1
|
Premachandra HKA, Piza-Roca C, Casteriano A, Higgins DP, Hohwieler K, Powell D, Cristescu RH. Advancements in noninvasive koala monitoring through combining Chlamydia detection with a targeted koala genotyping assay. Sci Rep 2024; 14:30371. [PMID: 39638795 PMCID: PMC11621440 DOI: 10.1038/s41598-024-76873-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 10/17/2024] [Indexed: 12/07/2024] Open
Abstract
Wildlife diseases are major players in local and global extinctions. Effective disease surveillance, management and conservation strategies require accurate estimates of pathogen prevalence. Yet pathogen detection in wild animals remains challenging. Current gold standards often require samples collected through veterinary examination, but this method is costly, intensive, invasive, and requires specialised staff and equipment. Collection of non-invasive samples, such as scats, is an effective monitoring tool which can be deployed at large scale, as scats contain DNA of both host and pathogens. The koala (Phascolarctos cinereus) is listed as 'endangered' under the EPBC Act 1999, with chlamydial disease representing a major threat. Here, we present a new approach that combines restriction-enzyme associated sequencing and targeted-sequence-capture genotyping, namely DArTcap, to detect Chlamydia pecorum in koala scats. We found this method has similar accuracy to current gold standards (qPCR of swab samples), with a sensitivity of 91.7% and a specificity of 100%. This method can be incorporated into existing koala genetic studies using marker panels, where population attributes can be estimated alongside C. pecorum presence, using the same scat samples, with the option to add further markers of interest. Such a one-stop-shop panel would considerably reduce processing times and cost.
Collapse
Affiliation(s)
- H K A Premachandra
- University of the Sunshine Coast, 90 Sippy Downs Drive, Sippy Downs, QLD, 4556, Australia
| | - Carme Piza-Roca
- University of the Sunshine Coast, 90 Sippy Downs Drive, Sippy Downs, QLD, 4556, Australia
| | - Andrea Casteriano
- Faculty of Science/ Sydney School of Veterinary Science, University of Sydney, NSW, 2006, Camperdown, Australia
| | - Damien P Higgins
- Faculty of Science/ Sydney School of Veterinary Science, University of Sydney, NSW, 2006, Camperdown, Australia
| | - Katrin Hohwieler
- University of the Sunshine Coast, 90 Sippy Downs Drive, Sippy Downs, QLD, 4556, Australia
| | - Daniel Powell
- University of the Sunshine Coast, 90 Sippy Downs Drive, Sippy Downs, QLD, 4556, Australia
| | - Romane H Cristescu
- University of the Sunshine Coast, 90 Sippy Downs Drive, Sippy Downs, QLD, 4556, Australia.
| |
Collapse
|
2
|
Strickland K, Jones ME, Storfer A, Hamede RK, Hohenlohe PA, Margres MJ, McCallum HI, Comte S, Lachish S, Kruuk LEB. Adaptive potential in the face of a transmissible cancer in Tasmanian devils. Mol Ecol 2024; 33:e17531. [PMID: 39340219 PMCID: PMC11521764 DOI: 10.1111/mec.17531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/28/2024] [Accepted: 09/03/2024] [Indexed: 09/30/2024]
Abstract
Emerging infectious diseases (EIDs) not only cause catastrophic declines in wildlife populations but also generate selective pressures that may result in rapid evolutionary responses. One such EID is devil facial tumour disease (DFTD) in the Tasmanian devil. DFTD is almost always fatal and has reduced the average lifespan of individuals by around 2 years, likely causing strong selection for traits that reduce susceptibility to the disease, but population decline has also left Tasmanian devils vulnerable to inbreeding depression. We analysed 22 years of data from an ongoing study of a population of Tasmanian devils on Freycinet Peninsula, Tasmania, to (1) identify whether DFTD may be causing selection on body size, by estimating phenotypic and genetic correlations between DFTD and size traits, (2) estimate the additive genetic variance of susceptibility to DFTD, and (3) investigate whether size traits or susceptibility to DFTD were under inbreeding depression. We found a positive phenotypic relationship between head width and susceptibility to DFTD, but this was not underpinned by a genetic correlation. Conversely, we found a negative phenotypic relationship between body weight and susceptibility to DFTD, and there was evidence for a negative genetic correlation between susceptibility to DFTD and body weight. There was additive genetic variance in susceptibility to DFTD, head width and body weight, but there was no evidence for inbreeding depression in any of these traits. These results suggest that Tasmanian devils have the potential to respond adaptively to DFTD, although the realised evolutionary response will critically further depend on the evolution of DFTD itself.
Collapse
Affiliation(s)
- Kasha Strickland
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, UK
| | - Menna E. Jones
- School of Natural Sciences, University of Tasmania, Hobart, TAS, Australia
| | - Andrew Storfer
- School of Biological Sciences, Washington State University, Pullman, Washington, USA 99164-4236
| | - Rodrigo K Hamede
- School of Natural Sciences, University of Tasmania, Hobart, TAS, Australia
| | - Paul A Hohenlohe
- Department of Biological Sciences, University of Idaho, Moscow, Idaho 83844
| | - Mark J Margres
- Department of Integrative Biology, University of South Florida, Tampa, FL, USA
| | - Hamish I McCallum
- Environmental Futures Research Institute, Griffith University, Nathan, Queensland, Australia
| | - Sebastien Comte
- Vertebrate Pest Research Unit, NSW Department of Primary Industries, 1447 Forest Rd, Orange NSW 2800, Australia
| | - Shelly Lachish
- Public Health Intelligence Branch, Queensland Public Health and Scientific Services Division, Queensland Health, 15 Butterfield Street, Herston, QLD 4006
| | - Loeske E B Kruuk
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, UK
| |
Collapse
|
3
|
Silver LW, Hogg CJ, Belov K. Plethora of New Marsupial Genomes Informs Our Knowledge of Marsupial MHC Class II. Genome Biol Evol 2024; 16:evae156. [PMID: 39031605 PMCID: PMC11305139 DOI: 10.1093/gbe/evae156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 05/22/2024] [Accepted: 06/24/2024] [Indexed: 07/22/2024] Open
Abstract
The major histocompatibility complex (MHC) plays a vital role in the vertebrate immune system due to its role in infection, disease and autoimmunity, or recognition of "self". The marsupial MHC class II genes show divergence from eutherian MHC class II genes and are a unique taxon of therian mammals that give birth to altricial and immunologically naive young providing an opportune study system for investigating evolution of the immune system. Additionally, the MHC in marsupials has been implicated in disease associations, including susceptibility to Chlamydia pecorum infection in koalas. Due to the complexity of the gene family, automated annotation is not possible so here we manually annotate 384 class II MHC genes in 29 marsupial species. We find losses of key components of the marsupial MHC repertoire in the Dasyuromorphia order and the Pseudochiridae family. We perform PGLS analysis to show the gene losses we find are true gene losses and not artifacts of unresolved genome assembly. We investigate the associations between the number of loci and life history traits, including lifespan and reproductive output in lineages of marsupials and hypothesize that gene loss may be linked to the energetic cost and tradeoffs associated with pregnancy and reproduction. We found support for litter size being a significant predictor of the number of DBA and DBB loci, indicating a tradeoff between the energetic requirements of immunity and reproduction. Additionally, we highlight the increased susceptibility of Dasyuridae species to neoplasia and a potential link to MHC gene loss. Finally, these annotations provide a valuable resource to the immunogenetics research community to move forward and further investigate diversity in MHC genes in marsupials.
Collapse
Affiliation(s)
- Luke W Silver
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Carolyn J Hogg
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Katherine Belov
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|
4
|
Zalewski A, Virtanen JME, Zalewska H, Sironen T, Kołodziej-Sobocińska M. Asymptomatic viral infection is associated with lower host reproductive output in wild mink populations. Sci Rep 2023; 13:9390. [PMID: 37296209 PMCID: PMC10251326 DOI: 10.1038/s41598-023-36581-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 06/06/2023] [Indexed: 06/12/2023] Open
Abstract
Many endemic viruses circulate in populations without hosts showing visible signs of disease, while still having the potential to alter host survival or reproduction. Aleutian Mink Disease Virus (AMDV) circulates in many American mink (Neogale vison) populations in its native and introduced ranges. In this study, we analysed how AMDV infection in female American mink affects the reproduction of a feral population. Females infected with AMDV delivered significantly smaller litters (5.8 pups) than uninfected females (6.3 pups), meaning their litter size was reduced by 8%. Larger females and yearling females had larger litters than smaller and older females. There were no significant differences in whole litter survival between infected and uninfected females; however, offspring survival until September or October within litters of infected females was 14% lower than that within those of uninfected females. This negative link between infection and reproductive output means that Aleutian disease could seriously affect the wild mink population. This study increases our understanding of the threats posed by the spread of viruses to wildlife from farm animals or humans, highlighting that viruses circulating in wildlife, even in the absence of clinical manifestation, can be important drivers of population dynamics in wildlife.
Collapse
Affiliation(s)
- Andrzej Zalewski
- Mammal Research Institute, Polish Academy of Sciences, 17-230, Białowieża, Poland.
| | - Jenni M E Virtanen
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Agnes Sjöbergin Katu 2, 00790, Helsinki, Finland
- Department of Virology, Faculty of Medicine, University of Helsinki, Haartmaninkatu 3, 00290, Helsinki, Finland
| | - Hanna Zalewska
- Mammal Research Institute, Polish Academy of Sciences, 17-230, Białowieża, Poland
| | - Tarja Sironen
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Agnes Sjöbergin Katu 2, 00790, Helsinki, Finland
- Department of Virology, Faculty of Medicine, University of Helsinki, Haartmaninkatu 3, 00290, Helsinki, Finland
| | | |
Collapse
|
5
|
AbdulJabbar K, Castillo SP, Hughes K, Davidson H, Boddy AM, Abegglen LM, Minoli L, Iussich S, Murchison EP, Graham TA, Spiro S, Maley CC, Aresu L, Palmieri C, Yuan Y. Bridging clinic and wildlife care with AI-powered pan-species computational pathology. Nat Commun 2023; 14:2408. [PMID: 37100774 PMCID: PMC10133243 DOI: 10.1038/s41467-023-37879-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 04/04/2023] [Indexed: 04/28/2023] Open
Abstract
Cancers occur across species. Understanding what is consistent and varies across species can provide new insights into cancer initiation and evolution, with significant implications for animal welfare and wildlife conservation. We build a pan-species cancer digital pathology atlas (panspecies.ai) and conduct a pan-species study of computational comparative pathology using a supervised convolutional neural network algorithm trained on human samples. The artificial intelligence algorithm achieves high accuracy in measuring immune response through single-cell classification for two transmissible cancers (canine transmissible venereal tumour, 0.94; Tasmanian devil facial tumour disease, 0.88). In 18 other vertebrate species (mammalia = 11, reptilia = 4, aves = 2, and amphibia = 1), accuracy (range 0.57-0.94) is influenced by cell morphological similarity preserved across different taxonomic groups, tumour sites, and variations in the immune compartment. Furthermore, a spatial immune score based on artificial intelligence and spatial statistics is associated with prognosis in canine melanoma and prostate tumours. A metric, named morphospace overlap, is developed to guide veterinary pathologists towards rational deployment of this technology on new samples. This study provides the foundation and guidelines for transferring artificial intelligence technologies to veterinary pathology based on understanding of morphological conservation, which could vastly accelerate developments in veterinary medicine and comparative oncology.
Collapse
Affiliation(s)
- Khalid AbdulJabbar
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK
| | - Simon P Castillo
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK
| | - Katherine Hughes
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, UK
| | - Hannah Davidson
- Zoological Society of London, London, UK
- Centre for Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Sq, London, UK
| | - Amy M Boddy
- Department of Anthropology, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Lisa M Abegglen
- Department of Pediatrics and Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
- PEEL Therapeutics, Inc., Salt Lake City, UT, USA
| | - Lucia Minoli
- Department of Veterinary Sciences, University of Turin, 10095, Grugliasco, Italy
| | - Selina Iussich
- Department of Veterinary Sciences, University of Turin, 10095, Grugliasco, Italy
| | - Elizabeth P Murchison
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, UK
| | - Trevor A Graham
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
- Centre for Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Sq, London, UK
| | | | - Carlo C Maley
- Arizona Cancer Evolution Center, Biodesign Institute and School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Luca Aresu
- Department of Veterinary Sciences, University of Turin, 10095, Grugliasco, Italy
| | - Chiara Palmieri
- School of Veterinary Science, The University of Queensland, 4343, Gatton, QLD, Australia
| | - Yinyin Yuan
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK.
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK.
