1
|
Ragozzino C, Casella V, Coppola A, Scarpato S, Buonocore C, Consiglio A, Palma Esposito F, Galasso C, Tedesco P, Della Sala G, de Pascale D, Vitale L, Coppola D. Last Decade Insights in Exploiting Marine Microorganisms as Sources of New Bioactive Natural Products. Mar Drugs 2025; 23:116. [PMID: 40137302 PMCID: PMC11943599 DOI: 10.3390/md23030116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 02/28/2025] [Accepted: 03/03/2025] [Indexed: 03/27/2025] Open
Abstract
Marine microorganisms have emerged as prolific sources of bioactive natural products, offering a large chemical diversity and a broad spectrum of biological activities. Over the past decade, significant progress has been made in discovering and characterizing these compounds, pushed by technological innovations in genomics, metabolomics, and bioinformatics. Furthermore, innovative isolation and cultivation approaches have improved the isolation of rare and difficult-to-culture marine microbes, leading to the identification of novel secondary metabolites. Advances in synthetic biology and metabolic engineering have further optimized natural product yields and the generation of novel compounds with improved bioactive properties. This review highlights key developments in the exploitation of marine bacteria, fungi, and microalgae for the discovery of novel natural products with potential applications in diverse fields, underscoring the immense potential of marine microorganisms in the growing Blue Economy sector.
Collapse
Affiliation(s)
- Costanza Ragozzino
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via Ammiraglio, Ferdinando Acton 55, 80133 Naples, Italy; (C.R.); (V.C.); (A.C.); (S.S.); (C.B.); (A.C.); (F.P.E.); (P.T.); (G.D.S.); (D.d.P.)
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d’Alcontres, 31, 98166 Messina, Italy
| | - Vincenza Casella
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via Ammiraglio, Ferdinando Acton 55, 80133 Naples, Italy; (C.R.); (V.C.); (A.C.); (S.S.); (C.B.); (A.C.); (F.P.E.); (P.T.); (G.D.S.); (D.d.P.)
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d’Alcontres, 31, 98166 Messina, Italy
| | - Alessandro Coppola
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via Ammiraglio, Ferdinando Acton 55, 80133 Naples, Italy; (C.R.); (V.C.); (A.C.); (S.S.); (C.B.); (A.C.); (F.P.E.); (P.T.); (G.D.S.); (D.d.P.)
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d’Alcontres, 31, 98166 Messina, Italy
| | - Silvia Scarpato
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via Ammiraglio, Ferdinando Acton 55, 80133 Naples, Italy; (C.R.); (V.C.); (A.C.); (S.S.); (C.B.); (A.C.); (F.P.E.); (P.T.); (G.D.S.); (D.d.P.)
| | - Carmine Buonocore
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via Ammiraglio, Ferdinando Acton 55, 80133 Naples, Italy; (C.R.); (V.C.); (A.C.); (S.S.); (C.B.); (A.C.); (F.P.E.); (P.T.); (G.D.S.); (D.d.P.)
| | - Antonella Consiglio
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via Ammiraglio, Ferdinando Acton 55, 80133 Naples, Italy; (C.R.); (V.C.); (A.C.); (S.S.); (C.B.); (A.C.); (F.P.E.); (P.T.); (G.D.S.); (D.d.P.)
| | - Fortunato Palma Esposito
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via Ammiraglio, Ferdinando Acton 55, 80133 Naples, Italy; (C.R.); (V.C.); (A.C.); (S.S.); (C.B.); (A.C.); (F.P.E.); (P.T.); (G.D.S.); (D.d.P.)
| | - Christian Galasso
- Department of Ecosustainable Marine Biotechnology, Calabria Marine Centre, CRIMAC, Stazione Zoologica Anton Dohrn, C. da Torre Spaccata, 87071 Amendolara, Italy;
| | - Pietro Tedesco
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via Ammiraglio, Ferdinando Acton 55, 80133 Naples, Italy; (C.R.); (V.C.); (A.C.); (S.S.); (C.B.); (A.C.); (F.P.E.); (P.T.); (G.D.S.); (D.d.P.)
| | - Gerardo Della Sala
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via Ammiraglio, Ferdinando Acton 55, 80133 Naples, Italy; (C.R.); (V.C.); (A.C.); (S.S.); (C.B.); (A.C.); (F.P.E.); (P.T.); (G.D.S.); (D.d.P.)
| | - Donatella de Pascale
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via Ammiraglio, Ferdinando Acton 55, 80133 Naples, Italy; (C.R.); (V.C.); (A.C.); (S.S.); (C.B.); (A.C.); (F.P.E.); (P.T.); (G.D.S.); (D.d.P.)
| | - Laura Vitale
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via Ammiraglio, Ferdinando Acton 55, 80133 Naples, Italy; (C.R.); (V.C.); (A.C.); (S.S.); (C.B.); (A.C.); (F.P.E.); (P.T.); (G.D.S.); (D.d.P.)
| | - Daniela Coppola
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via Ammiraglio, Ferdinando Acton 55, 80133 Naples, Italy; (C.R.); (V.C.); (A.C.); (S.S.); (C.B.); (A.C.); (F.P.E.); (P.T.); (G.D.S.); (D.d.P.)
| |
Collapse
|
2
|
Brueggemann L, Singh P, Müller C. Life Stage- and Sex-Specific Sensitivity to Nutritional Stress in a Holometabolous Insect. Ecol Evol 2025; 15:e70764. [PMID: 39839333 PMCID: PMC11748456 DOI: 10.1002/ece3.70764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/25/2024] [Accepted: 12/12/2024] [Indexed: 01/23/2025] Open
Abstract
Over lifetime, organisms can be repeatedly exposed to stress, shaping their phenotype. At certain, so-called sensitive phases, individuals might be more receptive to such stress, for example, nutritional stress. However, little is known about how plastic responses differ between individuals experiencing nutritional stress early versus later in life or repeatedly, particularly in species with distinct ontogenetic niches. Moreover, there may be sex-specific differences due to distinct physiology. Larvae of the holometabolous turnip sawfly, Athalia rosae, consume leaves and flowers, while the adults take up nectar. We examined the effects of starvation experienced at different life stages on life-history, adult behavioural and metabolic traits to determine which stage may be more sensitive and how specific these traits respond. We exposed individuals to four nutritional regimes, either no, larval, adult starvation or starvation periods as larvae and adults. Larvae exposed to starvation had a prolonged development, and starved females reached a lower initial adult body mass than non-starved individuals. Males did not differ in initial adult body mass regardless of larval starvation, suggesting the ability to conform well to poor nutritional conditions. Adult behavioural activity was not significantly impacted by larval or adult starvation. Individuals starved as larvae had similar carbohydrate and lipid (i.e., fatty acid) contents as non-starved individuals, potentially due to building up energy reserves during development, while starvation during adulthood or at both stages led to reduced energy reserves in males. This study indicates that the sensitivity of a life stage to stress depends on the specific trait under consideration. Life-history traits were mainly affected by larval stress, while activity appeared to be more robust and metabolism mostly impacted by the adult conditions. Individuals differed in their ability to conform to the given environment, with the responses being life stage- and sex-specific.
Collapse
Affiliation(s)
- Leon Brueggemann
- Department of Chemical EcologyBielefeld UniversityBielefeldGermany
- Joint Institute for Individualisation in a Changing Environment (JICE)University of Münster and Bielefeld UniversityBielefeldGermany
| | - Pragya Singh
- Department of Chemical EcologyBielefeld UniversityBielefeldGermany
- Joint Institute for Individualisation in a Changing Environment (JICE)University of Münster and Bielefeld UniversityBielefeldGermany
| | - Caroline Müller
- Department of Chemical EcologyBielefeld UniversityBielefeldGermany
- Joint Institute for Individualisation in a Changing Environment (JICE)University of Münster and Bielefeld UniversityBielefeldGermany
| |
Collapse
|
3
|
Loos HM, Schaal B, Pause BM, Smeets MAM, Ferdenzi C, Roberts SC, de Groot J, Lübke KT, Croy I, Freiherr J, Bensafi M, Hummel T, Havlíček J. Past, Present, and Future of Human Chemical Communication Research. PERSPECTIVES ON PSYCHOLOGICAL SCIENCE 2025; 20:20-44. [PMID: 37669015 PMCID: PMC11720269 DOI: 10.1177/17456916231188147] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
Although chemical signaling is an essential mode of communication in most vertebrates, it has long been viewed as having negligible effects in humans. However, a growing body of evidence shows that the sense of smell affects human behavior in social contexts ranging from affiliation and parenting to disease avoidance and social threat. This article aims to (a) introduce research on human chemical communication in the historical context of the behavioral sciences; (b) provide a balanced overview of recent advances that describe individual differences in the emission of semiochemicals and the neural mechanisms underpinning their perception, that together demonstrate communicative function; and (c) propose directions for future research toward unraveling the molecular principles involved and understanding the variability in the generation, transmission, and reception of chemical signals in increasingly ecologically valid conditions. Achieving these goals will enable us to address some important societal challenges but are within reach only with the aid of genuinely interdisciplinary approaches.
