1
|
Kale MB, Bhondge HM, Wankhede NL, Shende PV, Thanekaer RP, Aglawe MM, Rahangdale SR, Taksande BG, Pandit SB, Upaganlawar AB, Umekar MJ, Kopalli SR, Koppula S. Navigating the intersection: Diabetes and Alzheimer's intertwined relationship. Ageing Res Rev 2024; 100:102415. [PMID: 39002642 DOI: 10.1016/j.arr.2024.102415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/06/2024] [Accepted: 07/06/2024] [Indexed: 07/15/2024]
Abstract
Alzheimer's disease (AD) and Diabetes mellitus (DM) exhibit comparable pathophysiological pathways. Genetic abnormalities in APP, PS-1, and PS-2 are linked to AD, with diagnostic aid from CSF and blood biomarkers. Insulin dysfunction, termed "type 3 diabetes mellitus" in AD, involves altered insulin signalling and neuronal shrinkage. Insulin influences beta-amyloid metabolism, exacerbating neurotoxicity in AD and amyloid production in DM. Both disorders display impaired glucose transporter expression, hastening cognitive decline. Mitochondrial dysfunction and Toll-like receptor 4-mediated inflammation worsen neurodegeneration in both diseases. ApoE4 raises disease risk, especially when coupled with dyslipidemia common in DM. Targeting shared pathways like insulin-degrading enzyme activation and HSP60 holds promise for therapeutic intervention. Recognizing these interconnected mechanisms underscores the imperative for developing tailored treatments addressing the overlapping pathophysiology of AD and DM, offering potential avenues for more effective management of both conditions.
Collapse
Affiliation(s)
- Mayur B Kale
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India
| | | | - Nitu L Wankhede
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India
| | - Prajwali V Shende
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India
| | - Rushikesh P Thanekaer
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India
| | - Manish M Aglawe
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India
| | - Sandip R Rahangdale
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India
| | - Brijesh G Taksande
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India
| | - Sunil B Pandit
- SNJB's Shriman Sureshdada Jain College of Pharmacy, Neminagar, Chandwad, Nashik, Maharashtra, India
| | - Aman B Upaganlawar
- SNJB's Shriman Sureshdada Jain College of Pharmacy, Neminagar, Chandwad, Nashik, Maharashtra, India
| | - Milind J Umekar
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India
| | - Spandana Rajendra Kopalli
- Department of Bioscience and Biotechnology, Sejong University, Gwangjin-gu, Seoul 05006, Republic of Korea
| | - Sushruta Koppula
- College of Biomedical and Health Sciences, Konkuk University, Chungju-Si, Chungcheongbuk Do 27478, Republic of Korea.
| |
Collapse
|
2
|
Dayer D, Tabandeh MR, Moghimipour E, Hashemi Tabar M, Ghadiri A, Allah Bakhshi E, Orazizadeh M, Ghafari MA. MafA Overexpression: A New Efficient Protocol for In Vitro Differentiation of Adipose-Derived Mesenchymal Stem Cells into Functional Insulin-Producing Cells. CELL JOURNAL 2019; 21:169-178. [PMID: 30825290 PMCID: PMC6397604 DOI: 10.22074/cellj.2019.5669] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 08/07/2018] [Indexed: 11/25/2022]
Abstract
Objective We proposed a novel differentiation method for the efficient differentiation of adipose-derived mesenchymal stem
cells (ADMSCs) into functional insulin-producing cells (IPCs) based on MafA overexpression.
Materials and Methods In this experimental study, a eukaryotic expression vector containing MafA [MafA/pcDNA3.1(+)]
was constructed and purified. ADMSCs were differentiated into IPCs. ADMSCs were assigned in two groups including
control (C), and the MafA overexpressed (MafA+) groups. The ADMSCs were transfected by MafA/pcDNA 3.1(+) at day
10 of the differentiation. Differentiated cells were analyzed for the expression of multiple β cell specific genes (Nkx2.2,
Ngn3, Isl-1, Pdx1, MafA, Nkx6.1, and Insulin) using real-time polymerase chain reaction (PCR). The insulin secretion
potency of the differentiated cells in response to glucose exposure was also determined using an enzyme-linked
immunosorbent assay (ELISA) method and Dithizone (DTZ) staining. The IPCs from the control manipulated group,
and un-differentiated ADMSCs group were transplanted to streptozotocin (STZ)-diabetic rats. Rats were monitored for
blood glucose and insulin concentration.
Results The results revealed that ADMSCs were successfully differentiated into IPCs through the 14 day differentiation
protocol. The expression of β-cell specific genes in MafA+ IPCs was higher than in control cells. Glucose-induced
insulin secretion after the exposure of IPCs to glucose was higher in MafA+ group than the control group. The STZ-
diabetic rats showed an ability to secrete insulin and apparent hyperglycemic condition adjustment after transplantation
of the control IPCs. The mean insulin concentration of diabetic rats that were transplanted by manipulated IPCs was
significantly higher than ADMSCs-transplanted rats; however, no effect was observed in the concentration of blood
glucose.
Conclusion The overexpression of MafA can be used as a novel promising approach for the efficient production of
IPCs from ADMSCs in vitro. However, the future therapeutic use of the MafA+ IPCs in diabetic animals needs further
investigations.
