1
|
Villa-Machío I, Heuertz M, Álvarez I, Nieto Feliner G. Demography-driven and adaptive introgression in a hybrid zone of the Armeria syngameon. Mol Ecol 2024; 33:e17167. [PMID: 37837272 DOI: 10.1111/mec.17167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/30/2023] [Accepted: 10/04/2023] [Indexed: 10/15/2023]
Abstract
Syngameons represent networks of otherwise distinct species connected by limited gene exchange. Although most studies have focused on how species maintain their cohesiveness despite gene flow, there are additional relevant questions regarding the evolutionary dynamics of syngameons and their drivers, as well as the success of their members and the network as a whole. Using a ddRADseq approach, we analysed the genetic structure, genomic clines and demographic history of a coastal hybrid zone involving two species of the Armeria (Plumbaginaceae) syngameon in southern Spain. We inferred that a peripheral population of the sand dune-adapted A. pungens diverged from the rest of the conspecific populations and subsequently hybridized with a locally more abundant pinewood congener, A. macrophylla. Both species display extensive plastid DNA haplotype sharing. Genomic cline analysis identified bidirectional introgression, but more outlier loci with excess A. pungens than A. macrophylla ancestry, suggesting the possibility of selection for A. pungens alleles. This is consistent with the finding that the A. pungens phenotype is selected for in open habitats, and with the strong correlation found between ancestry and phenotype. Taken together, our analyses suggest an intriguing scenario in which bidirectional introgression may, on the one hand, help to avoid reduced levels of genetic diversity due to the small size and isolated location of the A. pungens range-edge population, thereby minimizing demographic risks of stochastic extinction. On the other hand, the data also suggest that introgression into A. macrophylla may allow individuals to grow in open, highly irradiated, deep sandy, salt-exposed habitats.
Collapse
Affiliation(s)
- Irene Villa-Machío
- Department of Biodiversity and Conservation, Real Jardín Botánico (RJB), CSIC, Madrid, Spain
| | | | - Inés Álvarez
- Department of Biodiversity and Conservation, Real Jardín Botánico (RJB), CSIC, Madrid, Spain
| | - Gonzalo Nieto Feliner
- Department of Biodiversity and Conservation, Real Jardín Botánico (RJB), CSIC, Madrid, Spain
| |
Collapse
|
2
|
Ottenburghs J. Digest: Asymmetrical introgression of belly coloration across a manakin hybrid zone in Panama. Evolution 2024; 78:1633-1634. [PMID: 38902865 DOI: 10.1093/evolut/qpae096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 06/20/2024] [Indexed: 06/22/2024]
Abstract
How does sexual selection impact introgression dynamics across a hybrid zone? Long et al. (2024) used historical (1989-1994) and contemporary (2017-2020) samples to quantify the stability of a Panamanian hybrid zone between golden-collared manakins (Manacus vitellinus) and white-collared manakins (M. candei). Their analyses revealed a spatially stable hybrid zone, except for one trait, belly plumage coloration, which has introgressed into the distribution of the white-collared manakin. This finding suggests possible sexual selection for this trait.
