1
|
Jiang Q, Han Y, Wu S, Xu T, Chi C. Dibenzo-peri-Heptacene: A Stable Open-Shell Graphene Fragment With a Balanced Combination of Armchair and Zigzag Edge Structures. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2404762. [PMID: 39468804 DOI: 10.1002/smll.202404762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 10/11/2024] [Indexed: 10/30/2024]
Abstract
Atomically precise open-shell graphene fragments, such as extended peri-acenes, hold significant interest for electronics and spintronics. However, their inherent high reactivity poses challenges for synthesis and application. In this study, a novel approach is introduced: the fusion of a zigzag-edged peri-tetracene with an all-armchair-edged hexa-peri-hexabenzocoronene (HBC) via two shared benzene rings to produce a stable open-shell hydrocarbon, named dibenzo-peri-heptacene (DBPH). The DBPH derivative 1 exhibits considerably enhanced stability, with a half-life (t1/2) of 46 days in toluene solution under ambient conditions. This improved stability is attributed to peri-benzannulation, enhanced aromatic stabilization, and kinetic protection of the reactive sites along the zigzag edges. The structure of 1 is unequivocally verified through single-crystal X-ray diffraction analysis. With a balanced combination of armchair and zigzag edge structures, derivative 1 displays a diradical character of 39.2% and a singlet-triplet gap of ≈-3.16 kcal mol-1. It features a narrow electrochemical energy gap (0.87 eV) and exhibits amphoteric redox behavior. Notably, its dication and dianion states manifest a closed-shell singlet ground state, representing doubly charged structures where a HBC unit is fused with a benzo[f]tetraphene moiety. This research paves the way for synthesizing novel open-shell graphene fragments with adjustable electronic properties and exceptional stability.
Collapse
Affiliation(s)
- Qing Jiang
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Yi Han
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Shaofei Wu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Tingting Xu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Chunyan Chi
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| |
Collapse
|
2
|
Marongiu M, Ha T, Gil-Guerrero S, Garg K, Mandado M, Melle-Franco M, Diez-Perez I, Mateo-Alonso A. Molecular Graphene Nanoribbon Junctions. J Am Chem Soc 2024; 146:3963-3973. [PMID: 38305745 PMCID: PMC10870704 DOI: 10.1021/jacs.3c11340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/20/2023] [Accepted: 01/12/2024] [Indexed: 02/03/2024]
Abstract
One of the challenges for the realization of molecular electronics is the design of nanoscale molecular wires displaying long-range charge transport. Graphene nanoribbons are an attractive platform for the development of molecular wires with long-range conductance owing to their unique electrical properties. Despite their potential, the charge transport properties of single nanoribbons remain underexplored. Herein, we report a synthetic approach to prepare N-doped pyrene-pyrazinoquinoxaline molecular graphene nanoribbons terminated with diamino anchoring groups at each end. These terminal groups allow for the formation of stable molecular graphene nanoribbon junctions between two metal electrodes that were investigated by scanning tunneling microscope-based break-junction measurements. The experimental and computational results provide evidence of long-range tunneling charge transport in these systems characterized by a shallow conductance length dependence and electron tunneling through >6 nm molecular backbone.
Collapse
Affiliation(s)
- Mauro Marongiu
- POLYMAT, University of the Basque Country UPV/EHU, Avenida de Tolosa 72, 20018 Donostia-San Sebastian, Spain
| | - Tracy Ha
- Department
of Chemistry, Faculty of Natural & Mathematical Sciences, King’s College London, Britannia House, 7 Trinity Street, SE1 1DB London, United Kingdom
| | - Sara Gil-Guerrero
- CICECO—Aveiro
Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Kavita Garg
- Department
of Chemistry, Faculty of Natural & Mathematical Sciences, King’s College London, Britannia House, 7 Trinity Street, SE1 1DB London, United Kingdom
| | - Marcos Mandado
- Department
of Physical Chemistry, University of Vigo, Lagoas-Marcosende s/n, 36310 Vigo, Spain
| | - Manuel Melle-Franco
- CICECO—Aveiro
Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Ismael Diez-Perez
- Department
of Chemistry, Faculty of Natural & Mathematical Sciences, King’s College London, Britannia House, 7 Trinity Street, SE1 1DB London, United Kingdom
| | - Aurelio Mateo-Alonso
- POLYMAT, University of the Basque Country UPV/EHU, Avenida de Tolosa 72, 20018 Donostia-San Sebastian, Spain
- Ikerbasque, Basque
Foundation for Science, 48009 Bilbao, Spain
| |
Collapse
|
3
|
Niu W, Fu Y, Serra G, Liu K, Droste J, Lee Y, Ling Z, Xu F, Cojal González JD, Lucotti A, Rabe JP, Ryan Hansen M, Pisula W, Blom PWM, Palma CA, Tommasini M, Mai Y, Ma J, Feng X. Bottom-up Solution Synthesis of Graphene Nanoribbons with Precisely Engineered Nanopores. Angew Chem Int Ed Engl 2023; 62:e202305737. [PMID: 37335764 DOI: 10.1002/anie.202305737] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/05/2023] [Accepted: 06/19/2023] [Indexed: 06/21/2023]
Abstract
The incorporation of nanopores into graphene nanostructures has been demonstrated as an efficient tool in tuning their band gaps and electronic structures. However, precisely embedding the uniform nanopores into graphene nanoribbons (GNRs) at the atomic level remains underdeveloped especially for in-solution synthesis due to the lack of efficient synthetic strategies. Herein we report the first case of solution-synthesized porous GNR (pGNR) with a fully conjugated backbone via the efficient Scholl reaction of tailor-made polyphenylene precursor (P1) bearing pre-installed hexagonal nanopores. The resultant pGNR features periodic subnanometer pores with a uniform diameter of 0.6 nm and an adjacent-pores-distance of 1.7 nm. To solidify our design strategy, two porous model compounds (1 a, 1 b) containing the same pore size as the shortcuts of pGNR, are successfully synthesized. The chemical structure and photophysical properties of pGNR are investigated by various spectroscopic analyses. Notably, the embedded periodic nanopores largely reduce the π-conjugation degree and alleviate the inter-ribbon π-π interactions, compared to the nonporous GNRs with similar widths, affording pGNR with a notably enlarged band gap and enhanced liquid-phase processability.