Collapse
Affiliation(s)
- Dian Dayer
- Cellular and Molecular Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.Electronic Address:
| | - Mohammad Reza Tabandeh
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran.,Stem Cells and Transgenic Technology Research Center, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Eskandar Moghimipour
- Cellular and Molecular Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of Pharmaceutics, Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mahmood Hashemi Tabar
- Cellular and Molecular Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of Anatomy, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - AtaA Ghadiri
- Cellular and Molecular Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Elham Allah Bakhshi
- Cellular and Molecular Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mahmoud Orazizadeh
- Cellular and Molecular Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of Anatomy, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Ali Ghafari
- Cellular and Molecular Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of Biochemistry, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
3
|
Balboa D, Saarimäki-Vire J, Otonkoski T. Concise Review: Human Pluripotent Stem Cells for the Modeling of Pancreatic β-Cell Pathology. Stem Cells 2018; 37:33-41. [PMID: 30270471 PMCID: PMC7379656 DOI: 10.1002/stem.2913] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 08/21/2018] [Accepted: 08/28/2018] [Indexed: 12/11/2022]
Abstract
Pancreatic β‐cells are the only source of insulin. Disturbances in β‐cell development or function may thus result in insulin deficiency or excess, presenting as hyper‐ or hypoglycemia. It is increasingly evident that common forms of diabetes (types 1 and 2) are pathogenically heterogeneous. Development of efficient therapies is dependent on reliable disease models. Although animal models are remarkably useful research tools, they present limitations because of species differences. As an alternative, human pluripotent stem cell technologies offer multiple possibilities for the study of human diseases in vitro. In the last decade, advances in the derivation of induced pluripotent stem cells from diabetic patients, combined with β‐cell differentiation protocols, have resulted in the generation of useful disease models for diabetes. First disease models have been focusing on monogenic diabetes. The development of genome editing technologies, more advanced differentiation protocols and humanized mouse models based on transplanted cells have opened new horizons for the modeling of more complex forms of β‐cell dysfunction. We present here the incremental progress made in the modeling of diabetes using pluripotent stem cells. We discuss the current challenges and opportunities of these approaches to dissect β‐cell pathology and devise new pharmacological and cell replacement therapies. stem cells2019;37:33–41
Collapse
Affiliation(s)
- Diego Balboa
- Research Programs Unit, Molecular Neurology, Biomedicum Stem Cell Centre, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Jonna Saarimäki-Vire
- Research Programs Unit, Molecular Neurology, Biomedicum Stem Cell Centre, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Timo Otonkoski
- Research Programs Unit, Molecular Neurology, Biomedicum Stem Cell Centre, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Children's Hospital, Helsinki University Central Hospital and University of Helsinki, Helsinki, Finland
| |
Collapse
|
4
|
Baram M, Atsmon-Raz Y, Ma B, Nussinov R, Miller Y. Amylin-Aβ oligomers at atomic resolution using molecular dynamics simulations: a link between Type 2 diabetes and Alzheimer's disease. Phys Chem Chem Phys 2016; 18:2330-8. [PMID: 26349542 PMCID: PMC4720542 DOI: 10.1039/c5cp03338a] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Clinical studies have identified Type 2 diabetes (T2D) as a risk factor of Alzheimer's disease (AD). One of the potential mechanisms that link T2D and AD is the loss of cells associated with degenerative changes. Amylin1-37 aggregates (the pathological species in T2D) were found to be co-localized with those of Aβ1-42 (the pathological species in AD) to form the Amylin1-37-Aβ1-42 plaques, promoting aggregation and thus contributing to the etiology of AD. However, the mechanisms by which Amylin1-37 co-aggregates with Aβ1-42 are still elusive. This work presents the interactions between Amylin1-37 oligomers and Aβ1-42 oligomers at atomic resolution applying extensive molecular dynamics simulations for relatively large ensemble of cross-seeding Amylin1-37-Aβ1-42 oligomers. The main conclusions of this study are first, Aβ1-42 oligomers prefer to interact with Amylin1-37 oligomers to form single layer conformations (in-register interactions) rather than double layer conformations; and second, in some double layer conformations of the cross-seeding Amylin1-37-Aβ1-42 oligomers, the Amylin1-37 oligomers destabilize the Aβ1-42 oligomers and thus inhibit Aβ1-42 aggregation, while in other double layer conformations, the Amylin1-37 oligomers stabilize Aβ1-42 oligomers and thus promote Aβ1-42 aggregation.
Collapse
Affiliation(s)
- Michal Baram
- Department of Chemistry, Ben-Gurion University of the Negev, Beér-Sheva 84105, Israel and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beér-Sheva 84105, Israel.
| | - Yoav Atsmon-Raz
- Department of Chemistry, Ben-Gurion University of the Negev, Beér-Sheva 84105, Israel and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beér-Sheva 84105, Israel.
| | - Buyong Ma
- Basic Science Program, Leidos Biomedical Research, Inc., Cancer and Inflammation Program, National Cancer Institute, Frederick, MD 21702, USA.
| | - Ruth Nussinov
- Basic Science Program, Leidos Biomedical Research, Inc., Cancer and Inflammation Program, National Cancer Institute, Frederick, MD 21702, USA. and Sackler Inst. of Molecular Medicine, Department of Human Genetics and Molecular Medicine, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Yifat Miller
- Department of Chemistry, Ben-Gurion University of the Negev, Beér-Sheva 84105, Israel and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beér-Sheva 84105, Israel.