Collapse
Affiliation(s)
- Jente Ottenburghs
- Wildlife Ecology and Conservation, Wageningen University, Wageningen, The Netherlands
- Forest Ecology and Forest Management, Wageningen University, Wageningen, The Netherlands
| |
Collapse
|
3
|
Vuruputoor VS, Starovoitov A, Cai Y, Liu Y, Rahmatpour N, Hedderson TA, Wilding N, Wegrzyn JL, Goffinet B. Crossroads of assembling a moss genome: navigating contaminants and horizontal gene transfer in the moss Physcomitrellopsis africana. G3 (BETHESDA, MD.) 2024; 14:jkae104. [PMID: 38781445 PMCID: PMC11228847 DOI: 10.1093/g3journal/jkae104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/03/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024]
Abstract
The first chromosome-scale reference genome of the rare narrow-endemic African moss Physcomitrellopsis africana (P. africana) is presented here. Assembled from 73 × Oxford Nanopore Technologies (ONT) long reads and 163 × Beijing Genomics Institute (BGI)-seq short reads, the 414 Mb reference comprises 26 chromosomes and 22,925 protein-coding genes [Benchmarking Universal Single-Copy Ortholog (BUSCO) scores: C:94.8% (D:13.9%)]. This genome holds 2 genes that withstood rigorous filtration of microbial contaminants, have no homolog in other land plants, and are thus interpreted as resulting from 2 unique horizontal gene transfers (HGTs) from microbes. Further, P. africana shares 176 of the 273 published HGT candidates identified in Physcomitrium patens (P. patens), but lacks 98 of these, highlighting that perhaps as many as 91 genes were acquired in P. patens in the last 40 million years following its divergence from its common ancestor with P. africana. These observations suggest rather continuous gene gains via HGT followed by potential losses during the diversification of the Funariaceae. Our findings showcase both dynamic flux in plant HGTs over evolutionarily "short" timescales, alongside enduring impacts of successful integrations, like those still functionally maintained in extant P. africana. Furthermore, this study describes the informatic processes employed to distinguish contaminants from candidate HGT events.
Collapse
Affiliation(s)
- Vidya S Vuruputoor
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269, USA
| | - Andrew Starovoitov
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269, USA
| | - Yuqing Cai
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen 518083, China
- Key Laboratory of Southern Subtropical Plant Diversity, Fairy Lake 518004, China
| | - Yang Liu
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen 518083, China
- Key Laboratory of Southern Subtropical Plant Diversity, Fairy Lake 518004, China
| | - Nasim Rahmatpour
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269, USA
| | - Terry A Hedderson
- Department of Biological Sciences, Bolus Herbarium, University of Cape Town, Private Bag, 7701 Rondebosch, South Africa
| | - Nicholas Wilding
- UMR PVBMT, BP 7151, Université de La Réunion, chemin de l’IRAT, 97410 Saint-Pierre, La Réunion, France
- Missouri Botanical Garden, P.O. Box 299, St. Louis, MO 63166-0299, USA
| | - Jill L Wegrzyn
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269, USA
- Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269, USA
| | - Bernard Goffinet
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
4
|
Carvalho-Madrigal S, Sanín MJ. The role of introgressive hybridization in shaping the geographically isolated gene pools of wax palm populations (genus Ceroxylon). Mol Phylogenet Evol 2024; 193:108013. [PMID: 38195012 DOI: 10.1016/j.ympev.2024.108013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/22/2023] [Accepted: 01/06/2024] [Indexed: 01/11/2024]
Abstract
The speciation continuum is the process by which genetic groups diverge until they reach reproductive isolation. It has become common in the literature to show that this process is gradual and flickering, with possibly many instances of secondary contact and introgression after divergence has started. The level of divergence might vary among genomic regions due to, among others, the different forces and roles of selection played by the shared regions. Through hybrid capture, we sequenced ca. 4,000 nuclear regions in populations of six species of wax palms, five of which form a monophyletic group (genus Ceroxylon, Arecaceae: Ceroxyloideae). We show that in this group, the different populations show varying degrees of introgressive hybridization, and two of them are backcrosses of the other three 'pure' species. This is particularly interesting because these three species are dioecious, have a shared main pollinator, and have slightly overlapping reproductive seasons but highly divergent morphologies. Our work supports shows wax palms diverge under positive and background selection in allopatry, and hybridize due to secondary contact and inefficient reproductive barriers, which sustain genetic diversity. Introgressed regions are generally not under positive selection. Peripheral populations are backcrosses of other species; thus, introgressive hybridization is likely modulated by demographic effects rather than selective pressures. In general, these species might function as an 'evolutionary syngameon' where expanding, peripheral, small, and isolated populations maintain diversity by crossing with available individuals of other wax palms. In the Andean context, species can benefit from gained variation from a second taxon or the enhancement of population sizes by recreating a common genetic pool.
