1
|
Mieland AO, Petrosino G, Dejung M, Chen JX, Fulzele A, Mahmoudi F, Tu JW, Mustafa AHM, Zeyn Y, Hieber C, Bros M, Schnöder TM, Heidel FH, Najafi S, Oehme I, Hofmann I, Schutkowski M, Hilscher S, Kosan C, Butter F, Bhatia S, Sippl W, Krämer OH. The protein deacetylase HDAC10 controls DNA replication in malignant lymphoid cells. Leukemia 2025:10.1038/s41375-025-02612-8. [PMID: 40301616 DOI: 10.1038/s41375-025-02612-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 03/28/2025] [Accepted: 04/07/2025] [Indexed: 05/01/2025]
Abstract
Histone deacetylases (HDACs) comprise a family of 18 epigenetic modifiers. The biologically relevant functions of HDAC10 in leukemia cells are enigmatic. We demonstrate that human cultured and primary acute B cell/T cell leukemia and lymphoma cells require the catalytic activity of HDAC10 for their survival. In such cells, HDAC10 controls a MYC-dependent transcriptional induction of the DNA polymerase subunit POLD1. Consequently, pharmacological inhibition of HDAC10 causes DNA breaks and an accumulation of poly-ADP-ribose chains. These processes culminate in caspase-dependent apoptosis. PZ48 does not damage resting and proliferating human normal blood cells. The in vivo activity of PZ48 against ALL cells is verified in a Danio rerio model. These data reveal a nuclear function for HDAC10. HDAC10 controls the MYC-POLD1 axis to maintain the processivity of DNA replication and genome integrity. This mechanistically defined "HDAC10ness" may be exploited as treatment option for lymphoid malignancies.
Collapse
Affiliation(s)
- Andreas O Mieland
- Institute of Toxicology, Mainz University Medical Center, Mainz, Germany
| | - Giuseppe Petrosino
- Institute of Molecular Biology (IMB), Core Facility Bioinformatics, Mainz, Germany
| | - Mario Dejung
- Institute of Molecular Biology (IMB), Core Facility Proteomics, Mainz, Germany
| | - Jia-Xuan Chen
- Institute of Molecular Biology (IMB), Core Facility Proteomics, Mainz, Germany
| | - Amitkumar Fulzele
- Institute of Molecular Biology (IMB), Core Facility Proteomics, Mainz, Germany
| | - Fereshteh Mahmoudi
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther-University of Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Jia-Wey Tu
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich-Heine-University Düsseldorf, 40225, Düsseldorf, Germany
| | - Al-Hassan M Mustafa
- Institute of Toxicology, Mainz University Medical Center, Mainz, Germany
- Department of Zoology, Faculty of Science, Aswan University, Aswan, Egypt
| | - Yanira Zeyn
- Department of Dermatology, University Medical Center Mainz, Mainz, Germany
| | - Christoph Hieber
- Department of Dermatology, University Medical Center Mainz, Mainz, Germany
| | - Matthias Bros
- Department of Dermatology, University Medical Center Mainz, Mainz, Germany
| | - Tina M Schnöder
- Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover MedicalSchool (MHH), Hannover, Germany
| | - Florian H Heidel
- Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover MedicalSchool (MHH), Hannover, Germany
- Leibniz Institute on Aging, Fritz-Lipmann-Institute, Jena, Germany
| | - Sara Najafi
- Hopp Children's Cancer Center Heidelberg (KiTZ), 69120, Heidelberg, Germany
- National Center for Tumor Diseases Heidelberg, 69120, Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), 69120, Heidelberg, Germany
| | - Ina Oehme
- Hopp Children's Cancer Center Heidelberg (KiTZ), 69120, Heidelberg, Germany
- National Center for Tumor Diseases Heidelberg, 69120, Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), 69120, Heidelberg, Germany
| | - Ilse Hofmann
- Core Facility Antibodies, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Mike Schutkowski
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Sebastian Hilscher
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Christian Kosan
- Friedrich-Schiller-University Jena, Faculty of Biological Sciences Center for Molecular Biomedicine (CMB) Department of Biochemistry Hans-Knöll-Str. 2, 07745, Jena, Germany
| | - Falk Butter
- Institute for Molecular Virology and Cell Biology (IMVZ), Greifswald, Germany
| | - Sanil Bhatia
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich-Heine-University Düsseldorf, 40225, Düsseldorf, Germany
| | - Wolfgang Sippl
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther-University of Halle-Wittenberg, 06120, Halle (Saale), Germany.
