1
|
Yang L, Ma L, Fu P, Nie J. Update of cellular senescence in kidney fibrosis: from mechanism to potential interventions. Front Med 2025; 19:250-264. [PMID: 40011387 DOI: 10.1007/s11684-024-1117-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 11/04/2024] [Indexed: 02/28/2025]
Abstract
Kidney fibrosis is the final common pathway of virtually all chronic kidney disease (CKD). However, despite great progress in recent years, no targeted antifibrotic therapies have been approved. Epidemiologic, clinical, and molecular evidence suggest that aging is a major contributor to the increasing incidence of CKD. Senescent renal tubular cells, fibroblasts, endothelial cells, and podocytes have been detected in the kidneys of patients with CKD and animal models. Nonetheless, although accumulated evidence supports the essential role of cellular senescence in CKD, the mechanisms that promote cell senescence and how senescent cells contribute to CKD remain largely unknown. In this review, we summarize the features of the cellular senescence of the kidney and discuss the possible functions of senescent cells in the pathogenesis of kidney fibrosis. We also address whether pharmacological approaches targeting senescent cells can be used to retard the the progression of kidney fibrosis.
Collapse
Affiliation(s)
- Lina Yang
- Department of Nephrology, Institute of Kidney Diseases, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Liang Ma
- Department of Nephrology, Institute of Kidney Diseases, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Ping Fu
- Department of Nephrology, Institute of Kidney Diseases, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Jing Nie
- Biobank of Peking University First Hospital, Peking University First Hospital, State Key Laboratory of Vascular Homeostasis and Remodeling, Health Science Center, Peking University, Beijing, 100034, China.
| |
Collapse
|
2
|
Rieder F, Nagy LE, Maher TM, Distler JHW, Kramann R, Hinz B, Prunotto M. Fibrosis: cross-organ biology and pathways to development of innovative drugs. Nat Rev Drug Discov 2025:10.1038/s41573-025-01158-9. [PMID: 40102636 DOI: 10.1038/s41573-025-01158-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/10/2025] [Indexed: 03/20/2025]
Abstract
Fibrosis is a pathophysiological mechanism involved in chronic and progressive diseases that results in excessive tissue scarring. Diseases associated with fibrosis include metabolic dysfunction-associated steatohepatitis (MASH), inflammatory bowel diseases (IBDs), chronic kidney disease (CKD), idiopathic pulmonary fibrosis (IPF) and systemic sclerosis (SSc), which are collectively responsible for substantial morbidity and mortality. Although a few drugs with direct antifibrotic activity are approved for pulmonary fibrosis and considerable progress has been made in the understanding of mechanisms of fibrosis, translation of this knowledge into effective therapies continues to be limited and challenging. With the aim of assisting developers of novel antifibrotic drugs, this Review integrates viewpoints of biologists and physician-scientists on core pathways involved in fibrosis across organs, as well as on specific characteristics and approaches to assess therapeutic interventions for fibrotic diseases of the lung, gut, kidney, skin and liver. This discussion is used as a basis to propose strategies to improve the translation of potential antifibrotic therapies.
Collapse
Affiliation(s)
- Florian Rieder
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.
- Department of Gastroenterology, Hepatology and Nutrition, Digestive Disease Institute, Cleveland Clinic, Cleveland, OH, USA.
- Program for Global Translational Inflammatory Bowel Diseases (GRID), Chicago, IL, USA.
| | - Laura E Nagy
- Department of Gastroenterology, Hepatology and Nutrition, Digestive Disease Institute, Cleveland Clinic, Cleveland, OH, USA
- Northern Ohio Alcohol Center, Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH, USA
| | - Toby M Maher
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- National Heart and Lung Institute, Imperial College, London, UK
| | - Jörg H W Distler
- Department of Rheumatology, University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
- Hiller Research Center, University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
| | - Rafael Kramann
- Department of Nephrology and Clinical Immunology, RWTH Aachen; Medical Faculty, Aachen, Germany
- Department of Internal Medicine, Nephrology and Transplantation, Erasmus Medical Center, Rotterdam, Netherlands
| | - Boris Hinz
- Keenan Research Institute for Biomedical Science of the St Michael's Hospital, Toronto, Ontario, Canada
- Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Marco Prunotto
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
3
|
Phillips PCA, de Sousa Loreto Aresta Branco M, Cliff CL, Ward JK, Squires PE, Hills CE. Targeting senescence to prevent diabetic kidney disease: Exploring molecular mechanisms and potential therapeutic targets for disease management. Diabet Med 2025; 42:e15408. [PMID: 38995865 PMCID: PMC11733669 DOI: 10.1111/dme.15408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/14/2024]
Abstract
BACKGROUND/AIMS As a microvascular complication, diabetic kidney disease is the leading cause of chronic kidney disease and end-stage renal disease worldwide. While the underlying pathophysiology driving transition of diabetic kidney disease to renal failure is yet to be fully understood, recent studies suggest that cellular senescence is central in disease development and progression. Consequently, understanding the molecular mechanisms which initiate and drive senescence in response to the diabetic milieu is crucial in developing targeted therapies that halt progression of renal disease. METHODS To understand the mechanistic pathways underpinning cellular senescence in the context of diabetic kidney disease, we reviewed the literature using PubMed for English language articles that contained key words related to senescence, inflammation, fibrosis, senescence-associated secretory phenotype (SASP), autophagy, and diabetes. RESULTS Aberrant accumulation of metabolically active senescent cells is a notable event in the progression of diabetic kidney disease. Through autocrine- and paracrine-mediated mechanisms, resident senescent cells potentiate inflammation and fibrosis through increased expression and secretion of pro-inflammatory cytokines, chemoattractants, recruitment of immune cells, myofibroblast activation, and extracellular matrix remodelling. Compounds that eliminate senescent cells and/or target the SASP - including senolytic and senomorphics drugs - demonstrate promising results in reducing the senescent cell burden and associated pro-inflammatory effect. CONCLUSIONS Here we evidence the link between senescence and diabetic kidney disease and highlight underlying molecular mechanisms and potential therapeutic targets that could be exploited to delay disease progression and improve outcomes for individuals with the disease. Trials are now required to translate their therapeutic potential to a clinical setting.
Collapse
Affiliation(s)
| | | | | | - Joanna Kate Ward
- Joseph Banks Laboratories, College of Health and ScienceLincolnUK
| | | | | |
Collapse
|
4
|
Zhang Y, Zhao Y, Liu YQ, Fang YP, Sun L, Wei SZ, Zhu XD, Zhang XL. High glucose induces renal tubular epithelial cell senescence by inhibiting autophagic flux. Hum Cell 2025; 38:43. [PMID: 39789393 DOI: 10.1007/s13577-024-01156-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 11/26/2024] [Indexed: 01/12/2025]
Abstract
Autophagy, a cellular degradation process involving the formation and clearance of autophagosomes, is mediated by autophagic proteins, such as microtubule-associated protein 1 light chain 3 (LC3) and sequestosome 1 (p62), and modulated by 3-methyladenine (3-MA) as well as chloroquine (CQ). Senescence, characterised by permanent cell cycle arrest, is marked by proteins such as cyclin-dependent kinase inhibitor 1 (p21) and tumour protein 53 (p53). This study aims to investigate the relationship between cell senescence and renal function in diabetic kidney disease (DKD) and the effect of autophagy on high-glucose-induced cell senescence. We categorised 46 patients with DKD diagnosed by renal biopsy into classes I, IIa, IIb, III and IV and used four normal kidney specimens from patients with renal trauma as controls. We evaluated pathological changes, LC3 and p21. We used streptozotocin-induced DKD models in rats and 35 mM glucose-cultured human proximal tubular epithelial cells (HK-2) with or without 3-MA and CQ. We assessed p53, p21, LC3 and p62. We observed autophagosomes and detected senescence-associated galactosidase (SA-β-gal) activity. In patients with DKD, p21 and LC3 expression levels increased over time and correlated positively with blood creatinine and proteinuria. In DKD rats and HK-2 cells, p21, p53, LC3 and p62 expression levels were higher than in the controls, as were SA-β-gal-positive cells, renal tubular autophagosomes and co-expression of p21 and LC3. The 3-MA reduced p16, p21 and p53 expression compared with the high glucose group, whereas CQ had the opposite effect. These results suggest that renal tubular cell senescence is associated with the progression of DKD. Additionally, autophagic flux may play a role in mediating high-glucose-induced senescence in renal tubular cells.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Nephrology, Zhong Da Hospital, Gulou District, No. 87, Dingjiaqiao, Zhongyangmen Street, Nanjing, 210009, Jiangsu, China
- School of Medicine, Southeast University, Gulou District, No. 87, Dingjiaqiao, Zhongyangmen Street, Nanjing, 210009, Jiangsu, China
| | - Yu Zhao
- Department of Nephrology, Zhong Da Hospital, Gulou District, No. 87, Dingjiaqiao, Zhongyangmen Street, Nanjing, 210009, Jiangsu, China.