| |
Collapse
|
5
|
Okere B, Alviano F, Costa R, Quaglino D, Ricci F, Dominici M, Paolucci P, Bonsi L, Iughetti L. In vitro differentiation of human amniotic epithelial cells into insulin-producing 3D spheroids. Int J Immunopathol Pharmacol 2015. [PMID: 26216908 DOI: 10.1177/0394632015588439] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Regenerative medicine and stem cell therapy may represent the solution for the treatment of non-curable human diseases such as type 1 diabetes. In this context of growing demand for functional and safe stem cells, human amniotic epithelial cells (hAECs) from term placenta have attracted increasing interest for their wide availability, stem cell properties, and differentiation plasticity, which make them a promising tool for stem cell-based therapeutic applications. We initially assayed the stemness characteristics of hAECs in serum-free conditions. Subsequently we developed a culture procedure on extracellular matrix for the formation of three-dimensional (3D) spheroids. Finally, we tested the immunomodulation and differentiation potential of hAEC spheroids: the presence of pancreatic endocrine hormones was revealed with transmission electron microscopy and immunofluorescence analyses; the release of C-peptide in hyperglycemic conditions was assayed with ELISA. The serum-free culture conditions we applied proved to maintain the basic stemness characteristics of hAECs. We also demonstrated that 3D spheroids formed by hAECs in extracellular matrix can be induced to differentiate into insulin-producing cells. Finally, we proved that control and induced cells equally inhibit the proliferation of activated mononuclear cells. The results of this study highlight the properties of amnion derived epithelial cells as promising and abundant source for cell-based therapies. In particular we are the first group to show the in vitro pancreatic induction of hAECs cultured on extracellular matrix in a 3D fashion. We accordingly propose the outcomes of this study as a novel contribution to the development of future cell replacement therapies involving placenta-derived cells.
Collapse
Affiliation(s)
- Bernard Okere
- Division of Pediatric Oncology, Hematology and Marrow Transplantation, Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, Modena Policlinic, Modena, Italy
| | - Francesco Alviano
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Roberta Costa
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Daniela Quaglino
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Francesca Ricci
- Immunohematology and Transfusion Medicine Service, S. Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Massimo Dominici
- Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, Modena Policlinic, Modena, Italy
| | - Paolo Paolucci
- Division of Pediatric Oncology, Hematology and Marrow Transplantation, Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, Modena Policlinic, Modena, Italy
| | - Laura Bonsi
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Lorenzo Iughetti
- Division of Pediatric Oncology, Hematology and Marrow Transplantation, Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, Modena Policlinic, Modena, Italy
| |
Collapse
|
6
|
Ren M, Shang C, Zhong X, Guo R, Lao G, Wang X, Cheng H, Min J, Yan L, Shen J. Insulin-producing cells from embryonic stem cells rescues hyperglycemia via intra-spleen migration. Sci Rep 2014; 4:7586. [PMID: 25533571 PMCID: PMC4274503 DOI: 10.1038/srep07586] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 11/24/2014] [Indexed: 02/07/2023] Open
Abstract
Implantation of embryonic stem cells (ESC)-derived insulin-producing cells has been extensively investigated for treatment of diabetes in animal models. However, the in vivo behavior and migration of transplanted cells in diabetic models remains unclear. Here we investigated the location and migration of insulin-producing cells labeled with superparamagnetic iron oxide (SPIO) using a dynamic MRI tracking method. SPIO labeled cells showed hypointense signal under the kidney subcapsules of diabetic mice on MRI, and faded gradually over the visiting time. However, new hypointense signal appeared in the spleen 1 week after transplantation, and became obvious with the time prolongation. Further histological examination proved the immigrated cells were insulin and C-peptide positive cells which were evenly distributed throughout the spleen. These intra-spleen insulin-producing cells maintained their protective effects against hyperglycemia in vivo, and these effects were reversed upon spleen removal. Transplantation of insulin-producing cells through spleen acquired an earlier blood glucose control as compared with that through kidney subcapsules. In summary, our data demonstrate that insulin-producing cells transplanted through kidney subcapsules were not located in situ but migrated into spleen, and rescues hyperglycemia in diabetic models. MRI may provide a novel tracking method for preclinical cell transplantation therapy of diabetes continuously and non-invasively.
