1
|
Xie J, Huang H, Xu S, Zhou K, Chen X, Fang J, Zhao F. Dentin tubules as a long-term sustained release carrier to accelerate bone repair by loading FTY720. J Control Release 2025; 377:446-457. [PMID: 39581552 DOI: 10.1016/j.jconrel.2024.11.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 11/04/2024] [Accepted: 11/20/2024] [Indexed: 11/26/2024]
Abstract
The controlled release of drugs remains a huge challenge in the field of tissue engineering. Current research focuses on the construction of drug carriers by using various advanced technologies. However, the pore-like structure that exists within our human body is ignored. Herein, a dental particle loaded with FTY720 by using dentin tubules (Dent-FTY720) was successfully prepared, which could achieve long-term sustained release of drugs. Meanwhile, Dent-FTY720 significantly promoted bone defect repair because of the similarity in composition to bone including hydroxyapatite and collagen. Furthermore, the loaded drugs exhibited both anti-immune and anti-inflammatory properties. This research introduces a novel concept in drug loading, highlighting the potential of dentin tubules as a drug delivery system.
Collapse
Affiliation(s)
- Jiaman Xie
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, China
| | - Haohui Huang
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, China
| | - Shijing Xu
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, China
| | - Keyi Zhou
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, China; School of Stomatology of Qingdao University, Qingdao 266003, PR China
| | - Xiaofeng Chen
- Department of Biomaterials, School of Materials Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510641, PR China; National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou, Guangdong 510006, PR China
| | - Jingxian Fang
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, China.
| | - Fujian Zhao
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, China.
| |
Collapse
|
2
|
Comparative transcriptome profile of mouse macrophages treated with the RhoA/Rock pathway inhibitors Y27632, Fingolimod (Gilenya), and Rezurock (Belumosudil, SLx-2119). Int Immunopharmacol 2023; 118:110017. [PMID: 36931169 DOI: 10.1016/j.intimp.2023.110017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 03/02/2023] [Accepted: 03/07/2023] [Indexed: 03/17/2023]
Abstract
Macrophages play a crucial role in, the currently uncurable, chronic rejection of transplants. In rodent transplantation models, inhibition of the RhoA/Rock pathway disrupts actin-related functions of macrophages, preventing them from entering the graft, and reducing vessel occlusion, fibrosis, and chronic rejection. Among RhoA/Rock inhibitors that inhibit chronic rejection in mouse transplantation are Y27632, Fingolimod, and Rezurock. In a mouse model, Rezurok is more effective in preventing fibrosis and less effective in preventing vessel occlusion than Y27632 or Fingolimod. Fingolimod is FDA-approved for treating multiple sclerosis (MS) and Rezurock for chronic graft versus host disease (GVHD). Still, none had been tested for chronic rejection in humans. To explain the differences in the anti-chronic rejection properties of Y27632, Fingolimod, and Rezurock, we compared the transcriptome profile of mouse macrophages treated with these compounds separately. Treatment with Y27632 or Fingolimod downregulated GTPase and actin pathways involved in cell migration. Rezurock downregulated genes related to fibrosis, such as PTX3, CCR2, CCL2, cell cycle, DNA replication, adaptive immune response, and organelle assembly, while Fingolimod also specifically downregulated NOTCH1 at mRNA . The result of this study not only uncovers which pathways are shared or specific for these drugs but will help in the development of macrophage pathway-targeted therapies in human transplantation, MS, and GVHD. Because macrophages are the major players in immune response, tissue regeneration, renewal, and homeostasis, and development of many diseases, including cancer, the data compiled here will help in designing novel or improved therapies in many clinical applications.
Collapse
|
3
|
Hirao H, Kojima H, Dery KJ, Nakamura K, Kadono K, Zhai Y, Farmer DG, Kaldas FM, Kupiec-Weglinski JW. Neutrophil CEACAM1 determines susceptibility to NETosis by regulating the S1PR2/S1PR3 axis in liver transplantation. J Clin Invest 2023; 133:e162940. [PMID: 36719377 PMCID: PMC9888387 DOI: 10.1172/jci162940] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 11/17/2022] [Indexed: 02/01/2023] Open
Abstract
Neutrophils, the largest innate immune cell population in humans, are the primary proinflammatory sentinel in the ischemia-reperfusion injury (IRI) mechanism in orthotopic liver transplantation (OLT). Carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1, CC1, or CD66a) is essential in neutrophil activation and serves as a checkpoint regulator of innate immune-driven IRI cascade in OLT. Although CC1 alternative splicing generates two functionally distinct short and long cytoplasmic isoforms, their role in neutrophil activation remains unknown. Here, we undertook molecular and functional studies to interrogate the significance of neutrophil CC1 signaling in mouse and human OLT recipients. In the experimental arm, we employed a mouse OLT model to document that ablation of recipient-derived neutrophil CC1-long (CC1-L) isotype aggravated hepatic IRI by promoting neutrophil extracellular traps (NETs). Notably, by regulating the S1P-S1PR2/S1PR3 axis, neutrophil CC1-L determined susceptibility to NET formation via autophagy signaling. In the clinical arm, liver grafts from 55 transplant patients selectively enriched for neutrophil CC1-L showed relative resistance to ischemia-reperfusion (IR) stress/tissue damage, improved hepatocellular function, and clinical outcomes. In conclusion, despite neutrophils being considered a principal villain in peritransplant tissue injury, their CC1-L isoform may serve as a regulator of IR stress resistance/NETosis in human and mouse OLT recipients.
