1
|
Rosseels W, Godinas L, Jallah P, Vos R, Dupont L, Kuypers D, Vanhoutte T, Claes KJ. Thrombotic Microangiopathy: A Devastating Complication After Lung Transplantation. Transplant Direct 2025; 11:e1758. [PMID: 40078820 PMCID: PMC11896099 DOI: 10.1097/txd.0000000000001758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 11/13/2024] [Accepted: 11/15/2024] [Indexed: 03/14/2025] Open
Abstract
Background Thrombotic microangiopathy (TMA) following lung transplantation (LTx) is a rare but severe complication. The pathogenesis is poorly understood, and various risk factors have been suggested. In this study, we aimed to evaluate diagnostic accuracy, identify risk factors, and assess renal, pulmonary, and overall survival of TMA in this patient group. Methods We performed a case-control retrospective study of patients with TMA after LTX between January 1, 2000, and January 1, 2021. Controls were selected based on underlying lung disease, age, sex, cytomegalovirus risk, and immunosuppressive regimen. Overall survival data were collected for the whole lung transplant group. Results A total of 29 TMA cases (2.9%) were identified out of 1025 LTx. Median time to development of TMA was 5.9 mo, 76% occurred in the first 12 mo. In the TMA group a higher rate of HLA donor-specific antibodies (11% versus 1%; P = 0.05), a lower median time to onset of chronic lung allograft dysfunction (37 versus 91 mo; P = 0.0017), a higher rate of cytomegalovirus infection (45% versus 19%; P = 0.02), and a higher prevalence of end-stage renal disease (24% versus 6%; P = 0.03) and overall death (97% versus 44%; P < 0.0001) was found. Diagnostic assessment of TMA was complete in 48% of patients, with Coombs testing missing in 52% and a disintegrin and metalloproteinase with thrombospondin type 1 motif 13 activity not assessed in 59%. Conclusions TMA poses a significant risk of end-stage renal disease and mortality after LTx. Challenges remain in standardizing diagnostic criteria and understanding its pathogenesis, underscoring the need for unified protocols in diagnosis and standardized screening. This study identifies potential risk factors and temporal patterns for TMA occurrence, providing crucial insights for future treatment strategies.
Collapse
Affiliation(s)
- Wouter Rosseels
- Department of Nephrology and Renal Transplantation, UZ Leuven, Leuven, Belgium
| | - Laurent Godinas
- Department of Respiratory Diseases, UZ Leuven, Leuven, Belgium
| | - Papay Jallah
- Department of Nephrology and Renal Transplantation, UZ Leuven, Leuven, Belgium
| | - Robin Vos
- Department of Respiratory Diseases, UZ Leuven, Leuven, Belgium
| | - Lieven Dupont
- Department of Respiratory Diseases, UZ Leuven, Leuven, Belgium
| | - Dirk Kuypers
- Department of Nephrology and Renal Transplantation, UZ Leuven, Leuven, Belgium
- Department of Microbiology, Immunology, and Transplantation, Nephrology and Renal Transplantation Research Group, KU Leuven, Leuven, Belgium
| | - Thomas Vanhoutte
- Department of Nephrology and Renal Transplantation, UZ Leuven, Leuven, Belgium
- Department of Microbiology, Immunology, and Transplantation, Nephrology and Renal Transplantation Research Group, KU Leuven, Leuven, Belgium
| | - Kathleen J. Claes
- Department of Nephrology and Renal Transplantation, UZ Leuven, Leuven, Belgium
- Department of Microbiology, Immunology, and Transplantation, Nephrology and Renal Transplantation Research Group, KU Leuven, Leuven, Belgium
| |
Collapse
|
2
|
Rodriguez-Sanchez E, Aceves-Ripoll J, Mercado-García E, Navarro-García JA, Andrés A, Aguado JM, Segura J, Ruilope LM, Fernández-Ruiz M, Ruiz-Hurtado G. Donor-Dependent Variations in Systemic Oxidative Stress and Their Association with One-Year Graft Outcomes in Kidney Transplantation. Am J Nephrol 2024; 55:509-519. [PMID: 38857579 DOI: 10.1159/000539509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/20/2024] [Indexed: 06/12/2024]
Abstract
INTRODUCTION Oxidative stress has been implicated in complications after kidney transplantation (KT), including delayed graft function (DGF) and rejection. However, its role in long-term posttransplant outcomes remains unclear. METHODS We investigated oxidative damage and antioxidant defense dynamics, and their impact on the graft outcomes, in 41 KT recipients categorized by type of donation over 12 months. Oxidative status was determined using OxyScore and AntioxyScore indexes, which comprise several circulating biomarkers of oxidative damage and antioxidant defense. Donor types included donation after brain death (DBD [61.0%]), donation after circulatory death (DCD [26.8%]), and living donation (LD [12.1%]). RESULTS There was an overall increase in oxidative damage early after transplantation, which was significantly higher in DCD as compared to DBD and LD recipients. The multivariate adjustment confirmed the independent association of OxyScore and type of deceased donation with DGF, donor kidney function, and induction therapy with antithymocyte globulin. There were no differences in terms of antioxidant defense. Lower oxidative damage at day 7 predicted better graft function at 1-year posttransplant only in DBD recipients. CONCLUSION DCD induced greater short-term oxidative damage after KT, whereas the early levels of oxidative damage were predictive of the graft function 1 year after KT among DBD recipients.
Collapse
Affiliation(s)
- Elena Rodriguez-Sanchez
- Cardiorenal Translational Laboratory and Hypertension Unit, Research Institute Hospital "12 de Octubre" (Imas12), Hospital Universitario "12 de Octubre", Madrid, Spain
| | - Jennifer Aceves-Ripoll
- Cardiorenal Translational Laboratory and Hypertension Unit, Research Institute Hospital "12 de Octubre" (Imas12), Hospital Universitario "12 de Octubre", Madrid, Spain
| | - Elisa Mercado-García
- Cardiorenal Translational Laboratory and Hypertension Unit, Research Institute Hospital "12 de Octubre" (Imas12), Hospital Universitario "12 de Octubre", Madrid, Spain
| | - José A Navarro-García
- Cardiorenal Translational Laboratory and Hypertension Unit, Research Institute Hospital "12 de Octubre" (Imas12), Hospital Universitario "12 de Octubre", Madrid, Spain
| | - Amado Andrés
- Department of Nephrology, Hospital Universitario "12 de Octubre", Research Institute Hospital "12 de Octubre" (Imas12), Madrid, Spain
- School of Medicine, Universidad Complutense, Madrid, Spain
| | - José M Aguado
- School of Medicine, Universidad Complutense, Madrid, Spain
- Unit of Infectious Diseases, Hospital Universitario "12 de Octubre", Research Institute Hospital "12 de Octubre" (Imas12), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Julián Segura
- Cardiorenal Translational Laboratory and Hypertension Unit, Research Institute Hospital "12 de Octubre" (Imas12), Hospital Universitario "12 de Octubre", Madrid, Spain
| | - Luis M Ruilope
- Cardiorenal Translational Laboratory and Hypertension Unit, Research Institute Hospital "12 de Octubre" (Imas12), Hospital Universitario "12 de Octubre", Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBER-CV), Instituto de Salud Carlos III, Madrid, Spain
- European University of Madrid, Madrid, Spain
| | - Mario Fernández-Ruiz
- School of Medicine, Universidad Complutense, Madrid, Spain
- Unit of Infectious Diseases, Hospital Universitario "12 de Octubre", Research Institute Hospital "12 de Octubre" (Imas12), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Gema Ruiz-Hurtado
- Cardiorenal Translational Laboratory and Hypertension Unit, Research Institute Hospital "12 de Octubre" (Imas12), Hospital Universitario "12 de Octubre", Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBER-CV), Instituto de Salud Carlos III, Madrid, Spain
- Department of Physiology, School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
3
|
Ricciutelli M, Angeloni S, Conforti S, Corneli M, Caprioli G, Sagratini G, Alabed HBR, D'Amato Tóthová J, Pellegrino RM. An untargeted metabolomics approach to study changes of the medium during human cornea culture. Metabolomics 2024; 20:44. [PMID: 38581549 DOI: 10.1007/s11306-024-02102-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 02/15/2024] [Indexed: 04/08/2024]
Abstract
INTRODUCTION Two main approaches (organ culture and hypothermia) for the preservation and storage of human donor corneas are globally adopted for corneal preservation before the transplant. Hypothermia is a hypothermic storage which slows down cellular metabolism while organ culture, a corneal culture performed at 28-37 °C, maintains an active corneal metabolism. Researchers, till now, have just studied the impact of organ culture on human cornea after manipulating and disrupting tissues. OBJECTIVES The aim of the current work was to optimize an analytical procedure which can be useful for discovering biomarkers capable of predicting tissue health status. For the first time, this research proposed a preliminary metabolomics study on medium for organ culture without manipulating and disrupting the valuable human tissues which could be still used for transplantation. METHODS In particular, the present research proposed a method for investigating changes in the medium, over a storage period of 20 days, in presence and absence of a human donor cornea. An untargeted metabolomics approach using UHPLC-QTOF was developed to deeply investigate the differences on metabolites and metabolic pathways and the influence of the presence of the cornea inside the medium. RESULTS Differences in the expression of some compounds emerged from this preliminary metabolomics approach, in particular in medium maintained for 10 and 20 days in presence but also in the absence of cornea. A total of 173 metabolites have been annotated and 36 pathways were enriched by pathway analysis. CONCLUSION The results revealed a valuable untargeted metabolomics approach which can be applied in organ culture metabolomics.
Collapse
Affiliation(s)
- Massimo Ricciutelli
- Chemistry Interdisciplinary Project (ChIP), School of Pharmacy, University of Camerino, I-62032, Camerino, Italy
| | - Simone Angeloni
- Chemistry Interdisciplinary Project (ChIP), School of Pharmacy, University of Camerino, I-62032, Camerino, Italy.
| | - Silvia Conforti
- The Marche Region Eye Bank, AST Ancona - E. Profili Hospital, 60044, Fabriano, Italy
| | - Massimiliano Corneli
- The Marche Region Eye Bank, AST Ancona - E. Profili Hospital, 60044, Fabriano, Italy
| | - Giovanni Caprioli
- Chemistry Interdisciplinary Project (ChIP), School of Pharmacy, University of Camerino, I-62032, Camerino, Italy
| | - Gianni Sagratini
- Chemistry Interdisciplinary Project (ChIP), School of Pharmacy, University of Camerino, I-62032, Camerino, Italy
| | - Husam B R Alabed
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06100, Perugia, Italy
| | | | - Roberto Maria Pellegrino
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06100, Perugia, Italy
| |
Collapse
|
4
|
Cucchiari D, Cuadrado-Payan E, Gonzalez-Roca E, Revuelta I, Argudo M, Ramirez-Bajo MJ, Ventura-Aguiar P, Rovira J, Bañon-Maneus E, Montagud-Marrahi E, Rodriguez-Espinosa D, Cacho J, Arana C, Torregrosa V, Esforzado N, Cofàn F, Oppenheimer F, Musquera M, Peri L, Casas S, Dholakia S, Palou E, Campistol JM, Bayés B, Puig JA, Diekmann F. Early kinetics of donor-derived cell-free DNA after transplantation predicts renal graft recovery and long-term function. Nephrol Dial Transplant 2023; 39:114-121. [PMID: 37715343 DOI: 10.1093/ndt/gfad120] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Indexed: 09/17/2023] Open
Abstract
BACKGROUND Ischemia-reperfusion injury (IRI) upon transplantation is one of the most impactful events that the kidney graft suffers during its life. Its clinical manifestation in the recipient, delayed graft function (DGF), has serious prognostic consequences. However, the different definitions of DGF are subject to physicians' choices and centers' policies, and a more objective tool to quantify IRI is needed. Here, we propose the use of donor-derived cell-free DNA (ddcfDNA) for this scope. METHODS ddcfDNA was assessed in 61 kidney transplant recipients of either living or deceased donors at 24 h, and 7, 14 and 30 days after transplantation using the AlloSeq cfDNA Kit (CareDx, San Francisco, CA, USA). Patients were followed-up for 6 months and 7-year graft survival was estimated through the complete and functional iBox tool. RESULTS Twenty-four-hour ddcfDNA was associated with functional DGF [7.20% (2.35%-15.50%) in patients with functional DGF versus 2.70% (1.55%-4.05%) in patients without it, P = .023] and 6-month estimated glomerular filtration rate (r = -0.311, P = .023). At Day 7 after transplantation, ddcfDNA was associated with dialysis duration in DGF patients (r = 0.612, P = .005) and worse 7-year iBox-estimated graft survival probability (β -0.42, P = .001) at multivariable analysis. Patients with early normalization of ddcfDNA (<0.5% at 1 week) had improved functional iBox-estimated probability of graft survival (79.5 ± 16.8%) in comparison with patients with 7-day ddcfDNA ≥0.5% (67.7 ± 24.1%) (P = .047). CONCLUSIONS ddcfDNA early kinetics after transplantation reflect recovery from IRI and are associated with short-, medium- and long-term graft outcome. This may provide a more objective estimate of IRI severity in comparison with the clinical-based definitions of DGF.