Collapse
Affiliation(s)
- Wenhui Niu
- Max Planck Institute of Microstructure Physics, Weinberg 2, 06120, Halle, Germany
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01062, Dresden, Germany
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Yubin Fu
- Max Planck Institute of Microstructure Physics, Weinberg 2, 06120, Halle, Germany
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01062, Dresden, Germany
| | - Gianluca Serra
- Dipartimento di Chimica, Materiali e Ingegneria Chimica "G. Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133, Milano, Italy
| | - Kun Liu
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01062, Dresden, Germany
| | - Jörn Droste
- Institute of Physical Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstraße 28/30, 48149, Münster, Germany
- Institut für Organische Chemie, Leibniz Universität Hannover, Schneiderberg 1B, 30167, Hannover, Germany
| | - Yeonju Lee
- Department of Physics & IRIS Adlershof-, Humboldt-Universität zu Berlin, 12489, Berlin, Germany
| | - Zhitian Ling
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Fugui Xu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - José D Cojal González
- Department of Physics & IRIS Adlershof-, Humboldt-Universität zu Berlin, 12489, Berlin, Germany
| | - Andrea Lucotti
- Dipartimento di Chimica, Materiali e Ingegneria Chimica "G. Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133, Milano, Italy
| | - Jürgen P Rabe
- Department of Physics & IRIS Adlershof-, Humboldt-Universität zu Berlin, 12489, Berlin, Germany
| | - Michael Ryan Hansen
- Institute of Physical Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstraße 28/30, 48149, Münster, Germany
| | - Wojciech Pisula
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
- Department of Molecular Physics, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924, Lodz, Poland
| | - Paul W M Blom
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Carlos-Andres Palma
- Department of Physics & IRIS Adlershof-, Humboldt-Universität zu Berlin, 12489, Berlin, Germany
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Matteo Tommasini
- Dipartimento di Chimica, Materiali e Ingegneria Chimica "G. Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133, Milano, Italy
| | - Yiyong Mai
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Ji Ma
- Max Planck Institute of Microstructure Physics, Weinberg 2, 06120, Halle, Germany
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01062, Dresden, Germany
| | - Xinliang Feng
- Max Planck Institute of Microstructure Physics, Weinberg 2, 06120, Halle, Germany
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01062, Dresden, Germany
| |
Collapse
|
4
|
Niu W, Ma J, Feng X. Precise Structural Regulation and Band-Gap Engineering of Curved Graphene Nanoribbons. Acc Chem Res 2022; 55:3322-3333. [PMID: 36378659 DOI: 10.1021/acs.accounts.2c00550] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Graphene nanoribbons (GNRs)─quasi-one-dimensional graphene cutouts─have drawn growing attention as promising candidates for next-generation electronic and spintronic materials. Theoretical and experimental studies have demonstrated that the electronic and magnetic properties of GNRs critically depend on their widths and edge topologies. Thus, the preparation of structurally defined GNRs is highly desirable not only for their fundamental physicochemical studies but also for their future technological development in carbon-based nanoelectronics. In the past decade, significant efforts have been made to construct a wide variety of GNRs with well-defined widths and edge structures via bottom-up synthesis. In addition to extensively studied planar GNRs consisting of armchair, zigzag, or gulf edges, curved GNRs (cGNRs) bearing cove ([4]helicene unit) or fjord ([5]helicene unit) regions along the ribbon edges have received increasing interest after we presented the first attempt to synthesize the fully cove-edged GNRs in 2015. Profiting from their novel edge topologies, cGNRs usually exhibit an unprecedented narrow band gap and high carrier transport mobility in comparison to the planar GNRs with similar widths. Moreover, cGNRs with particular out-of-plane-distorted structures are expected to provide further opportunities in nonlinear optics and asymmetric catalysis. However, the synthesis of cGNRs bearing cove or fjord edges remains underdeveloped due to the absence of efficient synthetic strategies/methods and suitable molecular precursor design.In this Account, we present the recent advances in the bottom-up synthesis and characterization of structurally defined cGNRs containing cove or fjord edges, mainly from our research group. First, the synthetic strategies toward cGNRs bearing cove edges are described, including the design of molecular monomers and polymer precursors as well as the corresponding polymerization methods, such as Ullmann coupling, Yamamoto coupling, A2B2-type Diels-Alder polymerization, followed by Scholl-type cyclodehydrogenation. The synthesis of typical model compounds is also described to support the understanding of the related cGNRs. In addition, the synthesis of cGNRs containing fjord edges from other research groups via the regioselective Scholl reaction, Hopf cyclization or regioselective photochemical cyclodehydrochlorination approach is presented. Second, we discuss the optoelectronic properties of the as-synthesized cGNRs and reveal the design principle to obtain cGNRs with high charge carrier mobilities. Finally, the challenges and prospects in the design and synthesis of cGNRs are offered. We anticipate that this Account will further stimulate the development of cGNRs through a collaborative effort between different disciplines.
Collapse
Affiliation(s)
- Wenhui Niu
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01062 Dresden, Germany.,Max Planck Institute of Microstructure Physics, Weinberg 2, 06120 Halle, Germany
| | - Ji Ma
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01062 Dresden, Germany
| | - Xinliang Feng
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01062 Dresden, Germany.,Max Planck Institute of Microstructure Physics, Weinberg 2, 06120 Halle, Germany
| |
Collapse
|
5
|
Li Y, Liu M, Wu J, Li J, Yu X, Zhang Q. Highly stable β-ketoenamine-based covalent organic frameworks (COFs): synthesis and optoelectrical applications. FRONTIERS OF OPTOELECTRONICS 2022; 15:38. [PMID: 36637691 PMCID: PMC9756274 DOI: 10.1007/s12200-022-00032-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 03/09/2022] [Indexed: 05/15/2023]
Abstract
Covalent organic frameworks (COFs) are one class of porous materials with permanent porosity and regular channels, and have a covalent bond structure. Due to their interesting characteristics, COFs have exhibited diverse potential applications in many fields. However, some applications require the frameworks to possess high structural stability, excellent crystallinity, and suitable pore size. COFs based on β-ketoenamine and imines are prepared through the irreversible enol-to-keto tautomerization. These materials have high crystallinity and exhibit high stability in boiling water, with strong resistance to acids and bases, resulting in various possible applications. In this review, we first summarize the preparation methods for COFs based on β-ketoenamine, in the form of powders, films and foams. Then, the effects of different synthetic methods on the crystallinity and pore structure of COFs based on β-ketoenamine are analyzed and compared. The relationship between structures and different applications including fluorescence sensors, energy storage, photocatalysis, electrocatalysis, batteries and proton conduction are carefully summarized. Finally, the potential applications, large-scale industrial preparation and challenges in the future are presented.
Collapse
Affiliation(s)
- Yaqin Li
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430074, China
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430074, China
| | - Maosong Liu
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430074, China
| | - Jinjun Wu
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430074, China
| | - Junbo Li
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430074, China
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430074, China
| | - Xianglin Yu
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430074, China.
| | - Qichun Zhang
- Department of Materials Science and Engineering, City University of Hongkong, Hong Kong SAR, 999077, China.
- Center of Super-Diamond and Advanced Films (COSDAF), City University of Hongkong, Hong Kong SAR, 999077, China.
| |
Collapse
|
6
|
Hernández‐Culebras F, Melle‐Franco M, Mateo‐Alonso A. Doubling the Length of the Longest Pyrene-Pyrazinoquinoxaline Molecular Nanoribbons. Angew Chem Int Ed Engl 2022; 61:e202205018. [PMID: 35467070 PMCID: PMC9321727 DOI: 10.1002/anie.202205018] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Indexed: 12/16/2022]
Abstract
Molecular nanoribbons are a class of atomically-precise nanomaterials for a broad range of applications. An iterative approach that allows doubling the length of the longest pyrene-pyrazinoquinoxaline molecular nanoribbons is described. The largest nanoribbon obtained through this approach-with a 60 linearly-fused ring backbone (14.9 nm) and a 324-atoms core (C276 N48 )-shows an extremely high molar absorptivity (values up to 1 198 074 M-1 cm-1 ) that also endows it with a high molar fluorescence brightness (8700 M-1 cm-1 ).
Collapse
Affiliation(s)
- Félix Hernández‐Culebras
- POLYMATUniversity of the Basque Country UPV/EHUAvenida de Tolosa 7220018Donostia-San SebastiánSpain
| | - Manuel Melle‐Franco
- CICECO—Aveiro Institute of MaterialsDepartment of ChemistryUniversity of Aveiro3810–193AveiroPortugal
| | - Aurelio Mateo‐Alonso
- POLYMATUniversity of the Basque Country UPV/EHUAvenida de Tolosa 7220018Donostia-San SebastiánSpain
- IkerbasqueBasque Foundation for Science48009BilbaoSpain
| |
Collapse
|
7
|
Hernández‐Culebras F, Melle‐Franco M, Mateo‐Alonso A. Doubling the Length of the Longest Pyrene‐Pyrazinoquinoxaline Molecular Nanoribbons. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Félix Hernández‐Culebras
- POLYMAT University of the Basque Country UPV/EHU Avenida de Tolosa 72 20018 Donostia-San Sebastián Spain
| | - Manuel Melle‐Franco
- CICECO—Aveiro Institute of Materials Department of Chemistry University of Aveiro 3810–193 Aveiro Portugal
| | - Aurelio Mateo‐Alonso
- POLYMAT University of the Basque Country UPV/EHU Avenida de Tolosa 72 20018 Donostia-San Sebastián Spain
- Ikerbasque Basque Foundation for Science 48009 Bilbao Spain
| |
Collapse
|
8
|
Ran W, Walz A, Stoiber K, Knecht P, Xu H, Papageorgiou AC, Huettig A, Cortizo‐Lacalle D, Mora‐Fuentes JP, Mateo‐Alonso A, Schlichting H, Reichert J, Barth JV. Depositing Molecular Graphene Nanoribbons on Ag(111) by Electrospray Controlled Ion Beam Deposition: Self-Assembly and On-Surface Transformations. Angew Chem Int Ed Engl 2022; 61:e202111816. [PMID: 35077609 PMCID: PMC9305426 DOI: 10.1002/anie.202111816] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Indexed: 12/31/2022]
Abstract
The chemical processing of low-dimensional carbon nanostructures is crucial for their integration in future devices. Here we apply a new methodology in atomically precise engineering by combining multistep solution synthesis of N-doped molecular graphene nanoribbons (GNRs) with mass-selected ultra-high vacuum electrospray controlled ion beam deposition on surfaces and real-space visualisation by scanning tunnelling microscopy. We demonstrate how this method yields solely a controllable amount of single, otherwise unsublimable, GNRs of 2.9 nm length on a planar Ag(111) surface. This methodology allows for further processing by employing on-surface synthesis protocols and exploiting the reactivity of the substrate. Following multiple chemical transformations, the GNRs provide reactive building blocks to form extended, metal-organic coordination polymers.