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
6
|
Dugovich BS, Beechler BR, Dolan BP, Crowhurst RS, Gonzales BJ, Powers JG, Hughson DL, Vu RK, Epps CW, Jolles AE. Population connectivity patterns of genetic diversity, immune responses and exposure to infectious pneumonia in a metapopulation of desert bighorn sheep. J Anim Ecol 2023. [PMID: 36637333 DOI: 10.1111/1365-2656.13885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 01/03/2023] [Indexed: 01/14/2023]
Abstract
Habitat fragmentation is an important driver of biodiversity loss and can be remediated through management actions aimed at maintenance of natural connectivity in metapopulations. Connectivity may protect populations from infectious diseases by preserving immunogenetic diversity and disease resistance. However, connectivity could exacerbate the risk of infectious disease spread across vulnerable populations. We tracked the spread of a novel strain of Mycoplasma ovipneumoniae in a metapopulation of desert bighorn sheep Ovis canadensis nelsoni in the Mojave Desert to investigate how variation in connectivity among populations influenced disease outcomes. M. ovipneumoniae was detected throughout the metapopulation, indicating that the relative isolation of many of these populations did not protect them from pathogen invasion. However, we show that connectivity among bighorn sheep populations was correlated with higher immunogenetic diversity, a protective immune response and lower disease prevalence. Variation in protective immunity predicted infection risk in individual bighorn sheep and was associated with heterozygosity at genetic loci linked to adaptive and innate immune signalling. Together, these findings may indicate that population connectivity maintains immunogenetic diversity in bighorn sheep populations in this system and has direct effects on immune responses in individual bighorn sheep and their susceptibility to infection by a deadly pathogen. Our study suggests that the genetic benefits of population connectivity could outweigh the risk of infectious disease spread and supports conservation management that maintains natural connectivity in metapopulations.
Collapse
Affiliation(s)
- Brian S Dugovich
- Department of Integrative Biology, Oregon State University, Corvallis, Oregon, USA
| | - Brianna R Beechler
- Carlson College of Veterinary Medicine, Oregon State University, Corvallis, Oregon, USA
| | - Brian P Dolan
- Carlson College of Veterinary Medicine, Oregon State University, Corvallis, Oregon, USA
| | - Rachel S Crowhurst
- Department of Fisheries, Wildlife, and Conservation Sciences, Oregon State University, Corvallis, Oregon, USA
| | - Ben J Gonzales
- California Department of Fish and Wildlife, Rancho Cordova, California, USA
| | - Jenny G Powers
- National Park Service, Biological Resources Division, Fort Collins, Colorado, USA
| | - Debra L Hughson
- National Park Service, Mojave National Preserve, Barstow, California, USA
| | - Regina K Vu
- California Department of Fish and Wildlife, Rancho Cordova, California, USA
| | - Clinton W Epps
- Department of Fisheries, Wildlife, and Conservation Sciences, Oregon State University, Corvallis, Oregon, USA
| | - Anna E Jolles
- Department of Integrative Biology, Oregon State University, Corvallis, Oregon, USA.,Carlson College of Veterinary Medicine, Oregon State University, Corvallis, Oregon, USA
| |
Collapse
|
7
|
Xue ZP, Chindelevitch L, Guichard F. Supply-driven evolution: Mutation bias and trait-fitness distributions can drive macro-evolutionary dynamics. Front Ecol Evol 2023. [DOI: 10.3389/fevo.2022.1048752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Many well-documented macro-evolutionary phenomena still challenge current evolutionary theory. Examples include long-term evolutionary trends, major transitions in evolution, conservation of certain biological features such as hox genes, and the episodic creation of new taxa. Here, we present a framework that may explain these phenomena. We do so by introducing a probabilistic relationship between trait value and reproductive fitness. This integration allows mutation bias to become a robust driver of long-term evolutionary trends against environmental bias, in a way that is consistent with all current evolutionary theories. In cases where mutation bias is strong, such as when detrimental mutations are more common than beneficial mutations, a regime called “supply-driven” evolution can arise. This regime can explain the irreversible persistence of higher structural hierarchies, which happens in the major transitions in evolution. We further generalize this result in the long-term dynamics of phenotype spaces. We show how mutations that open new phenotype spaces can become frozen in time. At the same time, new possibilities may be observed as a burst in the creation of new taxa.
Collapse
|
8
|
Müller-Klein N, Risely A, Schmid DW, Manser M, Clutton-Brock T, Sommer S. Two decades of tuberculosis surveillance reveal disease spread, high levels of exposure and mortality and marked variation in disease progression in wild meerkats. Transbound Emerg Dis 2022; 69:3274-3284. [PMID: 35947092 DOI: 10.1111/tbed.14679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/20/2022] [Accepted: 07/31/2022] [Indexed: 02/07/2023]
Abstract
Infections with tuberculosis (TB)-causing agents of the Mycobacterium tuberculosis complex threaten human, livestock and wildlife health globally due to the high capacity to cross trans-species boundaries. Tuberculosis is a cryptic disease characterized by prolonged, sometimes lifelong subclinical infections, complicating disease monitoring. Consequently, our understanding of infection risk, disease progression, and mortality across species affected by TB remains limited. The TB agent Mycobacterium suricattae was first recorded in the late 1990s in a wild population of meerkats inhabiting the Kalahari in South Africa and has since spread considerably, becoming a common cause of meerkat mortality. This offers an opportunity to document the epidemiology of naturally spreading TB in a wild population. Here, we synthesize more than 25 years' worth of TB reporting and social interaction data across 3420 individuals to track disease spread, and quantify rates of TB social exposure, progression, and mortality. We found that most meerkats had been exposed to the pathogen within eight years of first detection in the study area, with exposure reaching up to 95% of the population. Approximately one quarter of exposed individuals progressed to clinical TB stages, followed by physical deterioration and death within a few months. Since emergence, 11.6% of deaths were attributed to TB, although the true toll of TB-related mortality is likely higher. Lastly, we observed marked variation in disease progression among individuals, suggesting inter-individual differences in both TB susceptibility and resistance. Our results highlight that TB prevalence and mortality could be higher than previously reported, particularly in species or populations with complex social group dynamics. Long-term studies, such as the present one, allow us to assess temporal variation in disease prevalence and progression and quantify exposure, which is rarely measured in wildlife. Long-term studies are highly valuable tools to explore disease emergence and ecology and study host-pathogen co-evolutionary dynamics in general, and its impact on social mammals.
Collapse
Affiliation(s)
- Nadine Müller-Klein
- Conservation Genomics and EcoHealth, Institute for Evolutionary Ecology and Conservation Genomics, Ulm, Germany
| | - Alice Risely
- Conservation Genomics and EcoHealth, Institute for Evolutionary Ecology and Conservation Genomics, Ulm, Germany
| | - Dominik W Schmid
- Conservation Genomics and EcoHealth, Institute for Evolutionary Ecology and Conservation Genomics, Ulm, Germany
| | - Marta Manser
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland.,Mammal Research Institute, University of Pretoria, Pretoria, South Africa.,Kalahari Research Trust, Kuruman River Reserve, Northern Cape, South Africa
| | - Tim Clutton-Brock
- Mammal Research Institute, University of Pretoria, Pretoria, South Africa.,Kalahari Research Trust, Kuruman River Reserve, Northern Cape, South Africa.,Large Animal Research Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Simone Sommer
- Conservation Genomics and EcoHealth, Institute for Evolutionary Ecology and Conservation Genomics, Ulm, Germany
| |
Collapse
|
9
|
Silver LW, Cheng Y, Quigley BL, Robbins A, Timms P, Hogg CJ, Belov K. A targeted approach to investigating immune genes of an iconic Australian marsupial. Mol Ecol 2022; 31:3286-3303. [PMID: 35510793 PMCID: PMC9325493 DOI: 10.1111/mec.16493] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 03/02/2022] [Accepted: 04/05/2022] [Indexed: 11/30/2022]
Abstract
Disease is a contributing factor to the decline of wildlife populations across the globe. Koalas, iconic yet declining Australian marsupials, are predominantly impacted by two pathogens, Chlamydia and koala retrovirus. Chlamydia is an obligate intracellular bacterium and one of the most widespread sexually transmitted infections in humans worldwide. In koalas, Chlamydia infections can present as asymptomatic or can cause a range of ocular and urogenital disease signs, such as conjunctivitis, cystitis and infertility. In this study, we looked at differences in response to Chlamydia in two northern populations of koalas using a targeted gene sequencing of 1209 immune genes in addition to genome‐wide reduced representation data. We identified two MHC Class I genes associated with Chlamydia disease progression as well as 25 single nucleotide polymorphisms across 17 genes that were associated with resolution of Chlamydia infection. These genes are involved in the innate immune response (TLR5) and defence (TLR5, IFNγ, SERPINE1, STAT2 and STX4). This study deepens our understanding of the role that genetics plays in disease progression in koalas and leads into future work that will use whole genome resequencing of a larger sample set to investigate in greater detail regions identified in this study. Elucidation of the role of host genetics in disease progression and resolution in koalas will directly contribute to better design of Chlamydia vaccines and management of koala populations which have recently been listed as “endangered.”
Collapse
Affiliation(s)
- Luke W Silver
- School of Life and Environmental Sciences, The University of Sydney, New South Wales, 2006, Australia
| | - Yuanyuan Cheng
- School of Life and Environmental Sciences, The University of Sydney, New South Wales, 2006, Australia
| | - Bonnie L Quigley
- Genecology Research Centre, University of the Sunshine Coast, 90 Sippy Downs Drive, Sippy Downs, Queensland, 4556, Australia.,Provectus Algae Pty Ltd, 5 Bartlett Road, Noosaville, Queensland, 4566, Australia
| | - Amy Robbins
- Genecology Research Centre, University of the Sunshine Coast, 90 Sippy Downs Drive, Sippy Downs, Queensland, 4556, Australia.,Endeavour Veterinary Ecology Pty Ltd, 1695 Pumicestone Road, Toorbul, Queensland, 4510, Australia
| | - Peter Timms
- Genecology Research Centre, University of the Sunshine Coast, 90 Sippy Downs Drive, Sippy Downs, Queensland, 4556, Australia
| | - Carolyn J Hogg
- School of Life and Environmental Sciences, The University of Sydney, New South Wales, 2006, Australia
| | - Katherine Belov
- School of Life and Environmental Sciences, The University of Sydney, New South Wales, 2006, Australia
| |
Collapse
|
10
|
Sharma HP, Achhami B. Gastro-intestinal parasites of sympatric red panda and livestock in protected areas of Nepal. Vet Med Sci 2021; 8:568-577. [PMID: 34599791 PMCID: PMC8959333 DOI: 10.1002/vms3.651] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Background Disease transmission among humans, domestic animals and wildlife can have profound consequences in human health, wildlife conservation and maintenance of biodiversity. The issue of disease transmission can be particularly important for threatened wildlife species, yet such information remains scarce due to logistic constraints and government regulation on animal handlings. The red panda (Ailurus fulgens) is one of the globally threatened species challenged with habitat fragmentation and human disturbance. In Nepal, livestock grazing is recognised as one of the major threats to the red panda. Aim We aimed to provide the first empirical data on gastro‐intestinal parasites for sympatric livestock and red panda from two geographically isolated regions in Nepal. Methods In this study, we systematically sampled, and examined the faecal of livestock and red panda in two separate protected areas to provide the first empirical data on their gastro‐intestinal parasite, including the prevalence, parasite richness and load. Results We documented 11 parasite taxa (7 nematodes, 2 cestodes, 1 trematode and 1 coccidian), of which 8 are shared by both livestock and red panda. Furthermore, parasite prevalence, parasite load and parasite richness were generally higher in the livestock than the red panda. Conclusion The data provided from this systematic survey on parasites of sympatric livestock and red panda in wild raises the concern about the potential role of livestock mediating disease dynamics in the red panda. Our study suggests that cross‐transmission of parasites between livestock and red panda are likely, and the livestock may be a competent agent bringing disease to both red panda and human. Therefore, managing human‐livestock‐wildlife contact to reduce disease risk to all groups should be a key component in conservation planning of protected areas.
