1
|
Koskela KM, Pakhira A, Strumolo MJ, Banerjee S, Brutchey RL. Interplay between Cation "Coloring" and Stereochemically Active Lone Pairs in AgBiS 2 Thin Films. Inorg Chem 2025; 64:10097-10105. [PMID: 40356472 DOI: 10.1021/acs.inorgchem.5c00710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
Solution-processed AgBiS2 thin films were fabricated using novel thiol-amine precursor inks to investigate the stereochemical activity of Bi3+ 6s2 lone pairs and their impact on the structure. A dual-space analysis combining Bragg diffraction and hard X-ray photoelectron spectroscopy (HAXPES) revealed a rock salt-like average structure with local distortions linked to cation coloring. Density functional theory (DFT) and crystal orbital Hamilton population (COHP) analyses confirmed that local Bi-rich and Ag-rich nanodomains amplify stereochemical activity, whereas more mixed and cation-order nanodomains are less stereochemically active. This local, nanoscopic mixing of segregated and ordered domains would indeed explain an average Fm3̅m structure that is rock salt-like and that does not manifest the full anharmonicity and noncentrosymmetry evidenced in canonical structures with stereochemical expression. These findings provide insights into the local structural and electronic complexities governing the optoelectronic properties of AgBiS2 thin films.
Collapse
Affiliation(s)
- Kristopher M Koskela
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-3502, United States
| | - Anindya Pakhira
- Department of Chemistry, Texas A&M University, College Station, Texas 77845-3012, United States
| | - Marissa J Strumolo
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-3502, United States
| | - Sarbajit Banerjee
- Department of Materials Science and Engineering, Texas A&M University, College Station, Texas 77845-3003, United States
- Laboratory for Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 2, CH-8093 Zürich, Switzerland
- Laboratory for Battery Science, PSI Center for Energy and Environmental Sciences, Paul Scherrer Institute, Forschungsstrasse 111, CH-5232 Villigen PSI, Switzerland
| | - Richard L Brutchey
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-3502, United States
| |
Collapse
|
2
|
Paritmongkol W, Feng Z, Refaely-Abramson S, Tisdale WA, Kastl C, Maserati L. Layered Metal-Organic Chalcogenides: 2D Optoelectronics in 3D Self-Assembled Semiconductors. ACS NANO 2025; 19:12467-12477. [PMID: 40136016 PMCID: PMC11984305 DOI: 10.1021/acsnano.4c18493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 03/13/2025] [Accepted: 03/14/2025] [Indexed: 03/27/2025]
Abstract
Molecular self-assembly offers an effective and scalable way to design nanostructured materials with tunable optoelectronic properties. In the past 30 years, organic chemistry has delivered a plethora of metal-organic structures based on the combination of organic groups, chalcogens, and a broad range of metals. Among these, several layered metal-organic chalcogenides (MOCs)─including "mithrene" (AgSePh)─recently emerged as interesting platforms to host 2D physics embedded in 3D crystals. Their combination of broad tunability, easy processability, and promising optoelectronic performance is driving a renewed interest in the more general material group of "low-dimensional" hybrids. In addition, the covalent MOC lattice provides higher stability compared with polar materials in operating devices. Here, we provide a perspective on the rise of 2D MOCs in terms of their synthesis approaches, 2D quantum confined exciton physics, and potential future applications in UV and X-ray photodetection, chemical sensors, and electrocatalysis.