- School of Medicine, Southeast University, Gulou District, No. 87, Dingjiaqiao, Zhongyangmen Street, Nanjing, 210009, Jiangsu, China.
| | - Yu-Qiu Liu
- Department of Nephrology, Zhong Da Hospital, Gulou District, No. 87, Dingjiaqiao, Zhongyangmen Street, Nanjing, 210009, Jiangsu, China
- School of Medicine, Southeast University, Gulou District, No. 87, Dingjiaqiao, Zhongyangmen Street, Nanjing, 210009, Jiangsu, China
| | - Ya-Ping Fang
- Department of Nephrology, Zhong Da Hospital, Gulou District, No. 87, Dingjiaqiao, Zhongyangmen Street, Nanjing, 210009, Jiangsu, China
- School of Medicine, Southeast University, Gulou District, No. 87, Dingjiaqiao, Zhongyangmen Street, Nanjing, 210009, Jiangsu, China
| | - Li Sun
- Department of Nephrology, Xuyi People's Hospital, Huaian, 223001, Jiangsu, China
| | - Shan-Zhai Wei
- Department of Nephrology, Shu Yang Hospital of TCM, Jiangsu, 223600, China
| | - Xiao-Dong Zhu
- Department of Nephrology, Zhong Da Hospital, Gulou District, No. 87, Dingjiaqiao, Zhongyangmen Street, Nanjing, 210009, Jiangsu, China
- School of Medicine, Southeast University, Gulou District, No. 87, Dingjiaqiao, Zhongyangmen Street, Nanjing, 210009, Jiangsu, China
| | - Xiao-Liang Zhang
- Department of Nephrology, Zhong Da Hospital, Gulou District, No. 87, Dingjiaqiao, Zhongyangmen Street, Nanjing, 210009, Jiangsu, China
- School of Medicine, Southeast University, Gulou District, No. 87, Dingjiaqiao, Zhongyangmen Street, Nanjing, 210009, Jiangsu, China
| |
Collapse
|
5
|
Jeong K, Je J, Dusabimana T, Karekezi J, Nugroho TA, Ndahigwa EN, Kim HJ, Yun SP, Kim HJ, Kim H, Park SW. Deficiency of purinergic P2Y2 receptor impairs the recovery after renal ischemia-reperfusion injury and accelerates renal fibrosis and tubular senescence in mice. Sci Rep 2024; 14:31932. [PMID: 39738595 PMCID: PMC11686187 DOI: 10.1038/s41598-024-83411-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 12/13/2024] [Indexed: 01/02/2025] Open
Abstract
Chronic kidney disease is defined as a progressive loss of kidney function associated with impaired recovery after acute kidney injury. Renal ischemia-reperfusion (IR) induces oxidative stress and inflammatory responses leading to severe tissue damage, where incomplete or maladaptive repair accelerates renal fibrosis and aging. To investigate the role of the purinergic P2Y2 receptor (P2Y2R) in these processes, we used P2Y2R knockout (KO) mice subjected to IR. KO mice showed severe kidney dysfunction and structural damage compared to WT mice. KO mice showed higher senescence-associated β-galactosidase expression and shorter telomere length than WT mice. Consistently, interstitial collagen accumulation and fibrogenic mediators were significantly upregulated in KO mice. Renal apoptosis and inflammation were highly elevated in KO mice. Interestingly, cell proliferation as shown by Ki-67 and PCNA expression, was increased for 3 days after IR in WT mice, whereas it maintained increased for 14 days in KO mice. Cell cycle inhibitors, p16 and p21, and regulators JunB and cyclin E were significantly increased after IR in KO mice, suggesting that cell cycle progression was impaired during recovery after IR. Proximal tubular cells treated with JunB siRNA showed a reduced expression of fibrogenic mediators and proinflammatory cytokines, consistent with the mice treated with MRS2768, a P2Y2 agonist that downregulated JunB levels. In conclusion, P2Y2R reduces kidney tissue damage after IR and repairs the tissue properly by regulating JunB-mediated signaling during the recovery process.
Collapse
Affiliation(s)
- Kyuho Jeong
- Department of Pharmacology, Institute of Health Sciences, Gyeongsang National University College of Medicine, 15, 816 Beon-gil, Jinjudaero, Jinju, 52727, Republic of Korea
- Department of Biochemistry, Dongguk University College of Medicine, Gyeongju, 38066, Republic of Korea
| | - Jihyun Je
- Department of Pharmacology, Institute of Health Sciences, Gyeongsang National University College of Medicine, 15, 816 Beon-gil, Jinjudaero, Jinju, 52727, Republic of Korea
| | - Theodomir Dusabimana
- Department of Pharmacology, Institute of Health Sciences, Gyeongsang National University College of Medicine, 15, 816 Beon-gil, Jinjudaero, Jinju, 52727, Republic of Korea
| | - Jacques Karekezi
- Department of Pharmacology, Institute of Health Sciences, Gyeongsang National University College of Medicine, 15, 816 Beon-gil, Jinjudaero, Jinju, 52727, Republic of Korea
- Department of Convergence Medical Science, Gyeongsang National University Graduate School, Jinju, 52727, Republic of Korea
| | - Tatang Aldi Nugroho
- Department of Pharmacology, Institute of Health Sciences, Gyeongsang National University College of Medicine, 15, 816 Beon-gil, Jinjudaero, Jinju, 52727, Republic of Korea
- Department of Convergence Medical Science, Gyeongsang National University Graduate School, Jinju, 52727, Republic of Korea
| | - Edvard Ntambara Ndahigwa
- Department of Pharmacology, Institute of Health Sciences, Gyeongsang National University College of Medicine, 15, 816 Beon-gil, Jinjudaero, Jinju, 52727, Republic of Korea
- Department of Convergence Medical Science, Gyeongsang National University Graduate School, Jinju, 52727, Republic of Korea
| | - Hyun Joon Kim
- Department of Anatomy, Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju, 52727, Republic of Korea
- Department of Convergence Medical Science, Gyeongsang National University Graduate School, Jinju, 52727, Republic of Korea
| | - Seung Pil Yun
- Department of Pharmacology, Institute of Health Sciences, Gyeongsang National University College of Medicine, 15, 816 Beon-gil, Jinjudaero, Jinju, 52727, Republic of Korea
- Department of Convergence Medical Science, Gyeongsang National University Graduate School, Jinju, 52727, Republic of Korea
| | - Hye Jung Kim
- Department of Pharmacology, Institute of Health Sciences, Gyeongsang National University College of Medicine, 15, 816 Beon-gil, Jinjudaero, Jinju, 52727, Republic of Korea
- Department of Convergence Medical Science, Gyeongsang National University Graduate School, Jinju, 52727, Republic of Korea
| | - Hwajin Kim
- Department of Pharmacology, Institute of Health Sciences, Gyeongsang National University College of Medicine, 15, 816 Beon-gil, Jinjudaero, Jinju, 52727, Republic of Korea.
| | - Sang Won Park
- Department of Pharmacology, Institute of Health Sciences, Gyeongsang National University College of Medicine, 15, 816 Beon-gil, Jinjudaero, Jinju, 52727, Republic of Korea.
- Department of Anatomy, Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju, 52727, Republic of Korea.
| |
Collapse
|
6
|
Hejazian SM, Hejazian SS, Mostafavi SM, Hosseiniyan SM, Montazersaheb S, Ardalan M, Zununi Vahed S, Barzegari A. Targeting cellular senescence in kidney diseases and aging: A focus on mesenchymal stem cells and their paracrine factors. Cell Commun Signal 2024; 22:609. [PMID: 39696575 DOI: 10.1186/s12964-024-01968-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 11/28/2024] [Indexed: 12/20/2024] Open
Abstract
Cellular senescence is a phenomenon distinguished by the halting of cellular division, typically triggered by DNA injury or numerous stress-inducing factors. Cellular senescence is implicated in various pathological and physiological processes and is a hallmark of aging. The presence of accumulated senescent cells, whether transiently (acute senescence) or persistently (chronic senescence) plays a dual role in various conditions such as natural kidney aging and different kidney disorders. Elevations in senescent cells and senescence-associated secretory phenotype (SASP) levels correlate with decreased kidney function, kidney ailments, and age-related conditions. Strategies involving senotherapeutic agents like senolytics, senomorphics, and senoinflammation have been devised to specifically target senescent cells. Mesenchymal stem cells (MSCs) and their secreted factors may also offer alternative approaches for anti-senescence interventions. The MSC-derived secretome compromises significant therapeutic benefits in kidney diseases by facilitating tissue repair via anti-inflammatory, anti-fibrosis, anti-apoptotic, and pro-angiogenesis effects, thereby improving kidney function and mitigating disease progression. Moreover, by promoting the clearance of senescent cells or modulating their secretory profiles, MSCs could potentially reverse some age-related declines in kidney function.This review article intends to shed light on the present discoveries concerning the role of cellular senescence in kidney aging and diseases. Furthermore, it outlines the role of senotherapeutics utilized to alleviate kidney damage and aging. It also highlights the possible impact of MSCs secretome on mitigating kidney injury and prolonging lifespan across various models of kidney diseases as a novel senotherapy.
Collapse
Affiliation(s)
| | - Seyyed Sina Hejazian
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyyedeh Mina Mostafavi
- Ayatollah Taleghani Hospital, Research Development Unit, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Soheila Montazersaheb
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | - Abolfazl Barzegari
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
7
|
Li Y, Luo C, Cai Y, Wu Y, Shu T, Wei J, Wang H, Niu H. IGF2BP3/NCBP1 complex inhibits renal tubular senescence through regulation of CDK6 mRNA stability. Transl Res 2024; 273:1-15. [PMID: 38945255 DOI: 10.1016/j.trsl.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 06/16/2024] [Accepted: 06/18/2024] [Indexed: 07/02/2024]
Abstract
Renal aging and the subsequent rise in kidney-related diseases are attributed to senescence in renal tubular epithelial cells (RTECs). Our study revealed that the abnormal expression of insulin-like growth factor 2 mRNA-binding protein 3 (IGF2BP3), a reader of RNA N6-methyladenosine, is critically involved in cisplatin-induced renal tubular senescence. In cisplatin-induced senescence of RTECs, the promoter activity and transcription of IGF2BP3 is markedly suppressed. It was due to the down regulation of MYC proto-oncogene (MYC), which regulates IGF2BP3 transcription by binding to the putative site at 1852-1863 of the IGF2BP3 promoter. Overexpression of IGF2BP3 ameliorated cisplatin-induced renal tubular senescence in vitro. Mechanistic studies revealed that IGF2BP3 inhibits cellular senescence in RTECs by enhancing cyclin-dependent kinase 6 (CDK6) mRNA stability and increasing its expression. The inhibition effect of IGF2BP3 on tubular senescence is partially reversed by the knockdown of CDK6. Further, IGF2BP3 recruits nuclear cap binding protein subunit 1 (NCBP1) and inhibits CDK6 mRNA decay, by recognizing m6A modification. Specifically, IGF2BP3 recognizes m6A motif "GGACU" at nucleotides 110-114 in the 5' untranslated region (UTR) field of CDK6 mRNA. The involvement of IGF2BP3/CDK6 in alleviating tubular senescence was confirmed in a cisplatin-induced acute kidney injury (AKI)-to-chronic kidney disease (CKD) model. Clinical data also suggests an age-related decrease in IGF2BP3 and CDK6 levels in renal tissue or serum samples from patients. These findings suggest that IGF2BP3/CDK6 may be a promising target in cisplatin-induced tubular senescence and renal failure.