Collapse
Affiliation(s)
- Wei Ran
- Physics Department E20Technical University of MunichJames Franck Straße 185748GarchingGermany
| | - Andreas Walz
- Physics Department E20Technical University of MunichJames Franck Straße 185748GarchingGermany
| | - Karolina Stoiber
- Physics Department E20Technical University of MunichJames Franck Straße 185748GarchingGermany
| | - Peter Knecht
- Physics Department E20Technical University of MunichJames Franck Straße 185748GarchingGermany
| | - Hongxiang Xu
- Physics Department E20Technical University of MunichJames Franck Straße 185748GarchingGermany
| | | | - Annette Huettig
- Physics Department E20Technical University of MunichJames Franck Straße 185748GarchingGermany
| | - Diego Cortizo‐Lacalle
- POLYMATUniversity of the Basque Country UPV/EHUAvenida de Tolosa 7220018Donostia-San SebastianSpain
| | - Juan P. Mora‐Fuentes
- POLYMATUniversity of the Basque Country UPV/EHUAvenida de Tolosa 7220018Donostia-San SebastianSpain
| | - Aurelio Mateo‐Alonso
- POLYMATUniversity of the Basque Country UPV/EHUAvenida de Tolosa 7220018Donostia-San SebastianSpain
- Ikerbasque, Basque Foundation for ScienceBilbaoSpain
| | - Hartmut Schlichting
- Physics Department E20Technical University of MunichJames Franck Straße 185748GarchingGermany
| | - Joachim Reichert
- Physics Department E20Technical University of MunichJames Franck Straße 185748GarchingGermany
| | - Johannes V. Barth
- Physics Department E20Technical University of MunichJames Franck Straße 185748GarchingGermany
| |
Collapse
|
9
|
Ran W, Walz A, Stoiber K, Knecht P, Xu H, Papageorgiou AC, Huettig A, Cortizo‐Lacalle D, Mora‐Fuentes JP, Mateo‐Alonso A, Schlichting H, Reichert J, Barth JV. Depositing Molecular Graphene Nanoribbons on Ag(111) by Electrospray Controlled Ion Beam Deposition: Self‐Assembly and On‐Surface Transformations. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202111816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Wei Ran
- Physics Department E20 Technical University of Munich James Franck Straße 1 85748 Garching Germany
| | - Andreas Walz
- Physics Department E20 Technical University of Munich James Franck Straße 1 85748 Garching Germany
| | - Karolina Stoiber
- Physics Department E20 Technical University of Munich James Franck Straße 1 85748 Garching Germany
| | - Peter Knecht
- Physics Department E20 Technical University of Munich James Franck Straße 1 85748 Garching Germany
| | - Hongxiang Xu
- Physics Department E20 Technical University of Munich James Franck Straße 1 85748 Garching Germany
| | - Anthoula C. Papageorgiou
- Physics Department E20 Technical University of Munich James Franck Straße 1 85748 Garching Germany
| | - Annette Huettig
- Physics Department E20 Technical University of Munich James Franck Straße 1 85748 Garching Germany
| | - Diego Cortizo‐Lacalle
- POLYMAT University of the Basque Country UPV/EHU Avenida de Tolosa 72 20018 Donostia-San Sebastian Spain
| | - Juan P. Mora‐Fuentes
- POLYMAT University of the Basque Country UPV/EHU Avenida de Tolosa 72 20018 Donostia-San Sebastian Spain
| | - Aurelio Mateo‐Alonso
- POLYMAT University of the Basque Country UPV/EHU Avenida de Tolosa 72 20018 Donostia-San Sebastian Spain
- Ikerbasque, Basque Foundation for Science Bilbao Spain
| | - Hartmut Schlichting
- Physics Department E20 Technical University of Munich James Franck Straße 1 85748 Garching Germany
| | - Joachim Reichert
- Physics Department E20 Technical University of Munich James Franck Straße 1 85748 Garching Germany
| | - Johannes V. Barth
- Physics Department E20 Technical University of Munich James Franck Straße 1 85748 Garching Germany
| |
Collapse
|
10
|
Wang X, Ma J, Zheng W, Osella S, Arisnabarreta N, Droste J, Serra G, Ivasenko O, Lucotti A, Beljonne D, Bonn M, Liu X, Hansen MR, Tommasini M, De Feyter S, Liu J, Wang HI, Feng X. Cove-Edged Graphene Nanoribbons with Incorporation of Periodic Zigzag-Edge Segments. J Am Chem Soc 2021; 144:228-235. [PMID: 34962807 DOI: 10.1021/jacs.1c09000] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Structurally precision graphene nanoribbons (GNRs) are promising candidates for next-generation nanoelectronics due to their intriguing and tunable electronic structures. GNRs with hybrid edge structures often confer them unique geometries associated with exotic physicochemical properties. Herein, a novel type of cove-edged GNRs with periodic short zigzag-edge segments is demonstrated. The bandgap of this GNR family can be tuned using an interplay between the length of the zigzag segments and the distance of two adjacent cove units along the opposite edges, which can be converted from semiconducting to nearly metallic. A family member with periodic cove-zigzag edges based on N = 6 zigzag-edged GNR, namely 6-CZGNR-(2,1), is successfully synthesized in solution through the Scholl reaction of a unique snakelike polymer precursor (10) that is achieved by the Yamamoto coupling of a structurally flexible S-shaped phenanthrene-based monomer (1). The efficiency of cyclodehydrogenation of polymer 10 toward 6-CZGNR-(2,1) is validated by FT-IR, Raman, and UV-vis spectroscopies, as well as by the study of two representative model compounds (2 and 3). Remarkably, the resultant 6-CZGNR-(2,1) exhibits an extended and broad absorption in the near-infrared region with a record narrow optical bandgap of 0.99 eV among the reported solution-synthesized GNRs. Moreover, 6-CZGNR-(2,1) exhibits a high macroscopic carrier mobility of ∼20 cm2 V-1 s-1 determined by terahertz spectroscopy, primarily due to the intrinsically small effective mass (m*e = m*h = 0.17 m0), rendering this GNR a promising candidate for nanoelectronics.