| | - Oliver H Krämer
- Institute of Toxicology, Mainz University Medical Center, Mainz, Germany.
| |
Collapse
|
2
|
Li X, Li X, Ren Y, Wang L, Mao Z, Gao S, Ma P, Chen J. HJURP modulates cell proliferation and chemoresistance via the MYC/TOP2A transcriptional axis in gastric cancer. Front Mol Biosci 2025; 12:1566293. [PMID: 40290723 PMCID: PMC12021643 DOI: 10.3389/fmolb.2025.1566293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Accepted: 03/31/2025] [Indexed: 04/30/2025] Open
Abstract
Background The histone chaperone Holliday Junction Recognition Protein (HJURP) has been associated with multiple types of cancers, but its role in GC is not yet fully understood. Considering its functions in centromere stability and DNA repair, investigating HJURP's role in GC may offer novel therapeutic perspectives. Methods HJURP expression was examined in a dataset comprising TCGA-STAD samples and an internal group of GC patients, utilizing RNA sequencing and Western blot techniques. Functional experiments were carried out on the AGS and HGC-27 GC cell lines. The expression levels of HJURP, MYC, and Topoisomerase II alpha (TOP2A) were assessed via quantitative real-time PCR and Western blot. Proliferation rates of the cells were determined through EdU, CCK-8, and colony formation assays. Results Compared to adjacent normal tissues, HJURP expression was notably increased in GC tissues, a finding consistent across both the TCGA-STAD database and our internal patient group. Silencing HJURP markedly reduced GC cell growth and chemoresistance. Mechanistically, HJURP enhanced MYC stability, which in turn promoted TOP2A transcription. Rescue experiments confirmed that overexpression of TOP2A alters proliferation and chemoresistance of GC cells with HJURP knockdown, indicating the dependency of this axis on MYC activity. Conclusion Our study demonstrates that HJURP is critical for promoting GC proliferation and chemoresistance through the regulation of the MYC/TOP2A transcriptional network. Targeting HJURP might offer a novel therapeutic avenue for GC, necessitating further exploration of its clinical potential. This work underscores the value of investigating histone chaperones as potential targets in cancer treatment.
Collapse
Affiliation(s)
- Xu Li
- Department of Gastrointestinal Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
- Clinical Medical Research Center, Affiliated Hospital of Nantong University, Nantong, China
| | - Xiwen Li
- Department of Central Laboratory, Kunshan Hospital of Chinese Medicine, Affiliated Hospital of Yangzhou University, Kunshan, China
| | - Yanlin Ren
- Department of Labor Hygiene and Occupational Disease Prevention and Control, Nantong Center for Disease Control and Prevention, Nantong, China
| | - Ling Wang
- Department of Hematology, Affiliated Hospital 2 of Nantong University, Nantong, China
| | - Zehao Mao
- Clinical Medical Research Center, Affiliated Hospital of Nantong University, Nantong, China
| | - Shikun Gao
- Department of Gastrointestinal Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
- Clinical Medical Research Center, Affiliated Hospital of Nantong University, Nantong, China
| | - Peng Ma
- Department of Gastrointestinal Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Junjie Chen
- Clinical Medical Research Center, Affiliated Hospital of Nantong University, Nantong, China
- Nantong Key Laboratory of Gastrointestinal Oncology, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
3
|
Jungwirth J, Mieland AO, Piée-Staffa A, Heimburg T, Brenner W, Ehrhardt C, Sippl W, Henke A, Krämer OH. Pharmacologically induced proteolysis of histone deacetylase-6 attenuates influenza virus replication despite limited anti-tumor effects. Life Sci 2025; 363:123401. [PMID: 39814129 DOI: 10.1016/j.lfs.2025.123401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/23/2024] [Accepted: 01/11/2025] [Indexed: 01/18/2025]
Abstract