Collapse
Affiliation(s)
- David Cucchiari
- Department of Nephrology and Kidney Transplantation, Hospital Clínic, Barcelona, Spain
- Laboratori Experimental de Nefrologia I Trasplantament (LENIT), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Elena Cuadrado-Payan
- Department of Nephrology and Kidney Transplantation, Hospital Clínic, Barcelona, Spain
- Laboratori Experimental de Nefrologia I Trasplantament (LENIT), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Eva Gonzalez-Roca
- CORE Molecular Biology Laboratory, Biomedical Diagnostic Center (CBD), Hospital Clínic, Barcelona, Spain
| | - Ignacio Revuelta
- Department of Nephrology and Kidney Transplantation, Hospital Clínic, Barcelona, Spain
- Laboratori Experimental de Nefrologia I Trasplantament (LENIT), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Red de Investigación Renal (REDINREN), Madrid, Spain
| | - Maria Argudo
- Department of Nephrology and Kidney Transplantation, Hospital Clínic, Barcelona, Spain
| | - Maria José Ramirez-Bajo
- Laboratori Experimental de Nefrologia I Trasplantament (LENIT), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Red de Investigación Renal (REDINREN), Madrid, Spain
| | - Pedro Ventura-Aguiar
- Department of Nephrology and Kidney Transplantation, Hospital Clínic, Barcelona, Spain
- Laboratori Experimental de Nefrologia I Trasplantament (LENIT), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Jordi Rovira
- Laboratori Experimental de Nefrologia I Trasplantament (LENIT), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Red de Investigación Renal (REDINREN), Madrid, Spain
| | - Elisenda Bañon-Maneus
- Laboratori Experimental de Nefrologia I Trasplantament (LENIT), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Red de Investigación Renal (REDINREN), Madrid, Spain
| | | | | | - Judit Cacho
- Department of Nephrology and Kidney Transplantation, Hospital Clínic, Barcelona, Spain
| | - Carolt Arana
- Department of Nephrology and Kidney Transplantation, Hospital Clínic, Barcelona, Spain
| | - Vicens Torregrosa
- Department of Nephrology and Kidney Transplantation, Hospital Clínic, Barcelona, Spain
| | - Nuria Esforzado
- Department of Nephrology and Kidney Transplantation, Hospital Clínic, Barcelona, Spain
| | - Frederic Cofàn
- Department of Nephrology and Kidney Transplantation, Hospital Clínic, Barcelona, Spain
| | - Frederic Oppenheimer
- Department of Nephrology and Kidney Transplantation, Hospital Clínic, Barcelona, Spain
- Laboratori Experimental de Nefrologia I Trasplantament (LENIT), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Red de Investigación Renal (REDINREN), Madrid, Spain
| | | | - Lluís Peri
- Department of Urology, Hospital Clínic, Barcelona, Spain
| | | | | | - Eduard Palou
- Department of Immunology, Hospital Clínic, Barcelona, Spain
| | - Josep M Campistol
- Department of Nephrology and Kidney Transplantation, Hospital Clínic, Barcelona, Spain
- Laboratori Experimental de Nefrologia I Trasplantament (LENIT), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Red de Investigación Renal (REDINREN), Madrid, Spain
| | - Beatriu Bayés
- Department of Nephrology and Kidney Transplantation, Hospital Clínic, Barcelona, Spain
- Laboratori Experimental de Nefrologia I Trasplantament (LENIT), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Joan Anton Puig
- CORE Molecular Biology Laboratory, Biomedical Diagnostic Center (CBD), Hospital Clínic, Barcelona, Spain
| | - Fritz Diekmann
- Department of Nephrology and Kidney Transplantation, Hospital Clínic, Barcelona, Spain
- Laboratori Experimental de Nefrologia I Trasplantament (LENIT), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Red de Investigación Renal (REDINREN), Madrid, Spain
| |
Collapse
|
5
|
Maspero M, Ali K, Cazzaniga B, Yilmaz S, Raj R, Liu Q, Quintini C, Miller C, Hashimoto K, Fairchild RL, Schlegel A. Acute rejection after liver transplantation with machine perfusion versus static cold storage: A systematic review and meta-analysis. Hepatology 2023; 78:835-846. [PMID: 36988381 DOI: 10.1097/hep.0000000000000363] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 02/27/2023] [Indexed: 03/30/2023]
Abstract
BACKGROUND AND AIMS Acute cellular rejection (ACR) is a frequent complication after liver transplantation. By reducing ischemia and graft damage, dynamic preservation techniques may diminish ACR. We performed a systematic review to assess the effect of currently tested organ perfusion (OP) approaches versus static cold storage (SCS) on post-transplant ACR-rates. APPROACH AND RESULTS A systematic search of Medline, Embase, Cochrane Library, and Web of Science was conducted. Studies reporting ACR-rates between OP and SCS and comprising at least 10 liver transplants performed with either hypothermic oxygenated perfusion (HOPE), normothermic machine perfusion, or normothermic regional perfusion were included. Studies with mixed perfusion approaches were excluded. Eight studies were identified (226 patients in OP and 330 in SCS). Six studies were on HOPE, one on normothermic machine perfusion, and one on normothermic regional perfusion. At meta-analysis, OP was associated with a reduction in ACR compared with SCS [OR: 0.55 (95% CI, 0.33-0.91), p =0.02]. This effect remained significant when considering HOPE alone [OR: 0.54 (95% CI, 0.29-1), p =0.05], in a subgroup analysis of studies including only grafts from donation after cardiac death [OR: 0.43 (0.20-0.91) p =0.03], and in HOPE studies with only donation after cardiac death grafts [OR: 0.37 (0.14-1), p =0.05]. CONCLUSIONS Dynamic OP techniques are associated with a reduction in ACR after liver transplantation compared with SCS. PROSPERO registration: CRD42022348356.
Collapse
Affiliation(s)
- Marianna Maspero
- Transplantation Center, Digestive Disease and Surgery Institute, Cleveland Clinic, Cleveland, Ohio
- University of Milan, Università degli Studi di Milano, Milan, Italy
| | - Khaled Ali
- Transplantation Center, Digestive Disease and Surgery Institute, Cleveland Clinic, Cleveland, Ohio
| | - Beatrice Cazzaniga
- Transplantation Center, Digestive Disease and Surgery Institute, Cleveland Clinic, Cleveland, Ohio
| | - Sumeyye Yilmaz
- Transplantation Center, Digestive Disease and Surgery Institute, Cleveland Clinic, Cleveland, Ohio
| | - Roma Raj
- Transplantation Center, Digestive Disease and Surgery Institute, Cleveland Clinic, Cleveland, Ohio
| | - Qiang Liu
- Transplantation Center, Digestive Disease and Surgery Institute, Cleveland Clinic, Cleveland, Ohio
| | - Cristiano Quintini
- Transplantation Center, Digestive Disease and Surgery Institute, Cleveland Clinic, Cleveland, Ohio
- Department of Gastroenterology and Hepatology, Digestive Disease Institute, Cleveland Clinic Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Charles Miller
- Transplantation Center, Digestive Disease and Surgery Institute, Cleveland Clinic, Cleveland, Ohio
| | - Koji Hashimoto
- Transplantation Center, Digestive Disease and Surgery Institute, Cleveland Clinic, Cleveland, Ohio
| | - Robert L Fairchild
- Department of Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Andrea Schlegel
- Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Centre of Preclinical Research, Milan, Italy
- Department of Surgery and Transplantation, Swiss HPB Centre, University Hospital Zurich, Switzerland
| |
Collapse
|
6
|
Wang Y, Lei B, Pan Y, Su C, Wang W, Zhang H, Xia F, Zhu P, He S, Cheng Q. α-Connexin Carboxyl Terminal Peptide 1 Attenuates Ischemia-Reperfusion Injury in Liver Transplantation With Extended Cold Preservation by Stabilizing Cell Junctions in Mice. Transplant Proc 2022; 54:2364-2373. [PMID: 36184342 DOI: 10.1016/j.transproceed.2022.08.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/29/2022] [Indexed: 11/17/2022]
Affiliation(s)
- Yuefan Wang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China
| | - Biao Lei
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China; Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Ministry of Education, Nanning, Guangxi, China; Guangxi Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Nanning, Guangxi, China
| | - Yonglong Pan
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China
| | - Chen Su
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China
| | - Weijian Wang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China
| | - Haoquan Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China
| | - Feng Xia
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China
| | - Peng Zhu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China; Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, Hubei, China; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei, China.
| | - Songqing He
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China; Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Ministry of Education, Nanning, Guangxi, China; Guangxi Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Nanning, Guangxi, China.
| | - Qi Cheng
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China; Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, Hubei, China; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei, China.
| |
Collapse
|
7
|
Panconesi R, Flores Carvalho M, Dondossola D, Muiesan P, Dutkowski P, Schlegel A. Impact of Machine Perfusion on the Immune Response After Liver Transplantation - A Primary Treatment or Just a Delivery Tool. Front Immunol 2022; 13:855263. [PMID: 35874758 PMCID: PMC9304705 DOI: 10.3389/fimmu.2022.855263] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 05/31/2022] [Indexed: 12/12/2022] Open
Abstract
The frequent use of marginal livers forces transplant centres to explore novel technologies to improve organ quality and outcomes after implantation. Organ perfusion techniques are therefore frequently discussed with an ever-increasing number of experimental and clinical studies. Two main approaches, hypothermic and normothermic perfusion, are the leading strategies to be introduced in clinical practice in many western countries today. Despite this success, the number of studies, which provide robust data on the underlying mechanisms of protection conveyed through this technology remains scarce, particularly in context of different stages of ischemia-reperfusion-injury (IRI). Prior to a successful clinical implementation of machine perfusion, the concept of IRI and potential key molecules, which should be addressed to reduce IRI-associated inflammation, requires a better exploration. During ischemia, Krebs cycle metabolites, including succinate play a crucial role with their direct impact on the production of reactive oxygen species (ROS) at mitochondrial complex I upon reperfusion. Such features are even more pronounced under normothermic conditions and lead to even higher levels of downstream inflammation. The direct consequence appears with an activation of the innate immune system. The number of articles, which focus on the impact of machine perfusion with and without the use of specific perfusate additives to modulate the inflammatory cascade after transplantation is very small. This review describes first, the subcellular processes found in mitochondria, which instigate the IRI cascade together with proinflammatory downstream effects and their link to the innate immune system. Next, the impact of currently established machine perfusion strategies is described with a focus on protective mechanisms known for the different perfusion approaches. Finally, the role of such dynamic preservation techniques to deliver specific agents, which appear currently of interest to modulate this posttransplant inflammation, is discussed together with future aspects in this field.
