1
|
Theil F, Kuckhahn A, Hörning A, Völkl S, Knab K, Fritz N, Gräbner C, Ramsperger-Gleixner M, Weyand M, Heim C. Repeated CXCR4 Blockade by Plerixafor Attenuates Transplant Vasculopathy in Murine Aortic Allografts. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:1542-1552. [PMID: 39382301 DOI: 10.4049/jimmunol.2300632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 09/18/2024] [Indexed: 10/10/2024]
Abstract
Plerixafor, a hematopoietic stem cell mobilization agent, increases the peripheral blood content of effector and regulatory T cells and may have beneficial effects on cardiac allograft vasculopathy. The aim of the current study was to evaluate its effects in a murine aortic allograft model using different application procedures. Allogeneic donor aorta grafts (n = 8/group) from C57BL/6 mice(H2b) were abdominally transplanted into CBA mice (H2k). Plerixafor application was performed either continuously for 14 d using abdominally implanted osmotic pumps (1 mg/kg/d) or i.p. with a single dose (1 and 5 mg/kg) on day 0 or pulsed injections of 1 mg/kg on days 0, 7, 14, and 21. Cell distribution was monitored by FACS. Aortic grafts were evaluated for neointima development by Elastica-van-Gieson on day 30. Immunofluorescence and intragraft gene expression analysis were performed. On day 14, significantly fewer hematopoietic stem cells were found in the bone marrow of all plerixafor-treated mice. In the pulsed application group, significantly more hematopoietic stem cells were found in the peripheral blood on day 14 (0.045 ± 0.002%; p < 0.01 [pulsed]; versus 0.0068 ± 0.002% [control]) and also more regulatory T cells. PCR revealed lower inflammatory cytokines. The luminal occlusion was significantly reduced in the pulsed treated group (33.65 ± 8.84 versus 53.13 ± 12.41) going along with decreased neointimal CD4+ T cell and plasmacytoid dendritic cell infiltration, as well as less smooth muscle cell proliferation. The application of plerixafor attenuates chronic rejection in aortic allografts via immunomodulatory effects. Injection of repeated low-dose plerixafor is the most effective application form in the aortic transplant model.
Collapse
Affiliation(s)
- Frank Theil
- Department of Cardiac Surgery, Universitätsklinikum Erlangen, Erlangen, Germany
- Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Annika Kuckhahn
- Department of Cardiac Surgery, Universitätsklinikum Erlangen, Erlangen, Germany
- Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - André Hörning
- Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Department of Pediatric and Adolescent Medicine, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Simon Völkl
- Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Department of Internal Medicine 5 - Hematology and Oncology, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Katharina Knab
- Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Department of Internal Medicine 3 - Rheumatology and Immunology, Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Niklas Fritz
- Department of Cardiac Surgery, Universitätsklinikum Erlangen, Erlangen, Germany
- Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Cindy Gräbner
- Department of Cardiac Surgery, Universitätsklinikum Erlangen, Erlangen, Germany
- Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Martina Ramsperger-Gleixner
- Department of Cardiac Surgery, Universitätsklinikum Erlangen, Erlangen, Germany
- Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Michael Weyand
- Department of Cardiac Surgery, Universitätsklinikum Erlangen, Erlangen, Germany
- Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Christian Heim
- Department of Cardiac Surgery, Universitätsklinikum Erlangen, Erlangen, Germany
- Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Department for Cardiac and Vascular Surgery, Medizincampus Oberfranken, Bayreuth, Germany
| |
Collapse
|
2
|
Miller WE, O'Connor CM. CMV-encoded GPCRs in infection, disease, and pathogenesis. Adv Virus Res 2024; 118:1-75. [PMID: 38461029 DOI: 10.1016/bs.aivir.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2024]
Abstract
G protein coupled receptors (GPCRs) are seven-transmembrane domain proteins that modulate cellular processes in response to external stimuli. These receptors represent the largest family of membrane proteins, and in mammals, their signaling regulates important physiological functions, such as vision, taste, and olfaction. Many organisms, including yeast, slime molds, and viruses encode GPCRs. Cytomegaloviruses (CMVs) are large, betaherpesviruses, that encode viral GPCRs (vGPCRs). Human CMV (HCMV) encodes four vGPCRs, including UL33, UL78, US27, and US28. Each of these vGPCRs, as well as their rodent and primate orthologues, have been investigated for their contributions to viral infection and disease. Herein, we discuss how the CMV vGPCRs function during lytic and latent infection, as well as our understanding of how they impact viral pathogenesis.