Collapse
Affiliation(s)
- Watcharaphol Paritmongkol
- Department
of Materials Science and Engineering, School of Molecular Science
and Engineering (MSE), Vidyasirimedhi Institute
of Science and Technology (VISTEC), Rayong 21210, Thailand
| | - Zhifu Feng
- Istituto
Italiano di Tecnologia, Genova 16163, Italy
| | - Sivan Refaely-Abramson
- Department
of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 76100, Israel
| | - William A. Tisdale
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| | - Christoph Kastl
- Walter
Schottky Institute, TUM School of Natural Sciences, Technical University of Munich, Garching 85748, Germany
- Munich Center
for Quantum Science and Technology (MCQST), Munich 80799, Germany
| | - Lorenzo Maserati
- Istituto
Italiano di Tecnologia, Genova 16163, Italy
- Laboratorio
Energia Ambiente Piacenza (LEAP), Piacenza 29121, Italy
| |
Collapse
|
3
|
Shu H, Zhao M, Lu S, Wan S, Genç A, Huang L, Ibáñez M, Lim KH, Hong M, Liu Y. Influence of surface engineering on the transport properties of lead sulfide nanomaterials. J Colloid Interface Sci 2025; 683:703-712. [PMID: 39706089 DOI: 10.1016/j.jcis.2024.12.067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 11/28/2024] [Accepted: 12/09/2024] [Indexed: 12/23/2024]
Abstract
Lead Sulfide (PbS) has garnered attention as a promising thermoelectric (TE) material due to its natural abundance and cost-effectiveness. However, its practical application is hindered by inherently high lattice thermal conductivity and low electrical conductivity. In this study, we address these challenges by surface functionalization of PbS nanocrystals using Cu2S molecular complexes-based ligand displacement. The molecular complexes facilitate the incorporation of Cu into the PbS matrix and leads to the formation of nanoscale defects, dislocations, and strain fields while optimizing the charge carrier transport. The structural modulations enhance the phonon scattering and lead to a significant reduction in lattice thermal conductivity of 0.60 W m-1K-1 at 867 K in the PbS-Cu2S system. Simultaneously, the Cu incorporation improves electrical conductivity by increasing both carrier concentration and mobility with carefully optimized the content of Cu2S molecular complexes. These synergistic modifications yield a peak figure-of-merit (zT) of 1.05 at 867 K for the PbS-1.0 %Cu2S sample, representing an almost twofold enhancement in TE performance compared to pristine PbS. This work highlights the effectiveness of surface treatment in overcoming the intrinsic limitations of PbS-based materials and presents a promising strategy for the development of high-efficiency TE systems.
Collapse
Affiliation(s)
- Haibo Shu
- Anhui Province Engineering Research Center of Flexible and Intelligent Materials, School of Chemistry and Chemical Engineering, Hefei University of Technology, 230009 Hefei, China
| | - Mingjun Zhao
- Anhui Province Engineering Research Center of Flexible and Intelligent Materials, School of Chemistry and Chemical Engineering, Hefei University of Technology, 230009 Hefei, China
| | - Shaoqing Lu
- Anhui Province Engineering Research Center of Flexible and Intelligent Materials, School of Chemistry and Chemical Engineering, Hefei University of Technology, 230009 Hefei, China
| | - Shanhong Wan
- Anhui Province Engineering Research Center of Flexible and Intelligent Materials, School of Chemistry and Chemical Engineering, Hefei University of Technology, 230009 Hefei, China
| | - Aziz Genç
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff CF10 3AT, United Kingdom
| | - Lulu Huang
- School of Materials Science and Engineering and Institute of Industry & Equipment Technology, Hefei University of Technology, Hefei 230009, China
| | - Maria Ibáñez
- Institute of Science and Technology Austria (ISTA), Am Campus 1, 3400 Klosterneuburg, Austria
| | - Khak Ho Lim
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310007, China; Institute of Zhejiang University-Quzhou, 99 Zheda Rd, Quzhou, 324000, China.
| | - Min Hong
- Centre for Future Materials and School of Engineering, University of Southern Queensland, Springfield Central Queensland, 4300, Australia.
| | - Yu Liu
- Anhui Province Engineering Research Center of Flexible and Intelligent Materials, School of Chemistry and Chemical Engineering, Hefei University of Technology, 230009 Hefei, China.