Collapse
Affiliation(s)
- Helene M. Loos
- Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg
- Department of Sensory Analytics and Technologies, Fraunhofer Institute for Process Engineering and Packaging IVV
| | - Benoist Schaal
- Development of Olfactory Cognition and Communication Lab, Centre des Sciences du Goût et de l’Alimentation, CNRS UMR 6265, Université de Bourgogne
| | - Bettina M. Pause
- Department of Experimental Psychology, Heinrich-Heine-Universität Düsseldorf
| | | | - Camille Ferdenzi
- Centre de Recherche en Neurosciences de Lyon, CNRS UMR 5292, Inserm U1028, Université Claude Bernard Lyon 1, Centre Hospitalier Le Vinatier
| | | | | | - Katrin T. Lübke
- Department of Experimental Psychology, Heinrich-Heine-Universität Düsseldorf
| | - Ilona Croy
- Institute for Psychology, Friedrich-Schiller-Universität Jena
| | - Jessica Freiherr
- Department of Sensory Analytics and Technologies, Fraunhofer Institute for Process Engineering and Packaging IVV
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-Universität Erlangen-Nürnberg
| | - Moustafa Bensafi
- Centre de Recherche en Neurosciences de Lyon, CNRS UMR 5292, Inserm U1028, Université Claude Bernard Lyon 1, Centre Hospitalier Le Vinatier
| | - Thomas Hummel
- Smell and Taste Clinic, Department of Otorhinolaryngology, TU Dresden
| | | |
Collapse
|
4
|
Siewert V, Kaiser S, Sachser N, Richter SH. Optimism and pessimism: a concept for behavioural ecology. Biol Rev Camb Philos Soc 2024. [PMID: 39711313 DOI: 10.1111/brv.13178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 12/08/2024] [Accepted: 12/11/2024] [Indexed: 12/24/2024]
Abstract
Originating from human psychology, the concepts of "optimism" and "pessimism" were transferred to animal welfare science about 20 years ago to study emotional states in non-human animals. Over time, "optimism" and "pessimism" have developed into valuable welfare indicators, but little focus has been put on the ecological implications of this concept. Here, we aim to bridge this gap and underline the great potential for transferring it to behavioural ecology. We start by outlining why "optimism" and "pessimism" can be considered as aspects of animal personalities. Furthermore, we argue that considering "optimism"/"pessimism" in a behavioural ecology context can facilitate our understanding of individual adjustment to the environment. Specifically, we show how variation in "optimism"/"pessimism" can play a crucial role in adaptation processes to environmental heterogeneity, for example, niche choice and niche conformance. Building on these considerations, we hypothesise that "optimists" might be less plastic than "pessimists" in their behaviour, which could considerably affect the way they adjust to environmental change.
Collapse
Affiliation(s)
- Viktoria Siewert
- Institute for Neuro- and Behavioural Biology, University of Münster, Badestr. 13, Münster, 48149, Germany
| | - Sylvia Kaiser
- Institute for Neuro- and Behavioural Biology, University of Münster, Badestr. 13, Münster, 48149, Germany
| | - Norbert Sachser
- Institute for Neuro- and Behavioural Biology, University of Münster, Badestr. 13, Münster, 48149, Germany
| | - S Helene Richter
- Institute for Neuro- and Behavioural Biology, University of Münster, Badestr. 13, Münster, 48149, Germany
| |
Collapse
|
5
|
Tironi LS, Carletto LB, Silva EO, Schripsema J, Luiz JHH. Endophytic Fungi Co-Culture: An Alternative Source of Antimicrobial Substances. Microorganisms 2024; 12:2413. [PMID: 39770616 PMCID: PMC11677400 DOI: 10.3390/microorganisms12122413] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 11/16/2024] [Accepted: 11/20/2024] [Indexed: 01/11/2025] Open
Abstract
Antimicrobial resistance is becoming a critical issue due to the widespread and indiscriminate use of antibiotics and antifungals to treat common infections, leading to a growing shortage of effective drugs. Moreover, the increase in antimicrobial resistance is enhancing the pathogenicity and virulence of various pathogens. Microorganisms are key sources of chemically diverse specialized metabolites, which are produced in the final stages of their growth cycle. These metabolites hold significant value in chemical, pharmaceutical, and agrochemical industries. One of the major challenges researchers face in this field is the frequent isolation of already-known substances when classical protocols are used. To address this, several innovative strategies have been developed. The co-culture approach is a powerful tool for activating silent biosynthetic gene clusters, as it simulates natural microbial environments by creating artificial microbial communities. This method has shown promising results, with new compounds being isolated and the yields of target substances being improved. In this context, this review provides examples of antimicrobial compounds obtained from co-cultures of endophytic fungi, conducted in both liquid and solid media. Additionally, the review discusses the advantages and challenges of the co-culture technique. Significance and Impact of the Study: Microbial co-culture is a valuable strategy for discovering new natural products with antimicrobial activity, as well as for scaling up the production of target substances. This review aims to summarize important examples of endophyte co-cultures and highlights the potential of endophytic fungi co-culture for pharmacological applications.
Collapse
Affiliation(s)
- Lucas Silva Tironi
- Institute of Chemistry, Federal University of Alfenas, Alfenas 37130-001, MG, Brazil; (L.S.T.); (L.B.C.)
| | - Lucilene Bento Carletto
- Institute of Chemistry, Federal University of Alfenas, Alfenas 37130-001, MG, Brazil; (L.S.T.); (L.B.C.)
| | - Eliane Oliveira Silva
- Department of Organic Chemistry, Chemistry Institute, Federal University of Bahia, Salvador 40170-115, BA, Brazil;
| | - Jan Schripsema
- Metabolomics Group, Laboratory of Chemical Sciences, Universidade Estadual do Norte Fluminense, Campos dos Goytacazes 28013-602, RJ, Brazil
| | | |
Collapse
|
6
|
Bühler A, Schweiger R. Influence of Previous Infestation of Wheat Leaves and Ears by Sitobion avenae on Interaction with Rhopalosiphum padi. INSECTS 2024; 15:871. [PMID: 39590470 PMCID: PMC11594629 DOI: 10.3390/insects15110871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/08/2024] [Accepted: 11/04/2024] [Indexed: 11/28/2024]
Abstract
Different herbivorous species that share a host plant may interact via competition or facilitation, depending on whether the interaction partners are hindered by or benefit from the interaction. Sap-sucking insects, such as aphids, can influence each other indirectly by altering the composition of the shared phloem sap. Aphid-induced changes in the plant may affect aphid performance and lead to a shift in the balance between different co-occurring aphid species. In this study, we compared the performance of the English grain aphid (Sitobion avenae) and the bird cherry-oat aphid (Rhopalosiphum padi) simultaneously infesting leaves or ears of wheat (Triticum aestivum) plants, which had been either previously infested by S. avenae or kept uninfested. Colonies of S. avenae were larger on ears than on leaves, while the opposite pattern was found for R. padi. Pre-infestation of ears, but not of leaves, by S. avenae led to a higher total aphid number and colony size of S. avenae at some time points. The balance between the two species was only slightly affected by previous infestation at some time points. The findings of this study contribute to the understanding of plant-aphid as well as aphid-aphid interactions in agricultural fields.
Collapse
Affiliation(s)
- Andreas Bühler
- Department of Chemical Ecology, Bielefeld University, D-33615 Bielefeld, Germany;
| | - Rabea Schweiger
- Department of Chemical Ecology, Bielefeld University, D-33615 Bielefeld, Germany;
- Joint Institute for Individualisation in a Changing Environment (JICE), University of Münster and Bielefeld University, D-33615 Bielefeld, Germany
| |
Collapse
|
7
|
Bühler A, Schweiger R. Niche construction and niche choice by aphids infesting wheat ears. Oecologia 2024; 206:47-59. [PMID: 39227465 PMCID: PMC11489299 DOI: 10.1007/s00442-024-05612-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 08/20/2024] [Indexed: 09/05/2024]
Abstract
The niche of aphids is largely defined by their consumption of plant phloem sap and its composition, including nutrients and specialized metabolites. Niche construction is the change of the environment by organisms, which may influence the fitness of these organisms and their offspring. To better understand interactions between plants and aphids, it is necessary to investigate whether aphids modify the chemical composition of the phloem sap of their host plants and whether conspecifics are affected by previous infestation. In the current study, ears of wheat (Triticum aestivum) plants were infested with clonal lineages of the English grain aphid (Sitobion avenae) or were left uninfested. The metabolic composition of ear phloem sap exudates was analyzed through amino acid profiling and metabolic fingerprinting. Aphids of the clonal lineages were either put on previously aphid-infested or on uninfested ears and their colony sizes followed over time. Furthermore, it was investigated whether aphids choose one treatment group over another. Sitobion avenae infestation affected the relative concentrations of some metabolites in the phloem exudates of the ears. Compared to uninfested plants, the relative concentration of asparagine was higher after aphid infestation. Colonies grew significantly larger on previously aphid-infested ears, which the aphids also clearly chose in the choice experiment. The pronounced positive effect of previous infestation on aphid colonies indicates niche construction, while the choice of these constructed niches reveals niche choice by S. avenae on wheat. The interplay between these different niche realization processes highlights the complexity of interactions between aphids and their hosts.