Collapse
Affiliation(s)
- Hari Prasad Sharma
- Central Department of ZoologyTribhuvan UniversityKirtipurKathmanduNepal
- Nepal Zoological SocietyKathmanduNepal
| | - Bishnu Achhami
- Central Department of ZoologyTribhuvan UniversityKirtipurKathmanduNepal
| |
Collapse
|
11
|
Mussel Mass Mortality and the Microbiome: Evidence for Shifts in the Bacterial Microbiome of a Declining Freshwater Bivalve. Microorganisms 2021; 9:microorganisms9091976. [PMID: 34576872 PMCID: PMC8471132 DOI: 10.3390/microorganisms9091976] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/09/2021] [Accepted: 09/14/2021] [Indexed: 01/04/2023] Open
Abstract
Freshwater mussels (Unionida) are suffering mass mortality events worldwide, but the causes remain enigmatic. Here, we describe an analysis of bacterial loads, community structure, and inferred metabolic pathways in the hemolymph of pheasantshells (Actinonaias pectorosa) from the Clinch River, USA, during a multi-year mass mortality event. Bacterial loads were approximately 2 logs higher in moribund mussels (cases) than in apparently healthy mussels (controls). Bacterial communities also differed between cases and controls, with fewer sequence variants (SVs) and higher relative abundances of the proteobacteria Yokenella regensburgei and Aeromonas salmonicida in cases than in controls. Inferred bacterial metabolic pathways demonstrated a predominance of degradation, utilization, and assimilation pathways in cases and a predominance of biosynthesis pathways in controls. Only two SVs correlated with Clinch densovirus 1, a virus previously shown to be strongly associated with mortality in this system: Deinococcota and Actinobacteriota, which were associated with densovirus-positive and densovirus-negative mussels, respectively. Overall, our results suggest that bacterial invasion and shifts in the bacterial microbiome during unionid mass mortality events may result from primary insults such as viral infection or environmental stressors. If so, bacterial communities in mussel hemolymph may be sensitive, if generalized, indicators of declining mussel health.
Collapse
|
12
|
Eskew EA, Fraser D, Vonhof MJ, Pinsky ML, Maslo B. Host gene expression in wildlife disease: making sense of species-level responses. Mol Ecol 2021; 30:6517-6530. [PMID: 34516689 DOI: 10.1111/mec.16172] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 08/16/2021] [Accepted: 08/31/2021] [Indexed: 12/11/2022]
Abstract
Emerging infectious diseases are significant threats to wildlife conservation, yet the impacts of pathogen exposure and infection can vary widely among host species. As such, conservation biologists and disease ecologists have increasingly aimed to understand species-specific host susceptibility using molecular methods. In particular, comparative gene expression assays have been used to contrast the transcriptomic responses of disease-resistant and disease-susceptible hosts to pathogen exposure. This work usually assumes that the gene expression responses of disease-resistant species will reveal the activation of molecular pathways contributing to host defence. However, results often show that disease-resistant hosts undergo little gene expression change following pathogen challenge. Here, we discuss the mechanistic implications of these "null" findings and offer methodological suggestions for future molecular studies of wildlife disease. First, we highlight that muted transcriptomic responses with minimal immune system recruitment may indeed be protective for nonsusceptible hosts if they limit immunopathology and promote pathogen tolerance in systems where susceptible hosts suffer from genetic dysregulation. Second, we argue that overly narrow investigation of responses to pathogen exposure may overlook important, constitutively active molecular pathways that underlie species-specific defences. Finally, we outline alternative study designs and approaches that complement interspecific transcriptomic comparisons, including intraspecific gene expression studies and genomic methods to detect signatures of selection. Collectively, these insights will help ecologists extract maximal information from conservation-relevant transcriptomic data sets, leading to a deeper understanding of host defences and, ultimately, the implementation of successful conservation interventions.
Collapse
Affiliation(s)
- Evan A Eskew
- Department of Ecology, Evolution and Natural Resources, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA.,Department of Biology, Pacific Lutheran University, Tacoma, Washington, USA
| | - Devaughn Fraser
- Wildlife Genetics Research Laboratory, California Department of Fish and Wildlife, Sacramento, California, USA
| | - Maarten J Vonhof
- Department of Biological Sciences, Western Michigan University, Kalamazoo, Michigan, USA
| | - Malin L Pinsky
- Department of Ecology, Evolution and Natural Resources, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA
| | - Brooke Maslo
- Department of Ecology, Evolution and Natural Resources, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA
| |
Collapse
|
13
|
Genomics for conservation: a case study of behavioral genes in the Tasmanian devil. CONSERV GENET 2021. [DOI: 10.1007/s10592-021-01354-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
14
|
Tompros A, Dean AD, Fenton A, Wilber MQ, Carter ED, Gray MJ. Frequency-dependent transmission of Batrachochytrium salamandrivorans in eastern newts. Transbound Emerg Dis 2021; 69:731-741. [PMID: 33617686 PMCID: PMC9290712 DOI: 10.1111/tbed.14043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/11/2021] [Accepted: 02/19/2021] [Indexed: 12/25/2022]
Abstract
Transmission is the fundamental process whereby pathogens infect their hosts and spread through populations, and can be characterized using mathematical functions. The functional form of transmission for emerging pathogens can determine pathogen impacts on host populations and can inform the efficacy of disease management strategies. By directly measuring transmission between infected and susceptible adult eastern newts (Notophthalmus viridescens) in aquatic mesocosms, we identified the most plausible transmission function for the emerging amphibian fungal pathogen Batrachochytrium salamandrivorans (Bsal). Although we considered a range of possible transmission functions, we found that Bsal transmission was best explained by pure frequency dependence. We observed that >90% of susceptible newts became infected within 17 days post‐exposure to an infected newt across a range of host densities and initial infection prevalence treatments. Under these conditions, we estimated R0 = 4.9 for Bsal in an eastern newt population. Our results suggest that Bsal has the capability of driving eastern newt populations to extinction and that managing host density may not be an effective management strategy. Intervention strategies that prevent Bsal introduction or increase host resistance or tolerance to infection may be more effective. Our results add to the growing empirical evidence that transmission of wildlife pathogens can saturate and be functionally frequency‐dependent.
Collapse
Affiliation(s)
- Adrianna Tompros
- Center for Wildlife Health, Department of Forestry, Wildlife, and Fisheries, University of Tennessee Institute of Agriculture, Knoxville, TN, USA
| | - Andrew D Dean
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Andy Fenton
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Mark Q Wilber
- Center for Wildlife Health, Department of Forestry, Wildlife, and Fisheries, University of Tennessee Institute of Agriculture, Knoxville, TN, USA.,Department of Ecology, Evolution and Marine Biology, University of California-Santa Barbara, Santa Barbara, CA, USA
| | - Edward Davis Carter
- Center for Wildlife Health, Department of Forestry, Wildlife, and Fisheries, University of Tennessee Institute of Agriculture, Knoxville, TN, USA
| | - Matthew J Gray
- Center for Wildlife Health, Department of Forestry, Wildlife, and Fisheries, University of Tennessee Institute of Agriculture, Knoxville, TN, USA
| |
Collapse
|
15
|
Andersson KE, Adamovicz L, Mumm LE, Winter JM, Glowacki G, Teixeira-Neto R, Adkesson MJ, Hostnik ET, Haynes E, Allender MC. Detection of a novel herpesvirus associated with squamous cell carcinoma in a free-ranging Blanding's turtle. J Vet Diagn Invest 2021; 33:348-351. [PMID: 33491592 DOI: 10.1177/1040638721989302] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The spread of both infectious and noninfectious diseases through wildlife populations is of increasing concern. Neoplastic diseases are rarely associated with population-level impacts in wildlife; however, impacts on individual health can be severe and might reflect deteriorating environmental conditions. An adult male free-ranging Blanding's turtle (Emydoidea blandingii) originally captured in 2005 and deemed healthy, was recaptured in 2018 with a 1 × 1.5 cm intra-oral broad-based right mandibular mass. An excisional biopsy was performed, and histopathology revealed squamous cell carcinoma (SCC). Consensus herpesvirus PCR identified a novel herpesvirus (proposed name Emydoidea herpesvirus 2 [EBHV-2]) within the tumor. EBHV-2 shares 85% sequence homology with Terrapene herpesvirus 2 (TerHV-2), a herpesvirus linked to fibropapillomas in eastern box turtles (Terrapene carolina carolina). Virus-associated fibropapillomas have been identified in multiple marine turtle species and have had debilitating effects on their populations, but to date, virus-associated SCCs are rarely reported.
Collapse
Affiliation(s)
- Kirsten E Andersson
- Wildlife Epidemiology Laboratory, College of Veterinary Medicine, University of Illinois-Urbana, IL
| | - Laura Adamovicz
- Wildlife Epidemiology Laboratory, College of Veterinary Medicine, University of Illinois-Urbana, IL.,Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Illinois-Urbana, IL
| | - Lauren E Mumm
- Wildlife Epidemiology Laboratory, College of Veterinary Medicine, University of Illinois-Urbana, IL
| | - John M Winter
- Wildlife Epidemiology Laboratory, College of Veterinary Medicine, University of Illinois-Urbana, IL
| | - Gary Glowacki
- Lake County Forest Preserve District, Libertyville, IL
| | - Rachel Teixeira-Neto
- Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Illinois-Urbana, IL
| | | | | | - Ellen Haynes
- Wildlife Epidemiology Laboratory, College of Veterinary Medicine, University of Illinois-Urbana, IL
| | - Matthew C Allender
- Wildlife Epidemiology Laboratory, College of Veterinary Medicine, University of Illinois-Urbana, IL.,Chicago Zoological Society, Brookfield Zoo, Brookfield, IL
| |
Collapse
|
16
|
Tsai MS, Fogarty U, Byrne AW, O’Keeffe J, Newman C, Macdonald DW, Buesching CD. Effects of Mustelid gammaherpesvirus 1 (MusGHV-1) Reactivation in European Badger ( Meles meles) Genital Tracts on Reproductive Fitness. Pathogens 2020; 9:E769. [PMID: 32962280 PMCID: PMC7559395 DOI: 10.3390/pathogens9090769] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/01/2020] [Accepted: 09/18/2020] [Indexed: 12/31/2022] Open
Abstract
Reactivation of latent Gammaherpesvirus in the genital tract can lead to reproductive failure in domestic animals. Nevertheless, this pathophysiology has not received formal study in wild mammals. High prevalence of Mustelid gammaherpesvirus 1 (MusGHV-1) DNA detected in the genital tracts of European badgers (Meles meles) implies that this common pathogen may be a sexual transmitted infection. Here we used PCR to test MusGHV-1 DNA prevalence in genital swabs collected from 144 wild badgers in Ireland (71 males, 73 females) to investigate impacts on male fertility indicators (sperm abundance and testes weight) and female fecundity (current reproductive output). MusGHV-1 reactivation had a negative effect on female reproduction, but not on male fertility; however males had a higher risk of MusGHV-1 reactivation than females, especially during the late-winter mating season, and genital MusGHV-1 reactivation differed between age classes, where 3-5 year old adults had significantly lower reactivation rates than younger or older ones. Negative results in foetal tissues from MusGHV-1 positive mothers indicated that cross-placental transmission was unlikely. This study has broader implications for how wide-spread gammaherpesvirus infections could affect reproductive performance in wild Carnivora species.
Collapse
Affiliation(s)
- Ming-shan Tsai
- Wildlife Conservation Research Unit, Department of Zoology, University of Oxford, Recanati-Kaplan Centre, Abingdon Road, Tubney House, Tubney, Oxfordshire OX13 5QL, UK; (C.N.); (D.W.M.); (C.D.B.)
| | - Ursula Fogarty
- Irish Equine Centre, Johnstown, Naas, Co. Kildare W91 RH93, Ireland;
| | - Andrew W. Byrne
- One-Health Scientific Support Unit, Department of Agriculture, Agriculture House, Dublin 2 DO2 WK12, Ireland;
| | - James O’Keeffe
- Department of Agriculture, Agriculture House, Dublin 2 DO2 WK1, Ireland;
- Centre for Veterinary Epidemiology and Risk Analysis, University College Dublin, Belfield, Dublin 4 D04 W6F6, Ireland
| | - Chris Newman
- Wildlife Conservation Research Unit, Department of Zoology, University of Oxford, Recanati-Kaplan Centre, Abingdon Road, Tubney House, Tubney, Oxfordshire OX13 5QL, UK; (C.N.); (D.W.M.); (C.D.B.)
- Cook’s Lake Farming Forestry and Wildlife Inc (Ecological Consultancy), Queens County, NS B0J 2H0, Canada
| | - David W. Macdonald
- Wildlife Conservation Research Unit, Department of Zoology, University of Oxford, Recanati-Kaplan Centre, Abingdon Road, Tubney House, Tubney, Oxfordshire OX13 5QL, UK; (C.N.); (D.W.M.); (C.D.B.)
| | - Christina D. Buesching
- Wildlife Conservation Research Unit, Department of Zoology, University of Oxford, Recanati-Kaplan Centre, Abingdon Road, Tubney House, Tubney, Oxfordshire OX13 5QL, UK; (C.N.); (D.W.M.); (C.D.B.)