Collapse
Affiliation(s)
| | - María José Sanín
- School of Mathematical and Natural Sciences, Arizona State University, West Valley Campus, Glendale, United States.
| |
Collapse
|
5
|
Swaegers J, De Cupere S, Gaens N, Lancaster LT, Carbonell JA, Sánchez Guillén RA, Stoks R. Plasticity and associated epigenetic mechanisms play a role in thermal evolution during range expansion. Evol Lett 2024; 8:76-88. [PMID: 38370551 PMCID: PMC10872138 DOI: 10.1093/evlett/qrac007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 12/06/2022] [Accepted: 12/28/2022] [Indexed: 02/20/2024] Open
Abstract
Due to global change, many species are shifting their distribution and are thereby confronted with novel thermal conditions at the moving range edges. Especially during the initial phases of exposure to a new environment, it has been hypothesized that plasticity and associated epigenetic mechanisms enable species to cope with environmental change. We tested this idea by capitalizing on the well-documented southward range expansion of the damselfly Ischnura elegans from France into Spain where the species invaded warmer regions in the 1950s in eastern Spain (old edge region) and in the 2010s in central Spain (new edge region). Using a common garden experiment at rearing temperatures matching the ancestral and invaded thermal regimes, we tested for evolutionary changes in (thermal plasticity in) larval life history and heat tolerance in these expansion zones. Through the use of de- and hypermethylating agents, we tested whether epigenetic mechanisms play a role in enabling heat tolerance during expansion. We used the phenotype of the native sister species in Spain, I. graellsii, as proxy for the locally adapted phenotype. New edge populations converged toward the phenotype of the native species through plastic thermal responses in life history and heat tolerance while old edge populations (partly) constitutively evolved a faster life history and higher heat tolerance than the core populations, thereby matching the native species. Only the heat tolerance of new edge populations increased significantly when exposed to the hypermethylating agent. This suggests that the DNA methylation machinery is more amenable to perturbation at the new edge and shows it is able to play a role in achieving a higher heat tolerance. Our results show that both (evolved) plasticity as well as associated epigenetic mechanisms are initially important when facing new thermal regimes but that their importance diminishes with time.
Collapse
Affiliation(s)
- Janne Swaegers
- Laboratory of Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Leuven, Belgium
| | - Simon De Cupere
- Laboratory of Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Leuven, Belgium
| | - Noah Gaens
- Laboratory of Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Leuven, Belgium
| | - Lesley T Lancaster
- School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - José A Carbonell
- Department of Zoology, Faculty of Biology, University of Seville, Seville, Spain
| | | | - Robby Stoks
- Laboratory of Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Leuven, Belgium
| |
Collapse
|
6
|
Zbinden ZD, Douglas MR, Chafin TK, Douglas ME. A community genomics approach to natural hybridization. Proc Biol Sci 2023; 290:20230768. [PMID: 37192670 PMCID: PMC10188237 DOI: 10.1098/rspb.2023.0768] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 04/26/2023] [Indexed: 05/18/2023] Open
Abstract
Hybridization is a complicated, oft-misunderstood process. Once deemed unnatural and uncommon, hybridization is now recognized as ubiquitous among species. But hybridization rates within and among communities are poorly understood despite the relevance to ecology, evolution and conservation. To clarify, we examined hybridization across 75 freshwater fish communities within the Ozarks of the North American Interior Highlands (USA) by single nucleotide polymorphism (SNP) genotyping 33 species (N = 2865 individuals; double-digest restriction site-associated DNA sequencing (ddRAD)). We found evidence of hybridization (70 putative hybrids; 2.4% of individuals) among 18 species-pairs involving 73% (24/33) of study species, with the majority being concentrated within one family (Leuciscidae/minnows; 15 species; 66 hybrids). Interspecific genetic exchange-or introgression-was evident from 24 backcrossed individuals (10/18 species-pairs). Hybrids occurred within 42 of 75 communities (56%). Four selected environmental variables (species richness, protected area extent, precipitation (May and annually)) exhibited 73-78% accuracy in predicting hybrid occurrence via random forest classification. Our community-level assessment identified hybridization as spatially widespread and environmentally dependent (albeit predominantly within one diverse, omnipresent family). Our approach provides a more holistic survey of natural hybridization by testing a wide range of species-pairs, thus contrasting with more conventional evaluations.