Collapse
Affiliation(s)
- Xu Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Material and Engineering, Sichuan University, 610065 Chengdu, P.R. China.,Centre for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062 Dresden, Germany
| | - Ji Ma
- Centre for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062 Dresden, Germany
| | - Wenhao Zheng
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Silvio Osella
- Chemical and Biological Systems Simulation Lab, Centre of New Technologies, University of Warsaw, Banacha 2C, 02-097 Warsaw, Poland
| | - Nicolás Arisnabarreta
- Department of Chemistry, Division of Molecular Imaging and Photonics, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Jörn Droste
- Institute of Physical Chemistry, Westfal̈ische Wilhelms-Universitaẗ Münster, Corrensstraße 28/30, D-48149 Münster, Germany
| | - Gianluca Serra
- Dipartimento di Chimica, Materiali ed Ingegneria Chimica "G. Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Oleksandr Ivasenko
- Department of Chemistry, Division of Molecular Imaging and Photonics, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Andrea Lucotti
- Dipartimento di Chimica, Materiali ed Ingegneria Chimica "G. Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - David Beljonne
- Laboratory for Chemistry of Novel Materials, Université de Mons, Place du Parc, 20, B-7000 Mons, Belgium
| | - Mischa Bonn
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Xiangyang Liu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Material and Engineering, Sichuan University, 610065 Chengdu, P.R. China
| | - Michael Ryan Hansen
- Institute of Physical Chemistry, Westfal̈ische Wilhelms-Universitaẗ Münster, Corrensstraße 28/30, D-48149 Münster, Germany
| | - Matteo Tommasini
- Dipartimento di Chimica, Materiali ed Ingegneria Chimica "G. Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Steven De Feyter
- Department of Chemistry, Division of Molecular Imaging and Photonics, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Junzhi Liu
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Hai I Wang
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Xinliang Feng
- Centre for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062 Dresden, Germany.,Max Planck Institute of Microstructure Physics, Weinberg 2, Halle 06120 Germany
| |
Collapse
|
11
|
Duan L, Wang C, Zhang W, Ma B, Deng Y, Li W, Zhao D. Interfacial Assembly and Applications of Functional Mesoporous Materials. Chem Rev 2021; 121:14349-14429. [PMID: 34609850 DOI: 10.1021/acs.chemrev.1c00236] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Functional mesoporous materials have gained tremendous attention due to their distinctive properties and potential applications. In recent decades, the self-assembly of micelles and framework precursors into mesostructures on the liquid-solid, liquid-liquid, and gas-liquid interface has been explored in the construction of functional mesoporous materials with diverse compositions, morphologies, mesostructures, and pore sizes. Compared with the one-phase solution synthetic approach, the introduction of a two-phase interface in the synthetic system changes self-assembly behaviors between micelles and framework species, leading to the possibility for the on-demand fabrication of unique mesoporous architectures. In addition, controlling the interfacial tension is critical to manipulate the self-assembly process for precise synthesis. In particular, recent breakthroughs based on the concept of the "monomicelles" assembly mechanism are very promising and interesting for the synthesis of functional mesoporous materials with the precise control. In this review, we highlight the synthetic strategies, principles, and interface engineering at the macroscale, microscale, and nanoscale for oriented interfacial assembly of functional mesoporous materials over the past 10 years. The potential applications in various fields, including adsorption, separation, sensors, catalysis, energy storage, solar cells, and biomedicine, are discussed. Finally, we also propose the remaining challenges, possible directions, and opportunities in this field for the future outlook.
Collapse
Affiliation(s)
- Linlin Duan
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, P.R. China
| | - Changyao Wang
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, P.R. China
| | - Wei Zhang
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, P.R. China
| | - Bing Ma
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, P.R. China
| | - Yonghui Deng
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, P.R. China
| | - Wei Li
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, P.R. China
| | - Dongyuan Zhao
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, P.R. China
| |
Collapse
|
12
|
Zhou M, Gan HQ, Chen GR, James TD, Zhang B, Hu Q, Xu F, Hu XL, He XP, Mai Y. Near-Infrared Light-Triggered Bacterial Eradication Using a Nanowire Nanocomposite of Graphene Nanoribbons and Chitosan-Coated Silver Nanoparticles. Front Chem 2021; 9:767847. [PMID: 34778216 PMCID: PMC8579076 DOI: 10.3389/fchem.2021.767847] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 09/29/2021] [Indexed: 11/13/2022] Open
Abstract
Bacterial infection is a major threat to human health. However, many antibacterial agents currently used are severely limited due to drug-resistance, and the development of side effects. Herein, we have developed a non-antibiotic nanocomposite consisting of chitosan (ChS) coated silver nanoparticles (AgNPs) and graphene nanoribbon (GNR)-based nanowires for light-triggered eradication of bacteria. The presence of AgNP/ChS significantly enhanced the interactions of the GNR nanowires with Pseudomonas aeruginosa, a clinically common Gram-negative bacterium. Which enables the highly effective photothermal eradication of bacteria by GNR upon near-infrared light irradiation. The nanocomposite was shown to be applicable for the light-triggered eradication of bacterial biofilms and the inhibition of bacterial growth on medical patches used for abdominal-wall hernia surgery.
Collapse
Affiliation(s)
- Ming Zhou
- Department of General Surgery, Shanghai Xuhui District Dahua Hospital, Shanghai, China
| | - Hui-Qi Gan
- Feringa Nobel Prize Scientist Joint Research Center, Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, China
| | - Guo-Rong Chen
- Feringa Nobel Prize Scientist Joint Research Center, Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, China
| | - Tony D James
- Department of Chemistry, University of Bath, Bath, United Kingdom
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, China
| | - Bin Zhang
- Department of General Surgery, Shanghai Xuhui District Dahua Hospital, Shanghai, China
| | - Qiang Hu
- Department of General Surgery, Shanghai Xuhui District Dahua Hospital, Shanghai, China
| | - Fugui Xu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, Shanghai, China
| | - Xi-Le Hu
- Feringa Nobel Prize Scientist Joint Research Center, Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, China
| | - Xiao-Peng He
- Feringa Nobel Prize Scientist Joint Research Center, Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, China
| | - Yiyong Mai
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
13
|
Kalosakas G, Lathiotakis NN, Papagelis K. Width Dependent Elastic Properties of Graphene Nanoribbons. MATERIALS 2021; 14:ma14175042. [PMID: 34501132 PMCID: PMC8433791 DOI: 10.3390/ma14175042] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 08/27/2021] [Accepted: 08/30/2021] [Indexed: 11/23/2022]
Abstract
The mechanical response of graphene nanoribbons under uniaxial tension, as well as its dependence on the nanoribbon width, is presented by means of numerical simulations. Both armchair and zigzag edged graphene nanoribbons are considered. We discuss results obtained through two different theoretical approaches, viz. density functional methods and molecular dynamics atomistic simulations using empirical force fields especially designed to describe interactions within graphene sheets. Apart from the stress-strain curves, we calculate several elastic parameters, such as the Young’s modulus, the third-order elastic modulus, the intrinsic strength, the fracture strain, and the Poisson’s ratio versus strain, presenting their variation with the width of the nanoribbon.
Collapse
Affiliation(s)
- George Kalosakas
- Materials Science Department, University of Patras, GR-26504 Rio, Greece
- Correspondence: ; Tel.: +30-2610-996310
| | - Nektarios N. Lathiotakis
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, Vass. Constantinou 48, GR-11635 Athens, Greece;
| | - Konstantinos Papagelis
- School of Physics, Department of Solid State Physics, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece;
| |
Collapse
|
14
|
Johnson AP, Sabu C, Swamy NK, Anto A, Gangadharappa H, Pramod K. Graphene nanoribbon: An emerging and efficient flat molecular platform for advanced biosensing. Biosens Bioelectron 2021; 184:113245. [DOI: 10.1016/j.bios.2021.113245] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/27/2021] [Accepted: 04/09/2021] [Indexed: 02/07/2023]
|
15
|
Dubey RK, Melle-Franco M, Mateo-Alonso A. Twisted Molecular Nanoribbons with up to 53 Linearly-Fused Rings. J Am Chem Soc 2021; 143:6593-6600. [PMID: 33876941 DOI: 10.1021/jacs.1c01849] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The synthesis of three molecular nanoribbons with a twisted aromatic framework is described. The largest one shows a 53 linearly fused rings backbone (12.9 nm) and 322 conjugated atoms in its aromatic core (C296N24S2). This new family of nanoribbons shows extremely high molar absorptivities, reaching 986 100 M-1 cm-1, and red-emitting properties.
Collapse
Affiliation(s)
- Rajeev K Dubey
- POLYMAT, University of the Basque Country UPV/EHU, Avenida de Tolosa 72, 20018 Donostia-San Sebastian, Spain
| | - Manuel Melle-Franco
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Aurelio Mateo-Alonso
- POLYMAT, University of the Basque Country UPV/EHU, Avenida de Tolosa 72, 20018 Donostia-San Sebastian, Spain.,Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain
| |
Collapse
|
16
|
Saraswat V, Jacobberger RM, Arnold MS. Materials Science Challenges to Graphene Nanoribbon Electronics. ACS NANO 2021; 15:3674-3708. [PMID: 33656860 DOI: 10.1021/acsnano.0c07835] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Graphene nanoribbons (GNRs) have recently emerged as promising candidates for channel materials in future nanoelectronic devices due to their exceptional electronic, thermal, and mechanical properties and chemical inertness. However, the adoption of GNRs in commercial technologies is currently hampered by materials science and integration challenges pertaining to synthesis and devices. In this Review, we present an overview of the current status of challenges, recent breakthroughs toward overcoming these challenges, and possible future directions for the field of GNR electronics. We motivate the need for exploration of scalable synthetic techniques that yield atomically precise, placed, registered, and oriented GNRs on CMOS-compatible substrates and stimulate ideas for contact and dielectric engineering to realize experimental performance close to theoretically predicted metrics. We also briefly discuss unconventional device architectures that could be experimentally investigated to harness the maximum potential of GNRs in future spintronic and quantum information technologies.