Collapse
Affiliation(s)
- Rebecca Panconesi
- Department of Clinical and Experimental Medicine, Hepatobiliary Unit, Careggi University Hospital, University of Florence, Florence, Italy
- General Surgery 2U-Liver Transplant Unit, Department of Surgery, A.O.U. Città della Salute e della, Scienza di Torino, University of Turin, Turin, Italy
| | - Mauricio Flores Carvalho
- Department of Clinical and Experimental Medicine, Hepatobiliary Unit, Careggi University Hospital, University of Florence, Florence, Italy
| | - Daniele Dondossola
- General and Liver Transplant Surgery Unit, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore, Policlinico and University of Milan, Milan, Italy
| | - Paolo Muiesan
- Department of Clinical and Experimental Medicine, Hepatobiliary Unit, Careggi University Hospital, University of Florence, Florence, Italy
- General and Liver Transplant Surgery Unit, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore, Policlinico and University of Milan, Milan, Italy
| | - Philipp Dutkowski
- Department of Surgery and Transplantation, Swiss Hepato-Pancreato-Biliary (HPB) Center, University Hospital Zurich, Zurich, Switzerland
| | - Andrea Schlegel
- Department of Clinical and Experimental Medicine, Hepatobiliary Unit, Careggi University Hospital, University of Florence, Florence, Italy
- General and Liver Transplant Surgery Unit, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore, Policlinico and University of Milan, Milan, Italy
- Department of Surgery and Transplantation, Swiss Hepato-Pancreato-Biliary (HPB) Center, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
8
|
Schlegel A, Porte R, Dutkowski P. Protective mechanisms and current clinical evidence of hypothermic oxygenated machine perfusion (HOPE) in preventing post-transplant cholangiopathy. J Hepatol 2022; 76:1330-1347. [PMID: 35589254 DOI: 10.1016/j.jhep.2022.01.024] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/10/2022] [Accepted: 01/31/2022] [Indexed: 12/12/2022]
Abstract
The development of cholangiopathies after liver transplantation impacts on the quality and duration of graft and patient survival, contributing to higher costs as numerous interventions are required to treat strictures and infections at the biliary tree. Prolonged donor warm ischaemia time in combination with additional cold storage are key risk factors for the development of biliary strictures. Based on this, the clinical implementation of dynamic preservation strategies is a current hot topic in the field of donation after circulatory death (DCD) liver transplantation. Despite various retrospective studies reporting promising results, also regarding biliary complications, there are only a few randomised-controlled trials on machine perfusion. Recently, the group from Groningen has published the first randomised-controlled trial on hypothermic oxygenated perfusion (HOPE), demonstrating a significant reduction of symptomatic ischaemic cholangiopathies with the use of a short period of HOPE before DCD liver implantation. The most likely mechanism for this important effect, also shown in several experimental studies, is based on mitochondrial reprogramming under hypothermic aerobic conditions, e.g. exposure to oxygen in the cold, with a controlled and slow metabolism of ischaemically accumulated succinate and simultaneous ATP replenishment. This unique feature prevents mitochondrial oxidative injury and further downstream tissue inflammation. HOPE treatment therefore supports livers by protecting them from ischaemia-reperfusion injury (IRI), and thereby also prevents the development of post-transplant biliary injury. With reduced IRI-associated inflammation, recipients are also protected from activation of the innate immune system, with less acute rejections seen after HOPE.
Collapse
Affiliation(s)
- Andrea Schlegel
- Department of Visceral Surgery and Transplantation, University Hospital Zurich, Swiss HPB and Transplant Center, Zurich, Switzerland; General and Liver Transplant Surgery Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20100 Milan, Italy
| | - Robert Porte
- Department of Surgery, Surgical Research Laboratory, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Philipp Dutkowski
- Department of Visceral Surgery and Transplantation, University Hospital Zurich, Swiss HPB and Transplant Center, Zurich, Switzerland.
| |
Collapse
|
9
|
Bittner GD, Bushman JS, Ghergherehchi CL, Roballo KCS, Shores JT, Smith TA. Typical and atypical properties of peripheral nerve allografts enable novel strategies to repair segmental-loss injuries. J Neuroinflammation 2022; 19:60. [PMID: 35227261 PMCID: PMC8886977 DOI: 10.1186/s12974-022-02395-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 01/19/2022] [Indexed: 12/20/2022] Open
Abstract
We review data showing that peripheral nerve injuries (PNIs) that involve the loss of a nerve segment are the most common type of traumatic injury to nervous systems. Segmental-loss PNIs have a poor prognosis compared to other injuries, especially when one or more mixed motor/sensory nerves are involved and are typically the major source of disability associated with extremities that have sustained other injuries. Relatively little progress has been made, since the treatment of segmental loss PNIs with cable autografts that are currently the gold standard for repair has slow and incomplete (often non-existent) functional recovery. Viable peripheral nerve allografts (PNAs) to repair segmental-loss PNIs have not been experimentally or clinically useful due to their immunological rejection, Wallerian degeneration (WD) of anucleate donor graft and distal host axons, and slow regeneration of host axons, leading to delayed re-innervation and producing atrophy or degeneration of distal target tissues. However, two significant advances have recently been made using viable PNAs to repair segmental-loss PNIs: (1) hydrogel release of Treg cells that reduce the immunological response and (2) PEG-fusion of donor PNAs that reduce the immune response, reduce and/or suppress much WD, immediately restore axonal conduction across the donor graft and re-innervate many target tissues, and restore much voluntary behavioral functions within weeks, sometimes to levels approaching that of uninjured nerves. We review the rather sparse cellular/biochemical data for rejection of conventional PNAs and their acceptance following Treg hydrogel and PEG-fusion of PNAs, as well as cellular and systemic data for their acceptance and remarkable behavioral recovery in the absence of tissue matching or immune suppression. We also review typical and atypical characteristics of PNAs compared with other types of tissue or organ allografts, problems and potential solutions for PNA use and storage, clinical implications and commercial availability of PNAs, and future possibilities for PNAs to repair segmental-loss PNIs.
Collapse
Affiliation(s)
- George D Bittner
- Department of Neuroscience, University of Texas at Austin, Austin, TX, 78712, USA.
| | - Jared S Bushman
- School of Pharmacy, University of Wyoming, Laramie, WY, 82072, USA
| | - Cameron L Ghergherehchi
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX, 78712, USA
| | | | - Jaimie T Shores
- Department of Plastic and Reconstructive Surgery, Vascularized Composite Allotransplantation Laboratory, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Tyler A Smith
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX, 78712, USA
| |
Collapse
|
10
|
Panconesi R, Flores Carvalho M, Mueller M, Meierhofer D, Dutkowski P, Muiesan P, Schlegel A. Viability Assessment in Liver Transplantation-What Is the Impact of Dynamic Organ Preservation? Biomedicines 2021; 9:161. [PMID: 33562406 PMCID: PMC7915925 DOI: 10.3390/biomedicines9020161] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 02/07/2023] Open
Abstract
Based on the continuous increase of donor risk, with a majority of organs classified as marginal, quality assessment and prediction of liver function is of utmost importance. This is also caused by the notoriously lack of effective replacement of a failing liver by a device or intensive care treatment. While various parameters of liver function and injury are well-known from clinical practice, the majority of specific tests require prolonged diagnostic time and are more difficult to assess ex situ. In addition, viability assessment of procured organs needs time, because the development of the full picture of cellular injury and the initiation of repair processes depends on metabolic active tissue and reoxygenation with full blood over several hours or days. Measuring injury during cold storage preservation is therefore unlikely to predict the viability after transplantation. In contrast, dynamic organ preservation strategies offer a great opportunity to assess organs before implantation through analysis of recirculating perfusates, bile and perfused liver tissue. Accordingly, several parameters targeting hepatocyte or cholangiocyte function or metabolism have been recently suggested as potential viability tests before organ transplantation. We summarize here a current status of respective machine perfusion tests, and report their clinical relevance.
Collapse
Affiliation(s)
- Rebecca Panconesi
- Hepatobiliary Unit, Careggi University Hospital, University of Florence, 50134 Florence, Italy; (R.P.); (M.F.C.); (P.M.)
| | - Mauricio Flores Carvalho
- Hepatobiliary Unit, Careggi University Hospital, University of Florence, 50134 Florence, Italy; (R.P.); (M.F.C.); (P.M.)
| | - Matteo Mueller
- Department of Visceral Surgery and Transplantation, University Hospital Zurich, Swiss HPB and Transplant Center, 8091 Zurich, Switzerland; (M.M.); (P.D.)
| | - David Meierhofer
- Max Planck Institute for Molecular Genetics, Mass Spectrometry Facility, 14195 Berlin, Germany;
| | - Philipp Dutkowski
- Department of Visceral Surgery and Transplantation, University Hospital Zurich, Swiss HPB and Transplant Center, 8091 Zurich, Switzerland; (M.M.); (P.D.)
| | - Paolo Muiesan
- Hepatobiliary Unit, Careggi University Hospital, University of Florence, 50134 Florence, Italy; (R.P.); (M.F.C.); (P.M.)
| | - Andrea Schlegel
- Hepatobiliary Unit, Careggi University Hospital, University of Florence, 50134 Florence, Italy; (R.P.); (M.F.C.); (P.M.)
- Department of Visceral Surgery and Transplantation, University Hospital Zurich, Swiss HPB and Transplant Center, 8091 Zurich, Switzerland; (M.M.); (P.D.)
| |
Collapse
|
11
|
Smith TA, Ghergherehchi CL, Tucker HO, Bittner GD. Coding transcriptome analyses reveal altered functions underlying immunotolerance of PEG-fused rat sciatic nerve allografts. J Neuroinflammation 2020; 17:287. [PMID: 33008419 PMCID: PMC7532577 DOI: 10.1186/s12974-020-01953-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 09/16/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Current methods to repair ablation-type peripheral nerve injuries (PNIs) using peripheral nerve allografts (PNAs) often result in poor functional recovery due to immunological rejection as well as to slow and inaccurate outgrowth of regenerating axonal sprouts. In contrast, ablation-type PNIs repaired by PNAs, using a multistep protocol in which one step employs the membrane fusogen polyethylene glycol (PEG), permanently restore sciatic-mediated behaviors within weeks. Axons and cells within PEG-fused PNAs remain viable, even though outbred host and donor tissues are neither immunosuppressed nor tissue matched. PEG-fused PNAs exhibit significantly reduced T cell and macrophage infiltration, expression of major histocompatibility complex I/II and consistently low apoptosis. In this study, we analyzed the coding transcriptome of PEG-fused PNAs to examine possible mechanisms underlying immunosuppression. METHODS Ablation-type sciatic PNIs in adult Sprague-Dawley rats were repaired using PNAs and a PEG-fusion protocol combined with neurorrhaphy. Electrophysiological and behavioral tests confirmed successful PEG-fusion of PNAs. RNA sequencing analyzed differential expression profiles of protein-coding genes between PEG-fused PNAs and negative control PNAs (not treated with PEG) at 14 days PO, along with unoperated control nerves. Sequencing results were validated by quantitative reverse transcription PCR (RT-qPCR), and in some cases, immunohistochemistry. RESULTS PEG-fused PNAs display significant downregulation of many gene transcripts associated with innate and adaptive allorejection responses. Schwann cell-associated transcripts are often upregulated, and cellular processes such as extracellular matrix remodeling and cell/tissue development are particularly enriched. Transcripts encoding several potentially immunosuppressive proteins (e.g., thrombospondins 1 and 2) also are upregulated in PEG-fused PNAs. CONCLUSIONS This study is the first to characterize the coding transcriptome of PEG-fused PNAs and to identify possible links between alterations of the extracellular matrix and suppression of the allorejection response. The results establish an initial molecular basis to understand mechanisms underlying PEG-mediated immunosuppression.