Collapse
Affiliation(s)
- Zachery D. Zbinden
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, USA
| | - Marlis R. Douglas
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, USA
| | - Tyler K. Chafin
- Biomathematics and Statistics Scotland, Edinburgh, Scotland, UK
| | - Michael E. Douglas
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, USA
| |
Collapse
|
7
|
Vilaça ST, Donaldson ME, Benazzo A, Wheeldon TJ, Vizzari MT, Bertorelle G, Patterson BR, Kyle CJ. Tracing Eastern Wolf Origins From Whole-Genome Data in Context of Extensive Hybridization. Mol Biol Evol 2023; 40:msad055. [PMID: 37046402 PMCID: PMC10098045 DOI: 10.1093/molbev/msad055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023] Open
Abstract
Southeastern Canada is inhabited by an amalgam of hybridizing wolf-like canids, raising fundamental questions regarding their taxonomy, origins, and timing of hybridization events. Eastern wolves (Canis lycaon), specifically, have been the subject of significant controversy, being viewed as either a distinct taxonomic entity of conservation concern or a recent hybrid of coyotes (C. latrans) and grey wolves (C. lupus). Mitochondrial DNA analyses show some evidence of eastern wolves being North American evolved canids. In contrast, nuclear genome studies indicate eastern wolves are best described as a hybrid entity, but with unclear timing of hybridization events. To test hypotheses related to these competing findings we sequenced whole genomes of 25 individuals, representative of extant Canadian wolf-like canid types of known origin and levels of contemporary hybridization. Here we present data describing eastern wolves as a distinct taxonomic entity that evolved separately from grey wolves for the past ∼67,000 years with an admixture event with coyotes ∼37,000 years ago. We show that Great Lakes wolves originated as a product of admixture between grey wolves and eastern wolves after the last glaciation (∼8,000 years ago) while eastern coyotes originated as a product of admixture between "western" coyotes and eastern wolves during the last century. Eastern wolf nuclear genomes appear shaped by historical and contemporary gene flow with grey wolves and coyotes, yet evolutionary uniqueness remains among eastern wolves currently inhabiting a restricted range in southeastern Canada.
Collapse
Affiliation(s)
- Sibelle T Vilaça
- Environmental and Life Sciences Graduate Program, Trent University, Ontario, Canada
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Michael E Donaldson
- Environmental and Life Sciences Graduate Program, Trent University, Ontario, Canada
| | - Andrea Benazzo
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Tyler J Wheeldon
- Ontario Ministry of Natural Resources and Forestry, Wildlife Research and Monitoring Section, Trent University, Ontario, Canada
| | - Maria Teresa Vizzari
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Giorgio Bertorelle
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Brent R Patterson
- Ontario Ministry of Natural Resources and Forestry, Wildlife Research and Monitoring Section, Trent University, Ontario, Canada
| | - Christopher J Kyle
- Environmental and Life Sciences Graduate Program, Trent University, Ontario, Canada
- Forensic Science Department, Trent University, Ontario, Canada
| |
Collapse
|
8
|
Klure DM, Greenhalgh R, Parchman TL, Matocq MD, Galland LM, Shapiro MD, Dearing MD. Hybridization in the absence of an ecotone favors hybrid success in woodrats (Neotoma spp.). Evolution 2023; 77:959-970. [PMID: 36715204 PMCID: PMC10066834 DOI: 10.1093/evolut/qpad012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 01/09/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023]
Abstract
Hybridization is a common process that has broadly impacted the evolution of multicellular eukaryotes; however, how ecological factors influence this process remains poorly understood. Here, we report the findings of a 3-year recapture study of the Bryant's woodrat (Neotoma bryanti) and desert woodrat (Neotoma lepida), two species that hybridize within a creosote bush (Larrea tridentata) shrubland in Whitewater, CA, USA. We used a genotype-by-sequencing approach to characterize the ancestry distribution of individuals across this hybrid zone coupled with Cormack-Jolly-Seber modeling to describe demography. We identified a high frequency of hybridization at this site with ~40% of individuals possessing admixed ancestry, which is the result of multigenerational backcrossing and advanced hybrid-hybrid crossing. F1, F2, and advanced generation hybrids had apparent survival rates similar to parental N. bryanti, while parental and backcross N. lepida had lower apparent survival rates and were far less abundant. Compared to bimodal hybrid zones where hybrids are often rare and selected against, we find that hybrids at Whitewater are common and have comparable survival to the dominant parental species, N. bryanti. The frequency of hybridization at Whitewater is therefore likely limited by the abundance of the less common parental species, N. lepida, rather than selection against hybrids.
