure and function to augment growth-promoting neural signaling in the tumor microenvironment. Approaching cancer biology from a neuroscience perspective will elucidate new therapeutic strategies for presently lethal forms of cancer. In this review, we highlight the neural signaling mechanisms recapitulated in primary brain tumors, brain metastases, and solid tumors throughout the body that regulate cancer progression. Expected final online publication date for the Annual Review of Neuroscience, Volume 45 is July 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Michael B Keough
- Department of Neurology and Neurological Sciences and Howard Hughes Medical Institute, Stanford University, Stanford, California, USA;
| | - Michelle Monje
- Department of Neurology and Neurological Sciences and Howard Hughes Medical Institute, Stanford University, Stanford, California, USA;
| |
Collapse
|
30
|
Shi DD, Guo JA, Hoffman HI, Su J, Mino-Kenudson M, Barth JL, Schenkel JM, Loeffler JS, Shih HA, Hong TS, Wo JY, Aguirre AJ, Jacks T, Zheng L, Wen PY, Wang TC, Hwang WL. Therapeutic avenues for cancer neuroscience: translational frontiers and clinical opportunities. Lancet Oncol 2022; 23:e62-e74. [PMID: 35114133 PMCID: PMC9516432 DOI: 10.1016/s1470-2045(21)00596-9] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/28/2021] [Accepted: 10/08/2021] [Indexed: 02/03/2023]
Abstract
With increasing attention on the essential roles of the tumour microenvironment in recent years, the nervous system has emerged as a novel and crucial facilitator of cancer growth. In this Review, we describe the foundational, translational, and clinical advances illustrating how nerves contribute to tumour proliferation, stress adaptation, immunomodulation, metastasis, electrical hyperactivity and seizures, and neuropathic pain. Collectively, this expanding knowledge base reveals multiple therapeutic avenues for cancer neuroscience that warrant further exploration in clinical studies. We discuss the available clinical data, including ongoing trials investigating novel agents targeting the tumour-nerve axis, and the therapeutic potential for repurposing existing neuroactive drugs as an anti-cancer approach, particularly in combination with established treatment regimens. Lastly, we discuss the clinical challenges of these treatment strategies and highlight unanswered questions and future directions in the burgeoning field of cancer neuroscience.
Collapse
Affiliation(s)
- Diana D Shi
- Department of Radiation Oncology, Dana-Farber/Brigham and Women's Cancer Center, Boston, MA, USA
| | - Jimmy A Guo
- Department of Radiation Oncology, Massachusetts General Hospital Cancer Center, Boston, MA, USA; School of Medicine, University of California, San Francisco, San Francisco, CA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Biological and Biomedical Sciences Program, Harvard University, Boston, MA, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Hannah I Hoffman
- Department of Radiation Oncology, Massachusetts General Hospital Cancer Center, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Biology, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA; Harvard-MIT Health Sciences and Technology Program, Harvard Medical School, Boston, MA, USA
| | - Jennifer Su
- Department of Radiation Oncology, Massachusetts General Hospital Cancer Center, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Biology, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Mari Mino-Kenudson
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jaimie L Barth
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jason M Schenkel
- Department of Biology, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jay S Loeffler
- Department of Radiation Oncology, Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - Helen A Shih
- Department of Radiation Oncology, Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - Theodore S Hong
- Department of Radiation Oncology, Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - Jennifer Y Wo
- Department of Radiation Oncology, Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - Andrew J Aguirre
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Tyler Jacks
- Department of Biology, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Lei Zheng
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Patrick Y Wen
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Timothy C Wang
- Division of Digestive and Liver Diseases, Columbia University Medical Center, New York, NY, USA
| | - William L Hwang
- Department of Radiation Oncology, Massachusetts General Hospital Cancer Center, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Biology, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
31
|
Wang Y, Guo B, Guo Y, Qi N, Lv Y, Ye Y, Huang Y, Long X, Chen H, Su C, Zhang L, Zhang Q, Li M, Liao J, Yan Y, Mao X, Zeng Y, Jiang J, Chen Z, Guo Y, Gao S, Cheng J, Jiang Y, Mo Z. A spatiotemporal steroidogenic regulatory network in human fetal adrenal glands and gonads. Front Endocrinol (Lausanne) 2022; 13:1036517. [PMID: 36465633 PMCID: PMC9713933 DOI: 10.3389/fendo.2022.1036517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 10/28/2022] [Indexed: 11/18/2022] Open
Abstract
Human fetal adrenal glands produce substantial amounts of dehydroepiandrosterone (DHEA), which is one of the most important precursors of sex hormones. However, the underlying biological mechanism remains largely unknown. Herein, we sequenced human fetal adrenal glands and gonads from 7 to 14 gestational weeks (GW) via 10× Genomics single-cell transcriptome techniques, reconstructed their location information by spatial transcriptomics. Relative to gonads, adrenal glands begin to synthesize steroids early. The coordination among steroidogenic cells and multiple non-steroidogenic cells promotes adrenal cortex construction and steroid synthesis. Notably, during the window of sexual differentiation (8-12 GW), key enzyme gene expression shifts to accelerate DHEA synthesis in males and cortisol synthesis in females. Our research highlights the robustness of the action of fetal adrenal glands on gonads to modify the process of sexual differentiation.