Collapse
Affiliation(s)
- Tyler A Smith
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, 78712, USA
| | | | - Haley O Tucker
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, 78712, USA
| | - George D Bittner
- Department of Neuroscience, University of Texas at Austin, Austin, TX, 78712, USA.
| |
Collapse
|
12
|
Rousselle TV, Kuscu C, Kuscu C, Schlegel K, Huang L, Namwanje M, Eason JD, Makowski L, Maluf D, Mas V, Bajwa A. FTY720 Regulates Mitochondria Biogenesis in Dendritic Cells to Prevent Kidney Ischemic Reperfusion Injury. Front Immunol 2020; 11:1278. [PMID: 32670281 PMCID: PMC7328774 DOI: 10.3389/fimmu.2020.01278] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 05/20/2020] [Indexed: 12/14/2022] Open
Abstract
Dendritic cells (DCs) are central in regulating immune responses of kidney ischemia-reperfusion injury (IRI), and strategies to alter DC function may provide new therapeutic opportunities. Sphingosine 1-phosphate (S1P) modulates immunity through binding to its receptors (S1P1-5), and protection from kidney IRI occurs in mice treated with S1PR agonist, FTY720 (FTY). We tested if ex vivo propagation of DCs with FTY could be used as cellular therapy to limit the off-target effects associated with systemic FTY administration in kidney IRI. DCs have the ability of regulate innate and adaptive responses and we posited that treatment of DC with FTY may underlie improvements in kidney IRI. Herein, it was observed that treatment of bone marrow derived dendritic cells (BMDCs) with FTY induced mitochondrial biogenesis, FTY-treated BMDCs (FTY-DCs) showed significantly higher oxygen consumption rate and ATP production compared to vehicle treated BMDCs (Veh-DCs). Adoptive transfer of FTY-DCs to mice 24 h before or 4 h after IRI significantly protected the kidneys from injury compared to mice treated with Veh-DCs. Additionally, allogeneic adoptive transfer of C57BL/6J FTY-DCs into BALB/c mice equally protected the kidneys from IRI. FTY-DCs propagated from S1pr1-deficient DCs derived from CD11cCreS1pr1fl/fl mice as well as blunting mitochondrial oxidation in wildtype (WT) FTY-DCs prior to transfer abrogated the protection observed by FTY-DCs. We queried if DC mitochondrial content alters kidney responses after IRI, a novel but little studied phenomenon shown to be integral to regulation of the immune response. Transfer of mitochondria rich FTY-DCs protects kidneys from IRI as transferred FTY-DCs donated their mitochondria to recipient splenocytes (i.e., macrophages) and prior splenectomy abrogated this protection. Adoptive transfer of FTY-DCs either prior to or after ischemic injury protects kidneys from IRI demonstrating a potent role for donor DC-mitochondria in FTY's efficacy. This is the first evidence, to our knowledge, that DCs have the potential to protect against kidney injury by donating mitochondria to splenic macrophages to alter their bioenergetics thus making them anti-inflammatory. In conclusion, the results support that ex vivo FTY720-induction of the regulatory DC phenotype could have therapeutic relevance that can be preventively infused to reduce acute kidney injury.
Collapse
Affiliation(s)
- Thomas V Rousselle
- Transplant Research Institute, James D. Eason Transplant Institute, Department of Surgery, School of Medicine, University of Tennessee Health Sciences Center, Memphis, TN, United States
| | - Canan Kuscu
- Transplant Research Institute, James D. Eason Transplant Institute, Department of Surgery, School of Medicine, University of Tennessee Health Sciences Center, Memphis, TN, United States
| | - Cem Kuscu
- Transplant Research Institute, James D. Eason Transplant Institute, Department of Surgery, School of Medicine, University of Tennessee Health Sciences Center, Memphis, TN, United States
| | - Kailo Schlegel
- Division of Nephrology and the Center for Immunity, Inflammation and Regenerative Medicine, Department of Medicine, University of Virginia, Charlottesville, VA, United States
| | - LiPing Huang
- Division of Nephrology and the Center for Immunity, Inflammation and Regenerative Medicine, Department of Medicine, University of Virginia, Charlottesville, VA, United States
| | - Maria Namwanje
- Department of Pediatrics and Genetics, University of Tennessee Health Science Center, Memphis, TN, United States
| | - James D Eason
- Transplant Research Institute, James D. Eason Transplant Institute, Department of Surgery, School of Medicine, University of Tennessee Health Sciences Center, Memphis, TN, United States
| | - Liza Makowski
- Department of Medicine - Division of Hematology and Oncology, College of Medicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Sciences Center, Memphis, TN, United States
| | - Daniel Maluf
- Transplant Research Institute, James D. Eason Transplant Institute, Department of Surgery, School of Medicine, University of Tennessee Health Sciences Center, Memphis, TN, United States
| | - Valeria Mas
- Transplant Research Institute, James D. Eason Transplant Institute, Department of Surgery, School of Medicine, University of Tennessee Health Sciences Center, Memphis, TN, United States
| | - Amandeep Bajwa
- Transplant Research Institute, James D. Eason Transplant Institute, Department of Surgery, School of Medicine, University of Tennessee Health Sciences Center, Memphis, TN, United States
| |
Collapse
|
13
|
Kummer L, Zaradzki M, Vijayan V, Arif R, Weigand MA, Immenschuh S, Wagner AH, Larmann J. Vascular Signaling in Allogenic Solid Organ Transplantation - The Role of Endothelial Cells. Front Physiol 2020; 11:443. [PMID: 32457653 PMCID: PMC7227440 DOI: 10.3389/fphys.2020.00443] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 04/09/2020] [Indexed: 12/12/2022] Open
Abstract
Graft rejection remains the major obstacle after vascularized solid organ transplantation. Endothelial cells, which form the interface between the transplanted graft and the host’s immunity, are the first target for host immune cells. During acute cellular rejection endothelial cells are directly attacked by HLA I and II-recognizing NK cells, macrophages, and T cells, and activation of the complement system leads to endothelial cell lysis. The established forms of immunosuppressive therapy provide effective treatment options, but the treatment of chronic rejection of solid organs remains challenging. Chronic rejection is mainly based on production of donor-specific antibodies that induce endothelial cell activation—a condition which phenotypically resembles chronic inflammation. Activated endothelial cells produce chemokines, and expression of adhesion molecules increases. Due to this pro-inflammatory microenvironment, leukocytes are recruited and transmigrate from the bloodstream across the endothelial monolayer into the vessel wall. This mononuclear infiltrate is a hallmark of transplant vasculopathy. Furthermore, expression profiles of different cytokines serve as clinical markers for the patient’s outcome. Besides their effects on immune cells, activated endothelial cells support the migration and proliferation of vascular smooth muscle cells. In turn, muscle cell recruitment leads to neointima formation followed by reduction in organ perfusion and eventually results in tissue injury. Activation of endothelial cells involves antibody ligation to the surface of endothelial cells. Subsequently, intracellular signaling pathways are initiated. These signaling cascades may serve as targets to prevent or treat adverse effects in antibody-activated endothelial cells. Preventive or therapeutic strategies for chronic rejection can be investigated in sophisticated mouse models of transplant vasculopathy, mimicking interactions between immune cells and endothelium.
Collapse
Affiliation(s)
- Laura Kummer
- Department of Anesthesiology, University Hospital Heidelberg, Heidelberg, Germany
| | - Marcin Zaradzki
- Institute of Cardiac Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Vijith Vijayan
- Institute for Transfusion Medicine, Hannover Medical School, Hanover, Germany
| | - Rawa Arif
- Institute of Cardiac Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Markus A Weigand
- Department of Anesthesiology, University Hospital Heidelberg, Heidelberg, Germany
| | - Stephan Immenschuh
- Institute for Transfusion Medicine, Hannover Medical School, Hanover, Germany
| | - Andreas H Wagner
- Institute of Physiology and Pathophysiology, Heidelberg University, Heidelberg, Germany
| | - Jan Larmann
- Department of Anesthesiology, University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
14
|
Abstract
Machine perfusion is a hot topic in liver transplantation and several new perfusion concepts are currently developed. Prior to introduction into routine clinical practice, however, such perfusion approaches need to demonstrate their impact on liver function, post-transplant complications, utilization rates of high-risk organs, and cost benefits. Therefore, based on results of experimental and clinical studies, the community has to recognize the limitations of this technology. In this review, we summarize current perfusion concepts and differences between protective mechanisms of ex- and in-situ perfusion techniques. Next, we discuss which graft types may benefit most from perfusion techniques, and highlight the current understanding of liver viability testing. Finally, we present results from recent clinical trials involving machine liver perfusion, and analyze the value of different outcome parameters, currently used as endpoints for randomized controlled trials in the field.
Collapse
Affiliation(s)
- Andrea Schlegel
- Liver Unit, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK.,Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK.,Department of Surgery and Transplantation, University Hospital Zurich, Zurich, Switzerland
| | - Xavier Muller
- Department of Surgery and Transplantation, University Hospital Zurich, Zurich, Switzerland
| | - Philipp Dutkowski
- Department of Surgery and Transplantation, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
15
|
Wu KM, Hsu YM, Ying MC, Tsai FJ, Tsai CH, Chung JG, Yang JS, Tang CH, Cheng LY, Su PH, Viswanadha VP, Kuo WW, Huang CY. High-density lipoprotein ameliorates palmitic acid-induced lipotoxicity and oxidative dysfunction in H9c2 cardiomyoblast cells via ROS suppression. Nutr Metab (Lond) 2019; 16:36. [PMID: 31149020 PMCID: PMC6537189 DOI: 10.1186/s12986-019-0356-5] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 04/18/2019] [Indexed: 01/22/2023] Open
Abstract
Background High levels circulating saturated fatty acids are associated with diabetes, obesity and hyperlipidemia. In heart, the accumulation of saturated fatty acids has been determined to play a role in the development of heart failure and diabetic cardiomyopathy. High-density lipoprotein (HDL) has been reported to possess key atheroprotective biological properties, including cellular cholesterol efflux capacity, anti-oxidative and anti-inflammatory activities. However, the underlying mechanisms are still largely unknown. Therefore, the aim of the present study is to test whether HDL could protect palmitic acid (PA)-induced cardiomyocyte injury and explore the possible mechanisms. Results H9c2 cells were pretreated with HDL (50–100 μg/ml) for 2 h followed by PA (0.5 mM) for indicated time period. Our results showed that HDL inhibited PA-induced cell death in a dose-dependent manner. Moreover, HDL rescued PA-induced ROS generation and the phosphorylation of JNK which in turn activated NF-κB-mediated inflammatory proteins expressions. We also found that PA impaired the balance of BCL2 family proteins, destabilized mitochondrial membrane potential, and triggered subsequent cytochrome c release into the cytosol and activation of caspase 3. These detrimental effects were ameliorated by HDL treatment. Conclusion PA-induced ROS accumulation and results in cardiomyocyte apoptosis and inflammation. However, HDL attenuated PA-induced lipotoxicity and oxidative dysfunction via ROS suppression. These results may provide insight into a possible molecular mechanism underlying HDL suppression of the free fatty acid-induced cardiomyocyte apoptosis.