| |
Collapse
|
4
|
McKeever H, Kapuria N, Nicolson A, Sen S, Scanlon D, Ryan KM, Singh S. Ligand-Assisted Colloidal Synthesis of Alkali Metal-Based Ternary Chalcogenide: Nanostructuring and Phase Control in Na-Cu-S System. NANO LETTERS 2025; 25:4652-4658. [PMID: 40071968 PMCID: PMC11951143 DOI: 10.1021/acs.nanolett.4c04257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 03/05/2025] [Accepted: 03/07/2025] [Indexed: 03/27/2025]
Abstract
The development of sustainable and tunable materials is crucial for advancing modern technologies. We present a controlled synthesis of colloidal Na-Cu-S nanostructures. To overcome the reactivity difference between Na and Cu precursors toward chalcogens in a colloidal synthesis and to achieve metastable phase formation, we designed a single-source precursor for Cu and S. The decomposition of this precursor creates a Cu-S template into which Na ions diffuse to form metastable Na-Cu-S. By leveraging the reactivity of sulfur precursors, we synthesized Na3Cu4S4 (orthorhombic) and Na2Cu4S3 (monoclinic) nanocrystals with distinct properties. A mechanistic investigation reveals a predictive pathway previously unobserved in alkali-metal-based ternary chalcogenide systems. Further, computational DFT calculations demonstrate that Na3Cu4S4 exhibits metallic characteristics while Na2Cu4S3 is semiconducting, with an optimal band gap for photovoltaic applications. This research advances our understanding of ternary chalcogenide systems and establishes a framework for the rational design of complex nanomaterials.
Collapse
Affiliation(s)
- Hannah McKeever
- Department
of Chemical Sciences and Bernal Institute, University of Limerick, V94 T9PX Limerick, Ireland
| | - Nilotpal Kapuria
- Department
of Chemical Sciences and Bernal Institute, University of Limerick, V94 T9PX Limerick, Ireland
- Department
of Chemistry, Indiana University −
Bloomington, 800 East
Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Adair Nicolson
- School
of Chemistry, University of Birmingham, Birmingham B15 2TT, United Kingdom
- Department
of Chemistry, University College London, London WC1H 0AJ, United Kingdom
| | - Suvodeep Sen
- Department
of Chemical Sciences and Bernal Institute, University of Limerick, V94 T9PX Limerick, Ireland
| | - David Scanlon
- School
of Chemistry, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Kevin M. Ryan
- Department
of Chemical Sciences and Bernal Institute, University of Limerick, V94 T9PX Limerick, Ireland
| | - Shalini Singh
- Department
of Chemical Sciences and Bernal Institute, University of Limerick, V94 T9PX Limerick, Ireland
| |
Collapse
|
5
|
Turnley JW, Agrawal R. Solution processed metal chalcogenide semiconductors for inorganic thin film photovoltaics. Chem Commun (Camb) 2024; 60:5245-5269. [PMID: 38683572 DOI: 10.1039/d4cc01057d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
Thin film photovoltaics are a key part of both current and future solar energy technologies and have been heavily reliant on metal chalcogenide semiconductors as the absorber layer. Developing solution processing methods to deposit metal chalcogenide semiconductors offers the promise of low-cost and high-throughput fabrication of thin film photovoltaics. In this review article we lay out the key chemistry and engineering that has propelled research on solution processing of metal chalcogenide semiconductors, focusing on Cu(In,Ga)(S,Se)2 as a model system. Further, we expand on how this methodology can be extended to other emerging metal chalcogenide materials like Cu2ZnSn(S,Se)4, copper pnictogen sulfides, and chalcogenide perovskites. Finally, we discuss future opportunities in this field of research, both considering fundamental and applied perspectives. Overall, this review can serve as a roadmap to researchers tackling challenges in solution processed metal chalcogenides to better accelerate progress on thin films photovoltaics and other semiconductor applications.
Collapse
Affiliation(s)
- Jonathan W Turnley
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, USA.
| | - Rakesh Agrawal
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, USA.