Collapse
Affiliation(s)
- Yifu Wang
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Medical University, Guangxi, China
- Institute of Urology and Nephrology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Bingqian Guo
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Medical University, Guangxi, China
- Guangxi Collaborative Innovation Center for Biomedicine (Guangxi-Association of Southeast Asian Nations (ASEAN) Collaborative Innovation Center for Major Disease Prevention and Treatment), Guangxi Medical University, Nanning, Guangxi, China
| | - Yajie Guo
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Medical University, Guangxi, China
- Guangxi Collaborative Innovation Center for Biomedicine (Guangxi-Association of Southeast Asian Nations (ASEAN) Collaborative Innovation Center for Major Disease Prevention and Treatment), Guangxi Medical University, Nanning, Guangxi, China
| | - Nana Qi
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Medical University, Guangxi, China
- Guangxi Collaborative Innovation Center for Biomedicine (Guangxi-Association of Southeast Asian Nations (ASEAN) Collaborative Innovation Center for Major Disease Prevention and Treatment), Guangxi Medical University, Nanning, Guangxi, China
| | - Yufang Lv
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Medical University, Guangxi, China
- Institute of Urology and Nephrology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Yu Ye
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Medical University, Guangxi, China
- Institute of Urology and Nephrology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Department of Emergency, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Department of Urology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Yan Huang
- Department of Obstetrics, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Xinyang Long
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Medical University, Guangxi, China
- School of Public Health of Guangxi Medical University, Guangxi Medical University, Nanning, Guangxi, China
| | - Hongfei Chen
- Department of Obstetrics, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Cheng Su
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Medical University, Guangxi, China
- Institute of Urology and Nephrology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Liying Zhang
- Department of Gynecology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Qingyun Zhang
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Medical University, Guangxi, China
- Institute of Urology and Nephrology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Department of Urology, The Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Minxi Li
- Department of Gynecology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Jinling Liao
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Medical University, Guangxi, China
- Guangxi Collaborative Innovation Center for Biomedicine (Guangxi-Association of Southeast Asian Nations (ASEAN) Collaborative Innovation Center for Major Disease Prevention and Treatment), Guangxi Medical University, Nanning, Guangxi, China
| | - Yunkun Yan
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Medical University, Guangxi, China
- Institute of Urology and Nephrology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Xingning Mao
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Medical University, Guangxi, China
- Guangxi Collaborative Innovation Center for Biomedicine (Guangxi-Association of Southeast Asian Nations (ASEAN) Collaborative Innovation Center for Major Disease Prevention and Treatment), Guangxi Medical University, Nanning, Guangxi, China
| | - Yanyu Zeng
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Medical University, Guangxi, China
- Guangxi Collaborative Innovation Center for Biomedicine (Guangxi-Association of Southeast Asian Nations (ASEAN) Collaborative Innovation Center for Major Disease Prevention and Treatment), Guangxi Medical University, Nanning, Guangxi, China
| | - Jinghang Jiang
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Medical University, Guangxi, China
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Zhongyuan Chen
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Medical University, Guangxi, China
- Guangxi Collaborative Innovation Center for Biomedicine (Guangxi-Association of Southeast Asian Nations (ASEAN) Collaborative Innovation Center for Major Disease Prevention and Treatment), Guangxi Medical University, Nanning, Guangxi, China
| | - Yi Guo
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Medical University, Guangxi, China
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Shuai Gao
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jiwen Cheng
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Medical University, Guangxi, China
- Institute of Urology and Nephrology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Yonghua Jiang
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Medical University, Guangxi, China
- Guangxi Collaborative Innovation Center for Biomedicine (Guangxi-Association of Southeast Asian Nations (ASEAN) Collaborative Innovation Center for Major Disease Prevention and Treatment), Guangxi Medical University, Nanning, Guangxi, China
- Department of Obstetrics, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Life Sciences Institute, Guangxi Medical University, Nanning, Guangxi, China
- *Correspondence: Zengnan Mo, ; Yonghua Jiang,
| | - Zengnan Mo
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Medical University, Guangxi, China
- Institute of Urology and Nephrology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- *Correspondence: Zengnan Mo, ; Yonghua Jiang,
| |
Collapse
|
32
|
Mravec B. Neurobiology of cancer: Definition, historical overview, and clinical implications. Cancer Med 2021; 11:903-921. [PMID: 34953048 PMCID: PMC8855902 DOI: 10.1002/cam4.4488] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 11/15/2021] [Accepted: 11/17/2021] [Indexed: 12/15/2022] Open
Abstract
Studies published in the last two decades have clearly demonstrated that the nervous system plays a significant role in carcinogenesis, the progression of cancer, and the development of metastases. These studies, combining oncological and neuroscientific approaches, created the basis for the emergence of a new field in oncology research, the so‐called “neurobiology of cancer.” The concept of the neurobiology of cancer is based on several facts: (a) psychosocial factors influence the incidence and progression of cancer diseases; (b) the nervous system affects DNA mutations and oncogene‐related signaling; (c) the nervous system modulates tumor‐related immune responses; (d) tumor tissues are innervated; (e) neurotransmitters released from nerves innervating tumor tissues affect tumor growth and metastasis; (f) alterations or modulation of nervous system activity affects the incidence and progression of cancers; (g) tumor tissue affects the nervous system. The aim of this review is to characterize the pillars that create the basis of cancer neurobiology, to describe recent research advances of the nervous system's role in cancer diseases, and to depict potential clinical implications for oncology.