Collapse
Affiliation(s)
- Meng Ren
- Department of Endocrinology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou. 510120, China
| | - Changzhen Shang
- Department of Hepatology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou. 510120, China
| | - Xiaomei Zhong
- Department of Radiology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou. 510120, China
| | - Ruomi Guo
- Department of Radiology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou. 510120, China
| | - Guojuan Lao
- Department of Endocrinology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou. 510120, China
| | - Xiaoyi Wang
- Department of Endocrinology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou. 510120, China
| | - Hua Cheng
- Department of Endocrinology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou. 510120, China
| | - Jun Min
- Department of Hepatology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou. 510120, China
| | - Li Yan
- Department of Endocrinology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou. 510120, China
| | - Jun Shen
- Department of Radiology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou. 510120, China
| |
Collapse
|
7
|
Acarregui A, Herrán E, Igartua M, Blanco FJ, Pedraz JL, Orive G, Hernandez RM. Multifunctional hydrogel-based scaffold for improving the functionality of encapsulated therapeutic cells and reducing inflammatory response. Acta Biomater 2014; 10:4206-16. [PMID: 25010523 DOI: 10.1016/j.actbio.2014.06.038] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 06/16/2014] [Accepted: 06/30/2014] [Indexed: 12/28/2022]
Abstract
Since the introduction of cell immunoisolation as an alternative to protect transplanted cells from host immune attack, much effort has been made to develop this technology into a realistic clinical proposal. Several promising approaches have been investigated to resolve the biotechnological and biosafety challenges related to cell microencapsulation. Here, a multifunctional hydrogel-based scaffold consisting of cell-loaded alginate-poly-l-lysine-alginate (APA) microcapsules and dexamethasone (DXM)-loaded poly(lactic-co-glycolic) acid (PLGA) microspheres embedded in alginate hydrogel is developed and evaluated. Initially, the feasibility of using an alginate hydrogel for enclosing APA microcapsules was studied in a xenogeneic approach. In addition, the performance of the local release of DXM was addressed. The in vitro studies confirmed the correct adaptation of the enclosed cells to the scaffolds in terms of metabolic activity and viability. The posterior implantation of the hydrogel-based scaffolds containing cell-loaded microcapsules revealed that the hematocrit levels were maintained high and constant, and the pericapsular overgrowth was reduced in the DXM-treated rats for at least 2months. This multifunctional scaffold might have a synergistic effect: (1) providing a physical support for APA microcapsules, facilitating administration, ensuring retention and recuperation and preventing dissemination; and (2) reducing post-transplantation inflammation and foreign body reaction, thus prolonging the lifetime of the implant by the continuous and localized release of DXM.
Collapse
|
8
|
Polstyanoy AM, Sheina UI, Eremeev AV, Polstyanaya GN, Svetlakov AV. Isolation of germ-cell precursors from human ovary tissue. ACTA ACUST UNITED AC 2014. [DOI: 10.1134/s1990519x14030109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
9
|
Krishnan R, Arora RP, Alexander M, White SM, Lamb MW, Foster CE, Choi B, Lakey JRT. Noninvasive evaluation of the vascular response to transplantation of alginate encapsulated islets using the dorsal skin-fold model. Biomaterials 2013; 35:891-8. [PMID: 24176195 DOI: 10.1016/j.biomaterials.2013.10.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 10/02/2013] [Indexed: 01/25/2023]
Abstract
Alginate encapsulation reduces the risk of transplant rejection by evading immune-mediated cell injury and rejection; however, poor vascular perfusion results in graft failure. Since existing imaging models are incapable of quantifying the vascular response to biomaterial implants after transplantation, in this study, we demonstrate the use of in vivo laser speckle imaging (LSI) and wide-field functional imaging (WiFI) to monitor the microvascular environment surrounding biomaterial implants. The vascular response to two islet-containing biomaterial encapsulation devices, alginate microcapsules and a high-guluronate alginate sheet, was studied and compared after implantation into the mouse dorsal window chamber (N = 4 per implant group). Images obtained over a 14-day period using LSI and WiFI were analyzed using algorithms to quantify blood flow, hemoglobin oxygen saturation and vascular density. Using our method, we were able to monitor the changes in the peri-implant microvasculature noninvasively without the use of fluorescent dyes. Significant changes in blood flow, hemoglobin oxygen saturation and vascular density were noted as early as the first week post-transplant. The dorsal window chamber model enables comparison of host responses to transplanted biomaterials. Future experiments will study the effect of changes in alginate composition on the vascular and immune responses.
Collapse
Affiliation(s)
- Rahul Krishnan
- Department of Surgery, University of California Irvine, Orange, CA 92868, USA
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Differentiation of human adipose-derived mesenchymal stem cell into insulin-producing cells: an in vitro study. J Physiol Biochem 2012; 69:451-8. [PMID: 23271274 DOI: 10.1007/s13105-012-0228-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2012] [Accepted: 12/11/2012] [Indexed: 12/13/2022]
Abstract
Stem cells with the ability to differentiate into insulin-producing cells (IPCs) are becoming the most promising therapy for diabetes mellitus and reduce the major limitations of availability and allogeneic rejection of beta cell transplantations. Mesenchymal stem cells (MSCs) are pluripotent stromal cells with the ability to proliferate and differentiate into a variety of cell types including endocrine cells of the pancreas. This study sought to inspect the in vitro differentiation of human adipose-derived tissue stem cells into IPCs which could provide an abundant source of cells for the purpose of diabetic cell therapy in addition to avoid immunological rejection. Adipose-derived MSCs were obtained from liposuction aspirates and induced to differentiate into insulin-secreting cells under a three-stage protocol based on a combination of low-glucose DMEM medium, β-mercaptoethanol, and nicotinamide for pre-induction and high-glucose DMEM, β-mercaptoethanol, nicotinamide, and exendin-4 for induction stages of differentiation. Differentiation was evaluated by the analysis of morphology, dithizone staining, RT-PCR, and immunocytochemistry. Morphological changes including typical islet-like cell clusters were observed by phase-contrast microscope at the end of differentiation protocol. Based on dithizone staining, differentiated cells were positive and undifferentiated cells were not stained. Furthermore, RT-PCR results confirmed the expression of insulin, PDX1, Ngn3, PAX4, and GLUT2 in differentiated cells. Moreover, insulin production by the IPCs was confirmed by immunocytochemistry analysis. It is concluded that adipose-derived MSCs could differentiate into insulin-producing cells in vitro.