- Cook’s Lake Farming Forestry and Wildlife Inc (Ecological Consultancy), Queens County, NS B0J 2H0, Canada
| |
Collapse
|
17
|
Patchett AL, Flies AS, Lyons AB, Woods GM. Curse of the devil: molecular insights into the emergence of transmissible cancers in the Tasmanian devil (Sarcophilus harrisii). Cell Mol Life Sci 2020; 77:2507-2525. [PMID: 31900624 PMCID: PMC11104928 DOI: 10.1007/s00018-019-03435-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 12/17/2019] [Accepted: 12/19/2019] [Indexed: 12/22/2022]
Abstract
The Tasmanian devil (Sarcophilus harrisii) is the only mammalian species known to be affected by multiple transmissible cancers. Devil facial tumours 1 and 2 (DFT1 and DFT2) are independent neoplastic cell lineages that produce large, disfiguring cancers known as devil facial tumour disease (DFTD). The long-term persistence of wild Tasmanian devils is threatened due to the ability of DFTD cells to propagate as contagious allografts and the high mortality rate of DFTD. Recent studies have demonstrated that both DFT1 and DFT2 cancers originated from founder cells of the Schwann cell lineage, an uncommon origin of malignant cancer in humans. This unprecedented finding has revealed a potential predisposition of Tasmanian devils to transmissible cancers of the Schwann cell lineage. In this review, we compare the molecular nature of human Schwann cells and nerve sheath tumours with DFT1 and DFT2 to gain insights into the emergence of transmissible cancers in the Tasmanian devil. We discuss a potential mechanism, whereby Schwann cell plasticity and frequent wounding in Tasmanian devils combine with an inherent cancer predisposition and low genetic diversity to give rise to transmissible Schwann cell cancers in devils on rare occasions.
Collapse
Affiliation(s)
- Amanda L Patchett
- Menzies Institute for Medical Research, University of Tasmania, 17 Liverpool Street, Hobart, TAS, 7000, Australia
| | - Andrew S Flies
- Menzies Institute for Medical Research, University of Tasmania, 17 Liverpool Street, Hobart, TAS, 7000, Australia
| | - A Bruce Lyons
- School of Medicine, University of Tasmania, Hobart, TAS, 7000, Australia
| | - Gregory M Woods
- Menzies Institute for Medical Research, University of Tasmania, 17 Liverpool Street, Hobart, TAS, 7000, Australia.
| |
Collapse
|
18
|
Spontaneous Tumor Regression in Tasmanian Devils Associated with RASL11A Activation. Genetics 2020; 215:1143-1152. [PMID: 32554701 DOI: 10.1534/genetics.120.303428] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 06/12/2020] [Indexed: 12/30/2022] Open
Abstract
Spontaneous tumor regression has been documented in a small proportion of human cancer patients, but the specific mechanisms underlying tumor regression without treatment are not well understood. Tasmanian devils are threatened with extinction from a transmissible cancer due to universal susceptibility and a near 100% case fatality rate. In over 10,000 cases, <20 instances of natural tumor regression have been detected. Previous work in this system has focused on Tasmanian devil genetic variation associated with the regression phenotype. Here, we used comparative and functional genomics to identify tumor genetic variation associated with tumor regression. We show that a single point mutation in the 5' untranslated region of the putative tumor suppressor RASL11A significantly contributes to tumor regression. RASL11A was expressed in regressed tumors but silenced in wild-type, nonregressed tumors, consistent with RASL11A downregulation in human cancers. Induced RASL11A expression significantly reduced tumor cell proliferation in vitro The RAS pathway is frequently altered in human cancers, and RASL11A activation may provide a therapeutic treatment option for Tasmanian devils as well as a general mechanism for tumor inhibition.
Collapse
|
19
|
Webber QMR, Vander Wal E. Heterogeneity in social network connections is density-dependent: implications for disease dynamics in a gregarious ungulate. Behav Ecol Sociobiol 2020. [DOI: 10.1007/s00265-020-02860-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
20
|
Fraik AK, Margres MJ, Epstein B, Barbosa S, Jones M, Hendricks S, Schönfeld B, Stahlke AR, Veillet A, Hamede R, McCallum H, Lopez-Contreras E, Kallinen SJ, Hohenlohe PA, Kelley JL, Storfer A. Disease swamps molecular signatures of genetic-environmental associations to abiotic factors in Tasmanian devil (Sarcophilus harrisii) populations. Evolution 2020; 74:1392-1408. [PMID: 32445281 DOI: 10.1111/evo.14023] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 05/14/2020] [Indexed: 12/11/2022]
Abstract
Landscape genomics studies focus on identifying candidate genes under selection via spatial variation in abiotic environmental variables, but rarely by biotic factors (i.e., disease). The Tasmanian devil (Sarcophilus harrisii) is found only on the environmentally heterogeneous island of Tasmania and is threatened with extinction by a transmissible cancer, devil facial tumor disease (DFTD). Devils persist in regions of long-term infection despite epidemiological model predictions of species' extinction, suggesting possible adaptation to DFTD. Here, we test the extent to which spatial variation and genetic diversity are associated with the abiotic environment (i.e., climatic variables, elevation, vegetation cover) and/or DFTD. We employ genetic-environment association analyses using 6886 SNPs from 3287 individuals sampled pre- and post-disease arrival across the devil's geographic range. Pre-disease, we find significant correlations of allele frequencies with environmental variables, including 365 unique loci linked to 71 genes, suggesting local adaptation to abiotic environment. The majority of candidate loci detected pre-DFTD are not detected post-DFTD arrival. Several post-DFTD candidate loci are associated with disease prevalence and were in linkage disequilibrium with genes involved in tumor suppression and immune response. Loss of apparent signal of abiotic local adaptation post-disease suggests swamping by strong selection resulting from the rapid onset of DFTD.
Collapse
Affiliation(s)
- Alexandra K Fraik
- School of Biological Sciences, Washington State University, Pullman, Washington, 99164
| | - Mark J Margres
- School of Biological Sciences, Washington State University, Pullman, Washington, 99164
| | - Brendan Epstein
- School of Biological Sciences, Washington State University, Pullman, Washington, 99164.,Plant Biology, University of Minnesota, Minneapolis, Minnesota, 55455
| | - Soraia Barbosa
- Department of Biological Sciences, Institute for Bioinformatics and Evolutionary Studies, University of Idaho, 875 Perimeter Drive, Moscow, Idaho, 83844
| | - Menna Jones
- School of Biological Sciences, University of Tasmania, Hobart, TAS, 7004, Australia
| | - Sarah Hendricks
- Department of Biological Sciences, Institute for Bioinformatics and Evolutionary Studies, University of Idaho, 875 Perimeter Drive, Moscow, Idaho, 83844
| | - Barbara Schönfeld
- School of Biological Sciences, University of Tasmania, Hobart, TAS, 7004, Australia
| | - Amanda R Stahlke
- Department of Biological Sciences, Institute for Bioinformatics and Evolutionary Studies, University of Idaho, 875 Perimeter Drive, Moscow, Idaho, 83844
| | - Anne Veillet
- Department of Biological Sciences, Institute for Bioinformatics and Evolutionary Studies, University of Idaho, 875 Perimeter Drive, Moscow, Idaho, 83844
| | - Rodrigo Hamede
- School of Biological Sciences, University of Tasmania, Hobart, TAS, 7004, Australia
| | - Hamish McCallum
- School of Environment, Griffith University Nathan, Nathan, QLD, 4111, Australia
| | - Elisa Lopez-Contreras
- School of Biological Sciences, Washington State University, Pullman, Washington, 99164
| | - Samantha J Kallinen
- School of Biological Sciences, Washington State University, Pullman, Washington, 99164
| | - Paul A Hohenlohe
- Department of Biological Sciences, Institute for Bioinformatics and Evolutionary Studies, University of Idaho, 875 Perimeter Drive, Moscow, Idaho, 83844
| | - Joanna L Kelley
- School of Biological Sciences, Washington State University, Pullman, Washington, 99164
| | - Andrew Storfer
- School of Biological Sciences, Washington State University, Pullman, Washington, 99164
| |
Collapse
|
21
|
Bernard RF, Reichard JD, Coleman JTH, Blackwood JC, Verant ML, Segers JL, Lorch JM, White J, Moore MS, Russell AL, Katz RA, Lindner DL, Toomey RS, Turner GG, Frick WF, Vonhof MJ, Willis CKR, Grant EHC. Identifying research needs to inform white‐nose syndrome management decisions. CONSERVATION SCIENCE AND PRACTICE 2020. [DOI: 10.1111/csp2.220] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Affiliation(s)
- Riley F. Bernard
- Department of Ecosystem Science and ManagementPennsylvania State University University Park Pennsylvania USA
- United States Geological Survey Patuxent Wildlife Research CenterSO Conte Anadromous Fish Research Laboratory Turners Falls Massachusetts USA
| | | | | | - Julie C. Blackwood
- Department of Mathematics and StatisticsWilliams College Williamstown Massachusetts USA
| | - Michelle L. Verant
- Biological Resource DivisionWildlife Health Branch Fort Collins Colorado USA
| | - Jordi L. Segers
- Canadian Wildlife Health Cooperative Charlottetown Prince Edward Island Canada
| | - Jeffery M. Lorch
- United States Geological Survey National Wildlife Health Center Madison Wisconsin USA
| | - John White
- Bureau of Natural Heritage ConservationWisconsin Department of Natural Resources Madison Wisconsin USA
| | - Marianne S. Moore
- College of Integrative Science and ArtsArizona State University Mesa Arizona USA
| | - Amy L. Russell
- Department of BiologyGrand Valley State University Allendale Michigan USA
| | - Rachel A. Katz
- United States Fish and Wildlife Service Hadley Massachusetts USA
| | - Daniel L. Lindner
- United States Forest ServiceNorthern Research Station Madison Wisconsin USA
| | | | | | - Winifred F. Frick
- Department of Ecology and Evolutionary BiologyUniversity of California Santa Cruz California USA
- Bat Conservation International Austin Texas USA
| | - Maarten J. Vonhof
- Department of Biological SciencesWestern Michigan University Kalamazoo Michigan USA
- Institute of the Environment and SustainabilityWestern Michigan University Kalamazoo Michigan USA
| | | | - Evan H. C. Grant
- United States Geological Survey Patuxent Wildlife Research CenterSO Conte Anadromous Fish Research Laboratory Turners Falls Massachusetts USA
| |
Collapse
|
22
|
Perzanowski K, Bleyhl B, Olech W, Kuemmerle T. Connectivity or isolation? Identifying reintroduction sites for multiple conservation objectives for wisents in Poland. Anim Conserv 2019. [DOI: 10.1111/acv.12530] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- K. Perzanowski
- Institute of Landscape Architecture Catholic University of Lublin Lublin Poland
| | - B. Bleyhl
- Geography Department Humboldt‐University Berlin Berlin Germany
| | - W. Olech
- Department of Animal Genetics and Breeding Warsaw University of Life Sciences Warsaw Poland
| | - T. Kuemmerle
- Geography Department Humboldt‐University Berlin Berlin Germany
- Integrative Research Institute on Transformations of Human‐Environment Systems (IRI THESys) Humboldt‐University Berlin Berlin Germany
| |
Collapse
|
23
|
Herrera J, Nunn CL. Behavioural ecology and infectious disease: implications for conservation of biodiversity. Philos Trans R Soc Lond B Biol Sci 2019; 374:20180054. [PMID: 31352881 DOI: 10.1098/rstb.2018.0054] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Behaviour underpins interactions among conspecifics and between species, with consequences for the transmission of disease-causing parasites. Because many parasites lead to declines in population size and increased risk of extinction for threatened species, understanding the link between host behaviour and disease transmission is particularly important for conservation management. Here, we consider the intersection of behaviour, ecology and parasite transmission, broadly encompassing micro- and macroparasites. We focus on behaviours that have direct impacts on transmission, as well as the behaviours that result from infection. Given the important role of parasites in host survival and reproduction, the effects of behaviour on parasitism can scale up to population-level processes, thus affecting species conservation. Understanding how conservation and infectious disease control strategies actually affect transmission potential can therefore often only be understood through a behavioural lens. We highlight how behavioural perspectives of disease ecology apply to conservation by reviewing the different ways that behavioural ecology influences parasite transmission and conservation goals. This article is part of the theme issue 'Linking behaviour to dynamics of populations and communities: application of novel approaches in behavioural ecology to conservation'.