Collapse
Affiliation(s)
- Boris Mravec
- Institute of Physiology, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovakia.,Biomedical Research Center, Institute of Experimental Endocrinology, Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
33
|
Mandal AS, Romero-Garcia R, Seidlitz J, Hart MG, Alexander-Bloch AF, Suckling J. Lesion covariance networks reveal proposed origins and pathways of diffuse gliomas. Brain Commun 2021; 3:fcab289. [PMID: 34917940 PMCID: PMC8669792 DOI: 10.1093/braincomms/fcab289] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 10/24/2021] [Accepted: 10/25/2021] [Indexed: 12/13/2022] Open
Abstract
Diffuse gliomas have been hypothesized to originate from neural stem cells in the subventricular zone and develop along previously healthy brain networks. Here, we evaluated these hypotheses by mapping independent sources of glioma localization and determining their relationships with neurogenic niches, genetic markers and large-scale connectivity networks. By applying independent component analysis to lesion data from 242 adult patients with high- and low-grade glioma, we identified three lesion covariance networks, which reflect clusters of frequent glioma localization. Replicability of the lesion covariance networks was assessed in an independent sample of 168 glioma patients. We related the lesion covariance networks to important clinical variables, including tumour grade and patient survival, as well as genomic information such as molecular genetic subtype and bulk transcriptomic profiles. Finally, we systematically cross-correlated the lesion covariance networks with structural and functional connectivity networks derived from neuroimaging data of over 4000 healthy UK BioBank participants to uncover intrinsic brain networks that may that underlie tumour development. The three lesion covariance networks overlapped with the anterior, posterior and inferior horns of the lateral ventricles respectively, extending into the frontal, parietal and temporal cortices. These locations were independently replicated. The first lesion covariance network, which overlapped with the anterior horn, was associated with low-grade, isocitrate dehydrogenase -mutated/1p19q-codeleted tumours, as well as a neural transcriptomic signature and improved overall survival. Each lesion covariance network significantly coincided with multiple structural and functional connectivity networks, with the first bearing an especially strong relationship with brain connectivity, consistent with its neural transcriptomic profile. Finally, we identified subcortical, periventricular structures with functional connectivity patterns to the cortex that significantly matched each lesion covariance network. In conclusion, we demonstrated replicable patterns of glioma localization with clinical relevance and spatial correspondence with large-scale functional and structural connectivity networks. These results are consistent with prior reports of glioma growth along white matter pathways, as well as evidence for the coordination of glioma stem cell proliferation by neuronal activity. Our findings describe how the locations of gliomas relate to their proposed subventricular origins, suggesting a model wherein periventricular brain connectivity guides tumour development.
Collapse
Affiliation(s)
- Ayan S Mandal
- Department of Psychiatry, Brain Mapping Unit, University of Cambridge, Cambridge, CB2 0SZ, UK
- Department of Psychiatry, Brain-Gene Development Lab, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rafael Romero-Garcia
- Department of Psychiatry, Brain Mapping Unit, University of Cambridge, Cambridge, CB2 0SZ, UK
| | - Jakob Seidlitz
- Department of Psychiatry, Brain-Gene Development Lab, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Child and Adolescent Psychiatry and Behavioral Science, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Michael G Hart
- Department of Psychiatry, Brain Mapping Unit, University of Cambridge, Cambridge, CB2 0SZ, UK
- Academic Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0SZ, UK
| | - Aaron F Alexander-Bloch
- Department of Psychiatry, Brain-Gene Development Lab, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Child and Adolescent Psychiatry and Behavioral Science, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - John Suckling
- Department of Psychiatry, Brain Mapping Unit, University of Cambridge, Cambridge, CB2 0SZ, UK
| |
Collapse
|
34
|
Parmigiani E, Scalera M, Mori E, Tantillo E, Vannini E. Old Stars and New Players in the Brain Tumor Microenvironment. Front Cell Neurosci 2021; 15:709917. [PMID: 34690699 PMCID: PMC8527006 DOI: 10.3389/fncel.2021.709917] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 08/04/2021] [Indexed: 12/12/2022] Open
Abstract
In recent years, the direct interaction between cancer cells and tumor microenvironment (TME) has emerged as a crucial regulator of tumor growth and a promising therapeutic target. The TME, including the surrounding peritumoral regions, is dynamically modified during tumor progression and in response to therapies. However, the mechanisms regulating the crosstalk between malignant and non-malignant cells are still poorly understood, especially in the case of glioma, an aggressive form of brain tumor. The presence of unique brain-resident cell types, namely neurons and glial cells, and an exceptionally immunosuppressive microenvironment pose additional important challenges to the development of effective treatments targeting the TME. In this review, we provide an overview on the direct and indirect interplay between glioma and neuronal and glial cells, introducing new players and mechanisms that still deserve further investigation. We will focus on the effects of neural activity and glial response in controlling glioma cell behavior and discuss the potential of exploiting these cellular interactions to develop new therapeutic approaches with the aim to preserve proper brain functionality.
Collapse
Affiliation(s)
- Elena Parmigiani
- Embryology and Stem Cell Biology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Marta Scalera
- Neuroscience Institute, Consiglio Nazionale delle Ricerche (CNR), Pisa, Italy
| | | | - Elena Tantillo
- Neuroscience Institute, Consiglio Nazionale delle Ricerche (CNR), Pisa, Italy
| | - Eleonora Vannini
- Neuroscience Institute, Consiglio Nazionale delle Ricerche (CNR), Pisa, Italy
| |
Collapse
|
35
|
Interactive regulation of laryngeal cancer and neuroscience. Biochim Biophys Acta Rev Cancer 2021; 1876:188580. [PMID: 34129916 DOI: 10.1016/j.bbcan.2021.188580] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 06/10/2021] [Accepted: 06/10/2021] [Indexed: 01/11/2023]
Abstract
Nerve fibres are distributed throughout the body along with blood and lymphatic vessels. The intrinsic morphological characteristics of nerves and the general characteristics of secretions in the tumour microenvironment provide a solid theoretical basis for exploring how neuronal tissue can influence the progression of laryngeal cancer (LC). The central nervous system (CNS) and the peripheral nervous system (PNS) jointly control many aspects of cancer and have attracted widespread attention in the study of the progression, invasion and metastasis of tumour tissue banks. Stress activates the neuroendocrine response of the human hypothalamus-pituitary-adrenal (HPA) axis. LC cells induce nerve growth in the microenvironment by releasing neurotrophic factors (NTFs), and they can also stimulate neurite formation by secreting axons and axon guides. Conversely, nerve endings secrete factors that attract LC cells; this is known as perineural invasion (PNI) and promotes the progression of the associated cancer. In this paper, we summarize the systematic understanding of the role of neuroregulation in the LC tumour microenvironment (TME) and ways in which the TME accelerates nerve growth, which is closely related to the occurrence of LC.