Collapse
|
11
|
Overlapped Metabolic and Therapeutic Links between Alzheimer and Diabetes. Mol Neurobiol 2012; 47:399-424. [DOI: 10.1007/s12035-012-8352-z] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Accepted: 09/12/2012] [Indexed: 12/12/2022]
|
12
|
Wang H, Jiang Z, Li A, Gao Y. Characterization of insulin-producing cells derived from PDX-1-transfected neural stem cells. Mol Med Rep 2012; 6:1428-32. [PMID: 23008108 DOI: 10.3892/mmr.2012.1089] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 08/20/2012] [Indexed: 11/06/2022] Open
Abstract
Islet cell transplantation is a promising treatment strategy for type-1 diabetes. However, functional islet cells are hard to obtain for transplantation and are in short supply. Directing the differentiation of stem cells into insulin‑producing cells, which serve as islet cells, would overcome this shortage. Bone marrow contains hematopoietic stem cells and mesenchymal stem cells. The present study used bone marrow cells isolated from rats and neural stem cells (NSCs) that were derived from bone marrow cells in culture. Strong nestin staining was detected in NSCs, but not in bone marrow stromal cells (BMSCs). In vitro transfection of the pancreatic duodenal homeobox-1 (PDX-1) gene into NSCs generated insulin‑producing cells. Reverse transcription polymerase chain reaction (RT-PCR) and enzyme-linked immunosorbent assay (ELISA) analysis confirmed that PDX-1-transfected NSCs expressed insulin mRNA and released insulin protein. However, insulin release from PDX-1-transfected NSCs did not respond to the challenge of glucose and glucagon-like peptide-1. These results support the use of bone marrow-derived NSCs as a renewable source of insulin-producing cells for autologous transplantation to treat type-1 diabetes.
Collapse
Affiliation(s)
- Hailan Wang
- Department of Endocrinology, Shenzhen Longgang Central Hospital, Shenzhen 518000, P.R. China
| | | | | | | |
Collapse
|
13
|
Soejitno A, Prayudi PKA. The prospect of induced pluripotent stem cells for diabetes mellitus treatment. Ther Adv Endocrinol Metab 2011; 2:197-210. [PMID: 23148185 PMCID: PMC3474639 DOI: 10.1177/2042018811420198] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
A continuous search for a permanent cure for diabetes mellitus is underway with several remarkable discoveries over the past few decades. One of these is the potential of pancreatic stem/progenitor cells to rejuvenate functional β cells. However, the existence of these cell populations is still obscure and a lack of phenotype characterization hampers their use in clinical settings. Cellular reprogramming through induced pluripotent stem (iPS) cell technology can become an alternative strategy to generate insulin-producing cells in a relatively safe (autologous-derived cells, thus devoid of rejection risk) and efficient way (high cellular proliferation) but retain a precise morphological and genetic composition, similar to that of the native β cells. iPS cell technology is a technique of transducing any cell types with key transcription factors to yield embryonic-like stem cells with high clonogenicity and is able to give rise into all cell lineages from three germ layers (endoderm, ectoderm, and mesoderm). This approach can generate β-like pancreatic cells that are fully functional as proven by either in vitro or in vivo studies. This novel proof-of-concept stem cell technology brings new expectations on applying stem cell therapy for diabetes mellitus in clinical settings.
Collapse
Affiliation(s)
- Andreas Soejitno
- Department of Molecular Medicine and Stem Cell Research, Faculty of Medicine Udayana University, Denpasar, Indonesia
| | - Pande Kadek Aditya Prayudi
- Department of Molecular Medicine and Stem Cell Research, Faculty of Medicine Udayana University, Denpasar, Indonesia
| |
Collapse
|
14
|
Shortening and Improving the Embryonic Stem Cell Test through the Use of Gene Biomarkers of Differentiation. J Toxicol 2011; 2011:286034. [PMID: 21876691 PMCID: PMC3163134 DOI: 10.1155/2011/286034] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Revised: 06/30/2011] [Accepted: 07/01/2011] [Indexed: 01/31/2023] Open
Abstract
The embryonic Stem cell Test (EST) is a validated assay for testing embryotoxicity in vitro. The total duration of this protocol is 10 days, and its main end-point is based on histological determinations. It is suggested that improvements on EST must be focused toward molecular end-points and, if possible, to reduce the total assay duration. Five days of exposure of D3 cells in monolayers under spontaneous differentiation to 50 ng/mL of the strong embryotoxic 5-fluorouracil or to 75 μg/mL of the weak embryotoxic 5,5-diphenylhydeantoin caused between 20 and 74% of reductions in the expression of the following genes: Pnpla6, Afp, Hdac7, Vegfa, and Nes. The exposure to 1 mg/mL of nonembryotoxic saccharin only caused statistically significant reductions in the expression of Nes. These exposures reduced cell viability of D3 cells by 15, 28, and 34%. We applied these records to the mathematical discriminating function of the EST method to find that this approach is able to correctly predict the embryotoxicity of all three above-mentioned chemicals. Therefore, this work proposes the possibility of improve EST by reducing its total duration and by introducing gene expression as biomarker of differentiation, which might be very interesting for in vitro risk assessment embryotoxicity.