Collapse
Affiliation(s)
- William E Miller
- Department of Molecular and Cellular Bioscience, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Christine M O'Connor
- Infection Biology, Sheikha Fatima bint Mubarak Global Center for Pathogen and Human Health Research, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States; Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland Clinic, Cleveland, OH, United States; Case Comprehensive Cancer Center, Cleveland, OH, United States.
| |
Collapse
|
3
|
Bonavita CM, White TM, Francis J, Farrell HE, Davis-Poynter NJ, Cardin RD. The Viral G-Protein-Coupled Receptor Homologs M33 and US28 Promote Cardiac Dysfunction during Murine Cytomegalovirus Infection. Viruses 2023; 15:711. [PMID: 36992420 PMCID: PMC10054303 DOI: 10.3390/v15030711] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
Human cytomegalovirus (HCMV) is a ubiquitous pathogen that infects the majority of the world population and causes lifelong latent infection. HCMV has been shown to exacerbate cardiovascular diseases, including myocarditis, vascular sclerosis, and transplant vasculopathy. Recently, we have shown that murine CMV (MCMV) recapitulates the cardiovascular dysfunction observed in patients with HCMV-induced myocarditis. To understand the viral mechanisms involved in CMV-induced heart dysfunction, we further characterized cardiac function in response to MCMV and examined virally encoded G-protein-coupled receptor homologs (vGPCRs) US28 and M33 as potential factors that promote infection in the heart. We hypothesized that the CMV-encoded vGPCRs could exacerbate cardiovascular damage and dysfunction. Three viruses were used to evaluate the role of vGPCRs in cardiac dysfunction: wild-type MCMV, a M33-deficient virus (∆M33), and a virus with the M33 open reading frame (ORF) replaced with US28, an HCMV vGPCR (i.e., US28+). Our in vivo studies revealed that M33 plays a role in promoting cardiac dysfunction by increasing viral load and heart rate during acute infection. During latency, ΔM33-infected mice demonstrated reduced calcification, altered cellular gene expression, and less cardiac hypertrophy compared with wild-type MCMV-infected mice. Ex vivo viral reactivation from hearts was less efficient in ΔM33-infected animals. HCMV protein US28 expression restored the ability of the M33-deficient virus to reactivate from the heart. US28+ MCMV infection caused damage to the heart comparable with wild-type MCMV infection, suggesting that the US28 protein is sufficient to complement the function of M33 in the heart. Altogether, these data suggest a role for vGPCRs in viral pathogenesis in the heart and thus suggest that vGPCRs promote long-term cardiac damage and dysfunction.
Collapse
Affiliation(s)
- Cassandra M. Bonavita
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Timothy M. White
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Joseph Francis
- Department of Comparative Biological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Helen E. Farrell
- School of Chemistry and Molecular Bioscience, University of Queensland, Brisbane 4072, Australia
| | | | - Rhonda D. Cardin
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| |
Collapse
|
4
|
Gräbner C, Ramsperger-Gleixner M, Kuckhahn A, Weyand M, Heim C. Chronische Abstoßung nach Lungentransplantation. ZEITSCHRIFT FUR HERZ THORAX UND GEFASSCHIRURGIE 2023. [DOI: 10.1007/s00398-023-00562-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
5
|
Lee S, Affandi J, Waters S, Price P. Human Cytomegalovirus Infection and Cardiovascular Disease: Current Perspectives. Viral Immunol 2023; 36:13-24. [PMID: 36622943 DOI: 10.1089/vim.2022.0139] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Infections with human cytomegalovirus (HCMV) are often asymptomatic in healthy adults but can be severe in people with a compromised immune system. While several studies have demonstrated associations between cardiovascular disease in older adults and HCMV seropositivity, the underlying mechanisms are unclear. We review evidence published within the last 5 years establishing how HCMV can contribute directly and indirectly to the development and progression of atherosclerotic plaques. We also discuss associations between HCMV infection and cardiovascular outcomes in populations with a high or very high burden of HCMV, including patients with renal or autoimmune disease, transplant recipients, and people living with HIV.