Collapse
|
36
|
Mravec B. Neurobiology of Cancer: Introduction of New Drugs in the Treatment and Prevention of Cancer. Int J Mol Sci 2021; 22:6115. [PMID: 34204103 PMCID: PMC8201304 DOI: 10.3390/ijms22116115] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/02/2021] [Accepted: 06/04/2021] [Indexed: 12/21/2022] Open
Abstract
Research on the neurobiology of cancer, which lies at the border of neuroscience and oncology, has elucidated the mechanisms and pathways that enable the nervous system to modulate processes associated with cancer initiation and progression. This research has also shown that several drugs which modulate interactions between the nervous system and the tumor micro- and macroenvironments significantly reduced the progression of cancer in animal models. Encouraging results were also provided by prospective clinical trials investigating the effect of drugs that reduce adrenergic signaling on the course of cancer in oncological patients. Moreover, it has been shown that reducing adrenergic signaling might also reduce the incidence of cancer in animal models, as well as in humans. However, even if many experimental and clinical findings have confirmed the preventive and therapeutic potential of drugs that reduce the stimulatory effect of the nervous system on processes related to cancer initiation and progression, several questions remain unanswered. Therefore, the aim of this review is to critically evaluate the efficiency of these drugs and to discuss questions that need to be answered before their introduction into conventional cancer treatment and prevention.
Collapse
Affiliation(s)
- Boris Mravec
- Institute of Physiology, Faculty of Medicine, Comenius University in Bratislava, 813 72 Bratislava, Slovakia; ; Tel.: +421-(2)-59357527; Fax: +421-(2)-59357601
- Biomedical Research Center, Institute of Experimental Endocrinology, Slovak Academy of Sciences, 845 05 Bratislava, Slovakia
| |
Collapse
|
37
|
Zhang C, Liu J, Wang J, Hu W, Feng Z. The emerging role of leukemia inhibitory factor in cancer and therapy. Pharmacol Ther 2021; 221:107754. [PMID: 33259884 PMCID: PMC8084904 DOI: 10.1016/j.pharmthera.2020.107754] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 11/17/2020] [Indexed: 12/11/2022]
Abstract
Leukemia inhibitory factor (LIF) is a multi-functional cytokine of the interleukin-6 (IL-6) superfamily. Initially identified as a factor that inhibits the proliferation of murine myeloid leukemia cells, LIF displays a wide variety of important functions in a cell-, tissue- and context-dependent manner in many physiological and pathological processes, including regulating cell proliferation, pluripotent stem cell self-renewal, tissue/organ development and regeneration, neurogenesis and neural regeneration, maternal reproduction, inflammation, infection, immune response, and metabolism. Emerging evidence has shown that LIF plays an important but complex role in human cancers; while LIF displays a tumor suppressive function in some types of cancers, including leukemia, LIF is overexpressed and exerts an oncogenic function in many more types of cancers. Further, targeting LIF has been actively investigated as a novel strategy for cancer therapy. This review summarizes the recent advances in the studies on LIF in human cancers and its potential application in cancer therapy. A better understanding of the role of LIF in different types of cancers and its underlying mechanisms will help to develop more effective strategies for cancer therapy.
Collapse
Affiliation(s)
- Cen Zhang
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers-State University of New Jersey, New Brunswick, NJ 08903, USA
| | - Juan Liu
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers-State University of New Jersey, New Brunswick, NJ 08903, USA
| | - Jianming Wang
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers-State University of New Jersey, New Brunswick, NJ 08903, USA
| | - Wenwei Hu
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers-State University of New Jersey, New Brunswick, NJ 08903, USA.
| | - Zhaohui Feng
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers-State University of New Jersey, New Brunswick, NJ 08903, USA.
| |
Collapse
|
38
|
Mutually exclusive lymphangiogenesis or perineural infiltration in human skin squamous-cell carcinoma. Oncotarget 2021; 12:638-648. [PMID: 33868585 PMCID: PMC8021034 DOI: 10.18632/oncotarget.27915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 02/26/2021] [Indexed: 11/25/2022] Open
Abstract
Although tumor-associated lymphangiogenesis correlates with metastasis and poor prognosis in several cancers, it also supports T cell infiltration into the tumor and predicts favorable outcome to immunotherapy. The role of lymphatic vessels in skin squamous-cell carcinoma (sSCC), the second most common form of skin cancer, remains mostly unknown. Although anti-PD-1 therapy is beneficial for some patients with advanced sSCC, a greater understanding of disease mechanisms is still needed to develop better therapies. Using quantitative multiplex immunohistochemistry, we analyzed sSCC sections from 36 patients. CD8+ T cell infiltration showed great differences between patients, whereby these cells were mainly excluded from the tumor mass. Similar to our data in melanoma, sSCC with high density of lymphatic endothelial cells showed increased CD8+ T cell density in tumor areas. An entirely new observation is that sSCC with perineural infiltration but without metastasis was characterized by low lymphatic endothelial cell density. Since both, metastasis and perineural infiltration are known to affect tumor progression and patients’ prognosis, it is important to identify the molecular drivers, opening future options for therapeutic targeting. Our data suggest that the mechanisms underlying perineural infiltration may be linked with the biology of lymphatic vessels and thus stroma.