Collapse
Affiliation(s)
- Vivek Saraswat
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Robert M Jacobberger
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Michael S Arnold
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
17
|
Santhini VM, Wäckerlin C, Cahlík A, Ondráček M, Pascal S, Matěj A, Stetsovych O, Mutombo P, Lazar P, Siri O, Jelínek P. 1D Coordination π–d Conjugated Polymers with Distinct Structures Defined by the Choice of the Transition Metal: Towards a New Class of Antiaromatic Macrocycles. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202011462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Vijai M. Santhini
- Institute of Physics Czech Academy of Sciences Cukrovarnická 10 16200 Prague Czech Republic
- Regional Centre of Advanced Technologies and Materials Palacký University Šlechtitelů 27 78371 Olomouc Czech Republic
| | - Christian Wäckerlin
- Institute of Physics Czech Academy of Sciences Cukrovarnická 10 16200 Prague Czech Republic
- Surface Science and Coating Technologies Empa Swiss Federal Laboratories for Materials Science and Technology Überlandstrasse 129 8600 Dübendorf Switzerland
| | - Aleš Cahlík
- Institute of Physics Czech Academy of Sciences Cukrovarnická 10 16200 Prague Czech Republic
- Regional Centre of Advanced Technologies and Materials Palacký University Šlechtitelů 27 78371 Olomouc Czech Republic
- Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague Břehová 78/7 CZ-11519 Prague 1 Czech Republic
| | - Martin Ondráček
- Institute of Physics Czech Academy of Sciences Cukrovarnická 10 16200 Prague Czech Republic
| | - Simon Pascal
- Aix Marseille Université CINaM UMR 7325 CNRS Campus de Luminy 13288 Marseille cedex 09 France
| | - Adam Matěj
- Institute of Physics Czech Academy of Sciences Cukrovarnická 10 16200 Prague Czech Republic
- Regional Centre of Advanced Technologies and Materials Palacký University Šlechtitelů 27 78371 Olomouc Czech Republic
| | - Oleksandr Stetsovych
- Institute of Physics Czech Academy of Sciences Cukrovarnická 10 16200 Prague Czech Republic
| | - Pingo Mutombo
- Institute of Physics Czech Academy of Sciences Cukrovarnická 10 16200 Prague Czech Republic
- Department of Petrochemistry and Refining University of Kinshasa Kinshasa Democratic Republic of Congo
| | - Petr Lazar
- Regional Centre of Advanced Technologies and Materials Palacký University Šlechtitelů 27 78371 Olomouc Czech Republic
| | - Olivier Siri
- Aix Marseille Université CINaM UMR 7325 CNRS Campus de Luminy 13288 Marseille cedex 09 France
| | - Pavel Jelínek
- Institute of Physics Czech Academy of Sciences Cukrovarnická 10 16200 Prague Czech Republic
- Regional Centre of Advanced Technologies and Materials Palacký University Šlechtitelů 27 78371 Olomouc Czech Republic
| |
Collapse
|
18
|
Santhini VM, Wäckerlin C, Cahlík A, Ondráček M, Pascal S, Matěj A, Stetsovych O, Mutombo P, Lazar P, Siri O, Jelínek P. 1D Coordination π–d Conjugated Polymers with Distinct Structures Defined by the Choice of the Transition Metal: Towards a New Class of Antiaromatic Macrocycles. Angew Chem Int Ed Engl 2020; 60:439-445. [DOI: 10.1002/anie.202011462] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Indexed: 12/31/2022]
Affiliation(s)
- Vijai M. Santhini
- Institute of Physics Czech Academy of Sciences Cukrovarnická 10 16200 Prague Czech Republic
- Regional Centre of Advanced Technologies and Materials Palacký University Šlechtitelů 27 78371 Olomouc Czech Republic
| | - Christian Wäckerlin
- Institute of Physics Czech Academy of Sciences Cukrovarnická 10 16200 Prague Czech Republic
- Surface Science and Coating Technologies Empa Swiss Federal Laboratories for Materials Science and Technology Überlandstrasse 129 8600 Dübendorf Switzerland
| | - Aleš Cahlík
- Institute of Physics Czech Academy of Sciences Cukrovarnická 10 16200 Prague Czech Republic
- Regional Centre of Advanced Technologies and Materials Palacký University Šlechtitelů 27 78371 Olomouc Czech Republic
- Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague Břehová 78/7 CZ-11519 Prague 1 Czech Republic
| | - Martin Ondráček
- Institute of Physics Czech Academy of Sciences Cukrovarnická 10 16200 Prague Czech Republic
| | - Simon Pascal
- Aix Marseille Université CINaM UMR 7325 CNRS Campus de Luminy 13288 Marseille cedex 09 France
| | - Adam Matěj
- Institute of Physics Czech Academy of Sciences Cukrovarnická 10 16200 Prague Czech Republic
- Regional Centre of Advanced Technologies and Materials Palacký University Šlechtitelů 27 78371 Olomouc Czech Republic
| | - Oleksandr Stetsovych
- Institute of Physics Czech Academy of Sciences Cukrovarnická 10 16200 Prague Czech Republic
| | - Pingo Mutombo
- Institute of Physics Czech Academy of Sciences Cukrovarnická 10 16200 Prague Czech Republic
- Department of Petrochemistry and Refining University of Kinshasa Kinshasa Democratic Republic of Congo
| | - Petr Lazar
- Regional Centre of Advanced Technologies and Materials Palacký University Šlechtitelů 27 78371 Olomouc Czech Republic
| | - Olivier Siri
- Aix Marseille Université CINaM UMR 7325 CNRS Campus de Luminy 13288 Marseille cedex 09 France
| | - Pavel Jelínek
- Institute of Physics Czech Academy of Sciences Cukrovarnická 10 16200 Prague Czech Republic
- Regional Centre of Advanced Technologies and Materials Palacký University Šlechtitelů 27 78371 Olomouc Czech Republic
| |
Collapse
|
19
|
Niu W, Ma J, Soltani P, Zheng W, Liu F, Popov AA, Weigand JJ, Komber H, Poliani E, Casiraghi C, Droste J, Hansen MR, Osella S, Beljonne D, Bonn M, Wang HI, Feng X, Liu J, Mai Y. A Curved Graphene Nanoribbon with Multi-Edge Structure and High Intrinsic Charge Carrier Mobility. J Am Chem Soc 2020; 142:18293-18298. [PMID: 33078947 DOI: 10.1021/jacs.0c07013] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Structurally well-defined graphene nanoribbons (GNRs) have emerged as highly promising materials for the next-generation nanoelectronics. The electronic properties of GNRs critically depend on their edge topologies. Here, we demonstrate the efficient synthesis of a curved GNR (cGNR) with a combined cove, zigzag, and armchair edge structure, through bottom-up synthesis. The curvature of the cGNR is elucidated by the corresponding model compounds tetrabenzo[a,cd,j,lm]perylene (1) and diphenanthrene-fused tetrabenzo[a,cd,j,lm]perylene (2), the structures of which are unambiguously confirmed by the X-ray single-crystal analysis. The resultant multi-edged cGNR exhibits a well-resolved absorption at the near-infrared (NIR) region with a maximum peak at 850 nm, corresponding to a narrow optical energy gap of ∼1.22 eV. Employing THz spectroscopy, we disclose a long scattering time of ∼60 fs, corresponding to a record intrinsic charge carrier mobility of ∼600 cm2 V-1 s-1 for photogenerated charge carriers in cGNR.