Collapse
Affiliation(s)
- Andreas Bühler
- Department of Chemical Ecology, Bielefeld University, Universitätsstraße 25, 33615, Bielefeld, Germany
| | - Rabea Schweiger
- Department of Chemical Ecology, Bielefeld University, Universitätsstraße 25, 33615, Bielefeld, Germany.
- Joint Institute for Individualisation in a Changing Environment (JICE), University of Münster and Bielefeld University, Bielefeld, Germany.
| |
Collapse
|
8
|
Ma K, Hou Q, Xu C, Chen Y, Yang H, Xu J, Yu X. Initiation of rest-grazing during soil thawing improves interspecific relationships and stability of plant communities on alpine grassland. FRONTIERS IN PLANT SCIENCE 2024; 15:1426626. [PMID: 39166239 PMCID: PMC11333258 DOI: 10.3389/fpls.2024.1426626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 07/15/2024] [Indexed: 08/22/2024]
Abstract
Introduction Grazing management is essential to maintain the stability of grassland ecosystems. Methods To determine the optimal rest-grazing period of alpine meadow, five rest-grazing periods were set based on soil thawing and plant re-greening in this study. The niche, interspecific relationships, and stability of plant communities at different rest-grazing periods were investigated. Results Rest-grazing during soil thawing resulted in a small niche width and niche overlap of plants, overall positive interspecific associations, and a high stability of plant communities. Delayed rest-grazing time to plant re-greening resulted in a large niche width and niche overlap of plants, overall negative interspecific associations, and a low stability of plant communities. Discussion Rest-grazing in alpine meadows should begin as soon as possible to promote healthy and sustainable utilization of grasslands.
Collapse
Affiliation(s)
- Kaikai Ma
- College of Grassland Science, Key Laboratory of Grassland Ecosystem (Ministry of Education), Gansu Agricultural University, Lanzhou, China
| | - Qingqing Hou
- College of Grassland Science, Key Laboratory of Grassland Ecosystem (Ministry of Education), Gansu Agricultural University, Lanzhou, China
| | - Changlin Xu
- College of Grassland Science, Key Laboratory of Grassland Ecosystem (Ministry of Education), Gansu Agricultural University, Lanzhou, China
| | - Yanzhu Chen
- College of Grassland Science, Key Laboratory of Grassland Ecosystem (Ministry of Education), Gansu Agricultural University, Lanzhou, China
| | - Hang Yang
- College of Grassland Science, Key Laboratory of Grassland Ecosystem (Ministry of Education), Gansu Agricultural University, Lanzhou, China
| | - Jingjing Xu
- Department of Forestry Administration of Gansu Province, Gansu Forestry Technology Promotion Station, Lanzhou, China
| | - Xiaojun Yu
- College of Grassland Science, Key Laboratory of Grassland Ecosystem (Ministry of Education), Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
9
|
Mazzoni V, Anfora G, Cocroft RB, Fatouros NE, Groot AT, Gross J, Hill PSM, Hoch H, Ioriatti C, Nieri R, Pekas A, Stacconi MVR, Stelinski LL, Takanashi T, Virant-Doberlet M, Wessel A. Bridging biotremology and chemical ecology: a new terminology. TRENDS IN PLANT SCIENCE 2024; 29:848-855. [PMID: 38744599 DOI: 10.1016/j.tplants.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/25/2024] [Accepted: 04/17/2024] [Indexed: 05/16/2024]
Abstract
Living organisms use both chemical and mechanical stimuli to survive in their environment. Substrate-borne vibrations play a significant role in mediating behaviors in animals and inducing physiological responses in plants, leading to the emergence of the discipline of biotremology. Biotremology is experiencing rapid growth both in fundamental research and in applications like pest control, drawing attention from diverse audiences. As parallels with concepts and approaches in chemical ecology emerge, there is a pressing need for a shared standardized vocabulary in the area of overlap for mutual understanding. In this article, we propose an updated set of terms in biotremology rooted in chemical ecology, using the suffix '-done' derived from the classic Greek word 'δονέω' (pronounced 'doneo'), meaning 'to shake'.
Collapse
Affiliation(s)
- Valerio Mazzoni
- Fondazione Edmund Mach, Research and Innovation Centre, San Michele all'Adige, Italy.
| | - Gianfranco Anfora
- Fondazione Edmund Mach, Research and Innovation Centre, San Michele all'Adige, Italy; Centre Agriculture Food Environment (C3A), University of Trento, Trento, Italy
| | - Reginald B Cocroft
- Division of Biological Sciences, University of Missouri, Columbia, MO, USA
| | - Nina E Fatouros
- Wageningen University, Biosystematics Group, Wageningen, The Netherlands
| | - Astrid T Groot
- Evolutionary and Population Biology (EPB), Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, The Netherlands
| | - Jürgen Gross
- Federal Research Institute for Cultivated Plants, Institute for Plant Protection in Fruit Crops and Viticulture, Julius Kühn-Institut, Dossenheim, Germany
| | | | - Hannelore Hoch
- Center for Integrative Biodiversity Discovery, Museum für Naturkunde-Leibniz-Institute for Evolution and Biodiversity Science at Humboldt University Berlin, Berlin, Germany
| | - Claudio Ioriatti
- Fondazione Edmund Mach, Research and Innovation Centre, San Michele all'Adige, Italy
| | - Rachele Nieri
- Centre Agriculture Food Environment (C3A), University of Trento, Trento, Italy; Department of Mathematics, University of Trento, Trento, Italy
| | - Apostolos Pekas
- Instituto Agroforestal Mediterráneo, Universitat Politècnica de València, València, Spain
| | | | - Lukasz L Stelinski
- Department of Entomology and Nematology, Citrus Research and Education Center, University of Florida, Lake Alfred, FL, USA
| | - Takuma Takanashi
- Tohoku Research Center, Forestry and Forest Products Research Institute, Iwate, Japan
| | - Meta Virant-Doberlet
- Department of Organisms and Ecosystems Research, National Institute of Biology, Ljubljana, Slovenia
| | - Andreas Wessel
- Center for Integrative Biodiversity Discovery, Museum für Naturkunde-Leibniz-Institute for Evolution and Biodiversity Science at Humboldt University Berlin, Berlin, Germany
| |
Collapse
|
10
|
Schulte L, Oswald P, Mühlenhaupt M, Ossendorf E, Kruse S, Kaiser S, Caspers BA. Stress response of fire salamander larvae differs between habitat types. ROYAL SOCIETY OPEN SCIENCE 2024; 11:231304. [PMID: 38577214 PMCID: PMC10987980 DOI: 10.1098/rsos.231304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 01/12/2024] [Accepted: 03/05/2024] [Indexed: 04/06/2024]
Abstract
The larvae of the European fire salamander (Salamandra salamandra) can inhabit two different habitats: streams and ponds. Streams are characterized by lower predation risks and higher food availability. Thus, ponds are considered a less suitable habitat. To investigate the differential impacts of these two habitats on larval physiology, we measured the stress response of larvae. After successfully validating the measure of water-borne corticosterone release rates in fire salamander larvae, we measured the baseline and stress-induced corticosterone of 64 larvae from ponds and streams in the field. We found that larvae in ponds have a higher baseline and stress-induced corticosterone levels. Additionally, we performed a reciprocal transplant experiment (RTE) and tested whether larvae can adapt their stress responses to changing habitats. After two weeks, we did not find an increase in corticosterone levels when comparing stress-induced corticosterone values with baseline corticosterone values in larvae transferred into ponds, irrespective of their habitat of origin. However, larvae transferred into streams still exhibited an increase in the stress-induced corticosterone response in comparison with the baseline values. These results show that non-invasive hormone measurements can provide information on the habitat quality and potential adaptation and thus emphasize the potential for its use in conservation efforts.