Collapse
|
39
|
Kumaria A. Observations on the anti-glioma potential of electrical fields: is there a role for surgical neuromodulation? Br J Neurosurg 2021; 36:564-568. [PMID: 33583293 DOI: 10.1080/02688697.2021.1886242] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Alternating electrical field therapy represents a recent addition to the armamentarium against high grade glioma. Randomised trial evidence suggests a survival benefit from adjunctive scalp delivered Tumour Treating Fields (TTFields) in glioblastoma. Any underlying anti-glioma effect is not fully understood, but interference with cell division and microtubule assembly has been averred. The survival benefit claimed for TTFields is modest and is associated with mild reductions in health-related quality of life indices amid costs that presently preclude routine use. I review possible mechanisms by which alternating electrical fields may confer an anti-glioma effect. As scalp and skull are poor conductors of an electrical field, a case is made here for implantable electrodes, perhaps placed at the time of tumour debulking. Such a system may deliver an electrical field directly to the tumour resection cavity and with greater precision.
Collapse
Affiliation(s)
- Ashwin Kumaria
- Department of Neurosurgery, Queen's Medical Centre, Nottingham, UK
| |
Collapse
|
40
|
Kumaria A. Tumor Treating Fields : Additional Mechanisms and Additional Applications. J Korean Neurosurg Soc 2021; 64:469-471. [PMID: 33626857 PMCID: PMC8128528 DOI: 10.3340/jkns.2020.0188] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 08/20/2020] [Indexed: 11/27/2022] Open
Affiliation(s)
- Ashwin Kumaria
- Department of Neurosurgery, Queen's Medical Centre, Nottingham, UK
| |
Collapse
|
41
|
Abstract
Despite the decline in death rate from breast cancer and recent advances in targeted therapies and combinations for the treatment of metastatic disease, metastatic breast cancer remains the second leading cause of cancer-associated death in U.S. women. The invasion-metastasis cascade involves a number of steps and multitudes of proteins and signaling molecules. The pathways include invasion, intravasation, circulation, extravasation, infiltration into a distant site to form a metastatic niche, and micrometastasis formation in a new environment. Each of these processes is regulated by changes in gene expression. Noncoding RNAs including microRNAs (miRNAs) are involved in breast cancer tumorigenesis, progression, and metastasis by post-transcriptional regulation of target gene expression. miRNAs can stimulate oncogenesis (oncomiRs), inhibit tumor growth (tumor suppressors or miRsupps), and regulate gene targets in metastasis (metastamiRs). The goal of this review is to summarize some of the key miRNAs that regulate genes and pathways involved in metastatic breast cancer with an emphasis on estrogen receptor α (ERα+) breast cancer. We reviewed the identity, regulation, human breast tumor expression, and reported prognostic significance of miRNAs that have been documented to directly target key genes in pathways, including epithelial-to-mesenchymal transition (EMT) contributing to the metastatic cascade. We critically evaluated the evidence for metastamiRs and their targets and miRNA regulation of metastasis suppressor genes in breast cancer progression and metastasis. It is clear that our understanding of miRNA regulation of targets in metastasis is incomplete.
Collapse
Affiliation(s)
- Belinda J Petri
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, 40292, USA
| | - Carolyn M Klinge
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, 40292, USA.
| |
Collapse
|
42
|
Liu X, Zhang W, Zheng W, Jiang X. Micropatterned Coculture Platform for Screening Nerve-Related Anticancer Drugs. ACS NANO 2021; 15:637-649. [PMID: 33435673 DOI: 10.1021/acsnano.0c06416] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Accumulating evidence suggests that the neural microenvironment plays a vital role in the development and metastasis of cancers. The development of drug candidates or drug combinations targeting the neural microenvironment is thus becoming increasingly urgent. However, the low content of conventional drug screening platforms is a bottleneck that limits the drug evaluation process. In this study, we present a micropatterned coculture-based high-content (μCHC) platform by integrating a micropatterned coculture chip with the high-content analysis (HCA) system, for studying the neuron-cancer cell interactions and drug screening (simultaneously detecting 96 kinds of post-drug-treated conditions). We investigate the contribution of neurons on the migration of cancer cells from different tissues and validate the capability of the μCHC system to study the interaction between neurons and cancer cells. Moreover, we test the effects of individual or combinatory agents targeting the neuron or cancer cell on the neuron-cancer cell interactions, which proposes an optimized therapy regime for targeting both nervous and cancerous factors. Our study suggests that the μCHC system is a facile platform for screening drug candidates or drug combinations for clinical cancer therapy with high efficiency and fidelity.