The protein deacetylase HDAC6 has been controversially linked to cancer cell proliferation and viral propagation. We analyzed whether a pharmacological depletion of HDAC6 with a recent proteolysis-targeting chimera (PROTAC) kills tumor cells. We show that low micromolar doses of the cereblon-based PROTAC TH170, but not its inactive analog TH170E, induce proteasomal degradation of HDAC6. The elimination of HDAC6 by TH170 does not compromise leukemia cell growth and survival, DNA integrity, and the stability of selected cancer-relevant proteins. Increasing the doses of TH170 generates a hook-effect on HDAC6 degradation and the apoptosis-associated fragmentation of HDAC6. Unlike the specific elimination of HDAC6 that low doses of TH170 evoke, this fragmentation of HDAC6 is linked to apoptosis and an accumulation of acetylated histones. Thus, like HDAC6 inhibitors, pharmacological degraders of HDAC6 do not induce leukemic cell death unless they are used in non-selective concentrations. Bioinformatic analyses of 91 lymphoid, 37 myeloid, and 125 lung cancer cells in which HDAC6 was deleted by CRISPR-Cas9 corroborate these data. HDAC6 is expressed in various bronchus and lung cell types. In a human lung cell model, TH170 reduces influenza A virus replication dependent on the strain and without compromising cell vitality. These data suggest that pharmacologically amenable kinase-independent functions of HDAC6 control viral replication. Eliminating HDAC6 could be a promising anti-viral strategy with a benign impact on host cells.
Collapse
Affiliation(s)
- Johannes Jungwirth
- Section of Experimental Virology, Institute of Medical Microbiology, Center for Molecular Biomedicine (CMB), Jena University Hospital, Jena, Germany; Department of Toxicology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.
| | - Andreas O Mieland
- Department of Toxicology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.
| | - Andrea Piée-Staffa
- Department of Toxicology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.
| | - Tino Heimburg
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther-University of Halle-Wittenberg, Halle (Saale), Germany
| | - Walburgis Brenner
- Department of Obstetrics and Gynecology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.
| | - Christina Ehrhardt
- Section of Experimental Virology, Institute of Medical Microbiology, Center for Molecular Biomedicine (CMB), Jena University Hospital, Jena, Germany.
| | - Wolfgang Sippl
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther-University of Halle-Wittenberg, Halle (Saale), Germany.
| | - Andreas Henke
- Section of Experimental Virology, Institute of Medical Microbiology, Center for Molecular Biomedicine (CMB), Jena University Hospital, Jena, Germany.
| | - Oliver H Krämer
- Department of Toxicology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.
| |
Collapse
|
4
|
Ai M, Ma H, He J, Xu F, Ming Y, Ye Z, Zheng Q, Luo D, Yang K, Li J, Nie C, Pu W, Peng Y. Targeting oncogenic transcriptional factor c-myc by oligonucleotide PROTAC for the treatment of hepatocellular carcinoma. Eur J Med Chem 2024; 280:116978. [PMID: 39447458 DOI: 10.1016/j.ejmech.2024.116978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/08/2024] [Accepted: 10/16/2024] [Indexed: 10/26/2024]
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related death, but effective therapeutic strategies are limited. Transcriptional factor c-Myc plays an oncogenic role in tumorigenesis and is an attractive target for HCC treatment. However, targeted therapy against c-Myc remains challenging. Herein, by conjugating VH032 with an optimized DNA sequence that recognized c-Myc complex, we discovered oligonucleotide-based proteolysis targeting chimeras (PROTACs), termed as MP-16 and MP-17, which effectively induced degradation of c-Myc. Mechanically, MP-16 or MP-17 directly interacted with c-Myc complex to form VHL/PROTAC/c-Myc ternary complex, and triggered c-Myc degradation by recruiting ubiquitin-proteasome system, suppressing cell proliferation of HCC cells. In mice model, MP-16 or MP-17 significantly inhibited HCC tumor growth and exhibited promising drug safety. This work provided novel oligonucleotide PROTACs that degraded c-Myc, giving a new lead structure for HCC therapy.