Collapse
Affiliation(s)
- Laura Schulte
- Behavioural Ecology Department, Bielefeld University, Bielefeld33615, Germany
| | - Pia Oswald
- Behavioural Ecology Department, Bielefeld University, Bielefeld33615, Germany
| | - Max Mühlenhaupt
- Behavioural Ecology Department, Bielefeld University, Bielefeld33615, Germany
| | - Edith Ossendorf
- Institute for Neuro- and Behavioural Biology, University of Münster, Münster48149, Germany
| | - Sabine Kruse
- Institute for Neuro- and Behavioural Biology, University of Münster, Münster48149, Germany
| | - Sylvia Kaiser
- Institute for Neuro- and Behavioural Biology, University of Münster, Münster48149, Germany
- Joint Institute for Individualisation in a Changing Environment (JICE), University of Münster and Bielefeld University, Bielefeld, Germany
| | - Barbara A. Caspers
- Behavioural Ecology Department, Bielefeld University, Bielefeld33615, Germany
- Joint Institute for Individualisation in a Changing Environment (JICE), University of Münster and Bielefeld University, Bielefeld, Germany
| |
Collapse
|
11
|
Kaiser MI, Gadau J, Kaiser S, Müller C, Richter SH. Individualized social niches in animals: Theoretical clarifications and processes of niche change. Bioscience 2024; 74:146-158. [PMID: 38560618 PMCID: PMC10977865 DOI: 10.1093/biosci/biad122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/12/2023] [Indexed: 04/04/2024] Open
Abstract
What are social niches, and how do they arise and change? Our first goal in the present article is to clarify the concept of an individualized social niche and to distinguish it from related concepts, such as a social environment and a social role. We argue that focal individuals are integral parts of individualized social niches and that social interactions with conspecifics are further core elements of social niches. Our second goal in the present article is to characterize three types of processes-social niche construction, conformance, and choice (social NC3 processes)-that explain how individualized social niches originate and change. Our approach brings together studies of behavior, ecology, and evolution and integrates social niches into the broader concept of an individualized ecological niche. We show how clarifying the concept of a social niche and recognizing the differences between the three social NC3 processes enhance and stimulate empirical research.
Collapse
Affiliation(s)
- Marie I Kaiser
- Department of Philosophy, Bielefeld University, Bielefeld, Germany
- Joint Institute for Individualisation in a Changing Environment, University of Münster and Bielefeld University, Münster and in Bielefeld, Germany
| | - Jürgen Gadau
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
- Joint Institute for Individualisation in a Changing Environment, University of Münster and Bielefeld University, Münster and in Bielefeld, Germany
| | - Sylvia Kaiser
- Department of Behavioural Biology, Bielefeld University, Bielefeld, Germany
- Joint Institute for Individualisation in a Changing Environment, University of Münster and Bielefeld University, Münster and in Bielefeld, Germany
| | - Caroline Müller
- Department of Chemical Ecology, Bielefeld University, Bielefeld, Germany
- Joint Institute for Individualisation in a Changing Environment, University of Münster and Bielefeld University, Münster and in Bielefeld, Germany
| | - S Helene Richter
- Department of Behavioural Biology, Bielefeld University, Bielefeld, Germany
- Joint Institute for Individualisation in a Changing Environment, University of Münster and Bielefeld University, Münster and in Bielefeld, Germany
| |
Collapse
|
12
|
Cui Y, Zhang M, Zhu H, Yang P, Yang B, Li Z. Fine Structure of the Mouthparts of Three Tomicus Beetles Co-Infecting Pinus yunnanensis in Southwestern China with Some Functional Comments. INSECTS 2023; 14:933. [PMID: 38132606 PMCID: PMC10743386 DOI: 10.3390/insects14120933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 11/28/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023]
Abstract
Tomicus yunnanensis, T. brevipilosus, and T. minor are the most economically significant pests of Pinus yunnanensis in Southwestern China. Chemical and physical factors play critical roles in diverse biological activities. Here, we describe the fine structure of the adult mouthparts of these three Tomicus species using scanning and transmission electron microscopy. We identified three types of mandibular shapes, which determine their biomechanical properties, their ability to process food, and their preferred foraging locations on tree trunks. Eleven types of sensilla were discernible, including sensilla basiconica (Sb.1-2), sensilla twig basiconica (Stb.1-3), sensilla coeloconica (Sco), sensilla chaetica (Sch.1-2), sensilla trichoidea (Str.1-2), and sensilla digitiformia (Sdi). Each basiconic sensillum occurs on the palpal tips and is innervated by 2-6 dendrites. Sb.1 are gustatory receptors, Sb.2 are olfactory receptors, and the three other sensilla have dual taste and mechanical functions. Sco, Sch, and Str are mechanoreceptors. Sdi are mechanical vibration receptions, given that they are innervated by one dendrite with numerous dendritic branches into the nonporous cuticle. No significant differences among the sexes or species were identified; however, intraspecific variability in the number of Stb.3 and Sdi sensilla was evident. These results will aid future studies of Tomicus beetle behaviors.
Collapse
Affiliation(s)
- Yajie Cui
- Key Laboratory of Forest Disaster Warning and Control in Yunnan Province, Southwest Forestry University, Kunming 650224, China; (Y.C.); (M.Z.); (H.Z.); (B.Y.)
| | - Mengdie Zhang
- Key Laboratory of Forest Disaster Warning and Control in Yunnan Province, Southwest Forestry University, Kunming 650224, China; (Y.C.); (M.Z.); (H.Z.); (B.Y.)
| | - Haidi Zhu
- Key Laboratory of Forest Disaster Warning and Control in Yunnan Province, Southwest Forestry University, Kunming 650224, China; (Y.C.); (M.Z.); (H.Z.); (B.Y.)
| | - Pei Yang
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming 650500, China;
| | - Bin Yang
- Key Laboratory of Forest Disaster Warning and Control in Yunnan Province, Southwest Forestry University, Kunming 650224, China; (Y.C.); (M.Z.); (H.Z.); (B.Y.)
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China
| | - Zongbo Li
- Key Laboratory of Forest Disaster Warning and Control in Yunnan Province, Southwest Forestry University, Kunming 650224, China; (Y.C.); (M.Z.); (H.Z.); (B.Y.)
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China
| |
Collapse
|
13
|
Garrett O, Whalen KE. A bacterial quorum sensing signal is a potent inhibitor of de novo pyrimidine biosynthesis in the globally abundant Emiliania huxleyi. Front Microbiol 2023; 14:1266972. [PMID: 37869665 PMCID: PMC10587436 DOI: 10.3389/fmicb.2023.1266972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 09/08/2023] [Indexed: 10/24/2023] Open
Abstract
Interactions between marine phytoplankton, viruses, and bacteria drive biogeochemical cycling, shape marine trophic structures, and impact global climate. Microbially produced compounds have emerged as key players in influencing eukaryotic organismal physiology, and in turn, remodel microbial community structure. This work aimed to reveal the molecular mechanism by which the bacterial quorum sensing molecule 2-heptyl-4-quinolone (HHQ), produced by the marine gammaproteobacterium Pseudoalteromonas spp., arrests cell division and confers protection from virus-induced mortality in the bloom-forming coccolithophore Emiliania huxleyi. Previous work has established alkylquinolones as inhibitors of dihydroorotate dehydrogenase (DHODH), a fundamental enzyme catalyzing the fourth step in pyrimidine biosynthesis and a potential antiviral drug target. An N-terminally truncated version of E. huxleyi DHODH was heterologously expressed in E. coli, purified, and kinetically characterized. Here, we show HHQ is a potent inhibitor (Ki of 2.3 nM) of E. huxleyi DHODH. E. huxleyi cells exposed to brequinar, the canonical human DHODH inhibitor, experienced immediate, yet reversible cellular arrest, an effect which mirrors HHQ-induced cellular stasis previously observed. However, brequinar treatment lacked other notable effects observed in HHQ-exposed E. huxleyi including significant changes in cell size, chlorophyll fluorescence, and protection from virus-induced lysis, indicating HHQ has additional as yet undiscovered physiological targets. Together, these results suggest a novel and intricate role of bacterial quorum sensing molecules in tripartite interdomain interactions in marine ecosystems, opening new avenues for exploring the role of microbial chemical signaling in algal bloom regulation and host-pathogen dynamics.
Collapse
Affiliation(s)
| | - Kristen E. Whalen
- Department of Biology, Haverford College, Haverford, PA, United States
| |
Collapse
|
14
|
Brueggemann L, Tewes LJ, Müller C. Characterisation and localisation of plant metabolites involved in pharmacophagy in the turnip sawfly. PLoS One 2023; 18:e0291180. [PMID: 37796933 PMCID: PMC10553352 DOI: 10.1371/journal.pone.0291180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 08/22/2023] [Indexed: 10/07/2023] Open
Abstract
Several herbivorous insects consume certain metabolites from plants for other purposes than nutrition, such as defence. Adults of the turnip sawfly, Athalia rosae take up specific terpenoids, called clerodanoids, from Ajuga reptans. These metabolites are slightly modified by the sawflies and influence their mating behaviour and defence against predators. We characterised these metabolites and investigated their localisation in the insect and the specificity of the uptake and metabolite modification. Therefore, we performed feeding assays with adults and larvae of A. rosae as well as larvae of Spodoptera exigua, followed by chemical analyses. Two main clerodanoid-derived metabolites were detected in the abdomen and thorax but also on the surface of the adults. Small amounts were also found in larvae of the sawfly, while they were not detectable in S. exigua. Our findings provide new insights into the peculiarities of pharmacophagy and specialised metabolism in A. rosae.
