1
|
Baker HK, Obedzinski M, Grantham TE, Carlson SM. Variation in Salmon Migration Phenology Bolsters Population Stability but Is Threatened by Drought. Ecol Lett 2025; 28:e70081. [PMID: 39988798 PMCID: PMC11848020 DOI: 10.1111/ele.70081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 01/09/2025] [Accepted: 01/10/2025] [Indexed: 02/25/2025]
Abstract
Intrapopulation variation in movement is common in nature but its effects on population dynamics are poorly understood. Using movement data from 3270 individually-marked fish representing nine cohorts of coho salmon (Oncorhynchus kisutch) in California, we show that bimodal intrapopulation variation in the timing of juvenile down-migration from their natal habitat and subsequent residence in non-natal habitat affects growth, emigration timing, and the abundance and stability of adult returns. Non-natal fish (early down-migrants) exhibited more variable growth and more variable but earlier emigration to the estuary than natal fish (late down-migrants). While natal rearing was more common, non-natal fish were overrepresented among adult returns, and total returns were 1.4 times more stable than natal returns alone. Our results demonstrate that variation in migratory behaviour bolsters population stability. However, non-natal rearing is reduced in low water years, suggesting that drought exacerbates population instability by reducing critical intrapopulation variation.
Collapse
Affiliation(s)
- Henry K. Baker
- Department of Environmental Science, Policy, and ManagementUniversity of CaliforniaBerkeleyCaliforniaUSA
| | - Mariska Obedzinski
- Department of Environmental Science, Policy, and ManagementUniversity of CaliforniaBerkeleyCaliforniaUSA
- California Sea GrantSanta RosaCaliforniaUSA
| | - Theodore E. Grantham
- Department of Environmental Science, Policy, and ManagementUniversity of CaliforniaBerkeleyCaliforniaUSA
| | - Stephanie M. Carlson
- Department of Environmental Science, Policy, and ManagementUniversity of CaliforniaBerkeleyCaliforniaUSA
| |
Collapse
|
2
|
Bielčik M, Schlägel UE, Schäfer M, Aguilar-Trigueros CA, Lakovic M, Sosa-Hernández MA, Hammer EC, Jeltsch F, Rillig MC. Aligning spatial ecological theory with the study of clonal organisms: the case of fungal coexistence. Biol Rev Camb Philos Soc 2024; 99:2211-2233. [PMID: 39073180 DOI: 10.1111/brv.13119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 06/28/2024] [Accepted: 07/02/2024] [Indexed: 07/30/2024]
Abstract
Established ecological theory has focused on unitary organisms, and thus its concepts have matured into a form that often hinders rather than facilitates the ecological study of modular organisms. Here, we use the example of filamentous fungi to develop concepts that enable integration of non-unitary (modular) organisms into the established community ecology theory, with particular focus on its spatial aspects. In doing so, we provide a link between fungal community ecology and modern coexistence theory (MCT). We first show how community processes and predictions made by MCT can be used to define meaningful scales in fungal ecology. This leads to the novel concept of the unit of community interactions (UCI), a promising conceptual tool for applying MCT to communities of modular organisms with indeterminate clonal growth and hierarchical individuality. We outline plausible coexistence mechanisms structuring fungal communities, and show at what spatial scales and in what habitats they are most likely to act. We end by describing challenges and opportunities for empirical and theoretical research in fungal competitive coexistence.
Collapse
Affiliation(s)
- Miloš Bielčik
- Institute of Biology, Freie Universität Berlin, Altensteinstr. 6, Berlin, 14195, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Altensteinstr.34, Berlin, 14195, Germany
- Microbial Biogeochemistry, Research Area Landscape Functioning, Leibniz Center for Agricultural Landscape Research (ZALF), Eberswalder Str.84, Müncheberg, 15374, Germany
| | - Ulrike E Schlägel
- Institute of Biochemistry and Biology, University of Potsdam, Am Mühlenberg 3, House 60, Potsdam-Golm, 14476, Germany
| | - Merlin Schäfer
- Institute of Biochemistry and Biology, University of Potsdam, Am Mühlenberg 3, House 60, Potsdam-Golm, 14476, Germany
- Federal Agency for Nature Conservation, Alte Messe 6, Leipzig, 04103, Germany
| | - Carlos A Aguilar-Trigueros
- Institute of Biology, Freie Universität Berlin, Altensteinstr. 6, Berlin, 14195, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Altensteinstr.34, Berlin, 14195, Germany
- Hawkesbury Institute for the Environment, Western Sydney University, Hawkesbury Campus, Building R2, Locked Bag 1797, Penrith, New South Wales, 2751, Australia
- Department of Biological and Environmental Science, University of Jyväskylä, P.O. Box 35, Seminaarinkatu 15, Jyväskylä, 40014, Finland
| | - Milica Lakovic
- Institute of Biology, Freie Universität Berlin, Altensteinstr. 6, Berlin, 14195, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Altensteinstr.34, Berlin, 14195, Germany
| | - Moisés A Sosa-Hernández
- Institute of Biology, Freie Universität Berlin, Altensteinstr. 6, Berlin, 14195, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Altensteinstr.34, Berlin, 14195, Germany
| | - Edith C Hammer
- Department of Biology, Microbial Ecology, Lund University, Ekologihuset, Sölvegatan 37, Lund, 22362, Sweden