Collapse
Affiliation(s)
- Kuen-Ming Wu
- 1Department of chest medicine, Jen-Ai Hospital, Taichung, Taiwan
| | - Yuan-Man Hsu
- 2Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Mei-Chin Ying
- 3Department of Food Nutrition and Health Biotechnology, Asia University, Taichung City, Taiwan.,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung City, Taiwan
| | - Fuu-Jen Tsai
- 5School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, 40402 Taiwan.,6China Medical University Children's Hospital, China Medical University, Taichung, Taiwan
| | - Chang-Hai Tsai
- 6China Medical University Children's Hospital, China Medical University, Taichung, Taiwan.,7Department of Healthcare Administration, Asia University, Taichung, Taiwan
| | - Jing-Gung Chung
- 2Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Jai-Sing Yang
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Chih-Hsin Tang
- 9Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan.,10Chinese Medicine Research Center, China Medical University, Taichung, Taiwan
| | - Li-Yi Cheng
- 11Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
| | - Po-Hua Su
- 12Department of Radiology, Jen-Ai Hospital, Taichung, Taiwan
| | | | - Wei-Wen Kuo
- 2Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Chih-Yang Huang
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan.,14Department of Biotechnology, Asia University, Taichung, Taiwan.,15College of Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University, Hualien, Taiwan
| |
Collapse
|
16
|
Hypothermic Oxygenated Perfusion: A Simple and Effective Method to Modulate the Immune Response in Kidney Transplantation. Transplantation 2019; 103:e128-e136. [DOI: 10.1097/tp.0000000000002634] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
17
|
Liu Z, Lai CH, Zhang X, Luo J, Huang X, Qi X, Wang W, Zhong Z, Xiaoli F, Li L, Xiong Y, Senninger N, Wang Y, Ye Q, Ye S. Simvastatin ameliorates total liver ischemia/reperfusion injury via KLF2-mediated mechanism in rats. Clin Res Hepatol Gastroenterol 2019; 43:171-178. [PMID: 30274910 DOI: 10.1016/j.clinre.2018.08.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 08/22/2018] [Accepted: 08/24/2018] [Indexed: 02/04/2023]
Abstract
OBJECTIVE The total hepatic ischemia/reperfusion injury (IRI) involves the fact that both liver and gut are subjected to warm ischemia, which is a complex unavoidable process encountered during liver transplantation and a serious threat to graft outcome. The ways to improve hepatic IRI are currently limited. The aim of the present study was to explore the protective effect of simvastatin on total hepatic IRI and examine the underlying mechanisms. METHODS Male Sprague Dawley rats were subjected to total (100%) hepatic warm ischemia to induce hepatic IRI. Thirty-six male rats (250-300 g) were randomly divided into three groups: sham, IRI control and simvastatin (1 mg/kg) pretreatment 0.5 h before surgery. Serum samples and liver tissues were collected after reperfusion at 6 and 24 h for further studies. RESULTS Simvastatin pretreatment significantly decreased the values of the transaminases alanine aminotransferase and aspartate aminotransferase and improved histological alterations according to improved Suzuki's Score (P < 0.05). Moreover, simvastatin upregulated the expression of Kruppel-like factor 2 (KLF2), phosphorylated endothelial nitric oxide synthase and thrombomodulin (P < 0.05). Furthermore, simvastatin pretreatment affected superoxide dismutase and malondialdehyde activities (P < 0.05) to reduce oxidative stress, and inhibited levels of high-mobility group box-1, CD68, toll-like receptor 4, tumor necrosis factor α, interleukin-1β and interleukin-6 (P < 0.05) to suppress inflammatory response. CONCLUSION Simvastatin pretreatment ameliorates total hepatic IRI via a KLF2-mediated protective mechanism. Simvastatin may be used as a potential prophylactic treatment strategy for clinical trials against hepatic IRI.
Collapse
Affiliation(s)
- Zhongzhong Liu
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, 430071 Wuhan, Hubei, PR China
| | - Chin-Hui Lai
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, 430071 Wuhan, Hubei, PR China
| | - Xingjian Zhang
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, 430071 Wuhan, Hubei, PR China
| | - Jun Luo
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, 430071 Wuhan, Hubei, PR China
| | - Xiaoying Huang
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, 430071 Wuhan, Hubei, PR China
| | - Xiao Qi
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, 430071 Wuhan, Hubei, PR China
| | - Wei Wang
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, 430071 Wuhan, Hubei, PR China
| | - Zibiao Zhong
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, 430071 Wuhan, Hubei, PR China
| | - Fan Xiaoli
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, 430071 Wuhan, Hubei, PR China
| | - Ling Li
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, 430071 Wuhan, Hubei, PR China
| | - Yan Xiong
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, 430071 Wuhan, Hubei, PR China
| | - Norbert Senninger
- University Hospital Muenster, Department of General and Visceral Surgery, 48149 Muenster, Germany
| | - Yanfeng Wang
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, 430071 Wuhan, Hubei, PR China
| | - Qifa Ye
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, 430071 Wuhan, Hubei, PR China; The 3rd Xiangya Hospital of Central South University, Research Center of National Health Ministry on Transplantation Medicine Engineering and Technology, 410013 Changsha, Hunan, PR China.
| | - Shaojun Ye
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, 430071 Wuhan, Hubei, PR China.
| |
Collapse
|
18
|
Zitzer NC, Garzon R, Ranganathan P. Toll-Like Receptor Stimulation by MicroRNAs in Acute Graft-vs.-Host Disease. Front Immunol 2018; 9:2561. [PMID: 30455702 PMCID: PMC6230675 DOI: 10.3389/fimmu.2018.02561] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Accepted: 10/17/2018] [Indexed: 12/20/2022] Open
Abstract
Acute graft-vs.-host disease (aGVHD) is a frequent complication of allogeneic hematopoietic stem cell transplantation (allo-HSCT), accounting for substantial morbidity and mortality associated with this treatment modality. The pathogenesis of aGVHD involves a complex cascade of humoral and cellular interactions in which donor T cells target HLA mismatched host tissues, causing tissue injury through secretion of pro-inflammatory cytokines and induction of direct cytotoxicity. Toll-like receptors (TLRs) are key components of the innate immune system that recognize endogenous danger-associated molecular patterns (DAMPs) and exogenous pathogen-associated molecular patterns (PAMPs). Patients receiving conditioning chemotherapy and/or whole-body irradiation prior to all-HSCT are prone to gastrointestinal damage and translocation of microbiota across compromised intestinal epithelium, resulting in release of PAMPs and DAMPs. These “danger signals” play critical roles in disease pathogenesis by both initiating and propagating aGVHD through dendritic cell maturation and alloreactive T cell responses. There are 10–15 TLRs identified in mammalian species, a subset of which recognize single-stranded RNA (ssRNA) and serve as a key component of viral immunity. Recently, ssRNAs other than those of viral origin have been investigated as potential ligands of TLRs. MicroRNAs (miRs) are short (19–24 nt) non-coding RNAs that play critical roles in a variety of diseases. While traditionally miRs post-translationally modulate gene expression, non-canonical functions such as regulating TLR stimulation by acting as TLR ligands have been described. Here, we review the role of TLRs in aGVHD pathogenesis, the function of miRs in TLR stimulation, and the recent literature describing miRs as TLR ligands in aGVHD.
Collapse
Affiliation(s)
- Nina C Zitzer
- Division of Hematology, Department of Internal Medicine, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States.,Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, United States
| | - Ramiro Garzon
- Division of Hematology, Department of Internal Medicine, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| | - Parvathi Ranganathan
- Division of Hematology, Department of Internal Medicine, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
19
|
SIRT3 a Major Player in Attenuation of Hepatic Ischemia-Reperfusion Injury by Reducing ROS via Its Downstream Mediators: SOD2, CYP-D, and HIF-1 α. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:2976957. [PMID: 30538800 PMCID: PMC6258096 DOI: 10.1155/2018/2976957] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 09/30/2018] [Accepted: 10/08/2018] [Indexed: 12/14/2022]
Abstract
Reactive oxygen species (ROS) production in hepatic ischemia-reperfusion injury (IRI) is a complex process where multiple cellular and molecular pathways are involved. Few of those molecular pathways are under the direct influence of SIRT3 and its downstream mediators. SIRT3 plays a major role in the mechanism of IRI, and its activation has been shown to attenuate the deleterious effect of ROS during IRI via SOD2-, CYP-D-, and HIF-1α-mediated pathways. The objective of this review is to analyze the current knowledge on SIRT3 and its downstream mediators: SOD2, CYP-D, and HIF-1α, and their role in IRI. For the references of this review article, we have searched the bibliographic databases of PubMed, Web of Science databases, MEDLINE, and EMBASE with the headings "SIRT3," "SOD2," "CYP-D," "HIF-1α," and "liver IRI." Priority was given to recent experimental articles that provide information on ROS modulation by these proteins. All the recent advancement demonstrates that activation of SIRT3 can suppress ROS production during IRI through various pathways and few of those are via SOD2, CYP-D, and HIF-1α. This effect can improve the quality of the remnant liver following resection as well as a transplanted liver. More research is warranted to disclose its role in IRI attenuation via this pathway.
Collapse
|
20
|
Sarhan M, Land WG, Tonnus W, Hugo CP, Linkermann A. Origin and Consequences of Necroinflammation. Physiol Rev 2018; 98:727-780. [PMID: 29465288 DOI: 10.1152/physrev.00041.2016] [Citation(s) in RCA: 141] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
When cells undergo necrotic cell death in either physiological or pathophysiological settings in vivo, they release highly immunogenic intracellular molecules and organelles into the interstitium and thereby represent the strongest known trigger of the immune system. With our increasing understanding of necrosis as a regulated and genetically determined process (RN, regulated necrosis), necrosis and necroinflammation can be pharmacologically prevented. This review discusses our current knowledge about signaling pathways of necrotic cell death as the origin of necroinflammation. Multiple pathways of RN such as necroptosis, ferroptosis, and pyroptosis have been evolutionary conserved most likely because of their differences in immunogenicity. As the consequence of necrosis, however, all necrotic cells release damage associated molecular patterns (DAMPs) that have been extensively investigated over the last two decades. Analysis of necroinflammation allows characterizing specific signatures for each particular pathway of cell death. While all RN-pathways share the release of DAMPs in general, most of them actively regulate the immune system by the additional expression and/or maturation of either pro- or anti-inflammatory cytokines/chemokines. In addition, DAMPs have been demonstrated to modulate the process of regeneration. For the purpose of better understanding of necroinflammation, we introduce a novel classification of DAMPs in this review to help detect the relative contribution of each RN-pathway to certain physiological and pathophysiological conditions.
Collapse
Affiliation(s)
- Maysa Sarhan
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University Vienna , Vienna , Austria ; INSERM UMR_S 1109, Laboratory of Excellence Transplantex, University of Strasbourg , Strasbourg , France ; German Academy of Transplantation Medicine, Munich , Germany ; and Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden , Dresden , Germany
| | - Walter G Land
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University Vienna , Vienna , Austria ; INSERM UMR_S 1109, Laboratory of Excellence Transplantex, University of Strasbourg , Strasbourg , France ; German Academy of Transplantation Medicine, Munich , Germany ; and Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden , Dresden , Germany
| | - Wulf Tonnus
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University Vienna , Vienna , Austria ; INSERM UMR_S 1109, Laboratory of Excellence Transplantex, University of Strasbourg , Strasbourg , France ; German Academy of Transplantation Medicine, Munich , Germany ; and Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden , Dresden , Germany
| | - Christian P Hugo
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University Vienna , Vienna , Austria ; INSERM UMR_S 1109, Laboratory of Excellence Transplantex, University of Strasbourg , Strasbourg , France ; German Academy of Transplantation Medicine, Munich , Germany ; and Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden , Dresden , Germany
| | - Andreas Linkermann
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University Vienna , Vienna , Austria ; INSERM UMR_S 1109, Laboratory of Excellence Transplantex, University of Strasbourg , Strasbourg , France ; German Academy of Transplantation Medicine, Munich , Germany ; and Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden , Dresden , Germany
| |
Collapse
|
21
|
Tsuda H, Su CA, Tanaka T, Ayasoufi K, Min B, Valujskikh A, Fairchild RL. Allograft dendritic cell p40 homodimers activate donor-reactive memory CD8+ T cells. JCI Insight 2018; 3:96940. [PMID: 29467328 PMCID: PMC5916254 DOI: 10.1172/jci.insight.96940] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 12/28/2017] [Indexed: 12/13/2022] Open
Abstract
Recipient endogenous memory T cells with donor reactivity pose an important barrier to successful transplantation and costimulatory blockade-induced graft tolerance. Longer ischemic storage times prior to organ transplantation increase early posttransplant inflammation and negatively impact early graft function and long-term graft outcome. Little is known about the mechanisms enhancing endogenous memory T cell activation to mediate tissue injury within the increased inflammatory environment of allografts subjected to prolonged cold ischemic storage (CIS). Endogenous memory CD4+ and CD8+ T cell activation is markedly increased within complete MHC-mismatched cardiac allografts subjected to prolonged versus minimal CIS, and the memory CD8+ T cells directly mediate CTLA-4Ig-resistant allograft rejection. Memory CD8+ T cell activation within allografts subjected to prolonged CIS requires memory CD4+ T cell stimulation of graft DCs to produce p40 homodimers, but not IL-12 p40/p35 heterodimers. Targeting p40 abrogates memory CD8+ T cell proliferation within the allografts and their ability to mediate CTLA-4Ig-resistant allograft rejection. These findings indicate a critical role for memory CD4+ T cell-graft DC interactions to increase the intensity of endogenous memory CD8+ T cell activation needed to mediate rejection of higher-risk allografts subjected to increased CIS.