Collapse
Affiliation(s)
- Hirofumi Hirao
- Dumont-UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas Transplantation, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Hidenobu Kojima
- Dumont-UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas Transplantation, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Kenneth J. Dery
- Dumont-UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas Transplantation, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Kojiro Nakamura
- Dumont-UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas Transplantation, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
- Department of Surgery, Division of Hepato-Biliary-Pancreatic Surgery and Transplantation, Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kentaro Kadono
- Dumont-UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas Transplantation, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Yuan Zhai
- Dumont-UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas Transplantation, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Douglas G. Farmer
- Dumont-UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas Transplantation, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Fady M. Kaldas
- Dumont-UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas Transplantation, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Jerzy W. Kupiec-Weglinski
- Dumont-UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas Transplantation, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| |
Collapse
|
4
|
AKBA Promotes Axonal Regeneration via RhoA/Rictor to Repair Damaged Sciatic Nerve. Int J Mol Sci 2022; 23:ijms232415903. [PMID: 36555556 PMCID: PMC9783960 DOI: 10.3390/ijms232415903] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/22/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022] Open
Abstract
The existing studies by our team demonstrated the pro-recovery effect of 3-Acetyl-11-keto-beta-boswellic acid (AKBA) on a sciatic nerve injury. To further investigate the role of AKBA in peripheral nerve injury repair, The TMT quantitative proteomics technique was used to obtain differentially significant proteins in a Sham group, Model group, and AKBA group. After that, three time points (5, 14, and 28 d) and four groups (Sham + AKBA, Sham, Model, and AKBA) were set up, and immunoblotting, immunofluorescence, and cellular assays were applied to investigate the expression of CDC42, Rac1, RhoA, and Rictor in the sciatic nerve at different time points for each group in more depth. The results showed that AKBA enriched the cellular components of the myelin sheath and axon regeneration after a sciatic nerve injury and that AKBA upregulated CDC42 and Rac1 and downregulated RhoA expression 5 d after a sciatic nerve injury, promoting axon regeneration and improving the repair of a sciatic nerve injury in rats. Rictor is regulated by AKBA and upregulated in PC12 cells after AKBA action. Our findings provide a new basis for AKBA treatment of a peripheral nerve injury.
Collapse
|
5
|
Yi Y, Hu WJ, Zhao CR, Xiong MC, Zhang Q, Wu YP, Zeng H, Zeng N. The protective role of FTY720 in promoting survival of allograft fat in mice. Kaohsiung J Med Sci 2022; 38:889-896. [PMID: 35833419 DOI: 10.1002/kjm2.12570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 05/19/2022] [Accepted: 05/25/2022] [Indexed: 11/07/2022] Open
Abstract
Fat transplantation is widely used for soft-tissue filling and wound repair. Owing to the biological changes in adipocytes in some metabolic diseases, allograft fat can provide a better source of donor fat than autologous fat. Fingolimod (FTY720) possesses a powerful immunomodulatory function. This study aimed to investigate the protective effect of FTY720 in allogeneic fat transplantation. C57BL/6J mice that received allografts were randomly divided into two groups and treated with saline and FTY720, respectively. Fat graft samples were obtained at 1, 6, and 20 weeks posttransplantation. Graft volumes, graft structure, and immune cells were estimated using histological examination, immunohistochemistry, staining immunofluorescence (IF), and quantitative real-time polymerase chain reaction (qRT-PCR). Inflammatory cytokine mRNA expression in grafts was detected by qRT-PCR. FTY720 treatment significantly enhanced allograft retention, structural integrity, and neovascularization, thereby demonstrating the potential of FTY720 in improving graft survival. Further IF staining showed that FTY720 increased regulatory T cell infiltration and reduced macrophage infiltration to some extent. FTY720 treatment also enhanced the expression of the anti-inflammatory cytokines interleukin (IL)-4 and IL-10 and weakened the expression of the pro-inflammatory cytokines TNF-α and IL-6. Furthermore, FTY720 treatment upregulated the expression of CD31 positive cells. This study demonstrated the potential efficacy of FTY720 in improving the graft survival rate of syngeneic fat allograft models, possibly by suppressing immune rejection and promoting angiogenesis. Therefore, this study offers key insights into the potential application of a drug-assisted strategy to prolong allograft fat survival.