Collapse
Affiliation(s)
- Silvia Lee
- Department of Microbiology, Pathwest Laboratory Medicine, Perth, Western Australia, Australia.,Department of Advanced Clinical and Translational Cardiovascular Imaging, Harry Perkins Institute of Medical Research, Murdoch, Western Australia, Australia.,Curtin Medical School and the Curtin Health Innovation Research Institute (CHIRI); Bentley, Western Australia, Australia
| | - Jacquita Affandi
- Curtin School of Population Health; Curtin University, Bentley, Western Australia, Australia
| | - Shelley Waters
- Curtin Medical School and the Curtin Health Innovation Research Institute (CHIRI); Bentley, Western Australia, Australia
| | - Patricia Price
- Curtin Medical School and the Curtin Health Innovation Research Institute (CHIRI); Bentley, Western Australia, Australia
| |
Collapse
|
6
|
The mouse cytomegalovirus G protein-coupled receptor homolog, M33, coordinates key features of in vivo infection via distinct components of its signalling repertoire. J Virol 2021; 96:e0186721. [PMID: 34878888 DOI: 10.1128/jvi.01867-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Common to all cytomegalovirus (CMV) genomes analysed to date is the presence of G protein-coupled receptors (GPCR). Animal models of CMV provide insights into their role in viral fitness. The mouse cytomegalovirus (MCMV) GPCR, M33, facilitates dendritic cell (DC)-dependent viremia, the extravasation of blood-borne infected DC to the salivary gland and the frequency of reactivation events from latently-infected tissue explants. Constitutive G protein-coupled M33 signalling is required for these phenotypes, although the contribution of distinct biochemical pathways activated by M33 is unknown. M33 engages Gq/11 to constitutively activate phospholipase C β (PLCβ) and downstream cyclic AMP response-element binding protein (CREB) in vitro. Identification of a MCMV M33 mutant (M33ΔC38) for which CREB signalling was disabled, but PLCβ activation was preserved, provided the opportunity to investigate their relevance in vivo. Following intranasal infection with MCMV M33ΔC38, the absence of M33 CREB Gq/11-dependent signalling correlated with reduced mobilisation of lytically-infected DC to draining lymph node high endothelial venules (HEVs) and reduced viremia compared with wild type MCMV. In contrast, M33ΔC38-infected DC within the vascular compartment extravasated to the salivary glands via a pertussis toxin-sensitive, Gi/o-dependent and CREB-independent mechanism. In the context of MCMV latency, spleen explants from M33ΔC38-infected mice were markedly attenuated for reactivation. Taken together, these data demonstrate that key features of the MCMV lifecycle are coordinated in diverse tissues by distinct pathways of the M33 signalling repertoire. IMPORTANCE G protein-coupled receptors (GPCRs) act as cell surface molecular "switches" which regulate the cellular response to environmental stimuli. All cytomegalovirus (CMV) genomes analysed to date possess GPCR homologs with phylogenetic evidence for independent gene capture events, signifying important in vivo roles. The mouse CMV (MCMV) GPCR homolog, designated M33, is important for cell-associated virus spread and for the establishment and/or reactivation of latent MCMV infection. The signalling repertoire of M33 is distinct from cellular GPCRs and little is known of the relevance of component signalling pathways for in vivo M33 function. In this report, we show temporal and tissue-specific M33 signalling is required facilitating in vivo infection. Understanding the relevance of the viral GPCR signalling profiles for in vivo function will provide opportunities for future targeted interventions.