Collapse
|
15
|
Govindasamy V, Ronald VS, Abdullah AN, Nathan KRG, Ab Aziz ZAC, Abdullah M, Musa S, Kasim NHA, Bhonde RR. Differentiation of dental pulp stem cells into islet-like aggregates. J Dent Res 2011; 90:646-52. [PMID: 21335539 DOI: 10.1177/0022034510396879] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The post-natal dental pulp tissue contains a population of multipotent mesenchymal progenitor cells known as dental pulp stromal/stem cells (DPSCs), with high proliferative potential for self-renewal. In this investigation, we explored the potential of DPSCs to differentiate into pancreatic cell lineage resembling islet-like cell aggregates (ICAs). We isolated, propagated, and characterized DPSCs and demonstrated that these could be differentiated into adipogenic, chondrogenic, and osteogenic lineage upon exposure to an appropriate cocktail of differentiating agents. Using a three-step protocol reported previously by our group, we succeeded in obtaining ICAs from DPSCs. The identity of ICAs was confirmed as islets by dithiozone-positive staining, as well as by expression of C-peptide, Pdx-1, Pax4, Pax6, Ngn3, and Isl-1. There were several-fold up-regulations of these transcription factors proportional to days of differentiation as compared with undifferentiated DPSCs. Day 10 ICAs released insulin and C-peptide in a glucose-dependent manner, exhibiting in vitro functionality. Our results demonstrated for the first time that DPSCs could be differentiated into pancreatic cell lineage and offer an unconventional and non-controversial source of human tissue that could be used for autologous stem cell therapy in diabetes.
Collapse
Affiliation(s)
- V Govindasamy
- Stempeutics Research Malaysia Sdn Bhd, (773817-K), Lot G-E-2A, Enterprise 4, Technology Park Malaysia, Bukit Jalil, 57000 Kuala Lumpur, Malaysia
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Lin L. Commonality between diabetes and Alzheimer's disease and a new strategy for the therapy. CLINICAL MEDICINE. PATHOLOGY 2008; 1:83-91. [PMID: 21876656 PMCID: PMC3160008 DOI: 10.4137/cpath.s667] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Li Lin
- Key laboratory of cellular physiology, Shanxi Medical University, China
| |
Collapse
|
17
|
Abstract
Type 1 diabetes is characterized by the selective destruction of pancreatic β-cells caused by an autoimmune attack. Type 2 diabetes is a more complex pathology which, in addition to β-cell loss caused by apoptotic programs, includes β-cell dedifferentiation and peripheric insulin resistance. β-Cells are responsible for insulin production, storage and secretion in accordance to the demanding concentrations of glucose and fatty acids. The absence of insulin results in death and therefore diabetic patients require daily injections of the hormone for survival. However, they cannot avoid the appearance of secondary complications affecting the peripheral nerves as well as the eyes, kidneys and cardiovascular system. These afflictions are caused by the fact that external insulin injection does not mimic the tight control that pancreaticderived insulin secretion exerts on the body’s glycemia. Restoration of damaged β-cells by transplantation from exogenous sources or by endocrine pancreas regeneration would be ideal therapeutic options. In this context, stem cells of both embryonic and adult origin (including β-cell/islet progenitors) offer some interesting alternatives, taking into account the recent data indicating that these cells could be the building blocks from which insulin secreting cells could be generated in vitro under appropriate culture conditions. Although in many cases insulin-producing cells derived from stem cells have been shown to reverse experimentally induced diabetes in animal models, several concerns need to be solved before finding a definite medical application. These refer mainly to the obtainment of a cell population as similar as possible to pancreatic β-cells, and to the problems related with the immune compatibility and tumor formation. This review will summarize the different approaches that have been used to obtain insulin-producing cells from embryonic and adult stem cells, and the main problems that hamper the clinical applications of this technology.
Collapse
|
18
|
Common pathological processes in Alzheimer disease and type 2 diabetes: a review. ACTA ACUST UNITED AC 2007; 56:384-402. [PMID: 17920690 DOI: 10.1016/j.brainresrev.2007.09.001] [Citation(s) in RCA: 252] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2007] [Revised: 09/01/2007] [Accepted: 09/05/2007] [Indexed: 02/07/2023]
Abstract
Alzheimer disease (AD) and type 2 diabetes mellitus (T2DM) are conditions that affect a large number of people in the industrialized countries. Both conditions are on the increase, and finding novel treatments to cure or prevent them are a major aim in research. Somewhat surprisingly, AD and T2DM share several molecular processes that underlie the respective degenerative developments. This review describes and discusses several of these shared biochemical and physiological pathways. Disturbances in insulin signalling appears to be the main common impairment that affects cell growth and differentiation, cellular repair mechanisms, energy metabolism, and glucose utilization. Insulin not only regulates blood sugar levels but also acts as a growth factor on all cells including neurons in the CNS. Impairment of insulin signalling therefore not only affects blood glucose levels but also causes numerous degenerative processes. Other growth factor signalling systems such as insulin growth factors (IGFs) and transforming growth factors (TGFs) also are affected in both conditions. Also, the misfolding of proteins plays an important role in both diseases, as does the aggregation of amyloid peptides and of hyperphosphorylated proteins. Furthermore, more general physiological processes such as angiopathic and cytotoxic developments, the induction of apoptosis, or of non-apoptotic cell death via production of free radicals greatly influence the progression of AD and T2DM. The increase of detailed knowledge of these common physiological processes open up the opportunities for treatments that can prevent or reduce the onset of AD as well as T2DM.