Collapse
Affiliation(s)
- Min Ai
- Center for Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610064, China
| | - Hulin Ma
- Center for Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610064, China
| | - Jianhua He
- Center for Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610064, China
| | - Fuyan Xu
- Center for Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610064, China
| | - Yue Ming
- Center for Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610064, China
| | - Zixia Ye
- Center for Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610064, China
| | - Qingquan Zheng
- Center for Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610064, China
| | - Dongdong Luo
- Center for Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610064, China
| | - Kaichuan Yang
- Engineering Research Center for Pharmaceuticals and Equipments of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610052, China
| | - Jiao Li
- Center for Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610064, China
| | - Chunlai Nie
- Center for Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610064, China.
| | - Wenchen Pu
- Center for Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610064, China.
| | - Yong Peng
- Center for Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610064, China; Frontier Medical Center, Tianfu Jincheng Laboratory, Chengdu, 610212, China.
| |
Collapse
|
5
|
Das SK, Karmakar S, Venkatachalapathy H, Jha RK, Batchelor E, Levens D. Excessive MYC-topoisome activity triggers acute DNA damage, MYC degradation, and replacement by a p53-topoisome. Mol Cell 2024; 84:4059-4078.e10. [PMID: 39481385 PMCID: PMC11560571 DOI: 10.1016/j.molcel.2024.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 06/28/2024] [Accepted: 10/03/2024] [Indexed: 11/02/2024]
Abstract
Hyperproliferation driven by the protooncogene MYC may lead to tumor suppressor p53 activating DNA damage that has been presumed to derive from hypertranscription and over-replication. Here, we report that excessive MYC-topoisome (MYC/topoisomerase 1/topoisomerase 2) activity acutely damages DNA-activating pATM and p53. In turn, MYC is shut off and degraded, releasing TOP1 and TOP2A from MYC topoisomes in vitro and in vivo. To manage the topological and torsional stress generated at its target genes, p53 assembles a separate topoisome. Because topoisomerase activity is intrinsically DNA damaging, p53 topoisomes provoke an initial burst of DNA damage. Because p53, unlike MYC, upregulates the DNA-damage response (DDR) and activates tyrosyl-DNA-phosphodiesterase (TDP) 1 and TDP2, it suppresses further topoisome-mediated damage. The physical coupling and activation of TOP1 and TOP2 by p53 creates a tool that supports p53-target expression while braking MYC-driven proliferation in mammalian cells.
Collapse
Affiliation(s)
- Subhendu K Das
- Laboratory of Pathology, National Cancer Institute, Bethesda, MD 20892, USA
| | - Sharmistha Karmakar
- Energy Storage and Technology Department, Energy and Environment Science and Technology Division, Idaho National Laboratory, Idaho Falls, ID 83415, USA
| | | | - Rajiv Kumar Jha
- Laboratory of Pathology, National Cancer Institute, Bethesda, MD 20892, USA
| | - Eric Batchelor
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, USA
| | - David Levens
- Laboratory of Pathology, National Cancer Institute, Bethesda, MD 20892, USA.