Collapse
Affiliation(s)
- Yaqin Li
- Department of General Practice, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Congwei Luo
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yating Cai
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yan Wu
- Department of General Practice, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Tao Shu
- Department of General Practice, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jingyan Wei
- Department of General Practice, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Hongsheng Wang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Hongxin Niu
- Department of General Practice, Special Medical Service Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
8
|
Xiong YB, Huang WY, Ling X, Zhou S, Wang XX, Li XL, Zhou LL. Mitochondrial calcium uniporter promotes kidney aging in mice through inducing mitochondrial calcium-mediated renal tubular cell senescence. Acta Pharmacol Sin 2024; 45:2149-2162. [PMID: 38789496 PMCID: PMC11420221 DOI: 10.1038/s41401-024-01298-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 04/22/2024] [Indexed: 05/26/2024]
Abstract
Renal tubular epithelial cell senescence plays a critical role in promoting and accelerating kidney aging and age-related renal fibrosis. Senescent cells not only lose their self-repair ability, but also can transform into senescence-associated secretory phenotype (SASP) to trigger inflammation and fibrogenesis. Recent studies show that mitochondrial dysfunction is critical for renal tubular cell senescence and kidney aging, and calcium overload and abnormal calcium-dependent kinase activities are involved in mitochondrial dysfunction-associated senescence. In this study we investigated the role of mitochondrial calcium overload and mitochondrial calcium uniporter (MCU) in kidney aging. By comparing the kidney of 2- and 24-month-old mice, we found calcium overload in renal tubular cells of aged kidney, accompanied by significantly elevated expression of MCU. In human proximal renal tubular cell line HK-2, pretreatment with MCU agonist spermine (10 μM) significantly increased mitochondrial calcium accumulation, and induced the production of reactive oxygen species (ROS), leading to renal tubular cell senescence and age-related kidney fibrosis. On the contrary, pretreatment with MCU antagonist RU360 (10 μM) or calcium chelator BAPTA-AM (10 μM) diminished D-gal-induced ROS generation, restored mitochondrial homeostasis, retarded cell senescence, and protected against kidney aging in HK-2 cells. In a D-gal-induced accelerated aging mice model, administration of BAPTA (100 μg/kg. i.p.) every other day for 8 weeks significantly alleviated renal tubuarl cell senescence and fibrosis. We conclude that MCU plays a key role in promoting renal tubular cell senescence and kidney aging. Targeting inhibition on MCU provides a new insight into the therapeutic strategy against kidney aging.
Collapse
Affiliation(s)
- Ya-Bing Xiong
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Nephrology / Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Wen-Yan Huang
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Nephrology / Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Xian Ling
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Nephrology / Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Shan Zhou
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Nephrology / Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Xiao-Xu Wang
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Nephrology / Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Xiao-Long Li
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Nephrology / Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Li-Li Zhou
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Nephrology / Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
9
|
Ha S, Kim HW, Kim KM, Kim BM, Kim J, Son M, Kim D, Kim M, Yoo J, Yu HS, Jung Y, Lee J, Chung HY, Chung KW. PAR2-mediated cellular senescence promotes inflammation and fibrosis in aging and chronic kidney disease. Aging Cell 2024; 23:e14184. [PMID: 38687090 PMCID: PMC11320361 DOI: 10.1111/acel.14184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 03/29/2024] [Accepted: 04/10/2024] [Indexed: 05/02/2024] Open
Abstract
Cellular senescence contributes to inflammatory kidney disease via the secretion of inflammatory and profibrotic factors. Protease-activating receptor 2 (PAR2) is a key regulator of inflammation in kidney diseases. However, the relationship between PAR2 and cellular senescence in kidney disease has not yet been described. In this study, we found that PAR2-mediated metabolic changes in renal tubular epithelial cells induced cellular senescence and increased inflammatory responses. Using an aging and renal injury model, PAR2 expression was shown to be associated with cellular senescence. Under in vitro conditions in NRK52E cells, PAR2 activation induces tubular epithelial cell senescence and senescent cells showed defective fatty acid oxidation (FAO). Cpt1α inhibition showed similar senescent phenotype in the cells, implicating the important role of defective FAO in senescence. Finally, we subjected mice lacking PAR2 to aging and renal injury. PAR2-deficient kidneys are protected from adenine- and cisplatin-induced renal fibrosis and injury, respectively, by reducing senescence and inflammation. Moreover, kidneys lacking PAR2 exhibited reduced numbers of senescent cells and inflammation during aging. These findings offer fresh insights into the mechanisms underlying renal senescence and indicate that targeting PAR2 or FAO may be a promising therapeutic approach for managing kidney injury.
Collapse
Affiliation(s)
- Sugyeong Ha
- Department of Pharmacy and Research Institute for Drug Development, College of PharmacyPusan National UniversityBusanKorea
| | - Hyun Woo Kim
- Department of Pharmacy and Research Institute for Drug Development, College of PharmacyPusan National UniversityBusanKorea
| | - Kyung Mok Kim
- Department of Pharmacy and Research Institute for Drug Development, College of PharmacyPusan National UniversityBusanKorea
| | - Byeong Moo Kim
- Department of Pharmacy and Research Institute for Drug Development, College of PharmacyPusan National UniversityBusanKorea
| | - Jeongwon Kim
- Department of Pharmacy and Research Institute for Drug Development, College of PharmacyPusan National UniversityBusanKorea
| | - Minjung Son
- Department of Pharmacy and Research Institute for Drug Development, College of PharmacyPusan National UniversityBusanKorea
| | - Doyeon Kim
- Department of Pharmacy and Research Institute for Drug Development, College of PharmacyPusan National UniversityBusanKorea
| | - Mi‐Jeong Kim
- Department of Pharmacy and Research Institute for Drug Development, College of PharmacyPusan National UniversityBusanKorea
| | - Jian Yoo
- Department of Pharmacy and Research Institute for Drug Development, College of PharmacyPusan National UniversityBusanKorea
| | - Hak Sun Yu
- Department of Parasitology and Tropical Medicine, School of MedicinePusan National UniversityYangsanKorea
| | - Young‐Suk Jung
- Department of Pharmacy and Research Institute for Drug Development, College of PharmacyPusan National UniversityBusanKorea
| | - Jaewon Lee
- Department of Pharmacy and Research Institute for Drug Development, College of PharmacyPusan National UniversityBusanKorea
| | - Hae Young Chung
- Department of Pharmacy and Research Institute for Drug Development, College of PharmacyPusan National UniversityBusanKorea
| | - Ki Wung Chung
- Department of Pharmacy and Research Institute for Drug Development, College of PharmacyPusan National UniversityBusanKorea
| |
Collapse
|
10
|
Kirchner VA, Badshah JS, Kyun Hong S, Martinez O, Pruett TL, Niedernhofer LJ. Effect of Cellular Senescence in Disease Progression and Transplantation: Immune Cells and Solid Organs. Transplantation 2024; 108:1509-1523. [PMID: 37953486 PMCID: PMC11089077 DOI: 10.1097/tp.0000000000004838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
Aging of the world population significantly impacts healthcare globally and specifically, the field of transplantation. Together with end-organ dysfunction and prolonged immunosuppression, age increases the frequency of comorbid chronic diseases in transplant candidates and recipients, contributing to inferior outcomes. Although the frequency of death increases with age, limited use of organs from older deceased donors reflects the concerns about organ durability and inadequate function. Cellular senescence (CS) is a hallmark of aging, which occurs in response to a myriad of cellular stressors, leading to activation of signaling cascades that stably arrest cell cycle progression to prevent tumorigenesis. In aging and chronic conditions, senescent cells accumulate as the immune system's ability to clear them wanes, which is causally implicated in the progression of chronic diseases, immune dysfunction, organ damage, decreased regenerative capacity, and aging itself. The intimate interplay between senescent cells, their proinflammatory secretome, and immune cells results in a positive feedback loop, propagating chronic sterile inflammation and the spread of CS. Hence, senescent cells in organs from older donors trigger the recipient's alloimmune response, resulting in the increased risk of graft loss. Eliminating senescent cells or attenuating their inflammatory phenotype is a novel, potential therapeutic target to improve transplant outcomes and expand utilization of organs from older donors. This review focuses on the current knowledge about the impact of CS on circulating immune cells in the context of organ damage and disease progression, discusses the impact of CS on abdominal solid organs that are commonly transplanted, and reviews emerging therapies that target CS.