Collapse
Affiliation(s)
- Leon Brueggemann
- Department of Chemical Ecology, Bielefeld University, Bielefeld, Germany
| | - Lisa Johanna Tewes
- Department of Chemical Ecology, Bielefeld University, Bielefeld, Germany
| | - Caroline Müller
- Department of Chemical Ecology, Bielefeld University, Bielefeld, Germany
| |
Collapse
|
15
|
Lo LK, R R, Tewes LJ, Milutinović B, Müller C, Kurtz J. Immune Stimulation via Wounding Alters Chemical Profiles of Adult Tribolium castaneum. J Chem Ecol 2023; 49:46-58. [PMID: 36539674 PMCID: PMC9941273 DOI: 10.1007/s10886-022-01395-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 11/20/2022] [Accepted: 11/23/2022] [Indexed: 12/24/2022]
Abstract
Group-living individuals experience immense risk of disease transmission and parasite infection. In social and in some non-social insects, disease control with immunomodulation arises not only via individual immune defenses, but also via infochemicals such as contact cues and (defensive) volatiles to mount a group-level immunity. However, little is known about whether activation of the immune system elicits changes in chemical phenotypes, which may mediate these responses. We here asked whether individual immune experience resulting from wounding or injection of heat-killed Bacillus thuringiensis (priming) leads to changes in the chemical profiles of female and male adult red flour beetles, Tribolium castaneum, which are non-social but gregarious. We analyzed insect extracts using GC-FID to study the chemical composition of (1) cuticular hydrocarbons (CHCs) as candidates for the transfer of immunity-related information between individuals via contact, and (2) stink gland secretions, with analysis of benzoquinones as main active compounds regulating 'external immunity'. Despite a pronounced sexual dimorphism in CHC profiles, wounding stimulation led to similar profile changes in males and females with increases in the proportion of methyl-branched alkanes compared to naïve beetles. While changes in the overall secretion profiles were less pronounced, absolute amounts of benzoquinones were transiently elevated in wounded compared to naïve females. Responses to priming were insignificant in CHCs and secretions. We suggest that changes in different infochemicals after wounding may mediate immune status signaling in the context of both internal and external immune responses in groups of this non-social insect, thus showing parallels to social immunity.
Collapse
Affiliation(s)
- Lai Ka Lo
- grid.5949.10000 0001 2172 9288Institute for Evolution and Biodiversity, University of Münster, Hüfferstr. 1, 48149 Münster, Germany
| | - Reshma R
- grid.5949.10000 0001 2172 9288Institute for Evolution and Biodiversity, University of Münster, Hüfferstr. 1, 48149 Münster, Germany
| | - Lisa Johanna Tewes
- grid.7491.b0000 0001 0944 9128Department of Chemical Ecology, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany
| | - Barbara Milutinović
- grid.5949.10000 0001 2172 9288Institute for Evolution and Biodiversity, University of Münster, Hüfferstr. 1, 48149 Münster, Germany
| | - Caroline Müller
- grid.7491.b0000 0001 0944 9128Department of Chemical Ecology, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany
| | - Joachim Kurtz
- Institute for Evolution and Biodiversity, University of Münster, Hüfferstr. 1, 48149, Münster, Germany.
| |
Collapse
|
16
|
Hahn LG, Oswald P, Caspers BA. Behavioural responses to chemical cues of predators differ between fire salamander larvae from two different habitats. J Zool (1987) 2022. [DOI: 10.1111/jzo.13039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- L. G. Hahn
- Institute for Zoology University of Cologne Cologne Germany
- Department of Behavioural Ecology Bielefeld University Bielefeld Germany
- Centre for Ecology and Conservation University of Exeter Penryn UK
| | - P. Oswald
- Department of Behavioural Ecology Bielefeld University Bielefeld Germany
| | - B. A. Caspers
- Department of Behavioural Ecology Bielefeld University Bielefeld Germany
| |
Collapse
|
17
|
Lilie ND, Riyahi S, Kalinowski A, Salazar SM, Kaiser S, Schmoll T, Korsten P. Male social niche conformance? Effects of manipulated opportunity for extra-pair mating on behavior and hormones of male zebra finches. Horm Behav 2022; 146:105243. [PMID: 35998552 DOI: 10.1016/j.yhbeh.2022.105243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 07/21/2022] [Accepted: 08/04/2022] [Indexed: 11/17/2022]
Abstract
Success in sperm competition is an important determinant of male fitness in mating systems with female multiple mating. Thus, sperm competition risk represents a key dimension of the male social environment to which individual males are expected to adaptively adjust their reproductive phenotype. Such adaptive phenotypic adjustment we here refer to as male social niche conformance. In this pre-registered study, we investigated how male zebra finches, Taeniopygia guttata, adjust their behavior to sperm competition risk. We experimentally manipulated the opportunity for extra-pair mating to create two levels of sperm competition risk: 1) Single-pair, no sperm competition risk; 2) Double-pair, sperm competition risk. We compared male courtship, mate guarding, copulation rates, and aggression between the treatment groups. To identify hormonal correlates of male behavioral adjustment, we measured plasma testosterone and corticosterone levels before and after the social treatment started. Contrary to our pre-registered predictions, males from the Double-pair treatment group decreased courtship rates compared to those from the Single-pair group, and Double-pair males responded less aggressively towards intruders than Single-pair males. Testosterone levels decreased over the breeding cycle, but social treatment had no effect on either testosterone or corticosterone levels. Our results indicate that male zebra finches do not intensify courtship or competitive reproductive behaviors, or upregulate key hormones when another breeding pair is present. Although we found no evidence for the predicted adaptive behavioral responses to sperm competition risk, we show that male zebra finches plastically adjust their behavior to their social environment.
Collapse
Affiliation(s)
- Navina D Lilie
- Department of Animal Behaviour, Bielefeld University, Konsequenz 45, 33615 Bielefeld, Germany; Evolutionary Biology, Bielefeld University, Konsequenz 45, 33615 Bielefeld, Germany.
| | - Sepand Riyahi
- Department of Animal Behaviour, Bielefeld University, Konsequenz 45, 33615 Bielefeld, Germany; Evolutionary Biology, Bielefeld University, Konsequenz 45, 33615 Bielefeld, Germany
| | - Arne Kalinowski
- Department of Animal Behaviour, Bielefeld University, Konsequenz 45, 33615 Bielefeld, Germany
| | - Stephen M Salazar
- Department of Animal Behaviour, Bielefeld University, Konsequenz 45, 33615 Bielefeld, Germany; Behavioural & Physiological Ecology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747 AG Groningen, the Netherlands
| | - Sylvia Kaiser
- Department of Behavioural Biology, University of Münster, Badestraße 13, 48149 Münster, Germany
| | - Tim Schmoll
- Evolutionary Biology, Bielefeld University, Konsequenz 45, 33615 Bielefeld, Germany
| | - Peter Korsten
- Department of Animal Behaviour, Bielefeld University, Konsequenz 45, 33615 Bielefeld, Germany.
| |
Collapse
|
18
|
Mothersill C, Cocchetto A, Seymour C. Low Dose and Non-Targeted Radiation Effects in Environmental Protection and Medicine-A New Model Focusing on Electromagnetic Signaling. Int J Mol Sci 2022; 23:11118. [PMID: 36232421 PMCID: PMC9570230 DOI: 10.3390/ijms231911118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/16/2022] [Accepted: 09/17/2022] [Indexed: 11/17/2022] Open
Abstract
The role of signalling in initiating and perpetuating effects triggered by deposition of ionising radiation energy in parts of a system is very clear. Less clear are the very early steps involved in converting energy to chemical and biological effects in non-targeted parts of the system. The paper aims to present a new model, which could aid our understanding of the role of low dose effects in determining ultimate disease outcomes. We propose a key role for electromagnetic signals resulting from physico-chemical processes such as excitation decay, and acoustic waves. These lead to the initiation of damage response pathways such as elevation of reactive oxygen species and membrane associated changes in key ion channels. Critically, these signalling pathways allow coordination of responses across system levels. For example, depending on how these perturbations are transduced, adverse or beneficial outcomes may predominate. We suggest that by appreciating the importance of signalling and communication between multiple levels of organisation, a unified theory could emerge. This would allow the development of models incorporating time, space and system level to position data in appropriate areas of a multidimensional domain. We propose the use of the term "infosome" to capture the nature of radiation-induced communication systems which include physical as well as chemical signals. We have named our model "the variable response model" or "VRM" which allows for multiple outcomes following exposure to low doses or to signals from low dose irradiated cells, tissues or organisms. We suggest that the use of both dose and infosome in radiation protection might open up new conceptual avenues that could allow intrinsic uncertainty to be embraced within a holistic protection framework.