| |
Collapse
|
6
|
Krenz B, Lee J, Kannan T, Eilers M. Immune evasion: An imperative and consequence of MYC deregulation. Mol Oncol 2024; 18:2338-2355. [PMID: 38957016 PMCID: PMC11459038 DOI: 10.1002/1878-0261.13695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/08/2024] [Accepted: 06/19/2024] [Indexed: 07/04/2024] Open
Abstract
MYC has been implicated in the pathogenesis of a wide range of human tumors and has been described for many years as a transcription factor that regulates genes with pleiotropic functions to promote tumorigenic growth. However, despite extensive efforts to identify specific target genes of MYC that alone could be responsible for promoting tumorigenesis, the field is yet to reach a consensus whether this is the crucial function of MYC. Recent work shifts the view on MYC's function from being a gene-specific transcription factor to an essential stress resilience factor. In highly proliferating cells, MYC preserves cell integrity by promoting DNA repair at core promoters, protecting stalled replication forks, and/or preventing transcription-replication conflicts. Furthermore, an increasing body of evidence demonstrates that MYC not only promotes tumorigenesis by driving cell-autonomous growth, but also enables tumors to evade the host's immune system. In this review, we summarize our current understanding of how MYC impairs antitumor immunity and why this function is evolutionarily hard-wired to the biology of the MYC protein family. We show why the cell-autonomous and immune evasive functions of MYC are mutually dependent and discuss ways to target MYC proteins in cancer therapy.
Collapse
Affiliation(s)
- Bastian Krenz
- Department of Biochemistry and Molecular BiologyTheodor Boveri Institute, Biocenter, University of WürzburgWürzburgGermany
- Mildred Scheel Early Career CenterWürzburgGermany
| | - Jongkuen Lee
- Department of Biochemistry and Molecular BiologyTheodor Boveri Institute, Biocenter, University of WürzburgWürzburgGermany
| | - Toshitha Kannan
- Department of Biochemistry and Molecular BiologyTheodor Boveri Institute, Biocenter, University of WürzburgWürzburgGermany
| | - Martin Eilers
- Department of Biochemistry and Molecular BiologyTheodor Boveri Institute, Biocenter, University of WürzburgWürzburgGermany
- Comprehensive Cancer Center MainfrankenWürzburgGermany
| |
Collapse
|
7
|
Vidal R, Leen E, Herold S, Müller M, Fleischhauer D, Schülein-Völk C, Papadopoulos D, Röschert I, Uhl L, Ade CP, Gallant P, Bayliss R, Eilers M, Büchel G. Association with TFIIIC limits MYCN localisation in hubs of active promoters and chromatin accumulation of non-phosphorylated RNA polymerase II. eLife 2024; 13:RP94407. [PMID: 39177021 PMCID: PMC11343564 DOI: 10.7554/elife.94407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024] Open
Abstract
MYC family oncoproteins regulate the expression of a large number of genes and broadly stimulate elongation by RNA polymerase II (RNAPII). While the factors that control the chromatin association of MYC proteins are well understood, much less is known about how interacting proteins mediate MYC's effects on transcription. Here, we show that TFIIIC, an architectural protein complex that controls the three-dimensional chromatin organisation at its target sites, binds directly to the amino-terminal transcriptional regulatory domain of MYCN. Surprisingly, TFIIIC has no discernible role in MYCN-dependent gene expression and transcription elongation. Instead, MYCN and TFIIIC preferentially bind to promoters with paused RNAPII and globally limit the accumulation of non-phosphorylated RNAPII at promoters. Consistent with its ubiquitous role in transcription, MYCN broadly participates in hubs of active promoters. Depletion of TFIIIC further increases MYCN localisation to these hubs. This increase correlates with a failure of the nuclear exosome and BRCA1, both of which are involved in nascent RNA degradation, to localise to active promoters. Our data suggest that MYCN and TFIIIC exert an censoring function in early transcription that limits promoter accumulation of inactive RNAPII and facilitates promoter-proximal degradation of nascent RNA.