| |
Collapse
|
6
|
Schenk FM, Zellweger T, Kumaar D, Bošković D, Wintersteller S, Solokha P, De Negri S, Emboras A, Wood V, Yarema M. Phase-Change Memory from Molecular Tellurides. ACS NANO 2024; 18:1063-1072. [PMID: 38117038 PMCID: PMC10786157 DOI: 10.1021/acsnano.3c10312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/13/2023] [Accepted: 12/15/2023] [Indexed: 12/21/2023]
Abstract
Phase-change memory (PCM) is an emerging memory technology based on the resistance contrast between the crystalline and amorphous states of a material. Further development and realization of PCM as a mainstream memory technology rely on innovative materials and inexpensive fabrication methods. Here, we propose a generalizable and scalable solution-processing approach to synthesize phase-change telluride inks in order to meet demands for high-throughput material screening, increased energy efficiency, and advanced device architectures. Bulk tellurides, such as Sb2Te3, GeTe, Sc2Te3, and TiTe2, are dissolved and purified to obtain inks of molecular metal telluride complexes. This allowed us to unlock a wide range of solution-processed ternary tellurides by the simple mixing of binary inks. We demonstrate accurate and quantitative composition control, including prototype materials (Ge-Sb-Te) and emerging rare-earth-metal telluride-doped materials (Sc-Sb-Te). Spin-coating and annealing convert ink formulations into high-quality, phase-pure telluride films with preferred orientation along the (00l) direction. Deposition engineering of liquid tellurides enables thickness-tunable films, infilling of nanoscale vias, and film preparation on flexible substrates. Finally, we demonstrate cyclable and non-volatile prototype memory devices, achieving performance indicators such as resistance contrast and low reset energy on par with state-of-the-art sputtered PCM layers.
Collapse
Affiliation(s)
- Florian M Schenk
- Chemistry and Materials Design Group, Institute for Electronics, Department of Information Technology and Electrical Engineering, ETH Zurich, Gloriastrasse 35, CH-8092 Zurich, Switzerland
| | - Till Zellweger
- Integrated Systems Laboratory, Department of Information Technology and Electrical Engineering, ETH Zurich, Gloriastrasse 35, CH-8092 Zurich, Switzerland
| | - Dhananjeya Kumaar
- Chemistry and Materials Design Group, Institute for Electronics, Department of Information Technology and Electrical Engineering, ETH Zurich, Gloriastrasse 35, CH-8092 Zurich, Switzerland
| | - Darijan Bošković
- Chemistry and Materials Design Group, Institute for Electronics, Department of Information Technology and Electrical Engineering, ETH Zurich, Gloriastrasse 35, CH-8092 Zurich, Switzerland
| | - Simon Wintersteller
- Chemistry and Materials Design Group, Institute for Electronics, Department of Information Technology and Electrical Engineering, ETH Zurich, Gloriastrasse 35, CH-8092 Zurich, Switzerland
| | - Pavlo Solokha
- Dipartimento di Chimica e Chimica Industriale, Università degli Studi di Genova, I-16146 Genova, Italy
| | - Serena De Negri
- Dipartimento di Chimica e Chimica Industriale, Università degli Studi di Genova, I-16146 Genova, Italy
| | - Alexandros Emboras
- Integrated Systems Laboratory, Department of Information Technology and Electrical Engineering, ETH Zurich, Gloriastrasse 35, CH-8092 Zurich, Switzerland
| | - Vanessa Wood
- Materials and Device Engineering Group, Institute for Electronics, Department of Information Technology and Electrical Engineering, ETH Zurich, Gloriastrasse 35, CH-8092 Zurich, Switzerland
| | - Maksym Yarema
- Chemistry and Materials Design Group, Institute for Electronics, Department of Information Technology and Electrical Engineering, ETH Zurich, Gloriastrasse 35, CH-8092 Zurich, Switzerland
| |
Collapse
|
7
|
Kapuria N, Nan B, Adegoke TE, Bangert U, Cabot A, Singh S, Ryan KM. Colloidal Synthesis of Multinary Alkali-Metal Chalcogenides Containing Bi and Sb: An Emerging Class of I-V-VI 2 Nanocrystals with Tunable Composition and Interesting Properties. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2023; 35:4810-4820. [PMID: 37396682 PMCID: PMC10308588 DOI: 10.1021/acs.chemmater.3c00673] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/22/2023] [Indexed: 07/04/2023]
Abstract
The growth mechanism and synthetic controls for colloidal multinary metal chalcogenide nanocrystals (NCs) involving alkali metals and the pnictogen metals Sb and Bi are unknown. Sb and Bi are prone to form metallic nanocrystals that stay as impurities in the final product. Herein, we synthesize colloidal NaBi1-xSbxSe2-ySy NCs using amine-thiol-Se chemistry. We find that ternary NaBiSe2 NCs initiate with Bi0 nuclei and an amorphous intermediate nanoparticle formation that gradually transforms into NaBiSe2 upon Se addition. Furthermore, we extend our methods to substitute Sb in place of Bi and S in place of Se. Our findings show the initial quasi-cubic morphology transforms into a spherical shape upon increased Sb substitution, and the S incorporation promotes elongation along the <111> direction. We further investigate the thermoelectric transport properties of the Sb-substituted material displaying very low thermal conductivity and n-type transport behavior. Notably, the NaBi0.75Sb0.25Se2 material exhibits an ultralow thermal conductivity of 0.25 W·m-1·K-1 at 596 K with an average thermal conductivity of 0.35 W·m-1·K-1 between 358 and 596 K and a ZTmax of 0.24.