Collapse
Affiliation(s)
- Carmel Mothersill
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Alan Cocchetto
- National CFIDS Foundation, 285 Beach Ave., Hull, MA 02045-1602, USA
| | - Colin Seymour
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada
| |
Collapse
|
19
|
Nones S, Sousa E, Holighaus G. Symbiotic Fungi of an Ambrosia Beetle Alter the Volatile Bouquet of Cork Oak Seedlings. PHYTOPATHOLOGY 2022; 112:1965-1978. [PMID: 35357159 DOI: 10.1094/phyto-08-21-0345-r] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In Portugal, fungal symbionts of the ambrosia beetle Platypus cylindrus affect tree vigor of cork oak (Quercus suber) and are linked with the cork oak decline process. Fungal symbionts play crucial roles in the life history of bark and ambrosia beetles and recent work indicates complex interactions on the fungal and plant metabolic level. Colonized trees may respond with an array of currently unknown volatile metabolites being indicative of such interactions, acting as infochemicals with their environment. In this study, we examined volatile organic compounds (VOCs) of cork oak seedlings wound inoculated with strains of three fungal associates of P. cylindrus (Raffaelea montetyi, R. quercina, and Ceratocystiopsis sp. nov.) over a 45-day period by means of thermodesorption gas chromatography-mass spectrometry techniques. Fungal strains induced largely quantitative but species-specific changes among the 58 VOCs characterized. Overall, monoterpenes-the major volatiles of cork oak foliage-were significantly reduced, possibly a result of fungal biotransformation. Acetophenone, sulcatone, and nonanal-volatiles known for mediating ambrosia beetle behavior-increased in response to fungal inoculation. Qualitative VOC profiles of excised tissue of wood lesions (21 VOCs) and pure fungal cultures (60 VOCs) showed little overlap with seedling VOCs, indicating their plant-derived but fungal-induced origin. This chemoecological study expands on the limited knowledge of VOCs as infochemicals emitted from oak trees threatened by oak decline in relation to beetle-vectored ophiostomatoid fungi. It opens new avenues of research to clarify mutualistic or pathogenic aspects of these complex symbiotic interactions and develop new control strategies for P. cylindrus, including its mycobiota.
Collapse
Affiliation(s)
- Stefano Nones
- Agrarian and Forestry Systems and Vegetal Health Unit, National Institute for Agricultural and Veterinary Research (INIAV, I.P.), Av. da República, Quinta do Marquês, 2780-159 Oeiras, Portugal
- GREEN-IT Bioresources for Sustainability, ITQB NOVA, Av. da República, 2780-157 Oeiras, Portugal
- Institute of Chemical and Biological Technology António Xavier, NOVA University of Lisbon, Av. da República, 2780-157 Oeiras, Portugal
| | - Edmundo Sousa
- Agrarian and Forestry Systems and Vegetal Health Unit, National Institute for Agricultural and Veterinary Research (INIAV, I.P.), Av. da República, Quinta do Marquês, 2780-159 Oeiras, Portugal
- GREEN-IT Bioresources for Sustainability, ITQB NOVA, Av. da República, 2780-157 Oeiras, Portugal
| | - Gerrit Holighaus
- Department of Forest Zoology and Forest Conservation, Büsgen Institute, Georg-August-University Göttingen, Büsgenweg 3, 37077 Göttingen, Germany
- Northwest German Forest Research Institute, Department of Forest Protection, Grätzelstraße 2, 37079 Göttingen, Germany
| |
Collapse
|
20
|
Hernández-Fernández A, Torre IG. Compression principle and Zipf's Law of brevity in infochemical communication. Biol Lett 2022; 18:20220162. [PMID: 35892209 PMCID: PMC9326285 DOI: 10.1098/rsbl.2022.0162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Compression has been presented as a general principle of animal communication. Zipf's Law of brevity is a manifestation of this postulate and can be generalized as the tendency of more frequent communicative elements to be shorter. Previous works supported this claim, showing evidence of Zipf's Law of brevity in animal acoustical communication and human language. However, a significant part of the communicative effort in biological systems is carried out in other transmission channels, such as those based on infochemicals. To fill this gap, we seek, for the first time, evidence of this principle in infochemical communication by analysing the statistical tendency of more frequent infochemicals to be chemically shorter and lighter. We analyse data from the largest and most comprehensive open-access infochemical database known as Pherobase, recovering Zipf's Law of brevity in interspecific communication (allelochemicals) but not in intraspecific communication (pheromones). Moreover, these results are robust even when addressing different magnitudes of study or mathematical approaches. Therefore, different dynamics from the compression principle would dominate intraspecific chemical communication, defying the universality of Zipf's Law of brevity. To conclude, we discuss the exception found for pheromones in the light of other potential communicative paradigms such as pressures on successful communication or the Handicap principle.
Collapse
Affiliation(s)
- Antoni Hernández-Fernández
- Complexity and Quantitative Linguistics Lab, Institut de Ciències de l'Educació, Universitat Politècnica de Catalunya, Av. Doctor Marañón 44-50, Barcelona 08028, Catalonia, Spain
| | - Iván G Torre
- Language and Speech Laboratory, Universidad del País Vasco, Justo Vélez de Elorriaga Kalea, 1, 01006 Vitoria, Spain.,Departamento de Matemática Aplicada, Universidad Politécnica de Madrid, Avda. Puerta de Hierro, 2-4, 28040 Madrid, Spain
| |
Collapse
|
21
|
Müller C, Junker RR. Chemical phenotype as important and dynamic niche dimension of plants. THE NEW PHYTOLOGIST 2022; 234:1168-1174. [PMID: 35297052 DOI: 10.1111/nph.18075] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 02/10/2022] [Indexed: 06/14/2023]
Abstract
Niche theory considering the traits of species and individuals provides a powerful tool to integrate ecology and evolution of species. In plant ecology, morphological and physiological traits are commonly considered as niche dimensions, whereas phytochemical traits are mostly neglected in this context despite their pivotal functions in plant responses to their environment and in mediating interactions. The diversity of plant phytochemicals can thus mediate three key processes: niche choice, conformance and construction. Here, we integrate frameworks from niche theory with chemical ecology and argue that plants use their individual-specific diversity in phytochemicals (chemodiversity) for different niche realization processes. Our concept has important implications for ecosystem processes and stability and increases the predictive ability of chemical ecology.
Collapse
Affiliation(s)
- Caroline Müller
- Chemical Ecology, Bielefeld University, Universitätsstr. 25, 33615, Bielefeld, Germany
| | - Robert R Junker
- Evolutionary Ecology of Plants, Department of Biology, University of Marburg, 35043, Marburg, Germany
- Department of Environment and Biodiversity, University of Salzburg, 5020, Salzburg, Austria
| |
Collapse
|
22
|
Dickman CR. Ecology: Voles engineer safe spaces. Curr Biol 2022; 32:R365-R367. [DOI: 10.1016/j.cub.2022.03.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
23
|
Nagel R, Kaiser S, Stainfield C, Toscani C, Fox‐Clarke C, Paijmans AJ, Costa Castro C, Vendrami DLJ, Forcada J, Hoffman JI. Low heritability and high phenotypic plasticity of salivary cortisol in response to environmental heterogeneity in a wild pinniped. Ecol Evol 2022; 12:e8757. [PMID: 35356576 PMCID: PMC8956859 DOI: 10.1002/ece3.8757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/24/2022] [Accepted: 03/07/2022] [Indexed: 11/18/2022] Open
Abstract
Individuals are unique in how they interact with and respond to their environment. Correspondingly, unpredictable challenges or environmental stressors often produce an individualized response of the hypothalamic-pituitary-adrenal (HPA) axis and its downstream effector cortisol. We used a fully crossed, repeated measures design to investigate the factors shaping individual variation in baseline cortisol in Antarctic fur seal pups and their mothers. Saliva samples were collected from focal individuals at two breeding colonies, one with low and the other with high density, during two consecutive years of contrasting food availability. Mothers and pups were sampled concurrently at birth and shortly before weaning, while pups were additionally sampled every 20 days. We found that heritability was low for baseline cortisol, while within-individual repeatability and among-individual variability were high. A substantial proportion of the variation in baseline cortisol could be explained in pups and mothers by a combination of intrinsic and extrinsic factors including sex, weight, day, season, and colony of birth. Our findings provide detailed insights into the individualization of endocrine phenotypes and their genetic and environmental drivers in a wild pinniped. Furthermore, the strong associations between cortisol and life history traits that we report in fur seals could have important implications for understanding the population dynamics of species impacted by environmental change.
Collapse
Affiliation(s)
- Rebecca Nagel
- Department of Animal BehaviourBielefeld UniversityBielefeldGermany
| | - Sylvia Kaiser
- Department of Behavioural BiologyUniversity of MünsterMünsterGermany
| | | | | | | | | | | | | | | | - Joseph I. Hoffman
- Department of Animal BehaviourBielefeld UniversityBielefeldGermany
- British Antarctic SurveyCambridgeUK
| |
Collapse
|
24
|
Odour-mediated Interactions Between an Apex Reptilian Predator and its Mammalian Prey. J Chem Ecol 2022; 48:401-415. [PMID: 35233678 PMCID: PMC9079038 DOI: 10.1007/s10886-022-01350-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 02/04/2022] [Accepted: 02/06/2022] [Indexed: 12/24/2022]
Abstract
An important but understudied modality for eavesdropping between predators and prey is olfaction, especially between non-mammalian vertebrate predators and their prey. Here we test three olfactory eavesdropping predictions involving an apex reptilian predator, the sand goanna Varanus gouldii, and several species of its small mammalian prey in arid central Australia: 1) small mammals will recognize and avoid the odour of V. gouldii; 2) V. gouldii will be attracted to the odour of small mammals, especially of species that maximize its energetic returns; and 3) small mammals will be less mobile and will show higher burrow fidelity where V. gouldii is absent compared with where it is present. As expected, we found that small mammals recognized and avoided faecal odour of this goanna, feeding less intensively at food patches where the odour of V. gouldii was present than at patches with no odour or a pungency control odour. Varanus gouldii also was attracted to the odour of small mammals in artificial burrows and dug more frequently at burrows containing the odour of species that were energetically profitable than at those of species likely to yield diminishing returns. Our third prediction received mixed support. Rates of movement of three species of small mammals were no different where V. gouldii was present or absent, but burrow fidelity in two of these species increased as expected where V. gouldii had been removed. We conclude that olfaction plays a key role in the dynamic interaction between V. gouldii and its mammalian prey, with the interactants using olfaction to balance their respective costs of foraging and reducing predation risk. We speculate that the risk of predation from this apex reptilian predator drives the highly unusual burrow-shifting behaviour that characterizes many of Australia's small desert mammals.