Collapse
Affiliation(s)
- Wenhui Niu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.,Center for Advancing Electronics Dresden (cfaed), Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, D-01062 Dresden, Germany
| | - Ji Ma
- Center for Advancing Electronics Dresden (cfaed), Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, D-01062 Dresden, Germany
| | - Paniz Soltani
- Max Planck Institute for Polymer Research, Ackermannweg 10, D-55128 Mainz, Germany
| | - Wenhao Zheng
- Max Planck Institute for Polymer Research, Ackermannweg 10, D-55128 Mainz, Germany
| | - Fupin Liu
- Leibniz Institute for Solid State and Materials Research, D-01069 Dresden, Germany
| | - Alexey A Popov
- Leibniz Institute for Solid State and Materials Research, D-01069 Dresden, Germany
| | - Jan J Weigand
- Department of Inorganic Molecular Chemistry, Technische Universität Dresden, D-01062 Dresden, Germany
| | - Hartmut Komber
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, D-01069 Dresden, Germany
| | - Emanuele Poliani
- Department of Chemistry, Manchester University, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Cinzia Casiraghi
- Department of Chemistry, Manchester University, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Jörn Droste
- Institute of Physical Chemistry, Westfälische Wilhelms-Universität (WWU) Münster, Corrensstraße 28/30, D-48149 Münster, Germany
| | - Michael Ryan Hansen
- Institute of Physical Chemistry, Westfälische Wilhelms-Universität (WWU) Münster, Corrensstraße 28/30, D-48149 Münster, Germany
| | - Silvio Osella
- Biological Systems Simulation Lab, Center of New Technologies, University of Warsaw, Banacha 2C, 02-097 Warsaw, Poland
| | - David Beljonne
- Laboratory for Chemistry of Novel Materials, Université de Mons, Place du Parc, 20, B-7000 Mons, Belgium
| | - Mischa Bonn
- Max Planck Institute for Polymer Research, Ackermannweg 10, D-55128 Mainz, Germany
| | - Hai I Wang
- Max Planck Institute for Polymer Research, Ackermannweg 10, D-55128 Mainz, Germany
| | - Xinliang Feng
- Center for Advancing Electronics Dresden (cfaed), Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, D-01062 Dresden, Germany
| | - Junzhi Liu
- Center for Advancing Electronics Dresden (cfaed), Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, D-01062 Dresden, Germany.,Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong 999077, China
| | - Yiyong Mai
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
20
|
Luan X, Martín C, Zhang P, Li Q, Vacchi IA, Delogu LG, Mai Y, Bianco A. Degradation of Structurally Defined Graphene Nanoribbons by Myeloperoxidase and the Photo‐Fenton Reaction. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202008925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Xiangfeng Luan
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Cristina Martín
- CNRS Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572 University of Strasbourg ISIS 67000 Strasbourg France
| | - Pengfei Zhang
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Qian Li
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Isabella Anna Vacchi
- CNRS Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572 University of Strasbourg ISIS 67000 Strasbourg France
| | - Lucia Gemma Delogu
- Department of Biomedical Sciences University of Padua 35121 Padova Italy
| | - Yiyong Mai
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Alberto Bianco
- CNRS Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572 University of Strasbourg ISIS 67000 Strasbourg France
| |
Collapse
|
21
|
Johnson AP, Gangadharappa H, Pramod K. Graphene nanoribbons: A promising nanomaterial for biomedical applications. J Control Release 2020; 325:141-162. [DOI: 10.1016/j.jconrel.2020.06.034] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 06/25/2020] [Accepted: 06/27/2020] [Indexed: 01/06/2023]
|
22
|
Luan X, Martín C, Zhang P, Li Q, Vacchi IA, Delogu LG, Mai Y, Bianco A. Degradation of Structurally Defined Graphene Nanoribbons by Myeloperoxidase and the Photo‐Fenton Reaction. Angew Chem Int Ed Engl 2020; 59:18515-18521. [DOI: 10.1002/anie.202008925] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/03/2020] [Indexed: 12/25/2022]
Affiliation(s)
- Xiangfeng Luan
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Cristina Martín
- CNRS Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572 University of Strasbourg ISIS 67000 Strasbourg France
| | - Pengfei Zhang
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Qian Li
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Isabella Anna Vacchi
- CNRS Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572 University of Strasbourg ISIS 67000 Strasbourg France
| | - Lucia Gemma Delogu
- Department of Biomedical Sciences University of Padua 35121 Padova Italy
| | - Yiyong Mai
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Alberto Bianco
- CNRS Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572 University of Strasbourg ISIS 67000 Strasbourg France
| |
Collapse
|
23
|
Zhang J, Fahrenthold EP. Graphene nanoribbons as flexible docks for chemiresistive sensing of gas phase explosives. NANOSCALE 2020; 12:10730-10736. [PMID: 32386400 DOI: 10.1039/d0nr01237h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Interpretation of chemiresistive sensor measurements is made difficult by the fact that similar conductance changes may be produced by different adsorbed species. This fundamental ambiguity may be addressed by formulating a new docking paradigm. Instead of decorating graphene with ligands whose structure is well suited to bind with a particular target molecule, a generic dock in the form of a flexible, semiconducting graphene nanoribbon (GNR) may be employed. If the deformed shape of the GNR is then varied, via mechanical actuation, a two dimensional signature (sensor current versus bias voltage and GNR deformation) of the target molecule may be obtained. Ab initio modeling results indicate that this signature may be used to distinguish explosives from background gases and to discriminate between chemically similar explosives.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Mechanical Engineering, University of Texas, Austin, TX 78712, USA.
| | - Eric P Fahrenthold
- Department of Mechanical Engineering, University of Texas, Austin, TX 78712, USA.
| |
Collapse
|
24
|
Tries A, Osella S, Zhang P, Xu F, Ramanan C, Kläui M, Mai Y, Beljonne D, Wang HI. Experimental Observation of Strong Exciton Effects in Graphene Nanoribbons. NANO LETTERS 2020; 20:2993-3002. [PMID: 32207957 PMCID: PMC7311082 DOI: 10.1021/acs.nanolett.9b04816] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 03/21/2020] [Indexed: 05/29/2023]
Abstract
Graphene nanoribbons (GNRs) with atomically precise width and edge structures are a promising class of nanomaterials for optoelectronics, thanks to their semiconducting nature and high mobility of charge carriers. Understanding the fundamental static optical properties and ultrafast dynamics of charge carrier generation in GNRs is essential for optoelectronic applications. Combining THz spectroscopy and theoretical calculations, we report a strong exciton effect with binding energy up to ∼700 meV in liquid-phase-dispersed GNRs with a width of 1.7 nm and an optical band gap of ∼1.6 eV, illustrating the intrinsically strong Coulomb interactions between photogenerated electrons and holes. By tracking the exciton dynamics, we reveal an ultrafast formation of excitons in GNRs with a long lifetime over 100 ps. Our results not only reveal fundamental aspects of excitons in GNRs (strong binding energy and ultrafast exciton formation etc.) but also highlight promising properties of GNRs for optoelectronic devices.
Collapse
Affiliation(s)
- Alexander Tries
- Max
Planck Institute for Polymer Research, Ackermannweg 10, D-55128 Mainz, Germany
- Institute
of Physics and Graduate School of Excellence Material Sciences in
Mainz, Johannes Gutenberg-University Mainz, D-55128 Mainz, Germany
| | - Silvio Osella
- Chemical
and Biological Systems Simulation Lab, Centre of New Technologies, University of Warsaw, Banacha 2C, 02-097 Warsaw, Poland
| | - Pengfei Zhang
- School
of Chemistry and Chemical Engineering, Frontiers Science Center for
Transformative Molecules, Shanghai Jiao
Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Fugui Xu
- School
of Chemistry and Chemical Engineering, Frontiers Science Center for
Transformative Molecules, Shanghai Jiao
Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Charusheela Ramanan
- Max
Planck Institute for Polymer Research, Ackermannweg 10, D-55128 Mainz, Germany
| | - Mathias Kläui
- Institute
of Physics and Graduate School of Excellence Material Sciences in
Mainz, Johannes Gutenberg-University Mainz, D-55128 Mainz, Germany
| | - Yiyong Mai
- School
of Chemistry and Chemical Engineering, Frontiers Science Center for
Transformative Molecules, Shanghai Jiao
Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - David Beljonne
- Laboratory
for Chemistry of Novel Materials, Université
de Mons, Place du Parc,
20, B-7000 Mons, Belgium
| | - Hai I. Wang
- Max
Planck Institute for Polymer Research, Ackermannweg 10, D-55128 Mainz, Germany
| |
Collapse
|
25
|
Bao L, Zhao B, Lloret V, Halik M, Hauke F, Hirsch A. Spatially Resolved Bottom-Side Fluorination of Graphene by Two-Dimensional Substrate Patterning. Angew Chem Int Ed Engl 2020; 59:6700-6705. [PMID: 32107875 PMCID: PMC7187324 DOI: 10.1002/anie.202002508] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Indexed: 11/11/2022]
Abstract
Patterned functionalization can, on the one hand, open the band gap of graphene and, on the other hand, program demanding designs on graphene. The functionalization technique is essential for graphene-based nanoarchitectures. A new and highly efficient method was applied to obtain patterned functionalization on graphene by mild fluorination with spatially arranged AgF arrays on the structured substrate. Scanning Raman spectroscopy (SRS) and scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy (SEM-EDS) were used to characterize the functionalized materials. For the first time, chemical patterning on the bottom side of graphene was realized. The chemical nature of the patterned functionalization was determined to be the ditopic scenario with fluorine atoms occupying the bottom side and moieties, such as oxygen-containing groups or hydrogen atoms, binding on the top side, which provides information about the mechanism of the fluorination process. Our strategy can be conceptually extended to pattern other functionalities by using other reactants. Bottom-side patterned functionalization enables utilization of the top side of a material, thereby opening up the possibilities for applications in graphene-based devices.