Collapse
Affiliation(s)
- Yi Yi
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wei-Jie Hu
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chong-Ru Zhao
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ming-Chen Xiong
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qi Zhang
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yi-Ping Wu
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hong Zeng
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ning Zeng
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
6
|
Kloc M, Uosef A, Kubiak JZ, Ghobrial RM. Role of Macrophages and RhoA Pathway in Atherosclerosis. Int J Mol Sci 2020; 22:ijms22010216. [PMID: 33379334 PMCID: PMC7796231 DOI: 10.3390/ijms22010216] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 12/20/2020] [Accepted: 12/24/2020] [Indexed: 12/11/2022] Open
Abstract
The development, progression, or stabilization of the atherosclerotic plaque depends on the pro-inflammatory and anti-inflammatory macrophages. The influx of the macrophages and the regulation of macrophage phenotype, inflammatory or anti-inflammatory, are controlled by the small GTPase RhoA and its downstream effectors. Therefore, macrophages and the components of the RhoA pathway are attractive targets for anti-atherosclerotic therapies, which would inhibit macrophage influx and inflammatory phenotype, maintain an anti-inflammatory environment, and promote tissue remodeling and repair. Here, we discuss the recent findings on the role of macrophages and RhoA pathway in the atherosclerotic plaque formation and resolution and the novel therapeutic approaches.
Collapse
Affiliation(s)
- Malgorzata Kloc
- Houston Methodist Research Institute, Houston, TX 77030, USA; (A.U.); (R.M.G.)
- Department of Surgery, Houston Methodist Hospital, Houston, TX 77030, USA
- M.D. Anderson Cancer Center, Department of Genetics, University of Texas, Houston, TX 77030, USA
- Correspondence:
| | - Ahmed Uosef
- Houston Methodist Research Institute, Houston, TX 77030, USA; (A.U.); (R.M.G.)
- Department of Surgery, Houston Methodist Hospital, Houston, TX 77030, USA
| | - Jacek Z. Kubiak
- Department of Regenerative Medicine and Cell Biology, Military Institute of Hygiene and Epidemiology (WIHE), 01-001 Warsaw, Poland;
- Cell Cycle Group, Institute of Genetics and Development of Rennes (IGDR), Faculty of Medicine, Univ Rennes, CNRS, UMR 6290, 35000 Rennes, France
| | - Rafik Mark Ghobrial
- Houston Methodist Research Institute, Houston, TX 77030, USA; (A.U.); (R.M.G.)
- Department of Surgery, Houston Methodist Hospital, Houston, TX 77030, USA
| |
Collapse
|
7
|
Kloc M, Uosef A, Kubiak JZ, Ghobrial RM. Macrophage Proinflammatory Responses to Microorganisms and Transplanted Organs. Int J Mol Sci 2020; 21:ijms21249669. [PMID: 33352942 PMCID: PMC7766629 DOI: 10.3390/ijms21249669] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/09/2020] [Accepted: 12/16/2020] [Indexed: 02/07/2023] Open
Abstract
Tissue-resident macrophages and those conscripted from the blood/bone marrow are professional phagocytes. They play a role in tissue homeostasis, replacement, and healing, and are the first-line responders to microbial (viral, bacterial, and fungi) infections. Intrinsic ameboid-type motility allows non-resident macrophages to move to the site of inflammation or injury, where, in response to the inflammatory milieu they perform the anti-microbial and/or tissue repair functions. Depending on the need and the signaling from the surrounding tissue and other immune cells, macrophages acquire morphologically and functionally different phenotypes, which allow them to play either pro-inflammatory or anti-inflammatory functions. As such, the macrophages are also the major players in the rejection of the transplanted organs making an excellent target for the novel anti-rejection therapies in clinical transplantation. In this review, we describe some of the less covered aspects of macrophage response to microbial infection and organ transplantation.
Collapse
Affiliation(s)
- Malgorzata Kloc
- The Houston Methodist Research Institute, Houston, TX 77030, USA; (A.U.); (R.M.G.)
- Department of Surgery, The Houston Methodist Hospital, Houston, TX 77030, USA
- MD Anderson Cancer Center, Department of Genetics Houston, The University of Texas, Austin, TX 77030, USA
- Correspondence:
| | - Ahmed Uosef
- The Houston Methodist Research Institute, Houston, TX 77030, USA; (A.U.); (R.M.G.)
- Department of Surgery, The Houston Methodist Hospital, Houston, TX 77030, USA
| | - Jacek Z. Kubiak
- Laboratory of Regenerative Medicine and Cell Biology, Military Institute of Hygiene and Epidemiology (WIHE), 01-163 Warsaw, Poland;
- Cell Cycle Group, Faculty of Medicine, Institute of Genetics and Development of Rennes (IGDR), University Rennes, UMR 6290, CNRS, 35043 Rennes, France
| | - Rafik M. Ghobrial
- The Houston Methodist Research Institute, Houston, TX 77030, USA; (A.U.); (R.M.G.)
- Department of Surgery, The Houston Methodist Hospital, Houston, TX 77030, USA
| |
Collapse
|