Collapse
|
25
|
Grieves LA, Gilles M, Cuthill IC, Székely T, MacDougall-Shackleton EA, Caspers BA. Olfactory camouflage and communication in birds. Biol Rev Camb Philos Soc 2022; 97:1193-1209. [PMID: 35128775 DOI: 10.1111/brv.12837] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 01/19/2022] [Accepted: 01/24/2022] [Indexed: 12/22/2022]
Abstract
Smell is a sensory modality that is rarely considered in birds, but evidence is mounting that olfaction is an important aspect of avian behaviour and ecology. The uropygial gland produces an odoriferous secretion (preen oil) that can differ seasonally and between the sexes. These differences are hypothesized to function in olfactory camouflage, i.e. minimizing detection by nest predators (olfactory crypsis hypothesis), and/or intraspecific olfactory communication, particularly during breeding (sex semiochemical hypothesis). However, evidence for seasonal and sex differences in preen oil is mixed, with some studies finding differences and others not, and direct evidence for the putative function(s) of seasonal variation and sex differences in preen oil remains limited. We conducted a systematic review of the evidence for such changes in preen oil chemical composition, finding seasonal differences in 95% of species (57/60 species in 35 studies) and sex differences in 47% of species (28/59 species in 46 studies). We then conducted phylogenetic comparative analyses using data from 59 bird species to evaluate evidence for both the olfactory crypsis and sex semiochemical hypotheses. Seasonal differences were more likely in the incubating than non-incubating sex in ground-nesting species, but were equally likely regardless of incubation strategy in non-ground-nesting species. This result supports the olfactory crypsis hypothesis, if ground nesters are more vulnerable to olfactorily searching predators than non-ground nesters. Sex differences were more likely in species with uniparental than biparental incubation and during breeding than non-breeding, consistent with both the olfactory crypsis and sex semiochemical hypotheses. At present, the data do not allow us to disentangle these two hypotheses, but we provide recommendations that will enable researchers to do so.
Collapse
Affiliation(s)
- Leanne A Grieves
- Department of Psychology, Neuroscience and Behaviour, McMaster University, Hamilton, Ontario, L8S 4M4, Canada
| | - Marc Gilles
- Department of Behavioural Ecology, Bielefeld University, Konsequenz 45, Bielefeld, 33615, Germany
| | - Innes C Cuthill
- School of Biological Sciences, Life Sciences Building, 24 Tyndall Avenue, Bristol, BS8 1TQ, U.K
| | - Tamás Székely
- Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, BA2 7AY, U.K.,Department of Evolutionary Zoology and Human Biology, University of Debrecen, Egyetem ter 1, Debrecen, H-4032, Hungary
| | | | - Barbara A Caspers
- Department of Behavioural Ecology, Bielefeld University, Konsequenz 45, Bielefeld, 33615, Germany
| |
Collapse
|
26
|
Trappes R, Nematipour B, Kaiser MI, Krohs U, van Benthem KJ, Ernst UR, Gadau J, Korsten P, Kurtz J, Schielzeth H, Schmoll T, Takola E. OUP accepted manuscript. Bioscience 2022; 72:538-548. [PMID: 35677293 PMCID: PMC9169896 DOI: 10.1093/biosci/biac023] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Organisms interact with their environments in various ways. We present a conceptual framework that distinguishes three mechanisms of organism–environment interaction. We call these NC3 mechanisms: niche construction, in which individuals make changes to the environment; niche choice, in which individuals select an environment; and niche conformance, in which individuals adjust their phenotypes in response to the environment. Each of these individual-level mechanisms affects an individual's phenotype–environment match, its fitness, and its individualized niche, defined in terms of the environmental conditions under which the individual can survive and reproduce. Our framework identifies how individuals alter the selective regimes that they and other organisms experience. It also places clear emphasis on individual differences and construes niche construction and other processes as evolved mechanisms. The NC3 mechanism framework therefore helps to integrate population-level and individual-level research.
Collapse
Affiliation(s)
| | - Behzad Nematipour
- Center for Philosophy of Science, University of Münster, Münster, Germany
| | - Marie I Kaiser
- Department of Philosophy, Bielefeld University, Bielefeld, Germany
| | - Ulrich Krohs
- Department of Philosophy, University of Münster, Münster, Germany
| | - Koen J van Benthem
- Department of Theoretical Biology, Bielefeld University, Bielefeld, Germany, and with the Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Ulrich R Ernst
- Universität Hohenheim, Apicultural State Institute (Landesanstalt für Bienenkunde), Stuttgart, Germany
- Institute for Evolution and Biodiversity, University of Münster, in Münster, Germany
| | - Jürgen Gadau
- Institute for Evolution and Biodiversity, University of Münster, in Münster, Germany
| | - Peter Korsten
- Department of Animal Behaviour, Bielefeld University, Bielefeld, Germany
| | - Joachim Kurtz
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | - Holger Schielzeth
- Population Ecology Group, Institute of Ecology and Evolution, Friedrich Schiller University Jena, Jena, Germany
| | - Tim Schmoll
- Department of Evolutionary Biology, Bielefeld University, Bielefeld, Germany
| | - Elina Takola
- Population Ecology Group, Institute of Ecology and Evolution, Friedrich Schiller University Jena, Jena, Germany
| |
Collapse
|
27
|
Zimmer C, Woods HA, Martin LB. Information theory in vertebrate stress physiology. Trends Endocrinol Metab 2022; 33:8-17. [PMID: 34750063 DOI: 10.1016/j.tem.2021.10.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 10/01/2021] [Accepted: 10/09/2021] [Indexed: 11/21/2022]
Abstract
Information theory has been applied productively across biology, but it has been used minimally in endocrinology. Here, we advocate for the integration of information theory into stress endocrinology. Presently, the majority of models of stress center on the regulation of hormone concentrations, even though what interests most endocrinologists and matters in terms of individual health and evolutionary fitness is the information content of hormones. In neuroscience, the free energy principle, a concept offered to explain how the brain infers current and future states of the environment, could be a guide for resolving how information is instantiated in hormones such as the glucocorticoids. Here, we offer several ideas and promising options for research addressing how hormones encode and cells respond to information in glucocorticoids.
Collapse
Affiliation(s)
- Cedric Zimmer
- Global Health and Infectious Disease Research Center, University of South Florida, FL 33612, USA; Laboratoire d'Ethologie Expérimentale et Comparée, LEEC, UR 4443, Université Sorbonne Paris Nord, 93430, Villetaneuse, France.