Collapse
|
19
|
Skalnikova H, Halada P, Vodicka P, Motlik J, Rehulka P, Hørning O, Chmelik J, Nørregaard Jensen O, Kovarova H. A proteomic approach to studying the differentiation of neural stem cells. Proteomics 2007; 7:1825-38. [PMID: 17474145 DOI: 10.1002/pmic.200600867] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The mechanisms that regulate the maintenance of stem cell self-renewal versus differentiation are complex and remain mostly unknown. Understanding neurogenesis and neural cell differentiation presents a unique challenge for the treatment of nervous system disorders. To gain more insight into molecular mechanisms of the differentiation of neural cells, we combined the advantage of porcine fetal neural stem cells (NSCs) in vitro differentiation model and proteomic analysis. Using 2-DE followed by MS, we profiled constituent proteins of NSCs and their differentiated progenies at first and then indicated protein species that were significantly up- or down-regulated during the differentiation. The largest identified group of constituent proteins was related to RNA and protein metabolism and processing, including chaperones, and the second largest consisted of proteins involved in cell organization (cytoskeleton and annexins). Differentiation of neural cells was found to be accompanied by changes in the expression of proteins involved in DNA and RNA binding, mRNA processing and transport, stress responses, iron storage, and redox regulation. Additional immunoblot analysis verified the induction of alpha-B crystallin and heterogeneous nuclear ribonucleoproteins (hnRNPs) A1 and A2/B1. Furthermore, immunocytochemistry demonstrated specific localization of alpha-B crystallin in the cytoplasm or nucleus of glial cells and confirmed cellular expression patterns of hnRNPs A1 and A2/B1. These findings represent a significant step towards understanding neural cell differentiation and identification of the regulatory proteins associated with this process.
Collapse
Affiliation(s)
- Helena Skalnikova
- Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, Libechov, Czech Republic
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Li L. Is Glucagon-like peptide-1, an agent treating diabetes, a new hope for Alzheimer's disease? Neurosci Bull 2007; 23:58-65. [PMID: 17592527 PMCID: PMC5550570 DOI: 10.1007/s12264-007-0009-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Glucagon-like peptide-1 (GLP-1) has been endorsed as a promising and attractive agent in the treatment of type 2 diabetes mellitus (T2DM). Both Alzheimer's disease (AD) and T2DM share some common pathophysiologic hallmarks, such as amyloid beta (Abeta), phosphoralation of tau protein, and glycogen synthase kinase-3. GLP-1 possesses neurotropic properties and can reduce amyloid protein levels in the brain. Based on extensive studies during the past decades, the understanding on AD leads us to believe that the primary targets in AD are the Abeta and tau protein. Combine these findings, GLP-1 is probably a promising agent in the therapy of AD. This review was focused on the biochemistry and physiology of GLP-1, communities between T2DM and AD, new progresses of GLP-1 in treating T2MD and improving some pathologic hallmarks of AD.
Collapse
Affiliation(s)
- Lin Li
- Gerontology Institute, Shanxi Medical University, Taiyuan 030001, China.
| |
Collapse
|
21
|
Zhao Y, Huang Z, Qi M, Lazzarini P, Mazzone T. Immune regulation of T lymphocyte by a newly characterized human umbilical cord blood stem cell. Immunol Lett 2007; 108:78-87. [PMID: 17161871 DOI: 10.1016/j.imlet.2006.10.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2006] [Revised: 10/27/2006] [Accepted: 10/29/2006] [Indexed: 12/14/2022]
Abstract
Previous work identified a novel type of stem cell from human umbilical cord blood, designated cord blood-stem cells (CB-SC). To further evaluate their immune characteristics, we cocultured CB-SC with allogeneic peripheral blood lymphocytes in the presence of phytohaemagglutinin (PHA) or interleukin-2 (IL-2). Results showed that CB-SC could significantly inhibit lymphocyte proliferation and reduce tyrosine phosphorylation of STAT5 in both PHA- and IL-2-stimulated lymphocytes, along with the regulation on the phenotypes of CD4+ and CD8+ T cells. Additionally, CB-SC also suppressed the proliferation of IL-2-stimulated CD4+CD25+ regulatory T cells. Mechanism studies revealed that programmed death receptor-1 ligand 1 (PD-L1) expressed on CB-SC membrane, together with a soluble factor nitric oxide (NO) released by PHA-stimulated CB-SC, not prostaglandin E2 (PGE2) and transforming growth factor-beta1 (TGF-beta1), mainly contributed to the T cell suppression induced by CB-SC, as demonstrated by blocking experiments with a nitric oxide synthase inhibitor (Nomega-nitro-l-arginine, l-NNA) and a neutralizing antibody to PD-L1. Our findings may advance our understanding of the immunobiology of stem cells and facilitate the therapeutic application of cord blood stem cells.
Collapse
Affiliation(s)
- Yong Zhao
- Section of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Illinois at Chicago, 1819 W. Polk Street, Chicago, IL 60612, USA.
| | | | | | | | | |
Collapse
|
22
|
Roche E, Ensenat-Waser R, Vicente-Salar N, Santana A, Zenke M, Reig JA. Insulin-producing cells from embryonic stem cells experimental considerations. Methods Mol Biol 2007; 407:295-309. [PMID: 18453263 DOI: 10.1007/978-1-59745-536-7_20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The main objective of cell bioengineering is to generate customized tissues that allow recovering the lost functions in the organism in the absence of immune rejection. Although the possibility of in vitro generation of entire organs is technically very complex, obtaining specific cell types for replacement therapies seems to be a more realistic goal at mean time. In this context, those pathologies affected by the dysfunction of a specific cell type, as it is the case of beta-cell in diabetes, would be in principle candidates to benefit from cell transplantation protocols. Embryonic stem cells offer interesting possibilities in this context because they fulfill two important criteria: (i) High proliferation rate by symmetric cell division, overcoming the problem of biomass scarcity and (ii) Plasticity of differentiating to all cell types present in the adult organism, including the germ line. Different approaches have been developed in vitro to obtain insulin-producing cells from embryonic stem cells. Nevertheless, a definitive protocol does not exist yet. However, the experience accumulated in this field by the different laboratories has provided considering key points that would help to design a preferred protocol in the future.