Collapse
Affiliation(s)
- Xiaoyan Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for NanoScience and Technology, No. 11 Zhongguancun Beiyitiao, Beijing 100190, P. R. China
- Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Road, Xili, Nanshan District, Shenzhen, Guangdong 518055, P. R. China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, P. R. China
- University of Chinese Academy of Sciences, 19 A Yuquan Road, Shijingshan District, Beijing 100049, P. R. China
| | - Wei Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for NanoScience and Technology, No. 11 Zhongguancun Beiyitiao, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, 19 A Yuquan Road, Shijingshan District, Beijing 100049, P. R. China
| | - Wenfu Zheng
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for NanoScience and Technology, No. 11 Zhongguancun Beiyitiao, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, 19 A Yuquan Road, Shijingshan District, Beijing 100049, P. R. China
| | - Xingyu Jiang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for NanoScience and Technology, No. 11 Zhongguancun Beiyitiao, Beijing 100190, P. R. China
- Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Road, Xili, Nanshan District, Shenzhen, Guangdong 518055, P. R. China
- Shenzhen Bay Laboratory, Shenzhen, Guangdong 518055, P. R. China
- University of Chinese Academy of Sciences, 19 A Yuquan Road, Shijingshan District, Beijing 100049, P. R. China
| |
Collapse
|
43
|
Robinson AJ, Jain A, Sherman HG, Hague RJM, Rahman R, Sanjuan‐Alberte P, Rawson FJ. Toward Hijacking Bioelectricity in Cancer to Develop New Bioelectronic Medicine. ADVANCED THERAPEUTICS 2021. [DOI: 10.1002/adtp.202000248] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Andie J. Robinson
- Regenerative Medicine and Cellular Therapies, School of Pharmacy University of Nottingham Nottingham NG7 2RD UK
| | - Akhil Jain
- Regenerative Medicine and Cellular Therapies, School of Pharmacy University of Nottingham Nottingham NG7 2RD UK
| | - Harry G. Sherman
- Regenerative Medicine and Cellular Therapies, School of Pharmacy University of Nottingham Nottingham NG7 2RD UK
| | - Richard J. M. Hague
- Centre for Additive Manufacturing, Faculty of Engineering University of Nottingham Nottingham NG8 1BB UK
| | - Ruman Rahman
- Children's Brain Tumour Research Centre, Biodiscovery Institute, School of Medicine University of Nottingham Nottingham NG7 2RD UK
| | - Paola Sanjuan‐Alberte
- Regenerative Medicine and Cellular Therapies, School of Pharmacy University of Nottingham Nottingham NG7 2RD UK
- Department of Bioengineering and iBB‐Institute for Bioengineering and Biosciences, Instituto Superior Técnico Universidade de Lisboa Lisbon 1049‐001 Portugal
| | - Frankie J. Rawson
- Regenerative Medicine and Cellular Therapies, School of Pharmacy University of Nottingham Nottingham NG7 2RD UK
| |
Collapse
|
44
|
Gibney S, Hicks JM, Robinson A, Jain A, Sanjuan-Alberte P, Rawson FJ. Toward nanobioelectronic medicine: Unlocking new applications using nanotechnology. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 13:e1693. [PMID: 33442962 DOI: 10.1002/wnan.1693] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 11/29/2020] [Accepted: 12/14/2020] [Indexed: 12/11/2022]
Abstract
Bioelectronic medicine aims to interface electronic technology with biological components and design more effective therapeutic and diagnostic tools. Advances in nanotechnology have moved the field forward improving the seamless interaction between biological and electronic components. In the lab many of these nanobioelectronic devices have the potential to improve current treatment approaches, including those for cancer, cardiovascular disorders, and disease underpinned by malfunctions in neuronal electrical communication. While promising, many of these devices and technologies require further development before they can be successfully applied in a clinical setting. Here, we highlight recent work which is close to achieving this goal, including discussion of nanoparticles, carbon nanotubes, and nanowires for medical applications. We also look forward toward the next decade to determine how current developments in nanotechnology could shape the growing field of bioelectronic medicine. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Diagnostic Tools > Biosensing.
Collapse
Affiliation(s)
- Steven Gibney
- Division of Regenerative Medicine and Cellular Therapies, Biodiscovery Institute,School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Jacqueline M Hicks
- Division of Regenerative Medicine and Cellular Therapies, Biodiscovery Institute,School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Andie Robinson
- Division of Regenerative Medicine and Cellular Therapies, Biodiscovery Institute,School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Akhil Jain
- Division of Regenerative Medicine and Cellular Therapies, Biodiscovery Institute,School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Paola Sanjuan-Alberte
- Division of Regenerative Medicine and Cellular Therapies, Biodiscovery Institute,School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, UK.,Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Frankie J Rawson
- Division of Regenerative Medicine and Cellular Therapies, Biodiscovery Institute,School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| |
Collapse
|
45
|
Wang W, Li L, Chen N, Niu C, Li Z, Hu J, Cui J. Nerves in the Tumor Microenvironment: Origin and Effects. Front Cell Dev Biol 2021; 8:601738. [PMID: 33392191 PMCID: PMC7773823 DOI: 10.3389/fcell.2020.601738] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 11/30/2020] [Indexed: 12/12/2022] Open
Abstract
Studies have reported the vital role of nerves in tumorigenesis and cancer progression. Nerves infiltrate the tumor microenvironment thereby enhancing cancer growth and metastasis. Perineural invasion, a process by which cancer cells invade the surrounding nerves, provides an alternative route for metastasis and generation of tumor-related pain. Moreover, central and sympathetic nervous system dysfunctions and psychological stress-induced hormone network disorders may influence the malignant progression of cancer through multiple mechanisms. This reciprocal interaction between nerves and cancer cells provides novel insights into the cellular and molecular bases of tumorigenesis. In addition, they point to the potential utility of anti-neurogenic therapies. This review describes the evolving cross-talk between nerves and cancer cells, thus uncovers potential therapeutic targets for cancer.