Collapse
Affiliation(s)
- Dylan M. Klure
- School of Biological Sciences, University of Utah, 257 S 1400 E rm 201, Salt Lake City, UT 84112
| | - Robert Greenhalgh
- School of Biological Sciences, University of Utah, 257 S 1400 E rm 201, Salt Lake City, UT 84112
| | - Thomas L. Parchman
- Department of Biology, University of Nevada Reno, 1664 N. Virginia Street, Reno, NV 89557
| | - Marjorie D. Matocq
- Department of Natural Resources and Environmental Science; Program in Ecology, Evolution and Conservation Biology, University of Nevada Reno, 1664 N. Virginia Street, Reno, NV 89557
| | - Lanie M. Galland
- Department of Biology, University of Nevada Reno, 1664 N. Virginia Street, Reno, NV 89557
| | - Michael D. Shapiro
- School of Biological Sciences, University of Utah, 257 S 1400 E rm 201, Salt Lake City, UT 84112
| | - M. Denise Dearing
- School of Biological Sciences, University of Utah, 257 S 1400 E rm 201, Salt Lake City, UT 84112
| |
Collapse
|
9
|
MacPherson N, Champion CP, Weir LK, Dalziel AC. Reproductive isolating mechanisms contributing to asymmetric hybridization in Killifishes (Fundulus spp.). J Evol Biol 2023; 36:605-621. [PMID: 36636892 DOI: 10.1111/jeb.14148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 10/27/2022] [Accepted: 11/26/2022] [Indexed: 01/14/2023]
Abstract
When species hybridize, one F1 hybrid cross type often predominates. Such asymmetry can arise from differences in a variety of reproductive barriers, but the relative roles and concordance of pre-mating, post-mating prezygotic, and post-zygotic barriers in producing these biases in natural animal populations have not been widely investigated. Here, we study a population of predominantly F1 hybrids between two killifish species (Fundulus heteroclitus and F. diaphanus) in which >95% of F1 hybrids have F. diaphanus mothers and F. heteroclitus fathers (D♀ × H♂). To determine why F. heteroclitus × F. diaphanus F1 hybrids (H♀ × D♂) are so rare, we tested for asymmetry in pre-mating reproductive barriers (female preference and male aggression) at a common salinity (10 ppt) and post-mating, pre-zygotic (fertilization success) and post-zygotic (embryonic development time and hatching success) reproductive barriers at a range of ecologically relevant salinities (0, 5, 10, and 15 ppt). We found that F. heteroclitus females preferred conspecific males, whereas F. diaphanus females did not, matching the observed cross bias in the wild. Naturally rare H♀ × D♂ crosses also had lower fertilization success than all other cross types, and a lower hatching success than the prevalent D♀ × H♂ crosses at the salinity found in the hybrid zone centre (10 ppt). Furthermore, the naturally predominant D♀ × H♂ crosses had a higher hatching success than F. diaphanus crosses at 10 ppt, which may further increase their relative abundance. The present study suggests that a combination of incomplete mating, post-mating pre-zygotic and post-zygotic reproductive isolating mechanisms act in concert to produce hybrid asymmetry in this system.