Collapse
Affiliation(s)
- Hidetoshi Tsuda
- Lerner Research Institute and
- Transplant Center, Cleveland Clinic, and
| | - Charles A. Su
- Lerner Research Institute and
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Toshiaki Tanaka
- Lerner Research Institute and
- Transplant Center, Cleveland Clinic, and
| | | | | | | | - Robert L. Fairchild
- Lerner Research Institute and
- Transplant Center, Cleveland Clinic, and
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| |
Collapse
|
22
|
Lv Q, Li C, Mo Y, He L. The role of HMGB1 in heart transplantation. Immunol Lett 2018; 194:1-3. [DOI: 10.1016/j.imlet.2017.11.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Revised: 11/22/2017] [Accepted: 11/29/2017] [Indexed: 01/15/2023]
|
23
|
Land WG. The Three Major Paradigms in Immunology. DAMAGE-ASSOCIATED MOLECULAR PATTERNS IN HUMAN DISEASES 2018:13-27. [DOI: 10.1007/978-3-319-78655-1_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
24
|
Land WG, Agostinis P, Gasser S, Garg AD, Linkermann A. Transplantation and Damage-Associated Molecular Patterns (DAMPs). Am J Transplant 2016; 16:3338-3361. [PMID: 27421829 DOI: 10.1111/ajt.13963] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 06/24/2016] [Accepted: 07/10/2016] [Indexed: 01/25/2023]
Abstract
Upon solid organ transplantation and during cancer immunotherapy, cellular stress responses result in the release of damage-associated molecular patterns (DAMPs). The various cellular stresses have been characterized in detail over the last decades, but a unifying classification based on clinically important aspects is lacking. Here, we provide an in-depth review of the most recent literature along with a unifying concept of the danger/injury model, suggest a classification of DAMPs, and review the recently elaborated mechanisms that result in the emission of such factors. We further point out the differences in DAMP responses including the release following a heat shock pattern, endoplasmic reticulum stress, DNA damage-mediated DAMP release, and discuss the diverse pathways of regulated necrosis in this respect. The understanding of various forms of DAMPs and the consequences of their different release patterns are prerequisite to associate serum markers of cellular stresses with clinical outcomes.
Collapse
Affiliation(s)
- W G Land
- German Academy of Transplantation Medicine, Munich, Germany.,Laboratoire d'ImmunoRhumatologie Moléculaire, INSERM UMR_S1109, Plateforme GENOMAX, Faculté de Médecine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France.,LabexTRANSPLANTEX, Faculté de Médecine, Université de Strasbourg, Strasbourg, France
| | - P Agostinis
- Cell Death Research and Therapy (CDRT) Lab, Department of Cellular and Molecular Medicine, KU Leuven, University of Leuven, Leuven, Belgium
| | - S Gasser
- Immunology Programme and Department of Microbiology and Immunology, Centre for Life Sciences, National University of Singapore, Singapore, Singapore
| | - A D Garg
- Cell Death Research and Therapy (CDRT) Lab, Department of Cellular and Molecular Medicine, KU Leuven, University of Leuven, Leuven, Belgium
| | - A Linkermann
- Cluster of Excellence EXC306, Inflammation at Interfaces, Schleswig-Holstein, Germany.,Clinic for Nephrology and Hypertension, Christian-Albrechts-University, Kiel, Germany
| |
Collapse
|
25
|
Zhang R, Wang M, Xia N, Yu S, Chen Y, Wang N. Cloning and analysis of gene expression of interleukin-17 homolog in triangle-shell pearl mussel, Hyriopsis cumingii, during pearl sac formation. FISH & SHELLFISH IMMUNOLOGY 2016; 52:151-156. [PMID: 26994668 DOI: 10.1016/j.fsi.2016.03.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Revised: 03/10/2016] [Accepted: 03/13/2016] [Indexed: 06/05/2023]
Abstract
Successful allograft of mantle tissues in certain bivalve mollusks can form pearl sacs secreting nacre for pearl production. Little was known, however, about the immune consequences in response to the tissue transplantation. In the present study, interleukin (IL)-17, one of the key regulatory genes of alloimmunity, was cloned from the triangle-shell pearl mussel (HcIL-17) Hyriopsis cumingii by high-throughput sequencing of the mantle transcriptome. The sequence of HcIL-17 contains an open reading frame of 567 bp encoding a putative protein of 188 amino acid residues. Analysis of sequence characteristics, multiple sequence alignment and phylogenetic analysis indicated HcIL-17 was a novel member in the mollusk IL-17 family. Expression of the HcIL-17 gene in donor mantle tissues and in hemocytes of recipient mussel was up-regulated dramatically within 7 days in response to the mantle tissue allograft for pearl aquaculture, suggesting remarkable proinflammatory responses during pearl sac formation in triangle-shell pearl mussels. Analysis of the time-course expression of HcIL-17 gene revealed the induction of HcIL-17 was time-dependent, reflecting the different periods of alloimmune events in triangle-shell mussels. The results of this study provide essential background information for further investigation of mollusk alloimmunity.
Collapse
Affiliation(s)
- Rui Zhang
- School of Medicine, Jiangsu University, Zhenjiang City, 212013, China
| | - Meng Wang
- School of Food Science and Biological Engineering, Jiangsu University, Zhenjiang City, 212013, China
| | - Ni Xia
- School of Food Science and Biological Engineering, Jiangsu University, Zhenjiang City, 212013, China
| | - Shuang Yu
- School of Medicine, Jiangsu University, Zhenjiang City, 212013, China
| | - Yi Chen
- School of Medicine, Jiangsu University, Zhenjiang City, 212013, China
| | - Ning Wang
- School of Food Science and Biological Engineering, Jiangsu University, Zhenjiang City, 212013, China.
| |
Collapse
|
26
|
Gholamnezhadjafari R, Falak R, Tajik N, Aflatoonian R, Ali Keshtkar A, Rezaei A. Effect of FTY720 (fingolimod) on graft survival in renal transplant recipients: a systematic review protocol. BMJ Open 2016; 6:e010114. [PMID: 27126975 PMCID: PMC4853966 DOI: 10.1136/bmjopen-2015-010114] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
INTRODUCTION Studies have shown that FTY720 has inconsistent effects in kidney transplant recipients. Several review articles on FTY720 have been published, but most have focused on the mechanism of action of FTY720. Therefore, this review aims to evaluate and determine the beneficial and harmful effects of FTY720 therapy in kidney transplant recipients. METHODS AND ANALYSIS We electronically searched the following databases: PubMed, Scopus, the Web of Sciences, EMBASE, Cochrane databases and the Cochrane Central Registry of Controlled Trials. Any clinical, randomised controlled trials relating to FTY720 for treating kidney transplant recipients were included without publication status or language restriction. Study selection, data extraction and assessment of study quality were performed independently by two researchers. Data were synthesised by either the fixed effects or the random effects model according to a heterogeneity test. If the extracted data were suitable for meta-analysis, STATA software was used to combine the relative risks for dichotomous outcomes, and the mean differences for continuous outcomes with 95% CIs were measured. Death, loss of function and incidence of acute kidney rejection were assessed as the primary outcomes. Renal graft function, malignancy, delayed graft function and infection were evaluated as secondary outcomes. ETHICS/DISSEMINATION This review does not require formal ethics approval because the data are not individualised. The resulting review article will be submitted for publication in a peer-reviewed journal. TRIAL REGISTRATION NUMBER CRD42015024648.
Collapse
Affiliation(s)
| | - Reza Falak
- Immunology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Nader Tajik
- Immunology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Reza Aflatoonian
- Department of Endocrinology and Female Infertility, Royan institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Abbas Ali Keshtkar
- Department of Health Sciences Education Development, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Abbas Rezaei
- Department of Immunology, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
27
|
Model for end-stage liver disease score in the first 3 weeks after liver transplantation as a predictor for long-term outcome. Eur J Gastroenterol Hepatol 2016; 28:153-8. [PMID: 26545081 DOI: 10.1097/meg.0000000000000505] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Early allograft dysfunction after liver transplantation (LTX) is not well defined. The aim of this study was to evaluate the value of early post-transplant model for end-stage liver disease (MELD) scores for predicting long-term outcome after transplantation. METHODS In this single-center retrospective study, 362 consecutive patients after LTX were included. MELD scores at 7, 14, and 21 postoperative days (PODs) were calculated from primary lab values. Receiver operating characteristic (ROC) analyses were carried out to determine the critical cutoff MELD scores for patient and graft survival. RESULTS One year after transplantation, the patient and graft survival rates were 85 and 69%, respectively. Although pretransplant MELD scores were similar, they were significantly different at POD7, POD14, and POD21 between patients who died and those who survived the first year after transplantation. As shown by ROC curves, for patient survival, the optimal time point is POD14 with a cutoff MELD of 17. At this time point, patients with a MELD below 17 showed a 1-year survival rate of 94.3% and patients with a MELD of 17 and higher showed a 1-year survival rate of only 75.4%. For graft survival, the optimal time point was day 7 and a cutoff MELD of 29 (92% at MELD<29; 56.4% at MELD≥29). A multivariate analysis of potential risk factors indicated a significant role of serum bilirubin and MELD score determined on POD14 for patient survival. CONCLUSION In conclusion, early postoperative MELD scores predict outcome after LTX. The postoperative MELD score at POD14 is a good predictor for patient survival and at POD7 for the graft survival after LTX.
Collapse
|
28
|
Li JH, Zhao B, Zhu XH, Wang L, Zou HJ, Chen S, Guo H, Ruan YL, Zheng F, Xiang Y, Ming CS, Gong FL, Chen G. Blockade of Extracellular HMGB1 Suppresses Xenoreactive B Cell Responses and Delays Acute Vascular Xenogeneic Rejection. Am J Transplant 2015; 15:2062-74. [PMID: 25943147 DOI: 10.1111/ajt.13275] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 02/16/2015] [Accepted: 02/17/2015] [Indexed: 01/25/2023]
Abstract
Blockade of extracellular high mobility group box 1 (HMGB1) can significantly prolong murine cardiac allograft survival. Here, we determined the role of HMGB1 in xenotransplantation. Sprague-Dawley rat hearts were transplanted heterotopically into BALB/c mice. Xenografts without any treatment developed predominant acute vascular rejection within 6 days. Both passively released HMGB1 from xenografts and actively secreted HMGB1 from infiltrated immune cells were significantly increased after xenotransplantation. HMGB1-neutralizing antibody treatment significantly prolonged xenograft survival and attenuated pathologic damage, immune cell infiltration, and HMGB1 expression and release in the xenografts. Compared to control IgG treatment evaluated at study endpoint, treatment with HMGB1-neutralizing antibody markedly suppressed xenoreactive B cell responses, as evidenced by the significant inhibition of anti-rat antibody production and deposition in xenografts at Day 6 posttransplant. Furthermore, treatment with anti-HMGB1 antibody suppressed B cell activation and reduced IFN-γ and IL-17A production after xenotransplantation. These results demonstrate for the first time that HMGB1 plays an important role in mediating acute xenograft rejection. Thus, we have shown that neutralization of extracellular HMGB1 can significantly inhibit xenoreactive B cell responses and delay xenograft rejection in a rat-to-mouse model of xenotransplantation, uncovering new insights in the role of HMGB1 in transplantation.