Collapse
Affiliation(s)
- Nilotpal Kapuria
- Department
of Chemical Sciences and Bernal Institute, University of Limerick, V94T9PX Limerick, Ireland
| | - Bingfei Nan
- Catalonia
Institute for Energy Research -IREC, 08930 Barcelona, Spain
- ICREA, 08010 Barcelona, Spain
| | - Temilade Esther Adegoke
- Department
of Chemical Sciences and Bernal Institute, University of Limerick, V94T9PX Limerick, Ireland
| | - Ursel Bangert
- Department
of Physics and Energy and Bernal Institute, University of Limerick, V94T9PX Limerick, Ireland
| | - Andreu Cabot
- Catalonia
Institute for Energy Research -IREC, 08930 Barcelona, Spain
- ICREA, 08010 Barcelona, Spain
| | - Shalini Singh
- Department
of Chemical Sciences and Bernal Institute, University of Limerick, V94T9PX Limerick, Ireland
| | - Kevin M. Ryan
- Department
of Chemical Sciences and Bernal Institute, University of Limerick, V94T9PX Limerick, Ireland
| |
Collapse
|
8
|
Strumolo M, Eremin DB, Wang S, Mora Perez C, Prezhdo OV, Figueroa JS, Brutchey RL. Formation of a P 162- Ink from Elemental Red Phosphorus in a Thiol-Amine Mixture. Inorg Chem 2023; 62:6197-6201. [PMID: 37039460 PMCID: PMC10131223 DOI: 10.1021/acs.inorgchem.3c00370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Indexed: 04/12/2023]
Abstract
A P162- polyphosphide dianion ink was produced by the reaction of red phosphorus with a binary thiol-amine mixture of ethanethiol (ET) and ethylenediamine (en). The polyphosphide was identified by solution 31P NMR spectroscopy and electrospray ionization mass spectrometry. This solute was compared to the reaction products of white phosphorus (P4) and other elemental pnictides in the same solvent system. The reaction of P4 with ET and en gives the same P162- polyphosphide; however, the easier handling and lower reactivity of red phosphorus highlights the novelty of that reaction. Elemental arsenic and antimony both give mononuclear pnictogen-sulfide-thiolate complexes upon reaction with ET and en under otherwise identical conditions, with this difference likely resulting from the greater covalency and tendency of phosphorus to form P-P bonds.