Collapse
Affiliation(s)
- Nathalie MacPherson
- Department of Biology, Saint Mary's University, Halifax, Nova Scotia, Canada
| | - Chloe P Champion
- Department of Biology, Saint Mary's University, Halifax, Nova Scotia, Canada
| | - Laura K Weir
- Department of Biology, Saint Mary's University, Halifax, Nova Scotia, Canada
| | - Anne C Dalziel
- Department of Biology, Saint Mary's University, Halifax, Nova Scotia, Canada
| |
Collapse
|
10
|
Carnicero P, Kröll J, Schönswetter P. Homoploid hybrids are common but evolutionary dead ends, whereas polyploidy is not linked to hybridization in a group of Pyrenean saxifrages. Mol Phylogenet Evol 2023; 180:107703. [PMID: 36632928 DOI: 10.1016/j.ympev.2023.107703] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/28/2022] [Accepted: 01/06/2023] [Indexed: 01/09/2023]
Abstract
Hybridization and polyploidy are major forces in plant evolution. Homoploid hybridization can generate new species via hybrid speciation, or modify extant evolutionary lineages through introgression. Polyploidy enables instantaneous reproductive isolation from the parental lineage(s) and is often coupled with evolutionary innovations, especially when linked to hybridization. While allopolyploidy is a well-known and common mechanism of plant speciation, the evolutionary role of autopolyploidy might have been underestimated. Here, we studied the saxifrages of Saxifraga subsection Saxifraga in the Pyrenees, which easily hybridise and include polyploid populations of uncertain origin, as a model to unravel evolutionary consequences and origin of hybridization and polyploidy. Additionally, we investigate the phylogenetic relationship between the two subspecies of the endemic S. pubescens to ascertain whether they should rather be treated as different species. For these purposes, we combined ploidy-informed restriction associated DNA analyses, plastid DNA sequences and morphological data on a comprehensive population sample of seven species. Our results unravel multiple homoploid hybridization events at the diploid level between different species pairs, but with limited evolutionary impact. The ploidy-informed analyses reveal that all tetraploid populations detected in the present study belong to the widespread alpine species S. moschata. Although of autopolyploid origin, they are to some extent morphologically differentiated and underwent a different evolutionary pathway than their diploid parent. However, the high plastid DNA diversity and the internal structure within eastern and western population groups suggest multiple origins of the polyploids. Finally, our phylogenetic analyses show that S. pubescens and S. iratiana are clearly not sister lineages, and should consequently be considered as independent species.
Collapse
Affiliation(s)
- Pau Carnicero
- Department of Botany, University of Innsbruck, Sternwartestraße 15, 6020 Innsbruck, Austria.
| | - Joelle Kröll
- Department of Botany, University of Innsbruck, Sternwartestraße 15, 6020 Innsbruck, Austria
| | - Peter Schönswetter
- Department of Botany, University of Innsbruck, Sternwartestraße 15, 6020 Innsbruck, Austria
| |
Collapse
|
11
|
Caspi T, Johnson JR, Lambert MR, Schell CJ, Sih A. Behavioral plasticity can facilitate evolution in urban environments. Trends Ecol Evol 2022; 37:1092-1103. [PMID: 36058767 DOI: 10.1016/j.tree.2022.08.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 08/01/2022] [Accepted: 08/05/2022] [Indexed: 01/12/2023]
Abstract
Plasticity-led evolution is central to evolutionary theory. Although challenging to study in nature, this process may be particularly apparent in novel environments such as cities. We document abundant evidence of plastic behavioral changes in urban animals, including learning, contextual, developmental, and transgenerational plasticities. Using behavioral drive as a conceptual framework, our analysis of notable case studies suggests that plastic behaviors, such as altered habitat use, migration, diurnal and seasonal activity, and courtship, can have faciliatory and cascading effects on urban evolution via spatial, temporal, and mate-choice mechanisms. Our findings highlight (i) the need to incorporate behavioral plasticity more formally into urban evolutionary research and (ii) the opportunity provided by urban environments to study behavioral mechanisms of plasticity-led processes.