Collapse
Affiliation(s)
- Varvara A. Kirchner
- Division of Abdominal Transplantation, Department of Surgery, Stanford University, Stanford, CA
| | - Joshua S. Badshah
- Division of Abdominal Transplantation, Department of Surgery, Stanford University, Stanford, CA
| | - Suk Kyun Hong
- Division of Abdominal Transplantation, Department of Surgery, Stanford University, Stanford, CA
- Department of Surgery, Seoul National University College of Medicine, Seoul, Korea
| | - Olivia Martinez
- Division of Abdominal Transplantation, Department of Surgery, Stanford University, Stanford, CA
| | - Timothy L. Pruett
- Division of Transplantation, Department of Surgery, University of Minnesota, Minneapolis, MN
| | - Laura J. Niedernhofer
- Institute on the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota Medical School, Minneapolis, MN
| |
Collapse
|
11
|
Zhang Y, Yu C, Li X. Kidney Aging and Chronic Kidney Disease. Int J Mol Sci 2024; 25:6585. [PMID: 38928291 PMCID: PMC11204319 DOI: 10.3390/ijms25126585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/05/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
The process of aging inevitably leads to an increase in age-related comorbidities, including chronic kidney disease (CKD). In many aspects, CKD can be considered a state of accelerated and premature aging. Aging kidney and CKD have numerous common characteristic features, ranging from pathological presentation and clinical manifestation to underlying mechanisms. The shared mechanisms underlying the process of kidney aging and the development of CKD include the increase in cellular senescence, the decrease in autophagy, mitochondrial dysfunction, and the alterations of epigenetic regulation, suggesting the existence of potential therapeutic targets that are applicable to both conditions. In this review, we provide a comprehensive overview of the common characteristics between aging kidney and CKD, encompassing morphological changes, functional alterations, and recent advancements in understanding the underlying mechanisms. Moreover, we discuss potential therapeutic strategies for targeting senescent cells in both the aging process and CKD.
Collapse
Affiliation(s)
- Yingying Zhang
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA;
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Chen Yu
- Department of Nephrology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai 200092, China;
| | - Xiaogang Li
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA;
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
12
|
Chen J, Zhang H, Yi X, Dou Q, Yang X, He Y, Chen J, Chen K. Cellular senescence of renal tubular epithelial cells in acute kidney injury. Cell Death Discov 2024; 10:62. [PMID: 38316761 PMCID: PMC10844256 DOI: 10.1038/s41420-024-01831-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/14/2024] [Accepted: 01/24/2024] [Indexed: 02/07/2024] Open
Abstract
Cellular senescence represents an irreversible state of cell-cycle arrest during which cells secrete senescence-associated secretory phenotypes, including inflammatory factors and chemokines. Additionally, these cells exhibit an apoptotic resistance phenotype. Cellular senescence serves a pivotal role not only in embryonic development, tissue regeneration, and tumor suppression but also in the pathogenesis of age-related degenerative diseases, malignancies, metabolic diseases, and kidney diseases. The senescence of renal tubular epithelial cells (RTEC) constitutes a critical cellular event in the progression of acute kidney injury (AKI). RTEC senescence inhibits renal regeneration and repair processes and, concurrently, promotes the transition of AKI to chronic kidney disease via the senescence-associated secretory phenotype. The mechanisms underlying cellular senescence are multifaceted and include telomere shortening or damage, DNA damage, mitochondrial autophagy deficiency, cellular metabolic disorders, endoplasmic reticulum stress, and epigenetic regulation. Strategies aimed at inhibiting RTEC senescence, targeting the clearance of senescent RTEC, or promoting the apoptosis of senescent RTEC hold promise for enhancing the renal prognosis of AKI. This review primarily focuses on the characteristics and mechanisms of RTEC senescence, and the impact of intervening RTEC senescence on the prognosis of AKI, aiming to provide a foundation for understanding the pathogenesis and providing potentially effective approaches for AKI treatment.
Collapse
Affiliation(s)
- Juan Chen
- Department of Nephrology, Daping Hospital, Army Medical University, 400042, Chongqing, China
| | - Huhai Zhang
- Department of Nephrology, Southwest Hospital, Army Medical University, 400042, Chongqing, China
| | - Xiangling Yi
- Department of Nephrology, Daping Hospital, Army Medical University, 400042, Chongqing, China
| | - Qian Dou
- Department of Nephrology, Daping Hospital, Army Medical University, 400042, Chongqing, China
| | - Xin Yang
- Department of Nephrology, Daping Hospital, Army Medical University, 400042, Chongqing, China
| | - Yani He
- Department of Nephrology, Daping Hospital, Army Medical University, 400042, Chongqing, China
| | - Jia Chen
- Department of Nephrology, Daping Hospital, Army Medical University, 400042, Chongqing, China.
| | - Kehong Chen
- Department of Nephrology, Daping Hospital, Army Medical University, 400042, Chongqing, China.
- State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing, China.
| |
Collapse
|
13
|
Esposito P, Picciotto D, Verzola D, Garibotto G, Parodi EL, Sofia A, Costigliolo F, Gaggero G, Zanetti V, Saio M, Viazzi F. SA-β-Gal in Kidney Tubules as a Predictor of Renal Outcome in Patients with Chronic Kidney Disease. J Clin Med 2024; 13:322. [PMID: 38256456 PMCID: PMC10815985 DOI: 10.3390/jcm13020322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 12/26/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
Cellular senescence has emerged as an important driver of aging and age-related disease in the kidney. The activity of β-galactosidase at pH 6 (SA-β-Gal) is a classic maker of senescence in cellular biology; however, the predictive role of kidney tissue SA-β-Gal on eGFR loss in chronic kidney disease (CKD) is still not understood. We retrospectively studied the expression of SA-β-Gal in kidney biopsies obtained in a cohort [n = 22] of incident patients who were followed up for 3 years as standard of care. SA-β-Gal staining was approximately fourfold higher in the tubular compartment of patients with CKD vs. controls [26.0 ± 9 vs. 7.4 ± 6% positive tubuli in patients vs. controls; p < 0.025]. Tubular expressions of SA-β-Gal, but not proteinuria, at the time of biopsy correlated with eGFR loss at the follow up; moreover, SA-β-Gal expression in more than 30% of kidney tubules was associated with fast progressive kidney disease. In conclusion, our study shows that SA-β-Gal is upregulated in the kidney tubular compartment of adult patients affected by CKD and suggests that tubular SA-β-Gal is associated with accelerated loss of renal function.
Collapse
Affiliation(s)
- Pasquale Esposito
- Department of Internal Medicine, University of Genova, 16132 Genova, Italy; (P.E.); (D.V.); (V.Z.); (F.V.)
- Division of Nephrology, Dialysis and Transplantation, IRCCS Ospedale Policlinico San Martino, 16142 Genova, Italy; (D.P.); (A.S.); (F.C.); (M.S.)
| | - Daniela Picciotto
- Division of Nephrology, Dialysis and Transplantation, IRCCS Ospedale Policlinico San Martino, 16142 Genova, Italy; (D.P.); (A.S.); (F.C.); (M.S.)
| | - Daniela Verzola
- Department of Internal Medicine, University of Genova, 16132 Genova, Italy; (P.E.); (D.V.); (V.Z.); (F.V.)
| | - Giacomo Garibotto
- Department of Internal Medicine, University of Genova, 16132 Genova, Italy; (P.E.); (D.V.); (V.Z.); (F.V.)
| | - Emanuele Luigi Parodi
- Department of Internal Medicine, University of Genova, 16132 Genova, Italy; (P.E.); (D.V.); (V.Z.); (F.V.)
| | - Antonella Sofia
- Division of Nephrology, Dialysis and Transplantation, IRCCS Ospedale Policlinico San Martino, 16142 Genova, Italy; (D.P.); (A.S.); (F.C.); (M.S.)
| | - Francesca Costigliolo
- Division of Nephrology, Dialysis and Transplantation, IRCCS Ospedale Policlinico San Martino, 16142 Genova, Italy; (D.P.); (A.S.); (F.C.); (M.S.)
| | - Gabriele Gaggero
- UO Anatomia Patologica, IRCCS Ospedale Policlinico San Martino, 16142 Genova, Italy;
| | - Valentina Zanetti
- Department of Internal Medicine, University of Genova, 16132 Genova, Italy; (P.E.); (D.V.); (V.Z.); (F.V.)
- Division of Nephrology, Dialysis and Transplantation, IRCCS Ospedale Policlinico San Martino, 16142 Genova, Italy; (D.P.); (A.S.); (F.C.); (M.S.)
| | - Michela Saio
- Division of Nephrology, Dialysis and Transplantation, IRCCS Ospedale Policlinico San Martino, 16142 Genova, Italy; (D.P.); (A.S.); (F.C.); (M.S.)
| | - Francesca Viazzi
- Department of Internal Medicine, University of Genova, 16132 Genova, Italy; (P.E.); (D.V.); (V.Z.); (F.V.)
- Division of Nephrology, Dialysis and Transplantation, IRCCS Ospedale Policlinico San Martino, 16142 Genova, Italy; (D.P.); (A.S.); (F.C.); (M.S.)
| |
Collapse
|
14
|
Rex N, Melk A, Schmitt R. Cellular senescence and kidney aging. Clin Sci (Lond) 2023; 137:1805-1821. [PMID: 38126209 PMCID: PMC10739085 DOI: 10.1042/cs20230140] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 11/22/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023]
Abstract
Life expectancy is increasing worldwide, and by 2050 the proportion of the world's population over 65 years of age is estimated to surpass 1.5 billion. Kidney aging is associated with molecular and physiological changes that cause a loss of renal function and of regenerative potential. As the aging population grows, it is crucial to understand the mechanisms underlying these changes, as they increase the susceptibility to developing acute kidney injury (AKI) and chronic kidney disease (CKD). Various cellular processes and molecular pathways take part in the complex process of kidney aging. In this review, we will focus on the phenomenon of cellular senescence as one of the involved mechanisms at the crossroad of kidney aging, age-related disease, and CKD. We will highlight experimental and clinical findings about the role of cellular senescence in kidney aging and CKD. In addition, we will review challenges in senescence research and emerging therapeutic aspects. We will highlight the great potential of senolytic strategies for the elimination of harmful senescent cells to promote healthy kidney aging and to avoid age-related disease and CKD. This review aims to give insight into recent discoveries and future developments, providing a comprehensive overview of current knowledge on cellular senescence and anti-senescent therapies in the kidney field.