Collapse
Affiliation(s)
- Raphael Vidal
- Theodor Boveri Institute, Department of Biochemistry and Molecular Biology, Biocenter, University of WürzburgWürzburgGermany
- Comprehensive Cancer Center MainfrankenWürzburgGermany
| | - Eoin Leen
- Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of LeedsLeedsUnited Kingdom
| | - Steffi Herold
- Theodor Boveri Institute, Department of Biochemistry and Molecular Biology, Biocenter, University of WürzburgWürzburgGermany
| | - Mareike Müller
- Theodor Boveri Institute, Department of Biochemistry and Molecular Biology, Biocenter, University of WürzburgWürzburgGermany
- Mildred Scheel Early Career Center, University Hospital WürzburgWürzburgGermany
| | - Daniel Fleischhauer
- Theodor Boveri Institute, Department of Biochemistry and Molecular Biology, Biocenter, University of WürzburgWürzburgGermany
| | - Christina Schülein-Völk
- Theodor Boveri Institute, Core Unit High-Content Microscopy, Biocenter, University of WürzburgWürzburgGermany
| | - Dimitrios Papadopoulos
- Theodor Boveri Institute, Department of Biochemistry and Molecular Biology, Biocenter, University of WürzburgWürzburgGermany
- Mildred Scheel Early Career Center, University Hospital WürzburgWürzburgGermany
| | - Isabelle Röschert
- Theodor Boveri Institute, Department of Biochemistry and Molecular Biology, Biocenter, University of WürzburgWürzburgGermany
| | - Leonie Uhl
- Theodor Boveri Institute, Department of Biochemistry and Molecular Biology, Biocenter, University of WürzburgWürzburgGermany
| | - Carsten P Ade
- Theodor Boveri Institute, Department of Biochemistry and Molecular Biology, Biocenter, University of WürzburgWürzburgGermany
| | - Peter Gallant
- Theodor Boveri Institute, Department of Biochemistry and Molecular Biology, Biocenter, University of WürzburgWürzburgGermany
| | - Richard Bayliss
- Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of LeedsLeedsUnited Kingdom
| | - Martin Eilers
- Theodor Boveri Institute, Department of Biochemistry and Molecular Biology, Biocenter, University of WürzburgWürzburgGermany
- Comprehensive Cancer Center MainfrankenWürzburgGermany
| | - Gabriele Büchel
- Theodor Boveri Institute, Department of Biochemistry and Molecular Biology, Biocenter, University of WürzburgWürzburgGermany
- Comprehensive Cancer Center MainfrankenWürzburgGermany
- Mildred Scheel Early Career Center, University Hospital WürzburgWürzburgGermany
| |
Collapse
|
8
|
Papadopoulos D, Ha SA, Fleischhauer D, Uhl L, Russell TJ, Mikicic I, Schneider K, Brem A, Valanju OR, Cossa G, Gallant P, Schuelein-Voelk C, Maric HM, Beli P, Büchel G, Vos SM, Eilers M. The MYCN oncoprotein is an RNA-binding accessory factor of the nuclear exosome targeting complex. Mol Cell 2024; 84:2070-2086.e20. [PMID: 38703770 DOI: 10.1016/j.molcel.2024.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 02/28/2024] [Accepted: 04/10/2024] [Indexed: 05/06/2024]
Abstract
The MYCN oncoprotein binds active promoters in a heterodimer with its partner protein MAX. MYCN also interacts with the nuclear exosome, a 3'-5' exoribonuclease complex, suggesting a function in RNA metabolism. Here, we show that MYCN forms stable high-molecular-weight complexes with the exosome and multiple RNA-binding proteins. MYCN binds RNA in vitro and in cells via a conserved sequence termed MYCBoxI. In cells, MYCN associates with thousands of intronic transcripts together with the ZCCHC8 subunit of the nuclear exosome targeting complex and enhances their processing. Perturbing exosome function results in global re-localization of MYCN from promoters to intronic RNAs. On chromatin, MYCN is then replaced by the MNT(MXD6) repressor protein, inhibiting MYCN-dependent transcription. RNA-binding-deficient alleles show that RNA-binding limits MYCN's ability to activate cell growth-related genes but is required for MYCN's ability to promote progression through S phase and enhance the stress resilience of neuroblastoma cells.