Collapse
Affiliation(s)
- J-H Li
- Institute of Organ Transplantation, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - B Zhao
- Department of Thoracic Surgery, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - X-H Zhu
- Department of Cardiovascular Surgery, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - L Wang
- Institute of Organ Transplantation, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - H-J Zou
- Department of Immunology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - S Chen
- Institute of Organ Transplantation, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Organ Transplantation, Ministry of Education, China.,Key Laboratory of Organ Transplantation, Ministry of Public Health, China
| | - H Guo
- Institute of Organ Transplantation, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Organ Transplantation, Ministry of Education, China.,Key Laboratory of Organ Transplantation, Ministry of Public Health, China
| | - Y-L Ruan
- Institute of Organ Transplantation, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - F Zheng
- Department of Immunology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Organ Transplantation, Ministry of Education, China.,Key Laboratory of Organ Transplantation, Ministry of Public Health, China
| | - Y Xiang
- Institute of Organ Transplantation, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Organ Transplantation, Ministry of Education, China.,Key Laboratory of Organ Transplantation, Ministry of Public Health, China
| | - C-S Ming
- Institute of Organ Transplantation, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Organ Transplantation, Ministry of Education, China.,Key Laboratory of Organ Transplantation, Ministry of Public Health, China
| | - F-L Gong
- Department of Immunology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Organ Transplantation, Ministry of Education, China.,Key Laboratory of Organ Transplantation, Ministry of Public Health, China
| | - G Chen
- Institute of Organ Transplantation, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Organ Transplantation, Ministry of Education, China.,Key Laboratory of Organ Transplantation, Ministry of Public Health, China
| |
Collapse
|
29
|
Bolton EM, Bradley JA. Avoiding immunological rejection in regenerative medicine. Regen Med 2015; 10:287-304. [DOI: 10.2217/rme.15.11] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
One of the major goals of regenerative medicine is repair or replacement of diseased and damaged tissues by transfer of differentiated stem cells or stem cell-derived tissues. The possibility that these tissues will be destroyed by immunological rejection remains a challenge that can only be overcome through a better understanding of the nature and expression of potentially immunogenic molecules associated with cell replacement therapy and the mechanisms and pathways resulting in their immunologic rejection. This review draws on clinical experience of organ and tissue transplantation, and on transplantation immunology research to consider practical approaches for avoiding and overcoming the possibility of rejection of stem cell-derived tissues.
Collapse
Affiliation(s)
- Eleanor M Bolton
- Department of Surgery, University of Cambridge, Box 202, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
| | - John Andrew Bradley
- Department of Surgery, University of Cambridge, Box 202, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
| |
Collapse
|
30
|
Hypothermic Oxygenated Perfusion (HOPE) downregulates the immune response in a rat model of liver transplantation. Ann Surg 2015; 260:931-7; discussion 937-8. [PMID: 25243553 DOI: 10.1097/sla.0000000000000941] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVE To evaluate the impact of a novel oxygenated perfusion approach on rejection after orthotopic liver transplantation (OLT). BACKGROUND Hypothermic oxygenated perfusion (HOPE) was designed to prevent graft failure after OLT. One of the mechanisms is downregulation of Kupffer cells (in situ macrophages). We, therefore, designed experiments to test the effects of HOPE on the immune response in an allogeneic rodent model of nonarterialized OLT. METHODS Livers from Lewis rats were transplanted into Brown Norway rats to induce liver rejection in untreated recipients within 4 weeks. Next, Brown Norway recipients were treated with tacrolimus (1 mg/kg), whereas in a third group, liver grafts from Lewis rats underwent HOPE or deoxygenated machine perfusion for 1 hour before implantation, but recipients received no immunosuppression. In a last step, low-dose tacrolimus treatment (0.3 mg/kg) was assessed with and without HOPE. RESULTS Allogeneic OLT without immunosuppression led to death within 3 weeks after nonarterialized OLT due to severe acute rejection. Full-dose tacrolimus prevented rejection, whereas low-dose tacrolimus led to graft fibrosis within 4 weeks. HOPE treatment without immunosuppression also protected from lethal rejection. The combination of low-dose tacrolimus and 1-hour HOPE resulted in 100% survival within 4 weeks without any signs of rejection. CONCLUSIONS We demonstrate that allograft treatment by HOPE not only protects against preservation injury but also impressively downregulates the immune system, blunting the alloimmune response. Therefore, HOPE may offer many beneficial effects, not only to rescue marginal grafts but also by preventing rejection and the need for immunosuppression.
Collapse
|
31
|
Ali JM, Davies SE, Brais RJ, Randle LV, Klinck JR, Allison MED, Chen Y, Pasea L, Harper SFJ, Pettigrew GJ. Analysis of ischemia/reperfusion injury in time-zero biopsies predicts liver allograft outcomes. Liver Transpl 2015; 21:487-99. [PMID: 25545865 DOI: 10.1002/lt.24072] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Revised: 12/04/2014] [Accepted: 12/14/2014] [Indexed: 12/12/2022]
Abstract
Ischemia/reperfusion injury (IRI) that develops after liver implantation may prejudice long-term graft survival, but it remains poorly understood. Here we correlate the severity of IRIs that were determined by histological grading of time-zero biopsies sampled after graft revascularization with patient and graft outcomes. Time-zero biopsies of 476 liver transplants performed at our center between 2000 and 2010 were graded as follows: nil (10.5%), mild (58.8%), moderate (26.1%), and severe (4.6%). Severe IRI was associated with donor age, donation after circulatory death, prolonged cold ischemia time, and liver steatosis, but it was also associated with increased rates of primary nonfunction (9.1%) and retransplantation within 90 days (22.7%). Longer term outcomes in the severe IRI group were also poor, with 1-year graft and patient survival rates of only 55% and 68%, respectively (cf. 90% and 93% for the remainder). Severe IRI on the time-zero biopsy was, in a multivariate analysis, an independent determinant of 1-year graft survival and was a better predictor of 1-year graft loss than liver steatosis, early graft dysfunction syndrome, and high first-week alanine aminotransferase with a positive predictive value of 45%. Time-zero biopsies predict adverse clinical outcomes after liver transplantation, and severe IRI upon biopsy signals the likely need for early retransplantation.
Collapse
Affiliation(s)
- Jason M Ali
- Departments of Surgery, Cambridge University Hospitals National Health Service Trust, Cambridge, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Schlegel A, Kron P, Graf R, Dutkowski P, Clavien PA. Warm vs. cold perfusion techniques to rescue rodent liver grafts. J Hepatol 2014; 61:1267-75. [PMID: 25086285 DOI: 10.1016/j.jhep.2014.07.023] [Citation(s) in RCA: 128] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2014] [Revised: 06/26/2014] [Accepted: 07/15/2014] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS A variety of liver perfusion techniques have been proposed to protect liver grafts prior to implantation. We compared hypothermic and normothermic oxygenated perfusion techniques in a rat liver transplant model, using higher risk grafts obtained after cardiac arrest (DCD). METHODS Rat livers were subjected to 30 or 60 min in situ warm ischemia, without application of heparin. Livers were excised and stored for 4 h at 4°C, mimicking DCD organ procurement, followed by conventional organ transport. In experimental groups, DCD liver grafts received a 4 h normothermic oxygenated perfusion through the portal vein and the hepatic artery instead of cold storage. The perfusate consisted of either full blood or leukocyte-depleted blood (normothermic groups). Other livers underwent hypothermic oxygenated perfusion (HOPE) for 1 h after warm ischemia and 4 h cold storage (HOPE group). Liver injury was assessed during machine perfusion and after isolated liver reperfusion, and by orthotopic liver transplantation (OLT). RESULTS DCD livers, subjected to normothermic perfusion, disclosed reduced injury and improved survival compared to cold storage after limited warm ischemia of 30 min (70%; 7/10), but failed to protect from lethal injury in grafts exposed to 60 min warm ischemia (0%; 0/10). This finding was consistent with Kupffer and endothelial cell activation in cold stored and normothermic perfused livers. In contrast, HOPE protected from hepatocyte and non-parenchymal cell injury and led to 90% (9/10) and 63% (5/8) animal survival after 30 and 60 min of donor warm ischemia, respectively. CONCLUSIONS This is the first evidence that HOPE is superior to normothermic oxygenated perfusion in a clinically relevant model through modulation of the innate immunity and endothelial cell activation.
Collapse
Affiliation(s)
- Andrea Schlegel
- Department of Surgery, University Hospital Zurich, Swiss HPB and Transplant Center, Zurich, Switzerland
| | - Philipp Kron
- Department of Surgery, University Hospital Zurich, Swiss HPB and Transplant Center, Zurich, Switzerland
| | - Rolf Graf
- Department of Surgery, University Hospital Zurich, Swiss HPB and Transplant Center, Zurich, Switzerland
| | - Philipp Dutkowski
- Department of Surgery, University Hospital Zurich, Swiss HPB and Transplant Center, Zurich, Switzerland
| | - Pierre-Alain Clavien
- Department of Surgery, University Hospital Zurich, Swiss HPB and Transplant Center, Zurich, Switzerland.
| |
Collapse
|
33
|
De novo thrombotic microangiopathy after non-renal solid organ transplantation. Blood Rev 2014; 28:269-79. [DOI: 10.1016/j.blre.2014.09.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 09/02/2014] [Indexed: 12/14/2022]
|
34
|
|
35
|
Schlegel A, Dutkowski P. Role of hypothermic machine perfusion in liver transplantation. Transpl Int 2014; 28:677-89. [PMID: 24852621 DOI: 10.1111/tri.12354] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 03/05/2014] [Accepted: 05/19/2014] [Indexed: 12/15/2022]
Abstract
Machine liver perfusion has significantly evolved during the last ten years to optimize extended criteria liver grafts and to address the worldwide organ shortage. This review gives an overview on available ex vivo and in vivo data on hypothermic machine liver perfusion. We discuss also possible protective pathways and show most recent clinical applications of hypothermic machine liver perfusion in human.
Collapse
Affiliation(s)
- Andrea Schlegel
- Department of Visceral Surgery and Transplantation, Swiss HPB and Transplant Center, University Hospital Zurich, Zurich, Switzerland
| | - Philipp Dutkowski
- Department of Visceral Surgery and Transplantation, Swiss HPB and Transplant Center, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
36
|
Jiang X, Sung YK, Tian W, Qian J, Semenza GL, Nicolls MR. Graft microvascular disease in solid organ transplantation. J Mol Med (Berl) 2014; 92:797-810. [PMID: 24880953 PMCID: PMC4118041 DOI: 10.1007/s00109-014-1173-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 04/29/2014] [Accepted: 05/14/2014] [Indexed: 02/07/2023]
Abstract
Alloimmune inflammation damages the microvasculature of solid organ transplants during acute rejection. Although immunosuppressive drugs diminish the inflammatory response, they do not directly promote vascular repair. Repetitive microvascular injury with insufficient regeneration results in prolonged tissue hypoxia and fibrotic remodeling. While clinical studies show that a loss of the microvascular circulation precedes and may act as an initiating factor for the development of chronic rejection, preclinical studies demonstrate that improved microvascular perfusion during acute rejection delays and attenuates tissue fibrosis. Therefore, preservation of a functional microvasculature may represent an effective therapeutic strategy for preventing chronic rejection. Here, we review recent advances in our understanding of the role of the microvasculature in the long-term survival of transplanted solid organs. We also highlight microvessel-centered therapeutic strategies for prolonging the survival of solid organ transplants.
Collapse
Affiliation(s)
- Xinguo Jiang
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA,
| | | | | | | | | | | |
Collapse
|
37
|
Schlegel A, Graf R, Clavien PA, Dutkowski P. Hypothermic oxygenated perfusion (HOPE) protects from biliary injury in a rodent model of DCD liver transplantation. J Hepatol 2013; 59:984-91. [PMID: 23820408 DOI: 10.1016/j.jhep.2013.06.022] [Citation(s) in RCA: 137] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 06/18/2013] [Accepted: 06/23/2013] [Indexed: 12/20/2022]
Abstract
BACKGROUND & AIMS The use of livers from donors after cardiac arrest (DCD) is increasing in many countries to overcome organ shortage. Due to additional warm ischemia before preservation, those grafts are at higher risk of failure and bile duct injury. Several competing rescue strategies by machine perfusion techniques have been developed with, however, unclear effects on biliary injury. We analyze the impact of an end-ischemic Hypothermic Oxygenated PErfusion (HOPE) approach applied only through the portal vein for 1h before graft implantation. METHODS Rat livers were subjected to 30-min in situ warm ischemia, followed by subsequent 4-h cold storage, mimicking DCD-organ procurement and conventional organ transport. Livers in the HOPE group underwent also passive cold storage for 4h, but were subsequently machine perfused for 1h before implantation. Outcome was tested by liver transplantation (LT) at 12h after implantation (n=10 each group) and after 4 weeks (n=10 each group), focusing on early reperfusion injury, immune response, and later intrahepatic biliary injury. RESULTS All animals survived after LT. However, reperfusion injury was significantly decreased by HOPE treatment as tested by hepatocyte injury, Kupffer cell activation, and endothelial cell activation. Recipients receiving non-perfused DCD livers disclosed less body weight gain, increased bilirubin, and severe intrahepatic biliary fibrosis. In contrast, HOPE treated DCD livers were protected from biliary injury, as detected by cholestasis parameter and histology. CONCLUSIONS We demonstrate in a DCD liver transplant model that end-ischemic hypothermic oxygenated perfusion is a powerful strategy for protection against biliary injury.