Collapse
Affiliation(s)
- Lipiao Bao
- Department of Chemistry and Pharmacy & Joint Institute of Advanced Materials and Processes (ZMP)Friedrich-Alexander University of Erlangen-NürnbergNikolaus-Fiebiger-Strasse 1091058ErlangenGermany
| | - Baolin Zhao
- Organic Materials and Devices (OMD), Institute of Polymer MaterialInterdisziplinären Zentrums für Nanostrukturierte Filme (IZNF)Friedrich-Alexander University of Erlangen-NürnbergCauerstraße 391058ErlangenGermany
| | - Vicent Lloret
- Department of Chemistry and Pharmacy & Joint Institute of Advanced Materials and Processes (ZMP)Friedrich-Alexander University of Erlangen-NürnbergNikolaus-Fiebiger-Strasse 1091058ErlangenGermany
| | - Marcus Halik
- Organic Materials and Devices (OMD), Institute of Polymer MaterialInterdisziplinären Zentrums für Nanostrukturierte Filme (IZNF)Friedrich-Alexander University of Erlangen-NürnbergCauerstraße 391058ErlangenGermany
| | - Frank Hauke
- Department of Chemistry and Pharmacy & Joint Institute of Advanced Materials and Processes (ZMP)Friedrich-Alexander University of Erlangen-NürnbergNikolaus-Fiebiger-Strasse 1091058ErlangenGermany
| | - Andreas Hirsch
- Department of Chemistry and Pharmacy & Joint Institute of Advanced Materials and Processes (ZMP)Friedrich-Alexander University of Erlangen-NürnbergNikolaus-Fiebiger-Strasse 1091058ErlangenGermany
| |
Collapse
|
26
|
Bao L, Zhao B, Lloret V, Halik M, Hauke F, Hirsch A. Spatially Resolved Bottom‐Side Fluorination of Graphene by Two‐Dimensional Substrate Patterning. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202002508] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Lipiao Bao
- Department of Chemistry and Pharmacy & Joint Institute of Advanced Materials and Processes (ZMP)Friedrich-Alexander University of Erlangen-Nürnberg Nikolaus-Fiebiger-Strasse 10 91058 Erlangen Germany
| | - Baolin Zhao
- Organic Materials and Devices (OMD), Institute of Polymer MaterialInterdisziplinären Zentrums für Nanostrukturierte Filme (IZNF)Friedrich-Alexander University of Erlangen-Nürnberg Cauerstraße 3 91058 Erlangen Germany
| | - Vicent Lloret
- Department of Chemistry and Pharmacy & Joint Institute of Advanced Materials and Processes (ZMP)Friedrich-Alexander University of Erlangen-Nürnberg Nikolaus-Fiebiger-Strasse 10 91058 Erlangen Germany
| | - Marcus Halik
- Organic Materials and Devices (OMD), Institute of Polymer MaterialInterdisziplinären Zentrums für Nanostrukturierte Filme (IZNF)Friedrich-Alexander University of Erlangen-Nürnberg Cauerstraße 3 91058 Erlangen Germany
| | - Frank Hauke
- Department of Chemistry and Pharmacy & Joint Institute of Advanced Materials and Processes (ZMP)Friedrich-Alexander University of Erlangen-Nürnberg Nikolaus-Fiebiger-Strasse 10 91058 Erlangen Germany
| | - Andreas Hirsch
- Department of Chemistry and Pharmacy & Joint Institute of Advanced Materials and Processes (ZMP)Friedrich-Alexander University of Erlangen-Nürnberg Nikolaus-Fiebiger-Strasse 10 91058 Erlangen Germany
| |
Collapse
|
27
|
Fu Y, Yang H, Gao Y, Huang L, Berger R, Liu J, Lu H, Cheng Z, Du S, Gao H, Feng X. On‐Surface Synthesis of NBN‐Doped Zigzag‐Edged Graphene Nanoribbons. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202000488] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yubin Fu
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry Technische Universität Dresden 01062 Dresden Germany
| | - Huan Yang
- Institute of Physics and University of Chinese Academy of Sciences Chinese Academy of Sciences Beijing 100190 China
| | - Yixuan Gao
- Institute of Physics and University of Chinese Academy of Sciences Chinese Academy of Sciences Beijing 100190 China
| | - Li Huang
- Institute of Physics and University of Chinese Academy of Sciences Chinese Academy of Sciences Beijing 100190 China
| | - Reinhard Berger
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry Technische Universität Dresden 01062 Dresden Germany
| | - Junzhi Liu
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry The University of Hong Kong Pokfulam Road Hong Kong China
| | - Hongliang Lu
- Institute of Physics and University of Chinese Academy of Sciences Chinese Academy of Sciences Beijing 100190 China
| | - Zhihai Cheng
- Department of Physics and Beijing Key Laboratory of Optoelectronic Functional Materials & Micro-nano Devices Renmin University of China Beijing 100872 China
| | - Shixuan Du
- Institute of Physics and University of Chinese Academy of Sciences Chinese Academy of Sciences Beijing 100190 China
| | - Hong‐Jun Gao
- Institute of Physics and University of Chinese Academy of Sciences Chinese Academy of Sciences Beijing 100190 China
| | - Xinliang Feng
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry Technische Universität Dresden 01062 Dresden Germany
| |
Collapse
|
28
|
Fu Y, Yang H, Gao Y, Huang L, Berger R, Liu J, Lu H, Cheng Z, Du S, Gao HJ, Feng X. On-Surface Synthesis of NBN-Doped Zigzag-Edged Graphene Nanoribbons. Angew Chem Int Ed Engl 2020; 59:8873-8879. [PMID: 32134547 PMCID: PMC7318338 DOI: 10.1002/anie.202000488] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/26/2020] [Indexed: 12/24/2022]
Abstract
We report the first bottom‐up synthesis of NBN‐doped zigzag‐edged GNRs (NBN‐ZGNR1 and NBN‐ZGNR2) through surface‐assisted polymerization and cyclodehydrogenation based on two U‐shaped molecular precursors with an NBN unit preinstalled at the zigzag edge. The resultant zigzag‐edge topologies of GNRs are elucidated by high‐resolution scanning tunneling microscopy (STM) in combination with noncontact atomic force microscopy (nc‐AFM). Scanning tunneling spectroscopy (STS) measurements and density functional theory (DFT) calculations reveal that the electronic structures of NBN‐ZGNR1 and NBN‐ZGNR2 are significantly different from those of their corresponding pristine fully‐carbon‐based ZGNRs. Additionally, DFT calculations predict that the electronic structures of NBN‐ZGNRs can be further tailored to be gapless and metallic through one‐electron oxidation of each NBN unit into the corresponding radical cations. This work reported herein provides a feasible strategy for the synthesis of GNRs with stable zigzag edges yet tunable electronic properties.