Collapse
Affiliation(s)
- Dimitrios Papadopoulos
- Theodor Boveri Institute, Department of Biochemistry and Molecular Biology, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany; Mildred Scheel Early Career Center, University Hospital Würzburg, Josef-Schneider-Str. 6, 97080 Würzburg, Germany
| | - Stefanie Anh Ha
- Theodor Boveri Institute, Department of Biochemistry and Molecular Biology, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Daniel Fleischhauer
- Theodor Boveri Institute, Department of Biochemistry and Molecular Biology, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Leonie Uhl
- Theodor Boveri Institute, Department of Biochemistry and Molecular Biology, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Timothy J Russell
- Massachusetts Institute of Technology, Department of Biology, 31 Ames Street, Cambridge, MA 02142, USA
| | - Ivan Mikicic
- Institute of Developmental Biology and Neurobiology (IDN), Johannes Gutenberg University, Ackermannweg 4, 55128 Mainz, Germany; Institute of Molecular Biology (IMB), Johannes Gutenberg University, Ackermannweg 4, 55128 Mainz, Germany
| | - Katharina Schneider
- Massachusetts Institute of Technology, Department of Biology, 31 Ames Street, Cambridge, MA 02142, USA
| | - Annika Brem
- Massachusetts Institute of Technology, Department of Biology, 31 Ames Street, Cambridge, MA 02142, USA
| | - Omkar Rajendra Valanju
- Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Josef-Schneider-Str. 2, Building D15, 97080 Würzburg, Germany
| | - Giacomo Cossa
- Theodor Boveri Institute, Department of Biochemistry and Molecular Biology, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Peter Gallant
- Theodor Boveri Institute, Department of Biochemistry and Molecular Biology, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Christina Schuelein-Voelk
- Theodor Boveri Institute, Core Unit High-Content Microscopy, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Hans Michael Maric
- Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Josef-Schneider-Str. 2, Building D15, 97080 Würzburg, Germany
| | - Petra Beli
- Institute of Developmental Biology and Neurobiology (IDN), Johannes Gutenberg University, Ackermannweg 4, 55128 Mainz, Germany; Institute of Molecular Biology (IMB), Johannes Gutenberg University, Ackermannweg 4, 55128 Mainz, Germany
| | - Gabriele Büchel
- Theodor Boveri Institute, Department of Biochemistry and Molecular Biology, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany; Mildred Scheel Early Career Center, University Hospital Würzburg, Josef-Schneider-Str. 6, 97080 Würzburg, Germany
| | - Seychelle M Vos
- Massachusetts Institute of Technology, Department of Biology, 31 Ames Street, Cambridge, MA 02142, USA.
| | - Martin Eilers
- Theodor Boveri Institute, Department of Biochemistry and Molecular Biology, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany.
| |
Collapse
|
9
|
Gaballa A, Gebhardt-Wolf A, Krenz B, Mattavelli G, John M, Cossa G, Andreani S, Schülein-Völk C, Montesinos F, Vidal R, Kastner C, Ade CP, Kneitz B, Gasteiger G, Gallant P, Rosenfeldt M, Riedel A, Eilers M. PAF1c links S-phase progression to immune evasion and MYC function in pancreatic carcinoma. Nat Commun 2024; 15:1446. [PMID: 38365788 PMCID: PMC10873513 DOI: 10.1038/s41467-024-45760-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 02/05/2024] [Indexed: 02/18/2024] Open
Abstract
In pancreatic ductal adenocarcinoma (PDAC), endogenous MYC is required for S-phase progression and escape from immune surveillance. Here we show that MYC in PDAC cells is needed for the recruitment of the PAF1c transcription elongation complex to RNA polymerase and that depletion of CTR9, a PAF1c subunit, enables long-term survival of PDAC-bearing mice. PAF1c is largely dispensable for normal proliferation and regulation of MYC target genes. Instead, PAF1c limits DNA damage associated with S-phase progression by being essential for the expression of long genes involved in replication and DNA repair. Surprisingly, the survival benefit conferred by CTR9 depletion is not due to DNA damage, but to T-cell activation and restoration of immune surveillance. This is because CTR9 depletion releases RNA polymerase and elongation factors from the body of long genes and promotes the transcription of short genes, including MHC class I genes. The data argue that functionally distinct gene sets compete for elongation factors and directly link MYC-driven S-phase progression to tumor immune evasion.