Collapse
Affiliation(s)
- James Herrera
- Department of Evolutionary Anthropology, Duke University, 103 Science Drive, Durham, NC 27705, USA
| | - Charles L Nunn
- Department of Evolutionary Anthropology, Duke University, 103 Science Drive, Durham, NC 27705, USA.,Duke Global Health Institute, Duke University, 103 Science Drive, Durham, NC 27705, USA
| |
Collapse
|
24
|
Evaluation of a Canine Transmissible Venereal Tumour Cell Line with Tumour Immunity Capacity but Without Tumorigenic Property. J Vet Res 2019; 63:225-233. [PMID: 31276062 PMCID: PMC6598177 DOI: 10.2478/jvetres-2019-0024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 03/19/2019] [Indexed: 11/20/2022] Open
Abstract
Introduction Canine transmissible venereal tumour (CTVT) is a sexually transmitted tumour affecting dogs worldwide, imposing a financial burden on dog owners. A stable culture cell line in continuous passages for >18 months has only been achieved once. The present study investigated a stable CTVT cell line isolated from a bitch and its potential as a vaccine. Material and Methods A biopsy from a 2-year-old mongrel bitch with CTVT was obtained for histopathological confirmation and isolation of tumour cells. The isolated cells were cultured to passage 55 and characterised by flow cytometry, with karyotyping by GTG-banding and by PCR detection of myc S-2 and LINE AS1. The isolated CTVT cell line was also used as a preventive vaccine in a canine model. Results Histopathological analysis of the isolated tumour cells revealed typical CTVT characteristics. Constant proliferation and stable morphological characteristics were observed during culture. Phenotypic analysis determined the expression of HLA-DR+, CD5.1+, CD14+, CD45+, CD83+, CD163+, and Ly-6G-Ly-6C+. GTG-banding revealed a mean of 57 chromosomes in the karyotype with several complex chromosomal rearrangements. LINE-c-myc insertion in the isolated CTVT cell line at 550 bp was not detected. However, a 340-bp band was amplified. Isolated CTVT cell line inoculation at a concentration of 1×108 did not induce tumour growth in bitches, nor did a challenge with primary CTVT cells. Conclusion The present study successfully identified and isolated a stable CTVT cell line that may be useful in CTVT prevention.
Collapse
|
25
|
Chong R, Shi M, Grueber CE, Holmes EC, Hogg CJ, Belov K, Barrs VR. Fecal Viral Diversity of Captive and Wild Tasmanian Devils Characterized Using Virion-Enriched Metagenomics and Metatranscriptomics. J Virol 2019; 93:e00205-19. [PMID: 30867308 PMCID: PMC6532096 DOI: 10.1128/jvi.00205-19 10.1128/jvi.00205-19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 02/21/2019] [Indexed: 08/15/2024] Open
Abstract
The Tasmanian devil is an endangered carnivorous marsupial threatened by devil facial tumor disease (DFTD). While research on DFTD has been extensive, little is known about viruses in devils and whether any are of potential conservation relevance for this endangered species. Using both metagenomics based on virion enrichment and sequence-independent amplification (virion-enriched metagenomics) and metatranscriptomics based on bulk RNA sequencing, we characterized and compared the fecal viromes of captive and wild devils. A total of 54 fecal samples collected from two captive and four wild populations were processed for virome characterization using both approaches. In total, 24 novel marsupial-related viruses, comprising a sapelovirus, astroviruses, rotaviruses, picobirnaviruses, parvoviruses, papillomaviruses, polyomaviruses, and a gammaherpesvirus, were identified, as well as known mammalian pathogens such as rabbit hemorrhagic disease virus 2. Captive devils showed significantly lower viral diversity than wild devils. Comparison of the two virus discovery approaches revealed substantial differences in the number and types of viruses detected, with metatranscriptomics better suited for RNA viruses and virion-enriched metagenomics largely identifying more DNA viruses. Thus, the viral communities revealed by virion-enriched metagenomics and metatranscriptomics were not interchangeable and neither approach was able to detect all viruses present. An integrated approach using both virion-enriched metagenomics and metatranscriptomics constitutes a powerful tool for obtaining a complete overview of both the taxonomic and functional profiles of viral communities within a sample.IMPORTANCE The Tasmanian devil is an iconic Australian marsupial that has suffered an 80% population decline due to a contagious cancer, devil facial tumor disease, along with other threats. Until now, viral discovery in this species has been confined to one gammaherpesvirus (dasyurid herpesvirus 2 [DaHV-2]), for which captivity was identified as a significant risk factor. Our discovery of 24 novel marsupial-associated RNA and DNA viruses, and that viral diversity is lower in captive than in wild devils, has greatly expanded our knowledge of gut-associated viruses in devils and provides important baseline information that will contribute to the conservation and captive management of this endangered species. Our results also revealed that a combination of virion-enriched metagenomics and metatranscriptomics may be a more comprehensive approach for virome characterization than either method alone. Our results thus provide a springboard for continuous improvements in the way we study complex viral communities.
Collapse
Affiliation(s)
- Rowena Chong
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Mang Shi
- Marie Bashir Institute for Infectious Diseases and Biosecurity, Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
- School of Life and Environmental Sciences and Sydney Medical School, Charles Perkins Centre, University of Sydney, Sydney, New South Wales, Australia
| | - Catherine E Grueber
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
- San Diego Zoo Global, San Diego, California, USA
| | - Edward C Holmes
- Marie Bashir Institute for Infectious Diseases and Biosecurity, Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
- School of Life and Environmental Sciences and Sydney Medical School, Charles Perkins Centre, University of Sydney, Sydney, New South Wales, Australia
| | - Carolyn J Hogg
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Katherine Belov
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Vanessa R Barrs
- Marie Bashir Institute for Infectious Diseases and Biosecurity, Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
- Sydney School of Veterinary Science, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
26
|
Fecal Viral Diversity of Captive and Wild Tasmanian Devils Characterized Using Virion-Enriched Metagenomics and Metatranscriptomics. J Virol 2019; 93:JVI.00205-19. [PMID: 30867308 PMCID: PMC6532096 DOI: 10.1128/jvi.00205-19] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 02/21/2019] [Indexed: 12/28/2022] Open
Abstract
The Tasmanian devil is an iconic Australian marsupial that has suffered an 80% population decline due to a contagious cancer, devil facial tumor disease, along with other threats. Until now, viral discovery in this species has been confined to one gammaherpesvirus (dasyurid herpesvirus 2 [DaHV-2]), for which captivity was identified as a significant risk factor. Our discovery of 24 novel marsupial-associated RNA and DNA viruses, and that viral diversity is lower in captive than in wild devils, has greatly expanded our knowledge of gut-associated viruses in devils and provides important baseline information that will contribute to the conservation and captive management of this endangered species. Our results also revealed that a combination of virion-enriched metagenomics and metatranscriptomics may be a more comprehensive approach for virome characterization than either method alone. Our results thus provide a springboard for continuous improvements in the way we study complex viral communities. The Tasmanian devil is an endangered carnivorous marsupial threatened by devil facial tumor disease (DFTD). While research on DFTD has been extensive, little is known about viruses in devils and whether any are of potential conservation relevance for this endangered species. Using both metagenomics based on virion enrichment and sequence-independent amplification (virion-enriched metagenomics) and metatranscriptomics based on bulk RNA sequencing, we characterized and compared the fecal viromes of captive and wild devils. A total of 54 fecal samples collected from two captive and four wild populations were processed for virome characterization using both approaches. In total, 24 novel marsupial-related viruses, comprising a sapelovirus, astroviruses, rotaviruses, picobirnaviruses, parvoviruses, papillomaviruses, polyomaviruses, and a gammaherpesvirus, were identified, as well as known mammalian pathogens such as rabbit hemorrhagic disease virus 2. Captive devils showed significantly lower viral diversity than wild devils. Comparison of the two virus discovery approaches revealed substantial differences in the number and types of viruses detected, with metatranscriptomics better suited for RNA viruses and virion-enriched metagenomics largely identifying more DNA viruses. Thus, the viral communities revealed by virion-enriched metagenomics and metatranscriptomics were not interchangeable and neither approach was able to detect all viruses present. An integrated approach using both virion-enriched metagenomics and metatranscriptomics constitutes a powerful tool for obtaining a complete overview of both the taxonomic and functional profiles of viral communities within a sample. IMPORTANCE The Tasmanian devil is an iconic Australian marsupial that has suffered an 80% population decline due to a contagious cancer, devil facial tumor disease, along with other threats. Until now, viral discovery in this species has been confined to one gammaherpesvirus (dasyurid herpesvirus 2 [DaHV-2]), for which captivity was identified as a significant risk factor. Our discovery of 24 novel marsupial-associated RNA and DNA viruses, and that viral diversity is lower in captive than in wild devils, has greatly expanded our knowledge of gut-associated viruses in devils and provides important baseline information that will contribute to the conservation and captive management of this endangered species. Our results also revealed that a combination of virion-enriched metagenomics and metatranscriptomics may be a more comprehensive approach for virome characterization than either method alone. Our results thus provide a springboard for continuous improvements in the way we study complex viral communities.
Collapse
|
27
|
Cristescu RH, Miller RL, Schultz AJ, Hulse L, Jaccoud D, Johnston S, Hanger J, Booth R, Frère CH. Developing noninvasive methodologies to assess koala population health through detecting Chlamydia from scats. Mol Ecol Resour 2019; 19:957-969. [PMID: 30681773 DOI: 10.1111/1755-0998.12999] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 11/13/2018] [Accepted: 01/14/2019] [Indexed: 01/17/2023]
Abstract
Wildlife diseases are a recognized driver of global biodiversity loss, have substantial economic impacts, and are increasingly becoming a threat to human health. Disease surveillance is critical but remains difficult in the wild due to the substantial costs and potential biases associated with most disease detection methods. Noninvasive scat surveys have been proposed as a health monitoring methodology to overcome some of these limitations. Here, we use the known threat of Chlamydia disease to the iconic, yet vulnerable, koala Phascolarctos cinereus to compare three methods for Chlamydia detection in scats: multiplex quantitative PCR, next generation sequencing, and a detection dog specifically trained on scats from Chlamydia-infected koalas. All three methods demonstrated 100% specificity, while sensitivity was variable. Of particular interest is the variable sensitivity of these diagnostic tests to detect sick individuals (i.e., not only infection as confirmed by Chlamydia-positive swabs, but with observable clinical signs of the disease); for koalas with urogenital tract disease signs, sensitivity was 78% with quantitative PCR, 50% with next generation genotyping and 100% with the detection dog method. This may be due to molecular methods having to rely on high-quality DNA whereas the dog most likely detects volatile organic compounds. The most appropriate diagnostic test will vary with disease prevalence and the specific aims of disease surveillance. Acknowledging that detection dogs might not be easily accessible to all, the future development of affordable and portable "artificial noses" to detect diseases from scats in the field might enable cost-effective, rapid and large-scale disease surveillance.
Collapse
Affiliation(s)
- Romane H Cristescu
- Global Change Ecology Research Group, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| | - Russell L Miller
- Global Change Ecology Research Group, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| | - Anthony J Schultz
- Global Change Ecology Research Group, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| | - Lyndal Hulse
- School of Agriculture and Food Sciences, University of Queensland, Gatton, Queensland, Australia
| | - Damian Jaccoud
- Diversity Arrays Technology, University of Canberra, Bruce, Australian Capital Territory, Australia
| | - Stephen Johnston
- School of Agriculture and Food Sciences, University of Queensland, Gatton, Queensland, Australia
| | - Jon Hanger
- Endeavour Veterinary Ecology, Toorbul, Queensland, Australia
| | - Rosie Booth
- Australia Zoo Wildlife Hospital, Beerwah, Queensland, Australia
| | - Céline H Frère
- Global Change Ecology Research Group, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| |
Collapse
|
28
|
Furusawa Y, Yamada S, Itai S, Nakamura T, Takei J, Sano M, Harada H, Fukui M, Kaneko MK, Kato Y. Establishment of a monoclonal antibody PMab-233 for immunohistochemical analysis against Tasmanian devil podoplanin. Biochem Biophys Rep 2019; 18:100631. [PMID: 30984883 PMCID: PMC6446048 DOI: 10.1016/j.bbrep.2019.100631] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 03/25/2019] [Accepted: 03/25/2019] [Indexed: 11/16/2022] Open
Abstract
Monoclonal antibodies (mAbs) against not only human, mouse, and rat but also rabbit, dog, cat, bovine, pig, and horse podoplanins (PDPNs) have been established in our previous studies. PDPN is used as a lymphatic endothelial cell marker in pathological diagnoses. However, mAbs against Tasmanian devil PDPN (tasPDPN), which are useful for immunohistochemical analysis, remain to be developed. Herein, mice were immunized with tasPDPN-overexpressing Chinese hamster ovary (CHO)-K1 (CHO/tasPDPN) cells, and hybridomas producing mAbs against tasPDPN were screened using flow cytometry. One of the mAbs, PMab-233 (IgG1, kappa), specifically detected CHO/tasPDPN cells by flow cytometry and recognized tasPDPN protein by western blotting. Furthermore, PMab-233 strongly detected CHO/tasPDPN cells by immunohistochemistry. These findings suggest that PMab-233 may be useful as a lymphatic endothelial cell marker of the Tasmanian devil. PDPN is known as a specific lymphatic endothelial cell (LEC) marker. Sensitive and specific PMab-233 mAb against Tasmanian devil PDPN was produced. PMab-233 strongly reacted with Tasmanian devil PDPN in flow cytometry. PMab-233 is useful for IHC using paraffin-embedded cell sections.