Collapse
Affiliation(s)
- Yubin Fu
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062, Dresden, Germany
| | - Huan Yang
- Institute of Physics and University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yixuan Gao
- Institute of Physics and University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190, China
| | - Li Huang
- Institute of Physics and University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190, China
| | - Reinhard Berger
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062, Dresden, Germany
| | - Junzhi Liu
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Hongliang Lu
- Institute of Physics and University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190, China
| | - Zhihai Cheng
- Department of Physics and Beijing Key Laboratory of Optoelectronic Functional Materials & Micro-nano Devices, Renmin University of China, Beijing, 100872, China
| | - Shixuan Du
- Institute of Physics and University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190, China
| | - Hong-Jun Gao
- Institute of Physics and University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190, China
| | - Xinliang Feng
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062, Dresden, Germany
| |
Collapse
|
29
|
Yu Z, Li X, Xu F, Hu X, Yan J, Kwon N, Chen G, Tang T, Dong X, Mai Y, Chen D, Yoon J, He X, Tian H. A Supramolecular‐Based Dual‐Wavelength Phototherapeutic Agent with Broad‐Spectrum Antimicrobial Activity Against Drug‐Resistant Bacteria. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201913506] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Zhi‐Hao Yu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular EngineeringFeringa Nobel Prize Scientist Joint Research CenterSchool of Chemistry and Molecular EngineeringEast China University of Science and Technology 130 Meilong RD Shanghai 200237 China
| | - Xingshu Li
- Department of Chemistry and NanoscienceEwha Womans University Seoul 03760 Republic of Korea
| | - Fugui Xu
- School of Chemistry and Chemical EngineeringFrontiers Science Center for Transformative MoleculesShanghai Key Laboratory of Electrical Insulation and Thermal AgeingShanghai Jiao Tong University 800 Dongchuan RD Shanghai 200240 China
| | - Xi‐Le Hu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular EngineeringFeringa Nobel Prize Scientist Joint Research CenterSchool of Chemistry and Molecular EngineeringEast China University of Science and Technology 130 Meilong RD Shanghai 200237 China
| | - Jiatao Yan
- Department of Polymer MaterialsCollege of Materials Science and EngineeringShanghai University Shanghai 200444 China
| | - Nahyun Kwon
- Department of Chemistry and NanoscienceEwha Womans University Seoul 03760 Republic of Korea
| | - Guo‐Rong Chen
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular EngineeringFeringa Nobel Prize Scientist Joint Research CenterSchool of Chemistry and Molecular EngineeringEast China University of Science and Technology 130 Meilong RD Shanghai 200237 China
| | - Tingting Tang
- Shanghai Key Laboratory of Orthopedic ImplantsDepartment of Orthopedic SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of Medicine Shanghai 200011 China
| | - Xiaojing Dong
- Shanghai Institute of Pharmaceutical Industry 285 Gebaini RD Shanghai 201203 China
| | - Yiyong Mai
- School of Chemistry and Chemical EngineeringFrontiers Science Center for Transformative MoleculesShanghai Key Laboratory of Electrical Insulation and Thermal AgeingShanghai Jiao Tong University 800 Dongchuan RD Shanghai 200240 China
| | - Daijie Chen
- Shanghai Institute of Pharmaceutical Industry 285 Gebaini RD Shanghai 201203 China
- School of PharmacyShanghai Jiao Tong University 800 Dongchuan RD Shanghai 200240 China
| | - Juyoung Yoon
- Department of Chemistry and NanoscienceEwha Womans University Seoul 03760 Republic of Korea
| | - Xiao‐Peng He
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular EngineeringFeringa Nobel Prize Scientist Joint Research CenterSchool of Chemistry and Molecular EngineeringEast China University of Science and Technology 130 Meilong RD Shanghai 200237 China
| | - He Tian
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular EngineeringFeringa Nobel Prize Scientist Joint Research CenterSchool of Chemistry and Molecular EngineeringEast China University of Science and Technology 130 Meilong RD Shanghai 200237 China
| |
Collapse
|
30
|
Yu ZH, Li X, Xu F, Hu XL, Yan J, Kwon N, Chen GR, Tang T, Dong X, Mai Y, Chen D, Yoon J, He XP, Tian H. A Supramolecular-Based Dual-Wavelength Phototherapeutic Agent with Broad-Spectrum Antimicrobial Activity Against Drug-Resistant Bacteria. Angew Chem Int Ed Engl 2020; 59:3658-3664. [PMID: 31868285 DOI: 10.1002/anie.201913506] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/06/2019] [Indexed: 12/20/2022]
Abstract
With the ever-increasing threat posed by the multi-drug resistance of bacteria, the development of non-antibiotic agents for the broad-spectrum eradication of clinically prevalent superbugs remains a global challenge. Here, we demonstrate the simple supramolecular self-assembly of structurally defined graphene nanoribbons (GNRs) with a cationic porphyrin (Pp4N) to afford unique one-dimensional wire-like GNR superstructures coated with Pp4N nanoparticles. This Pp4N/GNR nanocomposite displays excellent dual-modal properties with significant reactive-oxygen-species (ROS) production (in photodynamic therapy) and temperature elevation (in photothermal therapy) upon light irradiation at 660 and 808 nm, respectively. This combined approach proved synergistic, providing an impressive antimicrobial effect that led to the complete annihilation of a wide spectrum of Gram-positive, Gram-negative, and drug-resistant bacteria both in vitro and in vivo. The study also unveils the promise of GNRs as a new platform to develop dual-modal antimicrobial agents that are able to overcome antibiotic resistance.
Collapse
Affiliation(s)
- Zhi-Hao Yu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong RD, Shanghai, 200237, China
| | - Xingshu Li
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Fugui Xu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai, 200240, China
| | - Xi-Le Hu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong RD, Shanghai, 200237, China
| | - Jiatao Yan
- Department of Polymer Materials, College of Materials Science and Engineering, Shanghai University, Shanghai, 200444, China
| | - Nahyun Kwon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Guo-Rong Chen
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong RD, Shanghai, 200237, China
| | - Tingting Tang
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Xiaojing Dong
- Shanghai Institute of Pharmaceutical Industry, 285 Gebaini RD, Shanghai, 201203, China
| | - Yiyong Mai
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai, 200240, China
| | - Daijie Chen
- Shanghai Institute of Pharmaceutical Industry, 285 Gebaini RD, Shanghai, 201203, China.,School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai, 200240, China
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Xiao-Peng He
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong RD, Shanghai, 200237, China
| | - He Tian
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong RD, Shanghai, 200237, China
| |
Collapse
|
31
|
Li C, Li Q, Kaneti YV, Hou D, Yamauchi Y, Mai Y. Self-assembly of block copolymers towards mesoporous materials for energy storage and conversion systems. Chem Soc Rev 2020; 49:4681-4736. [DOI: 10.1039/d0cs00021c] [Citation(s) in RCA: 170] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This paper reviews the progress in the field of block copolymer-templated mesoporous materials, including synthetic methods, morphological and pore size control and their potential applications in energy storage and conversion devices.
Collapse
Affiliation(s)
- Chen Li
- School of Chemistry and Chemical Engineering
- Frontiers Science Center for Transformative Molecules
- Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing
- Shanghai Jiao Tong University
- Shanghai 200242
| | - Qian Li
- School of Chemistry and Chemical Engineering
- Frontiers Science Center for Transformative Molecules
- Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing
- Shanghai Jiao Tong University
- Shanghai 200242
| | - Yusuf Valentino Kaneti
- International Center for Materials Nanoarchitectonics (WPI-MANA)
- National Institute for Materials Science (NIMS)
- Ibaraki 305-0044
- Japan
| | - Dan Hou
- School of Chemistry and Chemical Engineering
- Frontiers Science Center for Transformative Molecules
- Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing
- Shanghai Jiao Tong University
- Shanghai 200242
| | - Yusuke Yamauchi
- School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology (AIBN)
- The University of Queensland
- Brisbane
- Australia
- Key Laboratory of Marine Chemistry Theory and Technology
| | - Yiyong Mai
- School of Chemistry and Chemical Engineering
- Frontiers Science Center for Transformative Molecules
- Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing
- Shanghai Jiao Tong University
- Shanghai 200242
| |
Collapse
|
32
|
Zhao X, Wei C, Gai Z, Yu S, Ren X. Chemical vapor deposition and its application in surface modification of nanoparticles. CHEMICAL PAPERS 2019. [DOI: 10.1007/s11696-019-00963-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|