Collapse
Affiliation(s)
- Nikolai Rex
- Department of Nephrology and Hypertension, Medical School Hannover, Germany
| | - Anette Melk
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Medical School Hannover, Germany
| | - Roland Schmitt
- Department of Nephrology and Hypertension, Medical School Hannover, Germany
- Department of Nephrology and Hypertension, University Hospital Schleswig-Holstein, Kiel, Germany
| |
Collapse
|
15
|
Zeng L, Chen L, Gao F, Li J, Song Y, Wei L, Qu N, Li Y, Jiang H. The Comparation of Renal Anti-Senescence Effects and Blood Metabolites between Dapagliflozin and Metformin in Non-Diabetes Environment. Adv Biol (Weinh) 2023; 7:e2300199. [PMID: 37688360 DOI: 10.1002/adbi.202300199] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/10/2023] [Indexed: 09/10/2023]
Abstract
Delaying kidney senescence process will benefit renal physiologic conditions, and prompt the kidney recovering from different pathological states. The renal anti-senescence effects of sodium-glucose cotransporter-2 inhibitors (SGLT2i) and metformin have been proven in diabetic settings, but the roles of each one and combination of two drugs in natural kidney aging process remain undefined and deserve further research. Senescence-accelerated mouse prone 8 (SAMP8) were orally administered dapagliflozin, metformin, and a combination of them for 16 weeks. Dapagliflozin exhibits better effects than metformin in lowering senescence related markers, and the combination therapy shows the best results. In vitro experiments demonstrate the same results that the combination of dapagliflozin and metformin can exert a better anti-senescence effect. Blood metabolites detection in vivo shows dapagliflozin mainly leads to the change of blood metabolites enriched in choline metabolism, and metformin tends to induce change of blood metabolites enriched in purine metabolism. In conclusion, the results suggest dapagliflozin may have a better renal anti-senescence effect than metformin in non-diabetes environment, and the combination of the two drugs can strengthen the effect. The two drugs can lead to different blood metabolites alteration, which may lead to different systemic effects.
Collapse
Affiliation(s)
- Lu Zeng
- Department of Critical Care Nephrology and Blood Purification, the First Affiliated Hospital of Xi'an Jiaotong University, Shannxi, 710061, China
| | - Lei Chen
- Department of Critical Care Nephrology and Blood Purification, the First Affiliated Hospital of Xi'an Jiaotong University, Shannxi, 710061, China
| | - Fanfan Gao
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Xi'an Jiaotong University, Shannxi, 710061, China
| | - Jie Li
- Department of Nephrology, Henan Provincial people's hospital, Henan, 450003, China
| | - Yangyang Song
- Department of Critical Care Nephrology and Blood Purification, the First Affiliated Hospital of Xi'an Jiaotong University, Shannxi, 710061, China
| | - Limin Wei
- Department of Critical Care Nephrology and Blood Purification, the First Affiliated Hospital of Xi'an Jiaotong University, Shannxi, 710061, China
| | - Ning Qu
- Department of Medical Examination, the First Affiliated Hospital of Xi'an Jiaotong University, Shannxi, 710061, China
| | - Yan Li
- Department of Nephrology, the First Affiliated Hospital of Xi'an Jiaotong University, Shannxi, 710061, China
| | - Hongli Jiang
- Department of Critical Care Nephrology and Blood Purification, the First Affiliated Hospital of Xi'an Jiaotong University, Shannxi, 710061, China
| |
Collapse
|
16
|
Tilman G, Dupré E, Watteyne L, Baert CA, Nolf D, Benhaddi F, Lambert F, Daumerie A, Bouzin C, Lucas S, Limaye N. p16 Ink4a, a marker of cellular senescence, is associated with renal disease in the B6. NZMSle1/Sle2/Sle3 mouse model of lupus. Lupus Sci Med 2023; 10:e001010. [PMID: 37899089 PMCID: PMC10619045 DOI: 10.1136/lupus-2023-001010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/09/2023] [Indexed: 10/31/2023]
Abstract
OBJECTIVES Despite treatment, one-third of patients with lupus nephritis (LN) show a decline in renal function. Prognostic markers of poor outcome as well as novel therapeutic targets are therefore highly sought. We showed that p16INK4a, a marker of cellular senescence, is observed in baseline kidney biopsies from patients with LN, and is associated with renal disease. Here, we set out to assess for whether these findings are recapitulated in the B6.NZMSle1/Sle2/Sle3 (B6.Sle1.2.3) mouse model of spontaneous lupus. METHODS We evaluated the occurrence and time of onset of p16Ink4a staining by immunohistochemistry on kidney sections, and tested for its association with multiple renal and systemic disease parameters, fibrosis and CD8+ T cell infiltration, in two cohorts of B6.Sle1.2.3 mice. RESULTS The presence of p16Ink4a-positive cells in kidney was significantly associated with increased urine albumin/creatinine ratio, histopathological scores, CD8+ T cell infiltration and fibrosis, in both B6.Sle1.2.3 cohorts. In contrast, p16Ink4a staining was not associated with systemic disease parameters. A time course showed that systemic disease parameters as well as glomerular IgG deposits appeared in B6.Sle1.2.3 mice by 4 months of age; the appearance of p16Ink4a-positive cells occurred later, by 8 months of age, overlapping with renal disease. CONCLUSION We report, for the first time, the presence of p16Ink4a-positive cells, a marker of cellular senescence, in the B6.Sle1.2.3 kidney, and their association with renal disease severity. This provides a preclinical model in which to test for the role of cellular senescence in the pathogenesis of LN, as a potential kidney-intrinsic disease mechanism.
Collapse
Affiliation(s)
- Gaëlle Tilman
- de Duve Institute, Université catholique de Louvain, Brussels, Belgium
- Department of Rheumatology, Cliniques universitaires Saint-Luc, Brussels, Belgium
| | - Emilie Dupré
- de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Laura Watteyne
- de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | | | - Delphine Nolf
- de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Fatima Benhaddi
- de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Fanny Lambert
- de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Aurélie Daumerie
- IREC Imaging Platform (2IP), Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium
| | - Caroline Bouzin
- IREC Imaging Platform (2IP), Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium
| | - Sophie Lucas
- de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Nisha Limaye
- de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| |
Collapse
|
17
|
Li S, Livingston MJ, Ma Z, Hu X, Wen L, Ding HF, Zhou D, Dong Z. Tubular cell senescence promotes maladaptive kidney repair and chronic kidney disease after cisplatin nephrotoxicity. JCI Insight 2023; 8:e166643. [PMID: 36917180 PMCID: PMC10243740 DOI: 10.1172/jci.insight.166643] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 03/09/2023] [Indexed: 03/16/2023] Open
Abstract
Cisplatin is a widely used chemotherapy drug; however, it induces both acute and chronic kidney diseases (CKD) in patients with cancer. The pathogenesis of cisplatin-induced CKD is unclear, and effective renoprotective approaches are not available. Here, we report that repeated low-dose cisplatin (RLDC) treatment of C57BL/6 mice induced chronic cellular senescence in kidney tubules, accompanied with tubular degeneration and profibrotic phenotype transformation that culminated in maladaptive repair and renal fibrosis. Suppression of tubular senescence by senolytic drugs ABT-263 and Fisetin attenuated renal fibrosis and improved tubular repair, as indicated by restoration of tubular regeneration and renal function. In vitro, RLDC also induced senescence in mouse proximal tubular (BUMPT) cells. ABT-263 eliminated senescent BUMPT cells following RLDC treatment, reversed the profibrotic phenotype of the cells, and increased their clonogenic activity. Moreover, ABT-263 alleviated the paracrine effect of RLDC-treated BUMPT cells on fibroblasts for fibrosis. Consistently, knockdown of p16 suppressed post-RLDC senescence and fibrotic changes in BUMPT cells and alleviated their paracrine effects on renal fibroblast proliferation. These results indicate that persistent induction of tubular senescence plays an important role in promoting cisplatin-induced CKD. Targeting senescent tubular cells may be efficient for improvement of kidney repair and for the prevention and treatment of cisplatin-induced CKD.
Collapse
Affiliation(s)
- Siyao Li
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, China
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Man J. Livingston
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Zhengwei Ma
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Xiaoru Hu
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, China
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Lu Wen
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, China
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Han-Fei Ding
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama School of Medicine at Birmingham, Birmingham, Alabama, USA
| | - Daohong Zhou
- Center for Innovative Drug Development and Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Zheng Dong
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, China
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
- Research Department, Charlie Norwood VA Medical Center, Augusta, Georgia, USA
| |
Collapse
|
18
|
Moiseeva V, Cisneros A, Cobos AC, Tarrega AB, Oñate CS, Perdiguero E, Serrano AL, Muñoz-Cánoves P. Context-dependent roles of cellular senescence in normal, aged, and disease states. FEBS J 2023; 290:1161-1185. [PMID: 35811491 DOI: 10.1111/febs.16573] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/20/2022] [Accepted: 07/07/2022] [Indexed: 01/10/2023]
Abstract
Cellular senescence is a state of irreversible cell cycle arrest that often emerges after tissue damage and in age-related diseases. Through the production of a multicomponent secretory phenotype (SASP), senescent cells can impact the regeneration and function of tissues. However, the effects of senescent cells and their SASP are very heterogeneous and depend on the tissue environment and type as well as the duration of injury, the degree of persistence of senescent cells and the organism's age. While the transient presence of senescent cells is widely believed to be beneficial, recent data suggest that it is detrimental for tissue regeneration after acute damage. Furthermore, although senescent cell persistence is typically associated with the progression of age-related chronic degenerative diseases, it now appears to be also necessary for correct tissue function in the elderly. Here, we discuss what is currently known about the roles of senescent cells and their SASP in tissue regeneration in ageing and age-related diseases, highlighting their (negative and/or positive) contributions. We provide insight for future research, including the possibility of senolytic-based therapies and cellular reprogramming, with aims ranging from enhancing tissue repair to extending a healthy lifespan.