Collapse
Affiliation(s)
- Yoshikazu Furusawa
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan.,New Industry Creation Hatchery Center, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan.,ZENOAQ RESOURCE CO., LTD., 1-1 Tairanoue, Sasagawa, Asaka-machi, Koriyama, Fukushima, 963-0196, Japan
| | - Shinji Yamada
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Shunsuke Itai
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan.,Department of Oral and Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Takuro Nakamura
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Junko Takei
- Department of Oral and Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Masato Sano
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Hiroyuki Harada
- Department of Oral and Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Masato Fukui
- ZENOAQ RESOURCE CO., LTD., 1-1 Tairanoue, Sasagawa, Asaka-machi, Koriyama, Fukushima, 963-0196, Japan
| | - Mika K Kaneko
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Yukinari Kato
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan.,New Industry Creation Hatchery Center, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| |
Collapse
|
29
|
Hohenlohe PA, McCallum HI, Jones ME, Lawrance MF, Hamede RK, Storfer A. Conserving adaptive potential: lessons from Tasmanian devils and their transmissible cancer. CONSERV GENET 2019; 20:81-87. [PMID: 31551664 PMCID: PMC6759055 DOI: 10.1007/s10592-019-01157-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 02/09/2019] [Indexed: 11/26/2022]
Abstract
Maintenance of adaptive genetic variation has long been a goal of management of natural populations, but only recently have genomic tools allowed identification of specific loci associated with fitness-related traits in species of conservation concern. This raises the possibility of managing for genetic variation directly relevant to specific threats, such as those due to climate change or emerging infectious disease. Tasmanian devils (Sarcophilus harrisii) face the threat of a transmissible cancer, devil facial tumor disease (DFTD), that has decimated wild populations and led to intensive management efforts. Recent discoveries from genomic and modeling studies reveal how natural devil populations are responding to DFTD, and can inform management of both captive and wild devil populations. Notably, recent studies have documented genetic variation for disease-related traits and rapid evolution in response to DFTD, as well as potential mechanisms for disease resistance such as immune response and tumor regression in wild devils. Recent models predict dynamic persistence of devils with or without DFTD under a variety of modeling scenarios, although at much lower population densities than before DFTD emerged, contrary to previous predictions of extinction. As a result, current management that focuses on captive breeding and release for maintaining genome-wide genetic diversity or demographic supplementation of populations could have negative consequences. Translocations of captive devils into wild populations evolving with DFTD can cause outbreeding depression and/or increases in the force of infection and thereby the severity of the epidemic, and we argue that these risks outweigh any benefits of demographic supplementation in wild populations. We also argue that genetic variation at loci associated with DFTD should be monitored in both captive and wild populations, and that as our understanding of DFTD-related genetic variation improves, considering genetic management approaches to target this variation is warranted in developing conservation strategies for Tasmanian devils.
Collapse
Affiliation(s)
- Paul A. Hohenlohe
- Institute for Bioinformatics and Evolutionary Studies, Department of Biological Sciences, University of Idaho, Moscow, ID 83843, USA
| | - Hamish I. McCallum
- Environmental Futures Research Institute, Griffith University, Brisbane, QLD 4111, Australia
| | - Menna E. Jones
- School of Biological Sciences, University of Tasmania, Hobart, TAS 7001, Australia
| | - Matthew F. Lawrance
- School of Biological Sciences, Washington State University, Pullman, WA 99164, USA
| | - Rodrigo K. Hamede
- School of Biological Sciences, University of Tasmania, Hobart, TAS 7001, Australia
| | - Andrew Storfer
- School of Biological Sciences, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
30
|
Margres MJ, Ruiz-Aravena M, Hamede R, Jones ME, Lawrance MF, Hendricks SA, Patton A, Davis BW, Ostrander EA, McCallum H, Hohenlohe PA, Storfer A. The Genomic Basis of Tumor Regression in Tasmanian Devils (Sarcophilus harrisii). Genome Biol Evol 2018; 10:3012-3025. [PMID: 30321343 PMCID: PMC6251476 DOI: 10.1093/gbe/evy229] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2018] [Indexed: 02/06/2023] Open
Abstract
Understanding the genetic basis of disease-related phenotypes, such as cancer susceptibility, is crucial for the advancement of personalized medicine. Although most cancers are somatic in origin, a small number of transmissible cancers have been documented. Two such cancers have emerged in the Tasmanian devil (Sarcophilus harrisii) and now threaten the species with extinction. Recently, cases of natural tumor regression in Tasmanian devils infected with the clonally contagious cancer have been detected. We used whole-genome sequencing and FST-based approaches to identify the genetic basis of tumor regression by comparing the genomes of seven individuals that underwent tumor regression with those of three infected individuals that did not. We found three highly differentiated candidate genomic regions containing several genes related to immune response and/or cancer risk, indicating that the genomic basis of tumor regression was polygenic. Within these genomic regions, we identified putative regulatory variation in candidate genes but no nonsynonymous variation, suggesting that natural tumor regression may be driven, at least in part, by differential host expression of key loci. Comparative oncology can provide insight into the genetic basis of cancer risk, tumor development, and the pathogenicity of cancer, particularly due to our limited ability to monitor natural, untreated tumor progression in human patients. Our results support the hypothesis that host immune response is necessary for triggering tumor regression, providing candidate genes that may translate to novel treatments in human and nonhuman cancers.
Collapse
Affiliation(s)
- Mark J Margres
- School of Biological Sciences, Washington State University
| | - Manuel Ruiz-Aravena
- School of Natural Sciences, University of Tasmania, Hobart, Tasmania, Australia
| | - Rodrigo Hamede
- School of Natural Sciences, University of Tasmania, Hobart, Tasmania, Australia.,Centre for Integrative Ecology, Deakin University, Waurn Ponds, Victoria, Australia
| | - Menna E Jones
- School of Natural Sciences, University of Tasmania, Hobart, Tasmania, Australia
| | | | - Sarah A Hendricks
- Department of Biological Sciences, Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow
| | - Austin Patton
- School of Biological Sciences, Washington State University
| | - Brian W Davis
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station.,Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Elaine A Ostrander
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Hamish McCallum
- School of Environment, Griffith University, Nathan, Queensland, Australia
| | - Paul A Hohenlohe
- Department of Biological Sciences, Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow
| | - Andrew Storfer
- School of Biological Sciences, Washington State University
| |
Collapse
|
31
|
Margres MJ, Jones M, Epstein B, Kerlin DH, Comte S, Fox S, Fraik AK, Hendricks SA, Huxtable S, Lachish S, Lazenby B, O’Rourke SM, Stahlke AR, Wiench CG, Hamede R, Schönfeld B, McCallum H, Miller MR, Hohenlohe PA, Storfer A. Large-effect loci affect survival in Tasmanian devils (Sarcophilus harrisii) infected with a transmissible cancer. Mol Ecol 2018; 27:4189-4199. [PMID: 30171778 PMCID: PMC6759049 DOI: 10.1111/mec.14853] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 08/22/2018] [Accepted: 08/27/2018] [Indexed: 12/20/2022]
Abstract
Identifying the genetic architecture of complex phenotypes is a central goal of modern biology, particularly for disease-related traits. Genome-wide association methods are a classical approach for identifying the genomic basis of variation in disease phenotypes, but such analyses are particularly challenging in natural populations due to sample size difficulties. Extensive mark-recapture data, strong linkage disequilibrium and a lethal transmissible cancer make the Tasmanian devil (Sarcophilus harrisii) an ideal model for such an association study. We used a RAD-capture approach to genotype 624 devils at ~16,000 loci and then used association analyses to assess the heritability of three cancer-related phenotypes: infection case-control (where cases were infected devils and controls were devils that were never infected), age of first infection and survival following infection. The SNP array explained much of the phenotypic variance for female survival (>80%) and female case-control (>61%). We found that a few large-effect SNPs explained much of the variance for female survival (~5 SNPs explained >61% of the total variance), whereas more SNPs (~56) of smaller effect explained less of the variance for female case-control (~23% of the total variance). By contrast, these same SNPs did not account for a significant proportion of phenotypic variance in males, suggesting that the genetic bases of these traits and/or selection differ across sexes. Loci involved with cell adhesion and cell-cycle regulation underlay trait variation, suggesting that the devil immune system is rapidly evolving to recognize and potentially suppress cancer growth through these pathways. Overall, our study provided necessary data for genomics-based conservation and management in Tasmanian devils.
Collapse
Affiliation(s)
- Mark J. Margres
- School of Biological Sciences, Washington State University, Pullman, WA 99164, USA
| | - Menna Jones
- School of Zoology, University of Tasmania, Private Bag 5, Hobart, Tasmania 7001, Australia
| | - Brendan Epstein
- School of Biological Sciences, Washington State University, Pullman, WA 99164, USA
- Current address: Department of Plant Biology, University of Minnesota, 250 Biosciences, St. Paul, MN 55108, USA
| | - Douglas H. Kerlin
- School of Environment, Griffith University, Nathan Campus, 170 Kessels Road, Nathan, Queensland 4111, Australia
| | - Sebastien Comte
- School of Zoology, University of Tasmania, Private Bag 5, Hobart, Tasmania 7001, Australia
| | - Samantha Fox
- Save the Tasmanian Devil Program, Department of Primary Industries, Parks, Water and Environment, GPO Box 44, Hobart, Tasmania 7001, Australia
| | - Alexandra K. Fraik
- School of Biological Sciences, Washington State University, Pullman, WA 99164, USA
| | - Sarah A. Hendricks
- Department of Biological Sciences, Institute for Bioinformatics and Evolutionary Studies, University of Idaho, 875 Perimeter Drive, Moscow, Idaho 83844, USA
| | - Stewart Huxtable
- Save the Tasmanian Devil Program, Department of Primary Industries, Parks, Water and Environment, GPO Box 44, Hobart, Tasmania 7001, Australia
| | - Shelly Lachish
- Department of Zoology, University of Oxford, Oxford OX26GG, UK
| | - Billie Lazenby
- Save the Tasmanian Devil Program, Department of Primary Industries, Parks, Water and Environment, GPO Box 44, Hobart, Tasmania 7001, Australia
| | - Sean M. O’Rourke
- Department of Animal Science, One Shields Ave., University of California, Davis, Davis CA 95616, USA
| | - Amanda R. Stahlke
- Department of Biological Sciences, Institute for Bioinformatics and Evolutionary Studies, University of Idaho, 875 Perimeter Drive, Moscow, Idaho 83844, USA
| | - Cody G. Wiench
- Department of Biological Sciences, Institute for Bioinformatics and Evolutionary Studies, University of Idaho, 875 Perimeter Drive, Moscow, Idaho 83844, USA
| | - Rodrigo Hamede
- School of Zoology, University of Tasmania, Private Bag 5, Hobart, Tasmania 7001, Australia
- Centre for Integrative Ecology, Deakin University, Waurn Ponds, Victoria 3216, Australia
| | - Barbara Schönfeld
- School of Zoology, University of Tasmania, Private Bag 5, Hobart, Tasmania 7001, Australia
| | - Hamish McCallum
- School of Environment, Griffith University, Nathan Campus, 170 Kessels Road, Nathan, Queensland 4111, Australia
| | - Michael R. Miller
- Department of Animal Science, One Shields Ave., University of California, Davis, Davis CA 95616, USA
| | - Paul A. Hohenlohe
- Department of Biological Sciences, Institute for Bioinformatics and Evolutionary Studies, University of Idaho, 875 Perimeter Drive, Moscow, Idaho 83844, USA
| | - Andrew Storfer
- School of Biological Sciences, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
32
|
Kwon YM, Stammnitz MR, Wang J, Swift K, Knowles GW, Pye RJ, Kreiss A, Peck S, Fox S, Pemberton D, Jones ME, Hamede R, Murchison EP. Tasman-PCR: a genetic diagnostic assay for Tasmanian devil facial tumour diseases. ROYAL SOCIETY OPEN SCIENCE 2018; 5:180870. [PMID: 30473836 PMCID: PMC6227955 DOI: 10.1098/rsos.180870] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 09/11/2018] [Indexed: 05/04/2023]
Abstract
Tasmanian devils have spawned two transmissible cancer clones, known as devil facial tumour 1 (DFT1) and devil facial tumour 2 (DFT2). DFT1 and DFT2 are transmitted between animals by the transfer of allogeneic contagious cancer cells by biting, and both cause facial tumours. DFT1 and DFT2 tumours are grossly indistinguishable, but can be differentiated using histopathology, cytogenetics or genotyping of polymorphic markers. However, standard diagnostic methods require specialist skills and equipment and entail long processing times. Here, we describe Tasman-PCR: a simple polymerase chain reaction (PCR)-based diagnostic assay that identifies and distinguishes DFT1 and DFT2 by amplification of DNA spanning tumour-specific interchromosomal translocations. We demonstrate the high sensitivity and specificity of this assay by testing DNA from 546 tumours and 804 normal devils. A temporal-spatial screen confirmed the reported geographic ranges of DFT1 and DFT2 and did not provide evidence of additional DFT clones. DFT2 affects disproportionately more males than females, and devils can be co-infected with DFT1 and DFT2. Overall, we present a PCR-based assay that delivers rapid, accurate and high-throughput diagnosis of DFT1 and DFT2. This tool provides an additional resource for devil disease management and may assist with ongoing conservation efforts.