Collapse
Affiliation(s)
- Wenjun Wang
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Lingyu Li
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Naifei Chen
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Chao Niu
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Zhi Li
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Jifan Hu
- Cancer Center, The First Hospital of Jilin University, Changchun, China.,VA Palo Alto Health Care System and Stanford University Medical School, Palo Alto, CA, United States
| | - Jiuwei Cui
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
46
|
The Emerging Role of Nerves and Glia in Colorectal Cancer. Cancers (Basel) 2021; 13:cancers13010152. [PMID: 33466373 PMCID: PMC7796331 DOI: 10.3390/cancers13010152] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/21/2020] [Accepted: 12/29/2020] [Indexed: 12/29/2022] Open
Abstract
Simple Summary The influence of nerves on different types of cancers, including colorectal cancer, is increasingly recognized. The intestines are highly innervated, both from outside the intestines (extrinsic innervation) and by a nervous system of their own; the enteric nervous system (intrinsic innervation). Nerves and cancer cells have been described to communicate with each other, although the exact mechanism in colorectal cancer is not yet explored. Nerves can enhance cancer progression by secreting signaling molecules, and cancer cells are capable of stimulating nerve growth. This review summarizes the innervation of the intestines and current knowledge on the role of the nervous system in colorectal cancer. Additionally, the therapeutic potential of these new insights is discussed. Abstract The role of the nervous system as a contributor in the tumor microenvironment has been recognized in different cancer types, including colorectal cancer (CRC). The gastrointestinal tract is a highly innervated organ system, which is not only innervated by the autonomic nervous system, but also contains an extensive nervous system of its own; the enteric nervous system (ENS). The ENS is important for gut function and homeostasis by regulating processes such as fluid absorption, blood flow, and gut motility. Dysfunction of the ENS has been linked with multiple gastrointestinal diseases, such as Hirschsprung disease and inflammatory bowel disease, and even with neurodegenerative disorders. How the extrinsic and intrinsic innervation of the gut contributes to CRC is not fully understood, although a mutual relationship between cancer cells and nerves has been described. Nerves enhance cancer progression through the secretion of neurotransmitters and neuropeptides, and cancer cells are capable of stimulating nerve growth. This review summarizes and discusses the nervous system innervation of the gastrointestinal tract and how it can influence carcinogenesis, and vice versa. Lastly, the therapeutic potential of these novel insights is discussed.
Collapse
|
47
|
Oltra SS, Peña-Chilet M, Martinez MT, Tormo E, Cejalvo JM, Climent J, Eroles P, Lluch A, Ribas G. miRNA Expression Analysis: Cell Lines HCC1500 and HCC1937 as Models for Breast Cancer in Young Women and the miR-23a as a Poor Prognostic Biomarker. BREAST CANCER-BASIC AND CLINICAL RESEARCH 2020; 14:1178223420977845. [PMID: 33311984 PMCID: PMC7716059 DOI: 10.1177/1178223420977845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 11/06/2020] [Indexed: 11/16/2022]
Abstract
PURPOSE The study of breast cancer nearly always involves patients close to menopause or older. Therefore, young patients are mostly underrepresented. Our aim in this study was to demonstrate biological differences in breast cancer of young people using as a model available cell lines derived from people with breast cancer younger than 35 years. METHODS Global miRNA expression was analyzed in breast cancer cells from young (HCC1500, HCC1937) and old patients (MCF-7, MDA-MB-231, HCC1806, and MDA-MB-468). In addition, it was compared with same type of results from patients. RESULTS We observed a differential profile for 155 miRNAs between young and older cell lines. We identified a set of 24 miRNA associated with aggressiveness that were regulating pluripotency of stem cell-related pathways. Combining the miRNA expression data from cell lines and breast cancer patients, 132 miRNAs were differently expressed between young and old samples, most of them previously found in cell lines. MiR-23a-downregulation was also associated with poor survival in young patients. CONCLUSIONS Our results suggest that HCC1500 and HCC1937 cell lines could be suitable cellular models for breast cancer affecting young women. The miR-23a-downregulation could have a potential role as a poor prognosis biomarker in this age group.
Collapse
Affiliation(s)
- Sara S Oltra
- Medical Oncology and Hematology Unit, INCLIVA Health Research Institute, INCLIVA Biomedical Research Institute, Valencia, Spain
| | - Maria Peña-Chilet
- Medical Oncology and Hematology Unit, INCLIVA Health Research Institute, INCLIVA Biomedical Research Institute, Valencia, Spain
| | - Maria T Martinez
- Medical Oncology and Hematology Unit, INCLIVA Health Research Institute, INCLIVA Biomedical Research Institute, Valencia, Spain
| | - Eduardo Tormo
- Medical Oncology and Hematology Unit, INCLIVA Health Research Institute, INCLIVA Biomedical Research Institute, Valencia, Spain.,Center for Biomedical Network Research on Cancer (CIBERONC), Valencia, Spain
| | - Juan Miguel Cejalvo
- Medical Oncology and Hematology Unit, INCLIVA Health Research Institute, INCLIVA Biomedical Research Institute, Valencia, Spain
| | - Joan Climent
- Medical Oncology and Hematology Unit, INCLIVA Health Research Institute, INCLIVA Biomedical Research Institute, Valencia, Spain
| | - Pilar Eroles
- Medical Oncology and Hematology Unit, INCLIVA Health Research Institute, INCLIVA Biomedical Research Institute, Valencia, Spain.,Center for Biomedical Network Research on Cancer (CIBERONC), Valencia, Spain
| | - Ana Lluch
- Medical Oncology and Hematology Unit, INCLIVA Health Research Institute, INCLIVA Biomedical Research Institute, Valencia, Spain.,Center for Biomedical Network Research on Cancer (CIBERONC), Valencia, Spain
| | - Gloria Ribas
- Medical Oncology and Hematology Unit, INCLIVA Health Research Institute, INCLIVA Biomedical Research Institute, Valencia, Spain.,Center for Biomedical Network Research on Cancer (CIBERONC), Valencia, Spain
| |
Collapse
|
48
|
Hunt PJ, Kabotyanski KE, Calin GA, Xie T, Myers JN, Amit M. Interrupting Neuron-Tumor Interactions to Overcome Treatment Resistance. Cancers (Basel) 2020; 12:E3741. [PMID: 33322770 PMCID: PMC7762969 DOI: 10.3390/cancers12123741] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/04/2020] [Accepted: 12/04/2020] [Indexed: 12/19/2022] Open
Abstract
Neurons in the tumor microenvironment release neurotransmitters, neuroligins, chemokines, soluble growth factors, and membrane-bound growth factors that solid tumors leverage to drive their own survival and spread. Tumors express nerve-specific growth factors and microRNAs that support local neurons and guide neuronal growth into tumors. The development of feed-forward relationships between tumors and neurons allows tumors to use the perineural space as a sanctuary from therapy. Tumor denervation slows tumor growth in animal models, demonstrating the innervation dependence of growing tumors. Further in vitro and in vivo experiments have identified many of the secreted signaling molecules (e.g., acetylcholine, nerve growth factor) that are passed between neurons and cancer cells, as well as the major signaling pathways (e.g., MAPK/EGFR) involved in these trophic interactions. The molecules involved in these signaling pathways serve as potential biomarkers of disease. Additionally, new treatment strategies focus on using small molecules, receptor agonists, nerve-specific toxins, and surgical interventions to target tumors, neurons, and immune cells of the tumor microenvironment, thereby severing the interactions between tumors and surrounding neurons. This article discusses the mechanisms underlying the trophic relationships formed between neurons and tumors and explores the emerging therapies stemming from this work.