Collapse
Affiliation(s)
- Victoria Moiseeva
- Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), CIBER on Neurodegenerative Diseases (CIBERNED), Barcelona, Spain
| | - Andrés Cisneros
- Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), CIBER on Neurodegenerative Diseases (CIBERNED), Barcelona, Spain
| | - Aina Calls Cobos
- Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), CIBER on Neurodegenerative Diseases (CIBERNED), Barcelona, Spain
| | - Aida Beà Tarrega
- Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), CIBER on Neurodegenerative Diseases (CIBERNED), Barcelona, Spain
| | - Claudia Santos Oñate
- Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), CIBER on Neurodegenerative Diseases (CIBERNED), Barcelona, Spain
| | - Eusebio Perdiguero
- Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), CIBER on Neurodegenerative Diseases (CIBERNED), Barcelona, Spain
| | - Antonio L Serrano
- Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), CIBER on Neurodegenerative Diseases (CIBERNED), Barcelona, Spain
| | - Pura Muñoz-Cánoves
- Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), CIBER on Neurodegenerative Diseases (CIBERNED), Barcelona, Spain.,ICREA, Barcelona, Spain.,Spanish National Center on Cardiovascular Research (CNIC), Madrid, Spain
| |
Collapse
|
19
|
Zhang JQ, Li YY, Zhang XY, Tian ZH, Liu C, Wang ST, Zhang FR. Cellular senescence of renal tubular epithelial cells in renal fibrosis. Front Endocrinol (Lausanne) 2023; 14:1085605. [PMID: 36926022 PMCID: PMC10011622 DOI: 10.3389/fendo.2023.1085605] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 02/14/2023] [Indexed: 03/08/2023] Open
Abstract
Renal fibrosis (RF) is the common pathological manifestation of virtually all chronic kidney diseases (CKD) and one of the major causes of end-stage renal disease (ESRD), but the pathogenesis of which is still unclear. Renal tubulointerstitial lesions have been identified as a key pathological hallmark of RF pathology. Renal tubular epithelial cells are the resident cells of the tubulointerstitium and play an important role in kidney recovery versus renal fibrosis following injury. Studies in recent years have shown that senescence of renal tubular epithelial cells can accelerate the progression of renal fibrosis. Oxidative stress(OS), telomere attrition and DNA damage are the major causes of renal tubular epithelial cell senescence. Current interventions and therapeutic strategies for cellular senescence include calorie restriction and routine exercise, Klotho, senolytics, senostatics, and other related drugs. This paper provides an overview of the mechanisms and the key signaling pathways including Wnt/β-catenin/RAS, Nrf2/ARE and STAT-3/NF-κB pathway involved in renal tubular epithelial cell senescence in RF and therapies targeting renal tubular epithelial cell senescence future therapeutic potential for RF patients. These findings may offer promise for the further treatment of RF and CKD.
Collapse
Affiliation(s)
- Jun-Qing Zhang
- College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ying-Ying Li
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xue-Yan Zhang
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zeng-Hui Tian
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Cheng Liu
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Shi-Tao Wang
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Fa-Rong Zhang
- Department of Nephrology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
- *Correspondence: Fa-Rong Zhang,
| |
Collapse
|
20
|
O’Sullivan ED, Mylonas KJ, Bell R, Carvalho C, Baird DP, Cairns C, Gallagher KM, Campbell R, Docherty M, Laird A, Henderson NC, Chandra T, Kirschner K, Conway B, Dihazi GH, Zeisberg M, Hughes J, Denby L, Dihazi H, Ferenbach DA. Single-cell analysis of senescent epithelia reveals targetable mechanisms promoting fibrosis. JCI Insight 2022; 7:e154124. [PMID: 36509292 PMCID: PMC9746814 DOI: 10.1172/jci.insight.154124] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/05/2022] [Indexed: 11/22/2022] Open
Abstract
Progressive fibrosis and maladaptive organ repair result in significant morbidity and millions of premature deaths annually. Senescent cells accumulate with aging and after injury and are implicated in organ fibrosis, but the mechanisms by which senescence influences repair are poorly understood. Using 2 murine models of injury and repair, we show that obstructive injury generated senescent epithelia, which persisted after resolution of the original injury, promoted ongoing fibrosis, and impeded adaptive repair. Depletion of senescent cells with ABT-263 reduced fibrosis in reversed ureteric obstruction and after renal ischemia/reperfusion injury. We validated these findings in humans, showing that senescence and fibrosis persisted after relieved renal obstruction. We next characterized senescent epithelia in murine renal injury using single-cell RNA-Seq. We extended our classification to human kidney and liver disease and identified conserved profibrotic proteins, which we validated in vitro and in human disease. We demonstrated that increased levels of protein disulfide isomerase family A member 3 (PDIA3) augmented TGF-β-mediated fibroblast activation. Inhibition of PDIA3 in vivo significantly reduced kidney fibrosis during ongoing renal injury and as such represented a new potential therapeutic pathway. Analysis of the signaling pathways of senescent epithelia connected senescence to organ fibrosis, permitting rational design of antifibrotic therapies.
Collapse
Affiliation(s)
- Eoin D. O’Sullivan
- Centre for Inflammation Research, Queen’s Medical Research Institute, College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh, United Kingdom
- Kidney Health Service, Royal Brisbane and Women’s Hospital, Brisbane, Queensland, Australia
| | - Katie J. Mylonas
- Centre for Inflammation Research, Queen’s Medical Research Institute, College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Rachel Bell
- Centre for Cardiovascular Science, Queen’s Medical Research Institute, College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Cyril Carvalho
- Centre for Inflammation Research, Queen’s Medical Research Institute, College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - David P. Baird
- Centre for Inflammation Research, Queen’s Medical Research Institute, College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Carolynn Cairns
- Centre for Cardiovascular Science, Queen’s Medical Research Institute, College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Kevin M. Gallagher
- Department of Urology, Western General Hospital, Edinburgh, United Kingdom
| | - Ross Campbell
- Centre for Inflammation Research, Queen’s Medical Research Institute, College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Marie Docherty
- Centre for Inflammation Research, Queen’s Medical Research Institute, College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Alexander Laird
- Department of Urology, Western General Hospital, Edinburgh, United Kingdom
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Neil C. Henderson
- Centre for Inflammation Research, Queen’s Medical Research Institute, College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh, United Kingdom
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Tamir Chandra
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Kristina Kirschner
- The Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
- Cancer Research UK Beatson Institute, Glasgow, United Kingdom
| | - Bryan Conway
- Centre for Cardiovascular Science, Queen’s Medical Research Institute, College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | | | | | - Jeremy Hughes
- Centre for Inflammation Research, Queen’s Medical Research Institute, College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Laura Denby
- Kidney Health Service, Royal Brisbane and Women’s Hospital, Brisbane, Queensland, Australia
| | - Hassan Dihazi
- Clinic for Nephrology and Rheumatology, and
- Center for Biostructural Imaging of Neurodegeneration (BIN), University Medical Center Göttingen, Göttingen, Germany
| | - David A. Ferenbach
- Centre for Inflammation Research, Queen’s Medical Research Institute, College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
21
|
Ijima S, Saito Y, Nagaoka K, Yamamoto S, Sato T, Miura N, Iwamoto T, Miyajima M, Chikenji TS. Fisetin reduces the senescent tubular epithelial cell burden and also inhibits proliferative fibroblasts in murine lupus nephritis. Front Immunol 2022; 13:960601. [PMID: 36466895 PMCID: PMC9714549 DOI: 10.3389/fimmu.2022.960601] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 10/31/2022] [Indexed: 11/22/2023] Open
Abstract
Systemic lupus erythematosus (SLE) is a chronic autoimmune inflammatory disease characterized by the involvement of multiple organs. Lupus nephritis (LN) is a major risk factor for overall morbidity and mortality in SLE patients. Hence, designing effective drugs is pivotal for treating individuals with LN. Fisetin plays a senolytic role by specifically eliminating senescent cells, inhibiting cell proliferation, and exerting anti-inflammatory, anti-oxidant, and anti-tumorigenic effects. However, limited research has been conducted on the utility and therapeutic mechanisms of fisetin in chronic inflammation. Similarly, whether the effects of fisetin depend on cell type remains unclear. In this study, we found that LN-prone MRL/lpr mice demonstrated accumulation of Ki-67-positive myofibroblasts and p15INK4B-positive senescent tubular epithelial cells (TECs) that highly expressed transforming growth factor β (TGF-β). TGF-β stimulation induced senescence of NRK-52E renal TECs and proliferation of NRK-49F renal fibroblasts, suggesting that TGF-β promotes senescence and proliferation in a cell type-dependent manner, which is inhibited by fisetin treatment in vitro. Furthermore, fisetin treatment in vivo reduced the number of senescent TECs and myofibroblasts, which attenuated kidney fibrosis, reduced senescence-associated secretory phenotype (SASP) expression, and increased TEC proliferation. These data suggest that the effects of fisetin vary depending on the cell type and may have therapeutic effects in complex and diverse LN pathologies.