Collapse
Affiliation(s)
- Andrea Schlegel
- Department of Surgery, Laboratory of the Swiss HPB and Liver Transplantation Center, University Hospital Zurich, Switzerland
| | | | | | | |
Collapse
|
38
|
Al-Magableh MR, Kemp-Harper BK, Ng HH, Miller AA, Hart JL. Hydrogen sulfide protects endothelial nitric oxide function under conditions of acute oxidative stress in vitro. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2013; 387:67-74. [PMID: 24068103 DOI: 10.1007/s00210-013-0920-x] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 09/10/2013] [Indexed: 10/26/2022]
Abstract
The aim of this study was to examine the ability of H2S, released from NaHS to protect vascular endothelial function under conditions of acute oxidative stress by scavenging superoxide anions (O2(-)) and suppressing vascular superoxide anion production. O2(-) was generated in Krebs' solution by reacting hypoxanthine with xanthine oxidase (Hx-XO) or with the O2(-) generator pyrogallol to model acute oxidative stress in vitro. O2(-) generation was measured by lucigenin-enhanced chemiluminescence. Functional responses in mouse aortic rings were assessed using a small vessel myograph. NaHS scavenged O2(-) in a concentration-dependent manner. Isolated aortic rings exposed to either Hx-XO or pyrogallol displayed significantly attenuated maximum vasorelaxation responses to the endothelium-dependent vasodilator acetylcholine, and significantly reduced NO bioavailability, which was completely reversed if vessels were pre-incubated with NaHS (100 μM). NADPH-stimulated aortic O2(-) production was significantly attenuated by the NADPH oxidase inhibitor diphenyl iodonium. Prior treatment of vessels with NaHS (100 nM-100 μM; 30 min) inhibited NADPH-stimulated aortic O2(-) production in a concentration-dependent manner. This effect persisted when NaHS was washed out prior to measuring NADPH-stimulated O2(-) production. These data show for the first time that NaHS directly scavenges O2(-) and suppresses vascular NADPH oxidase-derived O2(-) production in vitro. Furthermore, these properties protect endothelial function and NO bioavailability in an in vitro model of acute oxidative stress. These results suggest that H2S can elicit vasoprotection by both scavenging O2(-) and by reducing vascular NADPH oxidase-derived O2(-) production.
Collapse
|
39
|
Chronic NaHS Treatment Is Vasoprotective in High-Fat-Fed ApoE(-/-) Mice. Int J Vasc Med 2013; 2013:915983. [PMID: 23864951 PMCID: PMC3707268 DOI: 10.1155/2013/915983] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Accepted: 06/12/2013] [Indexed: 01/23/2023] Open
Abstract
Hydrogen sulfide is emerging as an important mediator of vascular function that has antioxidant and cytoprotective effects. The aim of this study was to investigate the role of endogenous H2S and the effect of chronic exogenous H2S treatment on vascular function during the progression of atherosclerotic disease. ApoE−/− mice were fed a high-fat diet for 16 weeks and treated with the H2S donor NaHS or the cystathionine-γ-lyase (CSE) inhibitor D,L-propargylglycine (PPG), to inhibit endogenous H2S production for the final 4 weeks. Fat-fed ApoE−/− mice displayed significant aortic atherosclerotic lesions and significantly impaired endothelial function compared to wild-type mice. Importantly, 4 weeks of NaHS treatment significantly reduced vascular dysfunction and inhibited vascular superoxide generation. NaHS treatment significantly reduced the area of aortic atherosclerotic lesions and attenuated systolic blood pressure. Interestingly, inhibiting endogenous, CSE-dependent H2S production with PPG did not exacerbate the deleterious vascular changes seen in the untreated fat-fed ApoE−/− mice. The results indicate NaHS can improve vascular function by reducing vascular superoxide generation and impairing atherosclerotic lesion development. Endogenous H2S production via CSE is insufficient to counter the atherogenic effects seen in this model; however exogenous H2S treatment has a significant vasoprotective effect.
Collapse
|
40
|
Streeter E, Ng HH, Hart JL. Hydrogen sulfide as a vasculoprotective factor. Med Gas Res 2013; 3:9. [PMID: 23628084 PMCID: PMC3648378 DOI: 10.1186/2045-9912-3-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Accepted: 04/24/2013] [Indexed: 01/27/2023] Open
Abstract
Hydrogen sulfide is a novel mediator with the unique properties of a gasotransmitter and many and varied physiological effects. Included in these effects are a number of cardiovascular effects that are proving beneficial to vascular health. Specifically, H2S can elicit vasorelaxation, prevention of inflammation and leukocyte adhesion, anti-proliferative effects and anti-thrombotic effects. Additionally, H2S is a chemical reductant and nucleophile that is capable of inhibiting the production of reactive oxygen species, scavenging and neutralising reactive oxygen species and boosting the efficacy of endogenous anti-oxidant molecules. These result in resistance to oxidative stress, protection of vascular endothelial function and maintenance of blood flow and organ perfusion. H2S has been shown to be protective in hypertension, atherosclerosis and under conditions of vascular oxidative stress, and deficiency of endogenous H2S production is linked to cardiovascular disease states. Taken together, these effects suggest that H2S has a physiological role as a vasculoprotective factor and that exogenous H2S donors may be useful therapeutic agents. This review article will discuss the vascular effects and anti-oxidant properties of H2S as well as examine the protective role of H2S in some important vascular disease states.
Collapse
Affiliation(s)
- Eloise Streeter
- School of Medical Sciences and Health Innovations Research Institute (HIRi), RMIT University, PO Box 70, Bundoora, Vic, 3083, Australia.
| | | | | |
Collapse
|
41
|
Affiliation(s)
- Walter G Land
- German Academy of Transplantation Medicine Munich, Germany
| | | |
Collapse
|
42
|
Li L, Huang L, Ye H, Song SP, Bajwa A, Lee SJ, Moser EK, Jaworska K, Kinsey GR, Day YJ, Linden J, Lobo PI, Rosin DL, Okusa MD. Dendritic cells tolerized with adenosine A₂AR agonist attenuate acute kidney injury. J Clin Invest 2012; 122:3931-42. [PMID: 23093781 DOI: 10.1172/jci63170] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Accepted: 08/16/2012] [Indexed: 12/13/2022] Open
Abstract
DC-mediated NKT cell activation is critical in initiating the immune response following kidney ischemia/reperfusion injury (IRI), which mimics human acute kidney injury (AKI). Adenosine is an important antiinflammatory molecule in tissue inflammation, and adenosine 2A receptor (A₂AR) agonists protect kidneys from IRI through their actions on leukocytes. In this study, we showed that mice with A₂AR-deficient DCs are more susceptible to kidney IRI and are not protected from injury by A₂AR agonists. In addition, administration of DCs treated ex vivo with an A₂AR agonist protected the kidneys of WT mice from IRI by suppressing NKT production of IFN-γ and by regulating DC costimulatory molecules that are important for NKT cell activation. A₂AR agonists had no effect on DC antigen presentation or on Tregs. We conclude that ex vivo A₂AR-induced tolerized DCs suppress NKT cell activation in vivo and provide a unique and potent cell-based strategy to attenuate organ IRI.
Collapse
Affiliation(s)
- Li Li
- Department of Medicine, University of Virginia, Charlottesville, Virginia, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Weyker PD, Webb CAJ, Kiamanesh D, Flynn BC. Lung Ischemia Reperfusion Injury. Semin Cardiothorac Vasc Anesth 2012; 17:28-43. [DOI: 10.1177/1089253212458329] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Lung ischemia reperfusion injury (LIRI) is a pathologic process occurring when oxygen supply to the lung has been compromised followed by a period of reperfusion. The disruption of oxygen supply can occur either via limited blood flow or decreased ventilation termed anoxic ischemia and ventilated ischemia, respectively. When reperfusion occurs, blood flow and oxygen are reintroduced to the ischemic lung parenchyma, facilitating a toxic environment through the creation of reactive oxygen species, activation of the immune and coagulation systems, endothelial dysfunction, and apoptotic cell death. This review will focus on the mechanisms of LIRI, the current supportive treatments used, and the many therapies currently under research for prevention and treatment of LIRI.
Collapse
Affiliation(s)
- Paul D. Weyker
- College of Physicians and Surgeons of Columbia Presbyterian Hospital, New York, NY, USA
| | | | - David Kiamanesh
- College of Physicians and Surgeons of Columbia Presbyterian Hospital, New York, NY, USA
| | - Brigid C. Flynn
- College of Physicians and Surgeons of Columbia Presbyterian Hospital, New York, NY, USA
| |
Collapse
|
44
|
Land WG. Role of heat shock protein 70 in innate alloimmunity. Front Immunol 2012; 2:89. [PMID: 22566878 PMCID: PMC3342172 DOI: 10.3389/fimmu.2011.00089] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Accepted: 12/19/2011] [Indexed: 12/15/2022] Open
Abstract
This article briefly describes our own experience with the proven demonstration of heat shock protein 70 (HSP70) in reperfused renal allografts from brain-dead donors and reflects about its potential role as a typical damage-associated molecular pattern (DAMP) in the setting of innate alloimmunity. In fact, our group was able to demonstrate a dramatic up-regulation of HSP70 expression after postischemic reperfusion of renal allografts. Of note, up-regulation of this stress protein expression, although to a lesser extent, was already observed after cold storage of the organ indicating that this molecule is already induced in the stressed organism of a brain-dead donor. However, whether or not the dramatic up-regulation of HSP70 expression contributes to mounting an innate alloimmune response cannot be judged in view of these clinical findings. Nevertheless, HSP70, since generated in association with postischemic reperfusion-induced allograft injury, can be called a typical DAMP - as can every molecule be termed a DAMP that is generated in association with any stressful tissue injury regardless of its final positive or negative regulatory function within the innate immune response elicited by it. In fact, as we discuss in this article, the context-dependent, even contradistinctive activities of HSP70 reflect the biological phenomenon that, throughout evolution, mammals have developed an elaborate network of positive and negative regulatory mechanisms, which provide balance between defensive and protective measures against unwarranted destruction of the host. In this sense, up-regulated expression of HSP70 in an injured allograft might reflect a pure protective response against the severe oxidative injury of a reperfused donor organ. On the other hand, up-regulated expression of this stress protein in an injured allograft might reflect a (futile) attempt of the innate immune system to restore homeostasis with the aim to eliminate the "unwanted foreign allograft invader" by contributing to development of an adaptive alloimmune response. However, this adaptive immune response against donor histocompatibility alloantigens - in its evolutionary sense aimed to restore homeostasis - is by no means protective from a recipient's view point but tragically ends up with allograft rejection. Indeed: in this sense, allograft rejection is the result of a fateful confusion by the immune system of danger and benefit!
Collapse
Affiliation(s)
- Walter G Land
- German Academy of Transplantation Medicine Munich, Germany.
| |
Collapse
|
45
|
Land WG, Messmer K. The danger theory in view of the injury hypothesis: 20 years later. Front Immunol 2012. [PMID: 23189080 DOI: 10.3389/fimmu.2012.00349/abstract] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023] Open
Affiliation(s)
- Walter G Land
- German Academy of Transplantation Medicine Munich, Germany
| | | |
Collapse
|