Collapse
Affiliation(s)
- Patrick J. Hunt
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX 77030, USA; (P.J.H.); (K.E.K.)
- Department of Neurosurgery, Division of Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA
| | - Katherine E. Kabotyanski
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX 77030, USA; (P.J.H.); (K.E.K.)
| | - George A. Calin
- Translational Molecular Pathology, Division of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Tongxin Xie
- Department of Head and Neck Surgery, Division of Surgery, MD Anderson Cancer Center, Houston, TX 77030, USA; (T.X.); (J.N.M.)
| | - Jeffrey N. Myers
- Department of Head and Neck Surgery, Division of Surgery, MD Anderson Cancer Center, Houston, TX 77030, USA; (T.X.); (J.N.M.)
| | - Moran Amit
- Department of Head and Neck Surgery, Division of Surgery, MD Anderson Cancer Center, Houston, TX 77030, USA; (T.X.); (J.N.M.)
| |
Collapse
|
49
|
Civita P, Valerio O, Naccarato AG, Gumbleton M, Pilkington GJ. Satellitosis, a Crosstalk between Neurons, Vascular Structures and Neoplastic Cells in Brain Tumours; Early Manifestation of Invasive Behaviour. Cancers (Basel) 2020; 12:E3720. [PMID: 33322379 PMCID: PMC7763100 DOI: 10.3390/cancers12123720] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 11/28/2020] [Accepted: 12/04/2020] [Indexed: 01/06/2023] Open
Abstract
The secondary structures of Scherer commonly known as perineuronal and perivascular satellitosis have been identified as a histopathological hallmark of diffuse, invasive, high-grade gliomas. They are recognised as perineuronal satellitosis when clusters of neoplastic glial cells surround neurons cell bodies and perivascular satellitosis when such tumour cells surround blood vessels infiltrating Virchow-Robin spaces. In this review, we provide an overview of emerging knowledge regarding how interactions between neurons and glioma cells can modulate tumour evolution and how neurons play a key role in glioma growth and progression, as well as the role of perivascular satellitosis into mechanisms of glioma cells spread. At the same time, we review the current knowledge about the role of perineuronal satellitosis and perivascular satellitosis within the tumour microenvironment (TME), in order to highlight critical knowledge gaps in research space.
Collapse
Affiliation(s)
- Prospero Civita
- Brain Tumour Research Centre, Institute of Biological and Biomedical Sciences (IBBS), School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth PO1 2DT, UK
- School of Pharmacy and Pharmaceutical Sciences, College of Biomedical and Life Sciences, Cardiff University, Cardiff CF10 3NB, UK;
| | - Ortenzi Valerio
- Department of Translational Research and New Technologies in Medicine and Surgery, Pisa University Hospital, 56100 Pisa, Italy; (O.V.); (A.G.N.)
| | - Antonio Giuseppe Naccarato
- Department of Translational Research and New Technologies in Medicine and Surgery, Pisa University Hospital, 56100 Pisa, Italy; (O.V.); (A.G.N.)
| | - Mark Gumbleton
- School of Pharmacy and Pharmaceutical Sciences, College of Biomedical and Life Sciences, Cardiff University, Cardiff CF10 3NB, UK;
| | - Geoffrey J. Pilkington
- Brain Tumour Research Centre, Institute of Biological and Biomedical Sciences (IBBS), School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth PO1 2DT, UK
- School of Pharmacy and Pharmaceutical Sciences, College of Biomedical and Life Sciences, Cardiff University, Cardiff CF10 3NB, UK;
- Division of Neuroscience, Department of Basic and Clinical Neuroscience, Institute of Psychiatry & Neurology, King’s College London, London SE5 9RX, UK
| |
Collapse
|
50
|
C11orf95-RELA reprograms 3D epigenome in supratentorial ependymoma. Acta Neuropathol 2020; 140:951-960. [PMID: 32909151 PMCID: PMC7666583 DOI: 10.1007/s00401-020-02225-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/30/2020] [Accepted: 09/02/2020] [Indexed: 12/15/2022]
Abstract
Supratentorial ependymoma (ST-EPN) is a type of malignant brain tumor mainly seen in children. Since 2014, it has been known that an intrachromosomal fusion C11orf95-RELA is an oncogenic driver in ST-EPN [Parker et al. Nature 506:451–455 (2014); Pietsch et al. Acta Neuropathol 127:609–611 (2014)] but the molecular mechanisms of oncogenesis are unclear. Here we show that the C11orf95 component of the fusion protein dictates DNA binding activity while the RELA component is required for driving the expression of ependymoma-associated genes. Epigenomic characterizations using ChIP-seq and HiChIP approaches reveal that C11orf95-RELA modulates chromatin states and mediates chromatin interactions, leading to transcriptional reprogramming in ependymoma cells. Our findings provide important characterization of the molecular underpinning of C11orf95-RELA fusion and shed light on potential therapeutic targets for C11orf95-RELA subtype ependymoma.
Collapse
|