Collapse
Affiliation(s)
- Shogo Ijima
- Department of Oral Surgery, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Yuki Saito
- Department of Anatomy, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Kentaro Nagaoka
- Department of Anatomy, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Sena Yamamoto
- Graduate School of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Tsukasa Sato
- Graduate School of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Norihiro Miura
- Graduate School of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Taiki Iwamoto
- Department of Anatomy, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Maki Miyajima
- Graduate School of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Takako S. Chikenji
- Department of Anatomy, Sapporo Medical University School of Medicine, Sapporo, Japan
- Graduate School of Health Sciences, Hokkaido University, Sapporo, Japan
| |
Collapse
|
22
|
Huang W, Hickson LJ, Eirin A, Kirkland JL, Lerman LO. Cellular senescence: the good, the bad and the unknown. Nat Rev Nephrol 2022; 18:611-627. [PMID: 35922662 PMCID: PMC9362342 DOI: 10.1038/s41581-022-00601-z] [Citation(s) in RCA: 511] [Impact Index Per Article: 170.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2022] [Indexed: 01/10/2023]
Abstract
Cellular senescence is a ubiquitous process with roles in tissue remodelling, including wound repair and embryogenesis. However, prolonged senescence can be maladaptive, leading to cancer development and age-related diseases. Cellular senescence involves cell-cycle arrest and the release of inflammatory cytokines with autocrine, paracrine and endocrine activities. Senescent cells also exhibit morphological alterations, including flattened cell bodies, vacuolization and granularity in the cytoplasm and abnormal organelles. Several biomarkers of cellular senescence have been identified, including SA-βgal, p16 and p21; however, few markers have high sensitivity and specificity. In addition to driving ageing, senescence of immune and parenchymal cells contributes to the development of a variety of diseases and metabolic disorders. In the kidney, senescence might have beneficial roles during development and recovery from injury, but can also contribute to the progression of acute kidney injury and chronic kidney disease. Therapies that target senescence, including senolytic and senomorphic drugs, stem cell therapies and other interventions, have been shown to extend lifespan and reduce tissue injury in various animal models. Early clinical trials confirm that senotherapeutic approaches could be beneficial in human disease. However, larger clinical trials are needed to translate these approaches to patient care.
Collapse
Affiliation(s)
- Weijun Huang
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - LaTonya J Hickson
- Division of Nephrology and Hypertension, Mayo Clinic, Jacksonville, FL, USA
| | - Alfonso Eirin
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - James L Kirkland
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
| | - Lilach O Lerman
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
23
|
Zhao JL, Qiao XH, Mao JH, Liu F, Fu HD. The interaction between cellular senescence and chronic kidney disease as a therapeutic opportunity. Front Pharmacol 2022; 13:974361. [PMID: 36091755 PMCID: PMC9459105 DOI: 10.3389/fphar.2022.974361] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/03/2022] [Indexed: 01/10/2023] Open
Abstract
Chronic kidney disease (CKD) is an increasingly serious public health problem in the world, but the effective therapeutic approach is quite limited at present. Cellular senescence is characterized by the irreversible cell cycle arrest, senescence-associated secretory phenotype (SASP) and senescent cell anti-apoptotic pathways (SCAPs). Renal senescence shares many similarities with CKD, including etiology, mechanism, pathological change, phenotype and outcome, however, it is difficult to judge whether renal senescence is a trigger or a consequence of CKD, since there is a complex correlation between them. A variety of cellular signaling mechanisms are involved in their interactive association, which provides new potential targets for the intervention of CKD, and then extends the researches on senotherapy. Our review summarizes the common features of renal senescence and CKD, the interaction between them, the strategies of senotherapy, and the open questions for future research.
Collapse
Affiliation(s)
- Jing-Li Zhao
- Department of Nephrology, The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Xiao-Hui Qiao
- Department of Pediatric Internal Medicine, Ningbo Women and Children’s Hospital, Ningbo, China
| | - Jian-Hua Mao
- Department of Nephrology, The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
- *Correspondence: Jian-Hua Mao,
| | - Fei Liu
- Department of Nephrology, The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Hai-Dong Fu
- Department of Nephrology, The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| |
Collapse
|
24
|
Arabi T, Shafqat A, Sabbah BN, Fawzy NA, Shah H, Abdulkader H, Razak A, Sabbah AN, Arabi Z. Obesity-related kidney disease: Beyond hypertension and insulin-resistance. Front Endocrinol (Lausanne) 2022; 13:1095211. [PMID: 36726470 PMCID: PMC9884830 DOI: 10.3389/fendo.2022.1095211] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 12/22/2022] [Indexed: 01/19/2023] Open
Abstract
Chronic kidney disease (CKD) causes considerable morbidity, mortality, and health expenditures worldwide. Obesity is a significant risk factor for CKD development, partially explained by the high prevalence of diabetes mellitus and hypertension in obese patients. However, adipocytes also possess potent endocrine functions, secreting a myriad of cytokines and adipokines that contribute to insulin resistance and induce a chronic low-grade inflammatory state thereby damaging the kidney. CKD development itself is associated with various metabolic alterations that exacerbate adipose tissue dysfunction and insulin resistance. This adipose-renal axis is a major focus of current research, given the rising incidence of CKD and obesity. Cellular senescence is a biologic hallmark of aging, and age is another significant risk factor for obesity and CKD. An elevated senescent cell burden in adipose tissue predicts renal dysfunction in animal models, and senotherapies may alleviate these phenotypes. In this review, we discuss the direct mechanisms by which adipose tissue contributes to CKD development, emphasizing the potential clinical importance of such pathways in augmenting the care of CKD.
Collapse
Affiliation(s)
- Tarek Arabi
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
- *Correspondence: Tarek Arabi,
| | - Areez Shafqat
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | | | | | - Hassan Shah
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | | | - Adhil Razak
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | | | - Ziad Arabi
- Division of Nephrology, Department of Medicine, King Abdulaziz Medical City, Riyadh, Saudi Arabia
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
- College of Medicine, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| |
Collapse
|
25
|
Quimby J, Erickson A, Mcleland S, Cianciolo R, Maranon D, Lunn K, Elliott J, Lawson J, Hess A, Paschall R, Bailey S. Renal Senescence, Telomere Shortening and Nitrosative Stress in Feline Chronic Kidney Disease. Vet Sci 2021; 8:vetsci8120314. [PMID: 34941841 PMCID: PMC8703545 DOI: 10.3390/vetsci8120314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/12/2021] [Accepted: 12/02/2021] [Indexed: 01/15/2023] Open
Abstract
Kidney tissues from cats with naturally occurring chronic kidney disease (CKD) and adult and senior cats without CKD were assessed to determine whether telomere shortening and nitrosative stress are associated with senescence in feline CKD. The histopathologic assessment of percent global glomerulosclerosis, inflammatory infiltrate, and fibrosis was performed. Senescence and nitrosative stress were evaluated utilizing p16 and iNOS immunohistochemistry, respectively. Renal telomere length was evaluated using telomere fluorescent in situ hybridization combined with immunohistochemistry. CKD cats were found to have significantly increased p16 staining in both the renal cortex and corticomedullary junction compared to adult and senior cats. Senior cats had significantly increased p16 staining in the corticomedullary junction compared to adult cats. p16 staining in both the renal cortex and corticomedullary junction were found to be significantly correlated with percent global glomerulosclerosis, cortical inflammatory infiltrate, and fibrosis scores. p16 staining also correlated with age in non-CKD cats. Average telomere length was significantly decreased in CKD cats compared to adult and senior cats. CKD cats had significantly increased iNOS staining compared to adult cats. Our results demonstrate increased renal senescence, telomere shortening, and nitrosative stress in feline CKD, identifying these patients as potential candidates for senolytic therapy with translational potential.
Collapse
Affiliation(s)
- Jessica Quimby
- Department of Veterinary Clinical Sciences, The Ohio State University, Columbus, OH 43210, USA; (A.E.); (R.P.)
- Correspondence: ; Tel.: +1-614-292-3551
| | - Andrea Erickson
- Department of Veterinary Clinical Sciences, The Ohio State University, Columbus, OH 43210, USA; (A.E.); (R.P.)
| | - Shannon Mcleland
- International Veterinary Renal Pathology Service, Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA; (S.M.); (R.C.)
| | - Rachel Cianciolo
- International Veterinary Renal Pathology Service, Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA; (S.M.); (R.C.)
| | - David Maranon
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80521-1618, USA; (D.M.); (S.B.)
| | - Katharine Lunn
- Department of Clinical Sciences, North Carolina State University, Raleigh, NC 27695-0001, USA;
| | - Jonathan Elliott
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London E16 2PX, UK;
| | - Jack Lawson
- Department of Clinical Sciences and Services, Royal Veterinary College, Herts AL9 7TA, UK;
| | - Ann Hess
- Department of Statistics, Colorado State University, Fort Collins, CO 80521-4593, USA;
| | - Rene Paschall
- Department of Veterinary Clinical Sciences, The Ohio State University, Columbus, OH 43210, USA; (A.E.); (R.P.)
| | - Susan Bailey
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80521-1618, USA; (D.M.); (S.B.)
| |
Collapse
|
26
|
Wei SY, Guo S, Feng B, Ning SW, Du XY. Identification of miRNA-mRNA network and immune-related gene signatures in IgA nephropathy by integrated bioinformatics analysis. BMC Nephrol 2021; 22:392. [PMID: 34823491 PMCID: PMC8620631 DOI: 10.1186/s12882-021-02606-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 11/11/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND IgA nephropathy (IgAN) is the most common form of primary glomerulonephritis worldwide, and its diagnosis depends mainly on renal biopsy. However, there is no specific treatment for IgAN. Moreover, its causes and underlying molecular events require further exploration. METHODS The expression profiles of GSE64306 and GSE93798 were downloaded from the Gene Expression Omnibus (GEO) database and used to identify the differential expression of miRNAs and genes, respectively. The StarBase and TransmiR databases were employed to predict target genes and transcription factors of the differentially expressed miRNAs (DE-miRNAs). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were conducted to predict biological functions. A comprehensive analysis of the miRNA-mRNA regulatory network was constructed, and protein-protein interaction (PPI) networks and hub genes were identified. CIBERSORT was used to examine the immune cells in IgAN, and correlation analyses were performed between the hub genes and infiltrating immune cells. RESULTS Four downregulated miRNAs and 16 upregulated miRNAs were identified. Forty-five and twelve target genes were identified for the upregulated and downregulated DE-miRNAs, respectively. CDKN1A, CDC23, EGR1, HIF1A, and TRIM28 were the hub genes with the highest degrees of connectivity. CIBERSORT revealed increases in the numbers of activated NK cells, M1 and M2 macrophages, CD4 naive T cells, and regulatory T cells in IgAN. Additionally, HIF1A, CDC23, TRIM28, and CDKN1A in IgAN patients were associated with immune cell infiltration. CONCLUSIONS A potential miRNA-mRNA regulatory network contributing to IgAN onset and progression was successfully established. The results of the present study may facilitate the diagnosis and treatment of IgAN by targeting established miRNA-mRNA interaction networks. Infiltrating immune cells may play significant roles in IgAN pathogenesis. Future studies on these immune cells may help guide immunotherapy for IgAN patients.