Collapse
Affiliation(s)
- Marissa
J. Strumolo
- Department
of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Dmitry B. Eremin
- Department
of Chemistry, University of Southern California, Los Angeles, California 90089, United States
- The
Bridge@USC, University of Southern California, Los Angeles, California 90089, United States
| | - Shuai Wang
- Department
of Chemistry and Biochemistry, University
of California—San Diego, La Jolla, California 92093, United States
| | - Carlos Mora Perez
- Department
of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Oleg V. Prezhdo
- Department
of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Joshua S. Figueroa
- Department
of Chemistry and Biochemistry, University
of California—San Diego, La Jolla, California 92093, United States
| | - Richard L. Brutchey
- Department
of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
9
|
Pei X, Wang T, Wan Y, Gu K, Lu Z, Wang J. Etching anisotropy in two-dimensional SnS layered crystals using a thiol-amine solvent mixture as an etchant. INORG CHEM COMMUN 2023. [DOI: 10.1016/j.inoche.2023.110579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
10
|
Koskela K, Mora Perez C, Eremin DB, Evans JM, Strumolo MJ, Lewis NS, Prezhdo OV, Brutchey RL. Polymorphic Control of Solution-Processed Cu 2SnS 3 Films with Thiol-Amine Ink Formulation. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2022; 34:8654-8663. [PMID: 36248230 PMCID: PMC9558449 DOI: 10.1021/acs.chemmater.2c01612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 09/05/2022] [Indexed: 05/10/2023]
Abstract
There is increasing demand for tailored molecular inks that produce phase-pure solution-processed semiconductor films. Within the Cu-Sn-S phase space, Cu2SnS3 belongs to the I2-IV-VI3 class of semiconductors that crystallizes in several different polymorphs. We report the ability of thiol-amine solvent mixtures to dissolve inexpensive bulk Cu2S and SnO precursors to generate free-flowing molecular inks. Upon mild annealing, polymorphic control over phase-pure tetragonal (I4̅2m) and orthorhombic (Cmc21) Cu2SnS3 films was realized simply by switching the identity of the thiol (i.e., 1,2-ethanedithiol vs 2-mercaptoethanol, respectively). Polymorph control is dictated by differences in the resulting molecular metal-thiolate complexes and their subsequent decomposition profiles, which likely seed distinct Cu2-x S phases that template the ternary sulfide sublattice. The p-type tetragonal and orthorhombic Cu2SnS3 films possess similar experimental direct optical band gaps of 0.94 and 0.88 eV, respectively, and strong photoelectrochemical current responses. Understanding how ink formulation dictates polymorph choice should inform the development of other thiol-amine inks for solution-processed films.
Collapse
Affiliation(s)
- Kristopher
M. Koskela
- Department
of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Carlos Mora Perez
- Department
of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Dmitry B. Eremin
- Department
of Chemistry, University of Southern California, Los Angeles, California 90089, United States
- The
Bridge@USC, University of Southern California, Los Angeles, California 90089, United States
| | - Jake M. Evans
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| | - Marissa J. Strumolo
- Department
of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Nathan S. Lewis
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| | - Oleg V. Prezhdo
- Department
of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Richard L. Brutchey
- Department
of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
11
|
Chang C, Liu Y, Ho Lee S, Chiara Spadaro M, Koskela KM, Kleinhanns T, Costanzo T, Arbiol J, Brutchey RL, Ibáñez M. Surface Functionalization of Surfactant-Free Particles: A Strategy to Tailor the Properties of Nanocomposites for Enhanced Thermoelectric Performance. Angew Chem Int Ed Engl 2022; 61:e202207002. [PMID: 35799379 PMCID: PMC9542085 DOI: 10.1002/anie.202207002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Indexed: 11/06/2022]
Abstract
The broad implementation of thermoelectricity requires high-performance and low-cost materials. One possibility is employing surfactant-free solution synthesis to produce nanopowders. We propose the strategy of functionalizing "naked" particles' surface by inorganic molecules to control the nanostructure and, consequently, thermoelectric performance. In particular, we use bismuth thiolates to functionalize surfactant-free SnTe particles' surfaces. Upon thermal processing, bismuth thiolates decomposition renders SnTe-Bi2 S3 nanocomposites with synergistic functions: 1) carrier concentration optimization by Bi doping; 2) Seebeck coefficient enhancement and bipolar effect suppression by energy filtering; and 3) lattice thermal conductivity reduction by small grain domains, grain boundaries and nanostructuration. Overall, the SnTe-Bi2 S3 nanocomposites exhibit peak z T up to 1.3 at 873 K and an average z T of ≈0.6 at 300-873 K, which is among the highest reported for solution-processed SnTe.