Collapse
|
7
|
Cytomegalovirus Donor Seropositivity Negatively Affects Survival After Heart Transplantation. Transplantation 2021; 106:1243-1252. [PMID: 34560698 DOI: 10.1097/tp.0000000000003961] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Prior studies have shown that cytomegalovirus(CMV) infection is a risk factor for the development of cardiac allograft vasculopathy(CAV) and is associated with reduced long-term survival after heart transplantation. The aim of this ISHLT Transplant Registry study was to compare post-transplant survival in different CMV donor:recipient serologic combinations. METHODS We performed a retrospective cohort study, using the ISHLT Thoracic Transplant Registry, on 15,885 adult primary heart transplant recipients with known CMV serologic status between 7/2004 and 6/2014. Post-transplant survival and risk of developing CAV were compared across 4 groups: CMV-seronegative recipients(R-) receiving CMV-positive grafts(D+), intermediate-risk patients(D+R+ and D-R+), and low-risk patients(D-R-). RESULTS Baseline characteristics (donor/recipient age, BMI, recipient serum creatinine, blood group, donor cause of death, recipient diagnosis and ischemic time) were mostly balanced between the groups. Kaplan Meier survival analyses over a follow up of 10 years revealed significantly worse survival for both D+ groups as compared to the CMV low risk group (D+R+:56.61% (95%CI 53.94,59.41) vs. D-R-:63.09% (59.74,66.64) p<.01 and D+R-:57.69% (56.03,59.39) vs. D-R-; p<.001), whereas recipient seropositivity alone was not associated with reduced survival (D-R+ vs. D-R- p=.178). The risk of developing CAV after HTx was not significantly increased in D+ as compared to D- groups. CONCLUSION In a large contemporary cohort, CMV status at the time of heart transplantation was not associated with CAV development. However, there was a significant association between donor CMV seropositivity and reduced short- and long-term survival after heart transplantation. Approaches to mitigate the impact of CMV on post-transplant survival are needed.Supplemental Visual Abstract; http://links.lww.com/TP/C292.
Collapse
|
8
|
Bonavita CM, Cardin RD. Don't Go Breaking My Heart: MCMV as a Model for HCMV-Associated Cardiovascular Diseases. Pathogens 2021; 10:619. [PMID: 34069957 PMCID: PMC8157551 DOI: 10.3390/pathogens10050619] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/13/2021] [Accepted: 05/14/2021] [Indexed: 12/25/2022] Open
Abstract
Human Cytomegalovirus (HCMV) is a widespread pathogen that causes lifelong latent infection and is associated with the exacerbation of chronic inflammatory diseases in seropositive individuals. Of particular impact, HCMV infection is known to worsen many cardiovascular diseases including myocarditis, atherosclerosis, hypertension, and transplant vasculopathy. Due to its similarity to HCMV, murine CMV (MCMV) is an appropriate model to understand HCMV-induced pathogenesis in the heart and vasculature. MCMV shares similar sequence homology and recapitulates much of the HCMV pathogenesis, including HCMV-induced cardiovascular diseases. This review provides insight into HCMV-associated cardiovascular diseases and the murine model of MCMV infection, which has been used to study the viral pathogenesis and mechanisms contributing to cardiovascular diseases. Our new functional studies using echocardiography demonstrate tachycardia and hypertrophy in the mouse, similar to HCMV-induced myocarditis in humans. For the first time, we show long term heart dysfunction and that MCMV reactivates from latency in the heart, which raises the intriguing idea that HCMV latency and frequent virus reactivation perturbs long term cardiovascular function.
Collapse
Affiliation(s)
| | - Rhonda D. Cardin
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA;
| |
Collapse
|