Collapse
Affiliation(s)
- Young Mi Kwon
- Transmissible Cancer Group, Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK
| | - Maximilian R. Stammnitz
- Transmissible Cancer Group, Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK
| | - Jinhong Wang
- Transmissible Cancer Group, Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK
| | - Kate Swift
- Animal Health Laboratories, Mount Pleasant Laboratories, Tasmanian Department of Primary Industries, Parks, Water and the Environment, Prospect, Tasmania 7250, Australia
| | - Graeme W. Knowles
- Animal Health Laboratories, Mount Pleasant Laboratories, Tasmanian Department of Primary Industries, Parks, Water and the Environment, Prospect, Tasmania 7250, Australia
| | - Ruth J. Pye
- Menzies Institute, University of Tasmania, 17 Liverpool Street, Hobart, Tasmania 7000, Australia
| | - Alexandre Kreiss
- Menzies Institute, University of Tasmania, 17 Liverpool Street, Hobart, Tasmania 7000, Australia
| | - Sarah Peck
- Department of Primary Industries, Parks, Water and the Environment (DPIPWE), Save the Tasmanian Devil Program, Tasmania 7000, Australia
| | - Samantha Fox
- Department of Primary Industries, Parks, Water and the Environment (DPIPWE), Save the Tasmanian Devil Program, Tasmania 7000, Australia
- Toledo Zoo, 2605 Broadway, Toledo, OH 43609, USA
| | - David Pemberton
- Department of Primary Industries, Parks, Water and the Environment (DPIPWE), Save the Tasmanian Devil Program, Tasmania 7000, Australia
| | - Menna E. Jones
- School of Natural Sciences, University of Tasmania, 55 Private Bag, Hobart, Tasmania 7000, Australia
| | - Rodrigo Hamede
- School of Natural Sciences, University of Tasmania, 55 Private Bag, Hobart, Tasmania 7000, Australia
| | - Elizabeth P. Murchison
- Transmissible Cancer Group, Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK
- Author for correspondence: Elizabeth P. Murchison e-mail:
| |
Collapse
|
33
|
Cope HR, Hogg CJ, White PJ, Herbert CA. A role for selective contraception of individuals in conservation. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2018; 32:546-558. [PMID: 29080297 DOI: 10.1111/cobi.13042] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 10/16/2017] [Accepted: 10/21/2017] [Indexed: 06/07/2023]
Abstract
Contraception has an established role in managing overabundant populations and preventing undesirable breeding in zoos. We propose that it can also be used strategically and selectively in conservation to increase the genetic and behavioral quality of the animals. In captive breeding programs, it is becoming increasingly important to maximize the retention of genetic diversity by managing the reproductive contribution of each individual and preventing genetically suboptimal breeding through the use of selective contraception. Reproductive suppression of selected individuals in conservation programs has further benefits of allowing animals to be housed as a group in extensive enclosures without interfering with breeding recommendations, which reduces adaptation to captivity and facilitates the expression of wild behaviors and social structures. Before selective contraception can be incorporated into a breeding program, the most suitable method of fertility control must be selected, and this can be influenced by factors such as species life history, age, ease of treatment, potential for reversibility, and desired management outcome for the individual or population. Contraception should then be implemented in the population following a step-by-step process. In this way, it can provide crucial, flexible control over breeding to promote the physical and genetic health and sustainability of a conservation dependent species held in captivity. For Tasmanian devils (Sarcophilus harrisii), black-flanked rock wallabies (Petrogale lateralis), and burrowing bettongs (Bettongia lesueur), contraception can benefit their conservation by maximizing genetic diversity and behavioral integrity in the captive breeding program, or, in the case of the wallabies and bettongs, by reducing populations to a sustainable size when they become locally overabundant. In these examples, contraceptive duration relative to reproductive life, reversibility, and predictability of the contraceptive agent being used are important to ensure the potential for individuals to reproduce following cessation of contraception, as exemplified by the wallabies when their population crashed and needed females to resume breeding.
Collapse
Affiliation(s)
- Holly R Cope
- Faculty of Science, The University of Sydney, SOLES, J.D. Stewart Building B01, Camperdown, NSW, 2006, Australia
| | - Carolyn J Hogg
- Faculty of Science, The University of Sydney, SOLES, J.D. Stewart Building B01, Camperdown, NSW, 2006, Australia
- Zoo and Aquarium Association Australasia, Mosman, NSW, 2088, Australia
| | - Peter J White
- Faculty of Science, The University of Sydney, SSVS, R.M.C. Gunn Building B19, Camperdown, NSW, 2006, Australia
| | - Catherine A Herbert
- Faculty of Science, The University of Sydney, SOLES, J.D. Stewart Building B01, Camperdown, NSW, 2006, Australia
| |
Collapse
|
34
|
Jones K, Thompson R, Godfrey S. Social networks: a tool for assessing the impact of perturbations on wildlife behaviour and implications for pathogen transmission. BEHAVIOUR 2018. [DOI: 10.1163/1568539x-00003485] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Abstract
Wildlife are increasingly subject to perturbations, which can impact pathogen transmission and lead to disease emergence. While a myriad of factors influence disease dynamics in wildlife, behaviour is emerging as a major influence. In this review, we examine how perturbations alter the behaviour of individuals and how, in turn, disease transmission may be impacted, with a focus on the use of network models as a powerful tool. There are emerging hypotheses as to how networks respond to different types of perturbations. The broad effects of perturbations make predicting potential outcomes and identifying mitigation opportunities for disease emergence critical; yet, the current paucity of data makes identification of underlying trends difficult. Social network analysis facilitates a mechanistic approach to how perturbation-induced behavioural changes result in shifts in pathogen transmission. However, the field is still developing, and future work should strive to address current deficits. There is particular need for empirical data to support modelling predictions and increased inclusion of pathogen monitoring in network studies.
Collapse
Affiliation(s)
- K.L. Jones
- aSchool of Veterinary and Life Sciences, Murdoch University, Murdoch, WA 6150, Australia
| | - R.C.A. Thompson
- aSchool of Veterinary and Life Sciences, Murdoch University, Murdoch, WA 6150, Australia
| | - S.S. Godfrey
- aSchool of Veterinary and Life Sciences, Murdoch University, Murdoch, WA 6150, Australia
- bDepartment of Zoology, University of Otago, Dunedin, New Zealand
| |
Collapse
|
35
|
McCallum H, Kerlin DH, Ellis W, Carrick F. Assessing the significance of endemic disease in conservation-koalas, chlamydia, and koala retrovirus as a case study. Conserv Lett 2017. [DOI: 10.1111/conl.12425] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Affiliation(s)
- Hamish McCallum
- Griffith School of Environment and Environmental Futures Research Institute; Griffith University; Nathan Queensland Australia
| | - Douglas H. Kerlin
- Environmental Futures Research Institute; Griffith University; Nathan Queensland 4111 Australia
| | - William Ellis
- School of Agriculture and Food Science; The University of Queensland; Brisbane Queensland Australia
| | - Frank Carrick
- Koala Study Program, Centre for Mined Land Rehabilitation; The University of Queensland; Brisbane Queensland Australia
| |
Collapse
|
36
|
Taylor RL, Zhang Y, Schöning JP, Deakin JE. Identification of candidate genes for devil facial tumour disease tumourigenesis. Sci Rep 2017; 7:8761. [PMID: 28821767 PMCID: PMC5562891 DOI: 10.1038/s41598-017-08908-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 07/14/2017] [Indexed: 12/11/2022] Open
Abstract
Devil facial tumour (DFT) disease, a transmissible cancer where the infectious agent is the tumour itself, has caused a dramatic decrease in Tasmanian devil numbers in the wild. The purpose of this study was to take a candidate gene/pathway approach to identify potentially perturbed genes or pathways in DFT. A fusion of chromosome 1 and X is posited as the initial event leading to the development of DFT, with the rearranged chromosome 1 material now stably maintained as the tumour spreads through the population. This hypothesis makes chromosome 1 a prime chromosome on which to search for mutations involved in tumourigenesis. As DFT1 has a Schwann cell origin, we selected genes commonly implicated in tumour pathways in human nerve cancers, or cancers more generally, to determine whether they were rearranged in DFT1, and mapped them using molecular cytogenetics. Many cancer-related genes were rearranged, such as the region containing the tumour suppressor NF2 and a copy gain for ERBB3, a member of the epidermal growth factor receptor family of receptor tyrosine kinases implicated in proliferation and invasion of tumours in humans. Our mapping results have provided strong candidates not previously detected by sequencing DFT1 genomes.
Collapse
Affiliation(s)
- Robyn L Taylor
- School of Biological Sciences, University of Tasmania, Hobart, Tasmania, 7001, Australia
| | - Yiru Zhang
- Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Jennifer P Schöning
- Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia.,Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Queensland, 4067, Australia
| | - Janine E Deakin
- Institute for Applied Ecology, University of Canberra, Canberra, ACT, 2617, Australia.
| |
Collapse
|
37
|
Carim K, Vindenes Y, Eby L, Barfoot C, Vøllestad L. Life history, population viability, and the potential for local adaptation in isolated trout populations. Glob Ecol Conserv 2017. [DOI: 10.1016/j.gecco.2017.02.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
38
|
Dynamics of leprosy in nine-banded armadillos: Net reproductive number and effects on host population dynamics. Ecol Modell 2017. [DOI: 10.1016/j.ecolmodel.2017.02.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
39
|
Campbell LJ, Head ML, Wilfert L, Griffiths AGF. An ecological role for assortative mating under infection? CONSERV GENET 2017; 18:983-994. [PMID: 32009857 PMCID: PMC6961493 DOI: 10.1007/s10592-017-0951-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 03/01/2017] [Indexed: 11/29/2022]
Abstract
Wildlife diseases are emerging at a higher rate than ever before meaning that understanding their potential impacts is essential, especially for those species and populations that may already be of conservation concern. The link between population genetic structure and the resistance of populations to disease is well understood: high genetic diversity allows populations to better cope with environmental changes, including the outbreak of novel diseases. Perhaps following this common wisdom, numerous empirical and theoretical studies have investigated the link between disease and disassortative mating patterns, which can increase genetic diversity. Few however have looked at the possible link between disease and the establishment of assortative mating patterns. Given that assortative mating can reduce genetic variation within a population thus reducing the adaptive potential and long-term viability of populations, we suggest that this link deserves greater attention, particularly in those species already threatened by a lack of genetic diversity. Here, we summarise the potential broad scale genetic implications of assortative mating patterns and outline how infection by pathogens or parasites might bring them about. We include a review of the empirical literature pertaining to disease-induced assortative mating. We also suggest future directions and methodological improvements that could advance our understanding of how the link between disease and mating patterns influences genetic variation and long-term population viability.
Collapse
Affiliation(s)
- L. J. Campbell
- Environment and Sustainability Institute, University of Exeter, Penryn Campus, Penryn, Cornwall TR10 9FE UK
- Institute of Zoology, Zoological Society of London, Regent’s Park, London, NW1 4RY UK
| | - M. L. Head
- Division of Evolution, Ecology and Genetics, Research School of Biology, Australian National University, Canberra, ACT Australia
| | - L. Wilfert
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Penryn, Cornwall TR10 9FE UK
| | - A. G. F. Griffiths
- Environment and Sustainability Institute, University of Exeter, Penryn Campus, Penryn, Cornwall TR10 9FE UK
- FoAM Kernow, Studio E, Jubilee Warehouse, Commercial Road, Penryn, Cornwall TR10 8FG UK
| |
Collapse
|
40
|
Hoverman JT, Searle CL. Behavioural influences on disease risk: implications for conservation and management. Anim Behav 2016. [DOI: 10.1016/j.anbehav.2016.05.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
41
|
Baltazar-Soares M, Bracamonte SE, Bayer T, Chain FJ, Hanel R, Harrod C, Eizaguirre C. Evaluating the adaptive potential of the European eel: is the immunogenetic status recovering? PeerJ 2016; 4:e1868. [PMID: 27077000 PMCID: PMC4830236 DOI: 10.7717/peerj.1868] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 03/09/2016] [Indexed: 02/03/2023] Open
Abstract
The recent increased integration of evolutionary theory into conservation programs has greatly improved our ability to protect endangered species. A common application of such theory links population dynamics and indices of genetic diversity, usually estimated from neutrally evolving markers. However, some studies have suggested that highly polymorphic adaptive genes, such as the immune genes of the Major Histocompatibility Complex (MHC), might be more sensitive to fluctuations in population dynamics. As such, the combination of neutrally- and adaptively-evolving genes may be informative in populations where reductions in abundance have been documented. The European eel (Anguilla anguilla) underwent a drastic and well-reported decline in abundance in the late 20th century and still displays low recruitment. Here we compared genetic diversity indices estimated from neutral (mitochondrial DNA and microsatellites) and adaptive markers (MHC) between two distinct generations of European eels. Our results revealed a clear discrepancy between signatures obtained for each class of markers. Although mtDNA and microsatellites showed no changes in diversity between the older and the younger generations, MHC diversity revealed a contemporary drop followed by a recent increase. Our results suggest ongoing gain of MHC genetic diversity resulting from the interplay between drift and selection and ultimately increasing the adaptive potential of the species.