Collapse
Affiliation(s)
- Cheng Chang
- Institute of Science and Technology AustriaAm Campus 13400KlosterneuburgAustria
| | - Yu Liu
- Institute of Science and Technology AustriaAm Campus 13400KlosterneuburgAustria
| | - Seung Ho Lee
- Institute of Science and Technology AustriaAm Campus 13400KlosterneuburgAustria
| | | | | | - Tobias Kleinhanns
- Institute of Science and Technology AustriaAm Campus 13400KlosterneuburgAustria
| | - Tommaso Costanzo
- Institute of Science and Technology AustriaAm Campus 13400KlosterneuburgAustria
| | - Jordi Arbiol
- Catalan Institute of Nanoscience and Nanotechnology (ICN2)CSIC, and BIST08193Barcelona, CataloniaSpain
- ICREAPg. Lluís Companys 2308010Barcelona, CataloniaSpain
| | - Richard L. Brutchey
- Department of ChemistryUniversity of Southern CaliforniaLos AngelesCA 90089USA
| | - Maria Ibáñez
- Institute of Science and Technology AustriaAm Campus 13400KlosterneuburgAustria
| |
Collapse
|
12
|
Chang C, Liu Y, Ho Lee S, Chiara Spadaro M, Koskela KM, Kleinhanns T, Costanzo T, Arbiol J, Brutchey RL, Ibáñez M. Surface Functionalization of Surfactant-Free Particles: A Strategy to Tailor the Properties of Nanocomposites for Enhanced Thermoelectric Performance. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 134:e202207002. [PMID: 38505739 PMCID: PMC10947131 DOI: 10.1002/ange.202207002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Indexed: 11/07/2022]
Abstract
The broad implementation of thermoelectricity requires high-performance and low-cost materials. One possibility is employing surfactant-free solution synthesis to produce nanopowders. We propose the strategy of functionalizing "naked" particles' surface by inorganic molecules to control the nanostructure and, consequently, thermoelectric performance. In particular, we use bismuth thiolates to functionalize surfactant-free SnTe particles' surfaces. Upon thermal processing, bismuth thiolates decomposition renders SnTe-Bi2S3 nanocomposites with synergistic functions: 1) carrier concentration optimization by Bi doping; 2) Seebeck coefficient enhancement and bipolar effect suppression by energy filtering; and 3) lattice thermal conductivity reduction by small grain domains, grain boundaries and nanostructuration. Overall, the SnTe-Bi2S3 nanocomposites exhibit peak z T up to 1.3 at 873 K and an average z T of ≈0.6 at 300-873 K, which is among the highest reported for solution-processed SnTe.
Collapse
Affiliation(s)
- Cheng Chang
- Institute of Science and Technology AustriaAm Campus 13400KlosterneuburgAustria
| | - Yu Liu
- Institute of Science and Technology AustriaAm Campus 13400KlosterneuburgAustria
| | - Seung Ho Lee
- Institute of Science and Technology AustriaAm Campus 13400KlosterneuburgAustria
| | | | | | - Tobias Kleinhanns
- Institute of Science and Technology AustriaAm Campus 13400KlosterneuburgAustria
| | - Tommaso Costanzo
- Institute of Science and Technology AustriaAm Campus 13400KlosterneuburgAustria
| | - Jordi Arbiol
- Catalan Institute of Nanoscience and Nanotechnology (ICN2)CSIC, and BIST08193Barcelona, CataloniaSpain
- ICREAPg. Lluís Companys 2308010Barcelona, CataloniaSpain
| | - Richard L. Brutchey
- Department of ChemistryUniversity of Southern CaliforniaLos AngelesCA 90089USA
| | - Maria Ibáñez
- Institute of Science and Technology AustriaAm Campus 13400KlosterneuburgAustria
| |
Collapse
|
13
|
Koskela KM, Quiton SJ, Sharada SM, Williams TJ, Brutchey RL. Kinetics and mechanistic details of bulk ZnO dissolution using a thiol-imidazole system. Chem Sci 2022; 13:3208-3215. [PMID: 35414876 PMCID: PMC8926287 DOI: 10.1039/d1sc06667f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/16/2022] [Indexed: 11/21/2022] Open
Abstract