| | - Florian Jeltsch
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Altensteinstr.34, Berlin, 14195, Germany
- Institute of Biochemistry and Biology, University of Potsdam, Am Mühlenberg 3, House 60, Potsdam-Golm, 14476, Germany
| | - Matthias C Rillig
- Institute of Biology, Freie Universität Berlin, Altensteinstr. 6, Berlin, 14195, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Altensteinstr.34, Berlin, 14195, Germany
| |
Collapse
|
3
|
Weir JC, Phillimore AB. Buffering and phenological mismatch: A change of perspective. GLOBAL CHANGE BIOLOGY 2024; 30:e17294. [PMID: 38738554 DOI: 10.1111/gcb.17294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 03/26/2024] [Accepted: 04/03/2024] [Indexed: 05/14/2024]
Abstract
The potential for climate change to disrupt phenology-mediated interactions in interaction networks has attracted considerable attention in recent decades. Frequently, studies emphasize the fragility of ephemeral seasonal interactions, and the risks posed by phenological asynchrony. Here, we argue that the fitness consequences of asynchrony in phenological interactions may often be more buffered than is typically acknowledged. We identify three main forms that buffering may take: (i) mechanisms that reduce asynchrony between consumer and resource; (ii) mechanisms that reduce the costs of being asynchronous; and (iii) mechanisms that dampen interannual variance in performance across higher organizational units. Using synchrony between the hatching of winter moth caterpillars and the leafing of their host-plants as a case study, we identify a wide variety of buffers that reduce the detrimental consequences of phenological asynchrony on caterpillar individuals, populations, and meta-populations. We follow this by drawing on examples across a breadth of taxa, and demonstrate that these buffering mechanisms may be quite general. We conclude by identifying key gaps in our knowledge of the fitness and demographic consequences of buffering, in the context of phenological mismatch. Buffering has the potential to substantially alter our understanding of the biotic impacts of future climate change-a greater recognition of the contribution of these mechanisms may reveal that many trophic interactions are surprisingly resilient, and also serve to shift research emphasis to those systems with fewer buffers and towards identifying the limits of those buffers.
Collapse
Affiliation(s)
- Jamie C Weir
- Institute for Ecology and Evolution, University of Edinburgh, Edinburgh, UK
| | | |
Collapse
|
4
|
Gascoigne SJL, Kajin M, Salguero-Gómez R. Criteria for buffering in ecological modeling. Trends Ecol Evol 2024; 39:116-118. [PMID: 38042645 DOI: 10.1016/j.tree.2023.11.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/13/2023] [Accepted: 11/15/2023] [Indexed: 12/04/2023]
Affiliation(s)
| | - Maja Kajin
- Department of Biology, South Parks Road, University of Oxford, Oxford, UK; Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, 1000 Ljubljana, Slovenia
| | - Roberto Salguero-Gómez
- Department of Biology, South Parks Road, University of Oxford, Oxford, UK; National Laboratory for Grassland and Agro-ecosystems, Lanzhou University, Lanzhou, China
| |
Collapse
|
5
|
Milles A, Bielcik M, Banitz T, Gallagher CA, Jeltsch F, Jepsen JU, Oro D, Radchuk V, Grimm V. Defining ecological buffer mechanisms should consider diverse approaches. Trends Ecol Evol 2024; 39:119-120. [PMID: 38158240 DOI: 10.1016/j.tree.2023.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Affiliation(s)
- Alexander Milles
- Research Institute for Forest Ecology and Forestry Rhineland-Palatinate, Haupstr. 16, 67705 Trippstadt, Germany; Helmholtz Centre for Environmental Research - UFZ, Department of Ecological Modelling, Permoserstr. 15, 04318 Leipzig, Germany; University of Potsdam, Department of Plant Ecology and Nature Conservation, Am Muhlenberg 3, 14476, Potsdam-Golm, Germany.
| | - Milos Bielcik
- Leibniz Centre for Agricultural Landscape Research - ZALF, Eberswalder Straße 84, 15374 Müncheberg, Germany; Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), 14195 Berlin, Germany
| | - Thomas Banitz
- Helmholtz Centre for Environmental Research - UFZ, Department of Ecological Modelling, Permoserstr. 15, 04318 Leipzig, Germany
| | - Cara A Gallagher
- University of Potsdam, Department of Plant Ecology and Nature Conservation, Am Muhlenberg 3, 14476, Potsdam-Golm, Germany
| | - Florian Jeltsch
- University of Potsdam, Department of Plant Ecology and Nature Conservation, Am Muhlenberg 3, 14476, Potsdam-Golm, Germany; Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), 14195 Berlin, Germany
| | - Jane U Jepsen
- Norwegian Institute for Nature Research, Department of Arctic Ecology, Fram Centre, Hjalmar Johansens gt.14, 9007 Tromsø, Norway
| | - Daniel Oro
- Centre d'Estudis Avançats de Blanes (CEAB - CSIC), Acces Cala Sant Francesc 14, 17300 Blanes, Girona, Spain
| | - Viktoriia Radchuk
- Leibniz Institute for Zoo and Wildlife Research, Ecological Dynamics Department, 10315 Berlin, Germany
| | - Volker Grimm
- Helmholtz Centre for Environmental Research - UFZ, Department of Ecological Modelling, Permoserstr. 15, 04318 Leipzig, Germany; University of Potsdam, Department of Plant Ecology and Nature Conservation, Am Muhlenberg 3, 14476, Potsdam-Golm, Germany; German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstr. 4, 04103 Leipzig, Germany
| |
Collapse
|