Collapse
Affiliation(s)
- Enrique Roche
- Instituto of Bioengineering, University Miguel Hernandez, Alicante, Spain
| | | | | | | | | | | |
Collapse
|
23
|
Ensenat-Waser R, Santana A, Paredes B, Zenke M, Reig JA, Roche E. Embryonic Stem Cell Processing in Obtaining Insulin-Producing Cells: A Technical Review. ACTA ACUST UNITED AC 2006. [DOI: 10.1089/cpt.2006.9997] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Roberto Ensenat-Waser
- Institute for Biomedical Engineering–Cell Biology, University Medical School/Rheinisch-Westfälische Technische Hochschule Aachen, Aachen, Germany
| | - Alfredo Santana
- Genetic and Cytogenetic Unit, Childhood Hospital of Canary Islands, Las Palmas, Spain
| | - Beatriz Paredes
- Institute of Bioengineering, University Miguel Hernandez, Alicante, Spain
| | - Martin Zenke
- Institute for Biomedical Engineering–Cell Biology, University Medical School/Rheinisch-Westfälische Technische Hochschule Aachen, Aachen, Germany
| | - Juan Antonio Reig
- Institute of Bioengineering, University Miguel Hernandez, Alicante, Spain
| | - Enrique Roche
- Institute of Bioengineering, University Miguel Hernandez, Alicante, Spain
| |
Collapse
|
24
|
Santana A, Enseñat - Waser R, Arribas MI, Reig JA, Roche E. Insulin - producing cells derived from stem cells: recent progress and future directions. J Cell Mol Med 2006. [DOI: 10.1111/j.1582-4934.2006.tb00444.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
25
|
Santana A, Enseñat-Waser R, Arribas MI, Reig JA, Roche E. Insulin - producing cells derived from stem cells: recent progress and future directions. J Cell Mol Med 2006; 10:866-83. [PMID: 17125591 DOI: 10.1111/j.1582-4934.2006.tb00531.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Type 1 diabetes is characterized by the selective destruction of pancreatic beta-cells caused by an autoimmune attack. Type 2 diabetes is a more complex pathology which, in addition to beta-cell loss caused by apoptotic programs, includes beta-cell dedifferentiation and peripheric insulin resistance. beta-Cells are responsible for insulin production, storage and secretion in accordance to the demanding concentrations of glucose and fatty acids. The absence of insulin results in death and therefore diabetic patients require daily injections of the hormone for survival. However, they cannot avoid the appearance of secondary complications affecting the peripheral nerves as well as the eyes, kidneys and cardiovascular system. These afflictions are caused by the fact that external insulin injection does not mimic the tight control that pancreatic-derived insulin secretion exerts on the body's glycemia. Restoration of damaged beta-cells by transplantation from exogenous sources or by endocrine pancreas regeneration would be ideal therapeutic options. In this context, stem cells of both embryonic and adult origin (including beta-cell/islet progenitors) offer some interesting alternatives, taking into account the recent data indicating that these cells could be the building blocks from which insulin secreting cells could be generated in vitro under appropriate culture conditions. Although in many cases insulin-producing cells derived from stem cells have been shown to reverse experimentally induced diabetes in animal models, several concerns need to be solved before finding a definite medical application. These refer mainly to the obtainment of a cell population as similar as possible to pancreatic beta-cells, and to the problems related with the immune compatibility and tumor formation. This review will summarize the different approaches that have been used to obtain insulin-producing cells from embryonic and adult stem cells, and the main problems that hamper the clinical applications of this technology.
Collapse
Affiliation(s)
- A Santana
- Genetic and Cytogenetic Unit, Childhood Hospital of Canary Islands, Las Palmas, Spain
| | | | | | | | | |
Collapse
|
26
|
Mimeault M, Batra SK. Concise review: recent advances on the significance of stem cells in tissue regeneration and cancer therapies. Stem Cells 2006; 24:2319-45. [PMID: 16794264 DOI: 10.1634/stemcells.2006-0066] [Citation(s) in RCA: 178] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In this study, we report on recent advances on the functions of embryonic, fetal, and adult stem cell progenitors for tissue regeneration and cancer therapies. We describe new procedures for derivation and maturation of these stem cells into the tissue-specific cell progenitors. The localization of the adult stem cells and their niches, as well as their implication in the tissue repair after injuries and during cancer progression, are also described. The emphasis is on the interactions among certain developmental signaling factors, such as hormones, epidermal growth factor, hedgehog, Wnt/beta-catenin, and Notch. These factors and their pathways are involved in the stringent regulation of the self-renewal and/or differentiation of adult stem cells. Novel strategies for the treatment of both diverse degenerating disorders, by cell replacement, and some metastatic cancer types, by molecular targeting multiple tumorigenic signaling elements in cancer progenitor cells, are also illustrated.
Collapse
Affiliation(s)
- Murielle Mimeault
- Department of Biochemistry and Molecular Biology, Eppley Institute of Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska 68198-5870, USA.
| | | |
Collapse
|