Collapse
Affiliation(s)
- Tal Caspi
- Department of Environmental Science and Policy, University of California, Davis, Davis, CA, USA.
| | - Jacob R Johnson
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, Davis, CA, USA.
| | - Max R Lambert
- Department of Environmental Science, Policy and Management, University of California, Berkeley, Berkeley, CA, USA; Science Division, Habitat Program, Washington Department of Fish and Wildlife, Olympia, WA, USA
| | - Christopher J Schell
- Department of Environmental Science, Policy and Management, University of California, Berkeley, Berkeley, CA, USA
| | - Andrew Sih
- Department of Environmental Science and Policy, University of California, Davis, Davis, CA, USA
| |
Collapse
|
12
|
Barnes TM, Karlin M, vonHoldt BM, Adams JR, Waits LP, Hinton JW, Henderson J, Brzeski KE. Genetic diversity and family groups detected in a coyote population with red wolf ancestry on Galveston Island, Texas. BMC Ecol Evol 2022; 22:134. [PMID: 36376792 PMCID: PMC9664737 DOI: 10.1186/s12862-022-02084-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 10/20/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Hybridization can be a conservation concern if genomic introgression leads to the loss of an endangered species' unique genome, or when hybrid offspring are sterile or less fit than their parental species. Yet hybridization can also be an adaptive management tool if rare populations are inbred and have reduced genetic variation, and there is the opportunity to enhance genetic variation through hybridization. The red wolf (Canis rufus) is a critically endangered wolf endemic to the eastern United States, where all extant red wolves are descended from 14 founders which has led to elevated levels of inbreeding over time. Red wolves were considered extirpated from the wild by 1980, but before they disappeared, they interbred with encroaching coyotes creating a genetically admixed population of canids along coastal Texas and Louisiana. In 2018, a genetic study identified individuals on Galveston Island, Texas with significant amounts of red wolf ancestry. We collected 203 fecal samples from Galveston for a more in-depth analysis of this population to identify the amount of red wolf ancestry present and potential mechanisms that support retention of red wolf ancestry on the landscape. RESULTS We identified 24 individual coyotes from Galveston Island and 8 from mainland Texas with greater than 10% red wolf ancestry. Two of those individuals from mainland Texas had greater than 50% red wolf ancestry estimates. Additionally, this population had 5 private alleles that were absent in the North American reference canid populations used in this study, which included 107 southeastern coyotes, 19 captive red wolves, and 38 gray wolves, possibly representing lost red wolf genetic variation. We also identified several individuals on Galveston Island and the mainland of Texas that retained a unique red wolf mitochondrial haplotype present in the red wolf founding population. On Galveston Island, we identified a minimum of four family groups and found coyotes on the island to be highly related, but not genetically depauperate. We did not find clear associations between red wolf ancestry estimates and landscape features, such as open green space or developed areas. CONCLUSION Our results confirm the presence of substantial red wolf ancestry persisting on Galveston Island and adjacent mainland Texas. This population has the potential to benefit future red wolf conservation efforts through novel reproductive techniques and possibly through de-introgression strategies, with the goals of recovering extinct red wolf genetic variation and reducing inbreeding within the species.
Collapse
Affiliation(s)
- Tanner M Barnes
- College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI, USA
| | - Melissa Karlin
- Department of Physics and Environmental Science, St. Mary's University, San Antonio, TX, USA
| | - Bridgett M vonHoldt
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
| | - Jennifer R Adams
- Department of Fish and Wildlife Sciences, University of Idaho, Moscow, ID, USA
| | - Lisette P Waits
- Department of Fish and Wildlife Sciences, University of Idaho, Moscow, ID, USA
| | | | | | - Kristin E Brzeski
- College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI, USA.
| |
Collapse
|
13
|
Genotyping-by-sequencing (GBS) as a tool for interspecies hybrid detection. ANNALS OF ANIMAL SCIENCE 2022. [DOI: 10.2478/aoas-2022-0063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
Genotyping-by-sequencing (GBS) is an extremely useful, modern and relatively inexpensive approach to discovering high-quality single-nucleotide polymorphisms (SNPs), which seem to be the most promising markers for identifying hybrid individuals between different species, especially those that can create backcrosses. In addition, GBS could become an invaluable tool in finding backcrosses, even several generations back. Its potential for the use of restriction enzymes and species is almost unlimited. It can also be successfully applied to species for which a reference genome is not established. In this paper, we describe the GBS technique, its main advantages and disadvantages, and the research carried out using this method concerning interspecies hybridisation and the identification of fertile hybrids. We also present future approaches that could be of interest in the context of the GBS method.