Oxide dissolution is important for metal extraction from ores and has become an attractive route for the preparation of inks for thin film solution deposition; however, oxide dissolution is often kinetically challenging. While binary "alkahest" systems comprised of thiols and N-donor species, such as amines, are known to dissolve a wide range of oxides, the mechanism of dissolution and identity of the resulting solute(s) remain unstudied. Here, we demonstrate facile dissolution of both bulk synthetic and natural mineral ZnO samples using an "alkahest" that operates via reaction with thiophenol and 1-methylimidazole (MeIm) to give a single, pseudotetrahedral Zn(SPh)2(MeIm)2 molecular solute identified by X-ray crystallography. The kinetics of ZnO dissolution were measured using solution 1H NMR, and the reaction was found to be zero-order in the presence of excess ligands, with more electron withdrawing para-substituted thiophenols resulting in faster dissolution. A negative entropy of activation was measured by Eyring analysis, indicating associative ligand binding in, or prior to, the rate determining step. Combined experimental and computational surface binding studies on ZnO reveal stronger, irreversible thiophenol binding compared to MeIm, leading to a proposed dissolution mechanism initiated by thiol binding to the ZnO surface with the liberation of water, followed by alternating MeIm and thiolate ligand additions, and ultimately cleavage of the ligated zinc complex from the ZnO surface. Design rules garnered from the mechanistic insight provided by this study should inform the dissolution of other bulk oxides into inks for solution processed thin films.
Collapse
Affiliation(s)
- Kristopher M Koskela
- Department of Chemistry, University of Southern California Los Angeles CA 90089 USA
| | - Stephen J Quiton
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California Los Angeles CA 90089 USA
| | - Shaama Mallikarjun Sharada
- Department of Chemistry, University of Southern California Los Angeles CA 90089 USA
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California Los Angeles CA 90089 USA
| | - Travis J Williams
- Department of Chemistry, University of Southern California Los Angeles CA 90089 USA
- Loker Hydrocarbon Institute, University of Southern California Los Angeles CA 90089 USA
| | - Richard L Brutchey
- Department of Chemistry, University of Southern California Los Angeles CA 90089 USA
| |
Collapse
|
14
|
Kapuria N, Patil NN, Ryan KM, Singh S. Two-dimensional copper based colloidal nanocrystals: synthesis and applications. NANOSCALE 2022; 14:2885-2914. [PMID: 35156983 DOI: 10.1039/d1nr06990j] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Two-dimensional (2D) semiconductor nanocrystals display unconventional physical and opto-electronic properties due to their ultrathin and unique electronic structures. Since the success of Cd-based photoemissive nanocrystals, the development of sustainable and low-cost nanocrystals with enhanced electronic and physical properties has become a central research theme. In this context, copper-based semiconductor 2D nanocrystals, the cost-effective and eco-friendly alternative, exhibit unique plasmonic resonance, transport properties, and high ionic conductivity beneficial for sensing, energy storage, conversion, and catalytic applications. This review summarizes recent progress in the colloidal synthesis, growth mechanisms, properties, and applications of 2D copper-based nanostructures with tunable compositions, dimensions, and crystal phases. We highlight the growth mechanisms concerning their shape evolution in two dimensions. We analyse the effectiveness of cation exchange as a tool to synthesize multinary nanocrystals. Based on the preparation of Cu-based chalcogenide and non-chalcogenide compositions, we discuss synthesis control achieved via colloidal approaches to allow dimension tunability, phase engineering, and plasmonic and thermoelectric property optimization. Furthermore, their potential in various applications of catalysis, energy storage, and sensing is reviewed. Finally, we address the current challenges associated with 2D Cu-based nanocrystal development and provide an outlook pertaining to unexplored research areas.
Collapse
Affiliation(s)
- Nilotpal Kapuria
- Department of Chemical Sciences and Bernal Institute, University of Limerick, Limerick, Ireland.
| | - Niraj Nitish Patil
- Department of Chemical Sciences and Bernal Institute, University of Limerick, Limerick, Ireland.
| | - Kevin M Ryan
- Department of Chemical Sciences and Bernal Institute, University of Limerick, Limerick, Ireland.
| | - Shalini Singh
- Department of Chemical Sciences and Bernal Institute, University of Limerick, Limerick, Ireland.
| |
Collapse
|