Collapse
Affiliation(s)
- Abdallah Gaballa
- Department of Biochemistry and Molecular Biologyy, Theodor Boveri Institute, Biocenter, Julius Maximilian University Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Anneli Gebhardt-Wolf
- Department of Biochemistry and Molecular Biologyy, Theodor Boveri Institute, Biocenter, Julius Maximilian University Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Bastian Krenz
- Department of Biochemistry and Molecular Biologyy, Theodor Boveri Institute, Biocenter, Julius Maximilian University Würzburg, Am Hubland, 97074, Würzburg, Germany
- Mildred Scheel Early Career Center, University Hospital Würzburg, Josef-Schneider-Str. 2, 97080, Würzburg, Germany
| | - Greta Mattavelli
- Mildred Scheel Early Career Center, University Hospital Würzburg, Josef-Schneider-Str. 2, 97080, Würzburg, Germany
| | - Mara John
- Mildred Scheel Early Career Center, University Hospital Würzburg, Josef-Schneider-Str. 2, 97080, Würzburg, Germany
| | - Giacomo Cossa
- Department of Biochemistry and Molecular Biologyy, Theodor Boveri Institute, Biocenter, Julius Maximilian University Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Silvia Andreani
- Department of Biochemistry and Molecular Biologyy, Theodor Boveri Institute, Biocenter, Julius Maximilian University Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Christina Schülein-Völk
- Core Unit High-Content Microscopy, Theodor Boveri Institute, Biocenter, Julius Maximilian University Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Francisco Montesinos
- Department of Biochemistry and Molecular Biologyy, Theodor Boveri Institute, Biocenter, Julius Maximilian University Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Raphael Vidal
- Department of Biochemistry and Molecular Biologyy, Theodor Boveri Institute, Biocenter, Julius Maximilian University Würzburg, Am Hubland, 97074, Würzburg, Germany
- Comprehensive Cancer Center Mainfranken, University Hospital Würzburg, Josef-Schneider-Str. 2, 97080, Würzburg, Germany
| | - Carolin Kastner
- Mildred Scheel Early Career Center, University Hospital Würzburg, Josef-Schneider-Str. 2, 97080, Würzburg, Germany
| | - Carsten P Ade
- Department of Biochemistry and Molecular Biologyy, Theodor Boveri Institute, Biocenter, Julius Maximilian University Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Burkhard Kneitz
- Department of Urology and Pediatric Urology, University Hospital Würzburg, Josef-Schneider-Str. 2, 97080, Würzburg, Germany
| | - Georg Gasteiger
- Würzburg Institute of Systems Immunology, Max Planck Research Group, Julius Maximilian University Würzburg, Versbacher Str. 9, 97078, Würzburg, Germany
| | - Peter Gallant
- Department of Biochemistry and Molecular Biologyy, Theodor Boveri Institute, Biocenter, Julius Maximilian University Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Mathias Rosenfeldt
- Institute of Pathology, Julius Maximilian University Würzburg, Josef-Schneider-Str. 2, 97080, Würzburg, Germany
| | - Angela Riedel
- Mildred Scheel Early Career Center, University Hospital Würzburg, Josef-Schneider-Str. 2, 97080, Würzburg, Germany
| | - Martin Eilers
- Department of Biochemistry and Molecular Biologyy, Theodor Boveri Institute, Biocenter, Julius Maximilian University Würzburg, Am Hubland, 97074, Würzburg, Germany.
- Comprehensive Cancer Center Mainfranken, University Hospital Würzburg, Josef-Schneider-Str. 2, 97080, Würzburg, Germany.
| |
Collapse
|