Collapse
Affiliation(s)
- Miguel Baltazar-Soares
- Evolutionary Ecology of Marine Fishes, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Seraina E. Bracamonte
- Evolutionary Ecology of Marine Fishes, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
| | - Till Bayer
- Evolutionary Ecology of Marine Fishes, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | | | | | - Chris Harrod
- Universidad de Antofagasta, Instituto de Ciencias Naturales Alexander von Humboldt, Antofagasta, Chile
| | - Christophe Eizaguirre
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
42
|
Blanchong JA, Robinson SJ, Samuel MD, Foster JT. Application of genetics and genomics to wildlife epidemiology. J Wildl Manage 2016. [DOI: 10.1002/jwmg.1064] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Julie A. Blanchong
- Department of Natural Resource Ecology and Management; Iowa State University; 339 Science II Ames IA 50011 USA
| | | | - Michael D. Samuel
- U.S. Geological Survey, Wisconsin Cooperative Wildlife Research Unit; University of Wisconsin; 204 Russell Labs, 1630 Linden Dr. Madison WI 53706 USA
| | - Jeffrey T. Foster
- Department of Molecular, Cellular and Biomedical Sciences; University of New Hampshire; 291 Rudman Hall Durham NH 03824 USA
| |
Collapse
|
43
|
Hewavisenti RV, Morris KM, O'Meally D, Cheng Y, Papenfuss AT, Belov K. The identification of immune genes in the milk transcriptome of the Tasmanian devil (Sarcophilus harrisii). PeerJ 2016; 4:e1569. [PMID: 26793426 PMCID: PMC4715465 DOI: 10.7717/peerj.1569] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 12/15/2015] [Indexed: 01/25/2023] Open
Abstract
Tasmanian devil (Sarcophilus harrisii) pouch young, like other marsupials, are born underdeveloped and immunologically naïve, and are unable to mount an adaptive immune response. The mother’s milk provides nutrients for growth and development as well as providing passive immunity. To better understand immune response in this endangered species, we set out to characterise the genes involved in passive immunity by sequencing and annotating the transcriptome of a devil milk sample collected during mid-lactation. At mid-lactation we expect the young to have heightened immune responses, as they have emerged from the pouch, encountering new pathogens. A total of 233,660 transcripts were identified, including approximately 17,827 unique protein-coding genes and 846 immune genes. The most highly expressed transcripts were dominated by milk protein genes such as those encoding early lactation protein, late lactation proteins, α-lactalbumin, α-casein and β-casein. There were numerous highly expressed immune genes including lysozyme, whey acidic protein, ferritin and major histocompatibility complex I and II. Genes encoding immunoglobulins, antimicrobial peptides, chemokines and immune cell receptors were also identified. The array of immune genes identified in this study reflects the importance of the milk in providing immune protection to Tasmanian devil young and provides the first insight into Tasmanian devil milk.
Collapse
Affiliation(s)
| | - Katrina M Morris
- Faculty of Veterinary Science, University of Sydney , Sydney , Australia
| | - Denis O'Meally
- Faculty of Veterinary Science, University of Sydney , Sydney , Australia
| | - Yuanyuan Cheng
- Faculty of Veterinary Science, University of Sydney , Sydney , Australia
| | - Anthony T Papenfuss
- Bioinformatics Division, The Walter and Eliza Hall Institute for Medical Research, Parkville, Australia; Bioinformatics and Cancer Genomics, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
| | - Katherine Belov
- Faculty of Veterinary Science, University of Sydney , Sydney , Australia
| |
Collapse
|
44
|
Phalen DN, Frimberger AE, Peck S, Pyecroft S, Harmsen C, Lola S, Moore AS. Doxorubicin and carboplatin trials in Tasmanian devils (Sarcophilus harrisii) with Tasmanian devil facial tumor disease. Vet J 2015; 206:312-6. [DOI: 10.1016/j.tvjl.2015.10.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Revised: 09/24/2015] [Accepted: 10/04/2015] [Indexed: 11/24/2022]
|
45
|
Grueber CE, Peel E, Gooley R, Belov K. Genomic insights into a contagious cancer in Tasmanian devils. Trends Genet 2015; 31:528-35. [DOI: 10.1016/j.tig.2015.05.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 05/03/2015] [Accepted: 05/04/2015] [Indexed: 02/08/2023]
|
46
|
Willis CKR. Conservation Physiology and Conservation Pathogens: White-Nose Syndrome and Integrative Biology for Host-Pathogen Systems. Integr Comp Biol 2015; 55:631-41. [PMID: 26307096 DOI: 10.1093/icb/icv099] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Conservation physiology aims to apply an understanding of physiological mechanisms to management of imperiled species, populations, or ecosystems. One challenge for physiologists hoping to apply their expertise to conservation is connecting the mechanisms we study, often in the laboratory, with the vital rates of populations in the wild. There is growing appreciation that infectious pathogens can threaten populations and species, and represent an important issue for conservation. Conservation physiology has much to offer in terms of addressing the threat posed to some host species by infectious pathogens. At the same time, the well-developed theoretical framework of disease ecology could provide a model to help advance the application of physiology to a range of other conservation issues. Here, I use white-nose syndrome (WNS) in hibernating North American bats as an example of a conservation problem for which integrative physiological research has been a critical part of research and management. The response to WNS highlights the importance of a well-developed theoretical framework for the application of conservation physiology to a particular threat. I review what is known about physiological mechanisms associated with mortality from WNS and emphasize the value of combining a strong theoretical background with integrative physiological studies in order to connect physiological mechanisms with population processes and thereby maximize the potential benefits of conservation physiology.
Collapse
Affiliation(s)
- Craig K R Willis
- Department of Biology and Centre for Forest Inter-disciplinary Research, University of Winnipeg, 515 Portage Avenue, Winnipeg, Manitoba Canada R3B2E9
| |
Collapse
|
47
|
Abstract
Modelling wildlife disease poses some unique challenges. Wildlife disease systems are data poor in comparison with human or livestock disease systems, and the impact of disease on population size is often the key question of interest. This review concentrates specifically on the application of dynamic models to evaluate and guide management strategies. Models have proved useful particularly in two areas. They have been widely used to evaluate vaccination strategies, both for protecting endangered species and for preventing spillover from wildlife to humans or livestock. They have also been extensively used to evaluate culling strategies, again both for diseases in species of conservation interest and to prevent spillover. In addition, models are important to evaluate the potential of parasites and pathogens as biological control agents. The review concludes by identifying some key research gaps, which are further development of models of macroparasites, deciding on appropriate levels of complexity, modelling genetic management and connecting models to data.
Collapse
|
48
|
Roberts M, Andreasen V, Lloyd A, Pellis L. Nine challenges for deterministic epidemic models. Epidemics 2014; 10:49-53. [PMID: 25843383 PMCID: PMC4996659 DOI: 10.1016/j.epidem.2014.09.006] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 09/04/2014] [Accepted: 09/16/2014] [Indexed: 12/19/2022] Open
Abstract
Deterministic models have a long history of being applied to the study of infectious disease epidemiology. We highlight and discuss nine challenges in this area. The first two concern the endemic equilibrium and its stability. We indicate the need for models that describe multi-strain infections, infections with time-varying infectivity, and those where super infection is possible. We then consider the need for advances in spatial epidemic models, and draw attention to the lack of models that explore the relationship between communicable and non-communicable diseases. The final two challenges concern the uses and limitations of deterministic models as approximations to stochastic systems.
Collapse
Affiliation(s)
- Mick Roberts
- Infectious Disease Research Centre, Institute of Natural and Mathematical Sciences, and New Zealand Institute for Advanced Study, Massey University, Private Bag 102 904, North Shore Mail Centre, 1311 Auckland, New Zealand.
| | - Viggo Andreasen
- Department of Science, Roskilde University, 4000 Roskilde, Denmark
| | - Alun Lloyd
- Department of Mathematics and Biomathematics Graduate Program, North Carolina State University, Raleigh, NC 27695, USA; Fogarty International Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lorenzo Pellis
- Warwick Infectious Disease Epidemiology Research Centre (WIDER) and Warwick Mathematics Institute, University of Warwick, Coventry, CV4 7AL, UK
| |
Collapse
|
49
|
Lerebours A, Stentiford GD, Lyons BP, Bignell JP, Derocles SAP, Rotchell JM. Genetic alterations and cancer formation in a European flatfish at sites of different contaminant burdens. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:10448-10455. [PMID: 25102285 DOI: 10.1021/es502591p] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Fish diseases are an indicator for marine ecosystem health since they provide a biological end-point of historical exposure to stressors. Liver cancer has been used to monitor the effects of exposure to anthropogenic pollution in flatfish for many years. The prevalence of liver cancer can exceed 20%. Despite the high prevalence and the opportunity of using flatfish to study environmentally induced cancer, the genetic and environmental factors driving tumor prevalence across sites are poorly understood. This study aims to define the link between genetic deterioration, liver disease progression, and anthropogenic contaminant exposures in the flatfish dab (Limanda limanda). We assessed genetic changes in a conserved cancer gene, Retinoblastoma (Rb), in association with histological diagnosis of normal, pretumor, and tumor pathologies in the livers of 165 fish from six sites in the North Sea and English Channel. The highest concentrations of metals (especially cadmium) and organic chemicals correlated with the presence of tumor pathology and with defined genetic profiles of the Rb gene, from these sites. Different Rb genetic profiles were found in liver tissue near each tumor phenotype, giving insight into the mechanistic molecular-level cause of the liver pathologies. Different Rb profiles were also found at sampling sites of differing contaminant burdens. Additionally, profiles indicated that histological "normal" fish from Dogger sampling locations possessed Rb profiles associated with pretumor disease. This study highlights an association between Rb and specific contaminants (especially cadmium) in the molecular etiology of dab liver tumorigenesis.
Collapse
Affiliation(s)
- Adélaïde Lerebours
- School of Biological, Biomedical and Environmental Sciences, University of Hull , Cottingham Road, Hull, HU6 7RX, United Kingdom
| | | | | | | | | | | |
Collapse
|
50
|
Vander Wal E, Garant D, Calmé S, Chapman CA, Festa-Bianchet M, Millien V, Rioux-Paquette S, Pelletier F. Applying evolutionary concepts to wildlife disease ecology and management. Evol Appl 2014; 7:856-68. [PMID: 25469163 PMCID: PMC4227862 DOI: 10.1111/eva.12168] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 04/08/2014] [Indexed: 12/17/2022] Open
Abstract
Existing and emerging infectious diseases are among the most pressing global threats to biodiversity, food safety and human health. The complex interplay between host, pathogen and environment creates a challenge for conserving species, communities and ecosystem functions, while mediating the many known ecological and socio-economic negative effects of disease. Despite the clear ecological and evolutionary contexts of host-pathogen dynamics, approaches to managing wildlife disease remain predominantly reactionary, focusing on surveillance and some attempts at eradication. A few exceptional studies have heeded recent calls for better integration of ecological concepts in the study and management of wildlife disease; however, evolutionary concepts remain underused. Applied evolution consists of four principles: evolutionary history, genetic and phenotypic variation, selection and eco-evolutionary dynamics. In this article, we first update a classical framework for understanding wildlife disease to integrate better these principles. Within this framework, we explore the evolutionary implications of environment-disease interactions. Subsequently, we synthesize areas where applied evolution can be employed in wildlife disease management. Finally, we discuss some future directions and challenges. Here, we underscore that despite some evolutionary principles currently playing an important role in our understanding of disease in wild animals, considerable opportunities remain for fostering the practice of evolutionarily enlightened wildlife disease management.
Collapse
Affiliation(s)
- Eric Vander Wal
- Département de biologie, Université de SherbrookeSherbrooke, QC, Canada
| | - Dany Garant
- Département de biologie, Université de SherbrookeSherbrooke, QC, Canada
| | - Sophie Calmé
- Département de biologie, Université de SherbrookeSherbrooke, QC, Canada
- El Colegio de la Frontera SurChetumal, Quintana Roo, Mexico
| | - Colin A Chapman
- Department of Anthropology and McGill School of Environment, McGill UniversityMontreal, QC, Canada
- Wildlife Conservation SocietyBronx, New York, NY, USA
| | | | | | | | - Fanie Pelletier
- Département de biologie, Université de SherbrookeSherbrooke, QC, Canada
| |
Collapse
|