Collapse
|
14
|
Chen C, Byrd CC, Pfennig KS. Male toads change their aggregation behaviour when hybridization is favoured. Anim Behav 2022. [DOI: 10.1016/j.anbehav.2022.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
15
|
Examination of d-loop region and DBY gene as tools for identifying hybridisation in alpacas (Vicugna pacos) based on Polish populations. Small Rumin Res 2022. [DOI: 10.1016/j.smallrumres.2022.106690] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
16
|
Podbielska A, Piórkowska K, Szmatoła T. Microsatellite-Based Genetic Structure and Hybrid Detection in Alpacas Bred in Poland. Animals (Basel) 2021; 11:ani11082193. [PMID: 34438651 PMCID: PMC8388510 DOI: 10.3390/ani11082193] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/17/2021] [Accepted: 07/18/2021] [Indexed: 11/16/2022] Open
Abstract
This study aimed to characterize the population structure and genetic diversity of alpacas maintained in Poland using 17 microsatellite markers recommended by the International Society for Animal Genetics. The classification of llamas, alpacas, and hybrids of both based on phenotype is often difficult due to long-term admixture. Our results showed that microsatellite markers can distinguish alpacas from llamas and provide information about the level of admixture of one species in another. Alpacas admixed with llamas constituted 8.8% of the tested individuals, with the first-generation hybrid displaying only 7.4% of llama admixture. The results showed that Poland hosts a high alpaca genetic diversity as a consequence of their mixed origin. More than 200 different alleles were identified and the average observed heterozygosity and expected heterozygosity values were 0.745 and 0.768, respectively, the average coefficient of inbreeding was 0.034, and the average polymorphism information content value was 0.741. The probability of exclusion for one parent was estimated at 0.99995 and for two parents at 0.99999.
Collapse
Affiliation(s)
- Angelika Podbielska
- Department of Animal Molecular Biology, National Research Institute of Animal Production, Krakowska 1, 32-083 Balice, Poland; (K.P.); (T.S.)
- Correspondence:
| | - Katarzyna Piórkowska
- Department of Animal Molecular Biology, National Research Institute of Animal Production, Krakowska 1, 32-083 Balice, Poland; (K.P.); (T.S.)
| | - Tomasz Szmatoła
- Department of Animal Molecular Biology, National Research Institute of Animal Production, Krakowska 1, 32-083 Balice, Poland; (K.P.); (T.S.)
- Center for Experimental and Innovative Medicine, University of Agriculture in Krakow, Rędzina 1c, 30-248 Kraków, Poland
| |
Collapse
|
17
|
Loiseau O, Mota Machado T, Paris M, Koubínová D, Dexter KG, Versieux LM, Lexer C, Salamin N. Genome Skimming Reveals Widespread Hybridization in a Neotropical Flowering Plant Radiation. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.668281] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The tropics hold at least an order of magnitude greater plant diversity than the temperate zone, yet the reasons for this difference are still subject to debate. Much of tropical plant diversity is in highly speciose genera and understanding the drivers of such high species richness will help solve the tropical diversity enigma. Hybridization has recently been shown to underlie many adaptive radiations, but its role in the evolution of speciose tropical plant genera has received little attention. Here, we address this topic in the hyperdiverse Bromeliaceae genus Vriesea using genome skimming data covering the three genomic compartments. We find evidence for hybridization in ca. 11% of the species in our dataset, both within the genus and between Vriesea and other genera, which is commensurate with hybridization underlying the hyperdiversity of Vriesea, and potentially other genera in Tillandsioideae. While additional genomic research will be needed to further clarify the contribution of hybridization to the rapid diversification of Vriesea, our study provides an important first data point suggesting its importance to the evolution of tropical plant diversity.
Collapse
|