| | - H Arthur Woods
- University of Montana, Division of Biological Sciences, Missoula, MT 59812, USA
| | - Lynn B Martin
- Global Health and Infectious Disease Research Center, University of South Florida, FL 33612, USA
| |
Collapse
|
28
|
Moran NP, Caspers BA, Chakarov N, Ernst UR, Fricke C, Kurtz J, Lilie ND, Lo LK, Müller C, R R, Takola E, Trimmer PC, van Benthem KJ, Winternitz J, Wittmann MJ. Shifts between cooperation and antagonism driven by individual variation: a systematic synthesis review. OIKOS 2021. [DOI: 10.1111/oik.08201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Nicholas P. Moran
- Centre for Ocean Life DTU‐Aqua, Technical Univ. of Denmark Lyngby Denmark
- Dept of Evolutionary Biology, Bielefeld Univ. Bielefeld Germany
| | | | | | - Ulrich R. Ernst
- Inst. for Evolution and Biodiversity, Univ. of Münster Münster Germany
- Apicultural State Inst., Univ. of Hohenheim Stuttgart Germany
| | - Claudia Fricke
- Inst. for Evolution and Biodiversity, Univ. of Münster Münster Germany
| | - Joachim Kurtz
- Inst. for Evolution and Biodiversity, Univ. of Münster Münster Germany
| | - Navina D. Lilie
- Dept of Evolutionary Biology, Bielefeld Univ. Bielefeld Germany
- Dept of Animal Behaviour, Bielefeld Univ. Bielefeld Germany
| | - Lai Ka Lo
- Inst. for Evolution and Biodiversity, Univ. of Münster Münster Germany
| | | | - Reshma R
- Inst. for Evolution and Biodiversity, Univ. of Münster Münster Germany
| | - Elina Takola
- Inst. of Ecology and Evolution, Friedrich Schiller Univ. Jena Jena Germany
| | | | | | | | | |
Collapse
|
29
|
Fokkema RW, Korsten P, Schmoll T, Wilson AJ. Social competition as a driver of phenotype-environment correlations: implications for ecology and evolution. Biol Rev Camb Philos Soc 2021; 96:2561-2572. [PMID: 34145714 PMCID: PMC9290562 DOI: 10.1111/brv.12768] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 06/09/2021] [Accepted: 06/11/2021] [Indexed: 12/27/2022]
Abstract
While it is universally recognised that environmental factors can cause phenotypic trait variation via phenotypic plasticity, the extent to which causal processes operate in the reverse direction has received less consideration. In fact individuals are often active agents in determining the environments, and hence the selective regimes, they experience. There are several important mechanisms by which this can occur, including habitat selection and niche construction, that are expected to result in phenotype–environment correlations (i.e. non‐random assortment of phenotypes across heterogeneous environments). Here we highlight an additional mechanism – intraspecific competition for preferred environments – that may be widespread, and has implications for phenotypic evolution that are currently underappreciated. Under this mechanism, variation among individuals in traits determining their competitive ability leads to phenotype–environment correlation; more competitive phenotypes are able to acquire better patches. Based on a concise review of the empirical evidence we argue that competition‐induced phenotype–environment correlations are likely to be common in natural populations before highlighting the major implications of this for studies of natural selection and microevolution. We focus particularly on two central issues. First, competition‐induced phenotype–environment correlation leads to the expectation that positive feedback loops will amplify phenotypic and fitness variation among competing individuals. As a result of being able to acquire a better environment, winners gain more resources and even better phenotypes – at the expense of losers. The distinction between individual quality and environmental quality that is commonly made by researchers in evolutionary ecology thus becomes untenable. Second, if differences among individuals in competitive ability are underpinned by heritable traits, competition results in both genotype–environment correlations and an expectation of indirect genetic effects (IGEs) on resource‐dependent life‐history traits. Theory tells us that these IGEs will act as (partial) constraints, reducing the amount of genetic variance available to facilitate evolutionary adaptation. Failure to recognise this will lead to systematic overestimation of the adaptive potential of populations. To understand the importance of these issues for ecological and evolutionary processes in natural populations we therefore need to identify and quantify competition‐induced phenotype–environment correlations in our study systems. We conclude that both fundamental and applied research will benefit from an improved understanding of when and how social competition causes non‐random distribution of phenotypes, and genotypes, across heterogeneous environments.
Collapse
Affiliation(s)
- Rienk W Fokkema
- Department of Animal Behaviour, Bielefeld University, Konsequenz 45, Bielefeld, 33615, Germany.,Evolutionary Biology, Bielefeld University, Konsequenz 45, Bielefeld, 33615, Germany.,Conservation Ecology Group, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Nijenborgh 7, Groningen, 9747AG, The Netherlands
| | - Peter Korsten
- Department of Animal Behaviour, Bielefeld University, Konsequenz 45, Bielefeld, 33615, Germany
| | - Tim Schmoll
- Evolutionary Biology, Bielefeld University, Konsequenz 45, Bielefeld, 33615, Germany
| | - Alastair J Wilson
- Centre for Ecology and Conservation, University of Exeter (Penryn Campus), Penryn, Cornwall, TR10 9FE, United Kingdom
| |
Collapse
|
30
|
Kapoore RV, Padmaperuma G, Maneein S, Vaidyanathan S. Co-culturing microbial consortia: approaches for applications in biomanufacturing and bioprocessing. Crit Rev Biotechnol 2021; 42:46-72. [PMID: 33980092 DOI: 10.1080/07388551.2021.1921691] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The application of microbial co-cultures is now recognized in the fields of biotechnology, ecology, and medicine. Understanding the biological interactions that govern the association of microorganisms would shape the way in which artificial/synthetic co-cultures or consortia are developed. The ability to accurately predict and control cell-to-cell interactions fully would be a significant enabler in synthetic biology. Co-culturing method development holds the key to strategically engineer environments in which the co-cultured microorganism can be monitored. Various approaches have been employed which aim to emulate the natural environment and gain access to the untapped natural resources emerging from cross-talk between partners. Amongst these methods are the use of a communal liquid medium for growth, use of a solid-liquid interface, membrane separation, spatial separation, and use of microfluidics systems. Maximizing the information content of interactions monitored is one of the major challenges that needs to be addressed by these designs. This review critically evaluates the significance and drawbacks of the co-culturing approaches used to this day in biotechnological applications, relevant to biomanufacturing. It is recommended that experimental results for a co-cultured species should be validated with different co-culture approaches due to variations in interactions that could exist as a result of the culturing method selected.
Collapse
Affiliation(s)
- Rahul Vijay Kapoore
- Department of Chemical and Biological Engineering, The University of Sheffield, Sheffield, UK.,Department of Biosciences, College of Science, Swansea University, Swansea, UK
| | - Gloria Padmaperuma
- Department of Chemical and Biological Engineering, The University of Sheffield, Sheffield, UK
| | - Supattra Maneein
- Department of Chemical and Biological Engineering, The University of Sheffield, Sheffield, UK.,Department of Pharmaceutical, Chemical & Environmental Sciences, The University of Greenwich, Kent, UK
| | | |
Collapse
|
31
|
Peters K, Balcke G, Kleinenkuhnen N, Treutler H, Neumann S. Untargeted In Silico Compound Classification-A Novel Metabolomics Method to Assess the Chemodiversity in Bryophytes. Int J Mol Sci 2021; 22:ijms22063251. [PMID: 33806786 PMCID: PMC8005083 DOI: 10.3390/ijms22063251] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 03/16/2021] [Accepted: 03/18/2021] [Indexed: 12/29/2022] Open
Abstract
In plant ecology, biochemical analyses of bryophytes and vascular plants are often conducted on dried herbarium specimen as species typically grow in distant and inaccessible locations. Here, we present an automated in silico compound classification framework to annotate metabolites using an untargeted data independent acquisition (DIA)–LC/MS–QToF-sequential windowed acquisition of all theoretical fragment ion mass spectra (SWATH) ecometabolomics analytical method. We perform a comparative investigation of the chemical diversity at the global level and the composition of metabolite families in ten different species of bryophytes using fresh samples collected on-site and dried specimen stored in a herbarium for half a year. Shannon and Pielou’s diversity indices, hierarchical clustering analysis (HCA), sparse partial least squares discriminant analysis (sPLS-DA), distance-based redundancy analysis (dbRDA), ANOVA with post-hoc Tukey honestly significant difference (HSD) test, and the Fisher’s exact test were used to determine differences in the richness and composition of metabolite families, with regard to herbarium conditions, ecological characteristics, and species. We functionally annotated metabolite families to biochemical processes related to the structural integrity of membranes and cell walls (proto-lignin, glycerophospholipids, carbohydrates), chemical defense (polyphenols, steroids), reactive oxygen species (ROS) protection (alkaloids, amino acids, flavonoids), nutrition (nitrogen- and phosphate-containing glycerophospholipids), and photosynthesis. Changes in the composition of metabolite families also explained variance related to ecological functioning like physiological adaptations of bryophytes to dry environments (proteins, peptides, flavonoids, terpenes), light availability (flavonoids, terpenes, carbohydrates), temperature (flavonoids), and biotic interactions (steroids, terpenes). The results from this study allow to construct chemical traits that can be attributed to biogeochemistry, habitat conditions, environmental changes and biotic interactions. Our classification framework accelerates the complex annotation process in metabolomics and can be used to simplify biochemical patterns. We show that compound classification is a powerful tool that allows to explore relationships in both molecular biology by “zooming in” and in ecology by “zooming out”. The insights revealed by our framework allow to construct new research hypotheses and to enable detailed follow-up studies.
Collapse
Affiliation(s)
- Kristian Peters
- Bioinformatics & Scientific Data, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany; (H.T.); (S.N.)
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany
- Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, 06108 Halle (Saale), Germany
- Correspondence: ; Tel.: +49-345-5582-1475
| | - Gerd Balcke
- Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany;
| | - Niklas Kleinenkuhnen
- Max Planck Research Group Chromatin and Ageing, Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Str. 9b, 50931 Cologne, Germany;
- MS-Platform, Cluster of Excellence on Plant Sciences, Botanical Institute (CEPLAS), University of Cologne, 50931 Cologne, Germany
| | - Hendrik Treutler
- Bioinformatics & Scientific Data, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany; (H.T.); (S.N.)
- Datameer GmbH, Magdeburger Straße 23, 06112 Halle (Saale), Germany
| | - Steffen Neumann
- Bioinformatics & Scientific Data, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany; (H.T.); (S.N.)
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany
| |
Collapse
|