Collapse
Affiliation(s)
- Shi-Yao Wei
- Department of Nephrology, Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Nangang District, Harbin, Heilongjiang Province, 150086, People's Republic of China
- College of Bioinformatics Science and Technology, Harbin Medical University, 157 Baojian Road, Nangang District, Harbin, 150081, Heilongjiang Province, China
| | - Shuang Guo
- College of Bioinformatics Science and Technology, Harbin Medical University, 157 Baojian Road, Nangang District, Harbin, 150081, Heilongjiang Province, China
| | - Bei Feng
- College of Bioinformatics Science and Technology, Harbin Medical University, 157 Baojian Road, Nangang District, Harbin, 150081, Heilongjiang Province, China
- Department of Nephrology, Fourth Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
| | - Shang-Wei Ning
- College of Bioinformatics Science and Technology, Harbin Medical University, 157 Baojian Road, Nangang District, Harbin, 150081, Heilongjiang Province, China.
| | - Xuan-Yi Du
- Department of Nephrology, Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Nangang District, Harbin, Heilongjiang Province, 150086, People's Republic of China.
| |
Collapse
|
27
|
Gong W, Luo C, Peng F, Xiao J, Zeng Y, Yin B, Chen X, Li S, He X, Liu Y, Cao H, Xu J, Long H. Brahma-related gene-1 promotes tubular senescence and renal fibrosis through Wnt/β-catenin/autophagy axis. Clin Sci (Lond) 2021; 135:1873-1895. [PMID: 34318888 PMCID: PMC8358963 DOI: 10.1042/cs20210447] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/09/2021] [Accepted: 07/28/2021] [Indexed: 02/06/2023]
Abstract
Although accelerated cellular senescence is closely related to the progression of chronic kidney disease (CKD) and renal fibrosis, the underlying mechanisms remain largely unknown. Here, we reported that tubular aberrant expression of Brahma-related gene 1 (BRG1), an enzymatic subunit of the SWItch/Sucrose Non-Fermentable complex, is critically involved in tubular senescence and renal fibrosis. BRG1 was significantly up-regulated in the kidneys, predominantly in tubular epithelial cells, of both CKD patients and unilateral ureteral obstruction (UUO) mice. In vivo, shRNA-mediated knockdown of BRG1 significantly ameliorated renal fibrosis, improved tubular senescence, and inhibited UUO-induced activation of Wnt/β-catenin pathway. In mouse renal tubular epithelial cells (mTECs) and primary renal tubular cells, inhibition of BRG1 diminished transforming growth factor-β1 (TGF-β1)-induced cellular senescence and fibrotic responses. Correspondingly, ectopic expression of BRG1 in mTECs or normal kidneys increased p16INK4a, p19ARF, and p21 expression and senescence-associated β-galactosidase (SA-β-gal) activity, indicating accelerated tubular senescence. Additionally, BRG1-mediated pro-fibrotic responses were largely abolished by small interfering RNA (siRNA)-mediated p16INK4a silencing in vitro or continuous senolytic treatment with ABT-263 in vivo. Moreover, BRG1 activated the Wnt/β-catenin pathway, which further inhibited autophagy. Pharmacologic inhibition of the Wnt/β-catenin pathway (ICG-001) or rapamycin (RAPA)-mediated activation of autophagy effectively blocked BRG1-induced tubular senescence and fibrotic responses, while bafilomycin A1 (Baf A1)-mediated inhibition of autophagy abolished the effects of ICG-001. Further, BRG1 altered the secretome of senescent tubular cells, which promoted proliferation and activation of fibroblasts. Taken together, our results indicate that BRG1 induces tubular senescence by inhibiting autophagy via the Wnt/β-catenin pathway, which ultimately contributes to the development of renal fibrosis.
Collapse
Affiliation(s)
- Wangqiu Gong
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Congwei Luo
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Fenfen Peng
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Jing Xiao
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Yiqun Zeng
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Bohui Yin
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Xiaowen Chen
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Shuting Li
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Xiaoyang He
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Yanxia Liu
- Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Huihui Cao
- Traditional Chinese Pharmacological Laboratory, Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Jiangping Xu
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Haibo Long
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| |
Collapse
|
28
|
Tuttle CS, Luesken SW, Waaijer ME, Maier AB. Senescence in tissue samples of humans with age-related diseases: A systematic review. Ageing Res Rev 2021; 68:101334. [PMID: 33819674 DOI: 10.1016/j.arr.2021.101334] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 03/03/2021] [Accepted: 03/20/2021] [Indexed: 12/31/2022]
Abstract
BACKGROUND Higher numbers of senescent cells have been implicated in age-related disease pathologies. However, whether different diseases have different senescent phenotypes is unknown. Here we provide a systematic overview of the current available evidence of senescent cells in age-related diseases pathologies in humans and the markers currently used to detect senescence levels in humans. METHODS PubMed, Web of Science and EMBASE were systematically searched from inception to the 29th of September 2019, using keywords related to 'senescence', 'age-related diseases' and 'biopsies'. RESULTS In total 12,590 articles were retrieved of which 103 articles were included in this review. The role of senescence in age-related disease has been assessed in 9 different human organ system and 27 different age-related diseases of which heart (27/103) and the respiratory systems (18/103) are the most investigated. Overall, 27 different markers of senescence have been used to determine cellular senescence and the cell cycle regulator p16ink4a is most often used (23/27 age-related pathologies). CONCLUSION This review demonstrates that a higher expression of senescence markers are observed within disease pathologies. However, not all markers to detect senescence have been assessed in all tissue types.
Collapse
|
29
|
Single-nuclear transcriptomics reveals diversity of proximal tubule cell states in a dynamic response to acute kidney injury. Proc Natl Acad Sci U S A 2021; 118:2026684118. [PMID: 34183416 PMCID: PMC8271768 DOI: 10.1073/pnas.2026684118] [Citation(s) in RCA: 135] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
A single acute kidney injury event increases the risk of progression to chronic kidney disease (CKD). Combining single-nucleus RNA sequencing with genetic tracing of injured proximal tubule cells identified a spatially dynamic, evolving injury response following ischemia–reperfusion injury. Failed proximal tubule repair leads to the persistence of a profibrotic, proinflammatory Vcam1+/Ccl2+ cell type exhibiting a senescence-associated secretory phenotype and a marked transcriptional activation of NF-κB and AP-1 pathway signatures, but no signs of G2/M cell cycle arrest. Insights from this study can inform strategies to improve renal repair and prevent CKD progression. Acute kidney injury (AKI), commonly caused by ischemia, sepsis, or nephrotoxic insult, is associated with increased mortality and a heightened risk of chronic kidney disease (CKD). AKI results in the dysfunction or death of proximal tubule cells (PTCs), triggering a poorly understood autologous cellular repair program. Defective repair associates with a long-term transition to CKD. We performed a mild-to-moderate ischemia–reperfusion injury (IRI) to model injury responses reflective of kidney injury in a variety of clinical settings, including kidney transplant surgery. Single-nucleus RNA sequencing of genetically labeled injured PTCs at 7-d (“early”) and 28-d (“late”) time points post-IRI identified specific gene and pathway activity in the injury–repair transition. In particular, we identified Vcam1+/Ccl2+ PTCs at a late injury stage distinguished by marked activation of NF-κB–, TNF-, and AP-1–signaling pathways. This population of PTCs showed features of a senescence-associated secretory phenotype but did not exhibit G2/M cell cycle arrest, distinct from other reports of maladaptive PTCs following kidney injury. Fate-mapping experiments identified spatially and temporally distinct origins for these cells. At the cortico-medullary boundary (CMB), where injury initiates, the majority of Vcam1+/Ccl2+ PTCs arose from early replicating PTCs. In contrast, in cortical regions, only a subset of Vcam1+/Ccl2+ PTCs could be traced to early repairing cells, suggesting late-arising sites of secondary PTC injury. Together, these data indicate even moderate IRI is associated with a lasting injury, which spreads from the CMB to cortical regions. Remaining failed-repair PTCs are likely triggers for chronic disease progression.
Collapse
|
30
|
Campbell RA, Docherty MH, Ferenbach DA, Mylonas KJ. The Role of Ageing and Parenchymal Senescence on Macrophage Function and Fibrosis. Front Immunol 2021; 12:700790. [PMID: 34220864 PMCID: PMC8248495 DOI: 10.3389/fimmu.2021.700790] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 06/07/2021] [Indexed: 02/06/2023] Open
Abstract
In this review, we examine senescent cells and the overlap between the direct biological impact of senescence and the indirect impact senescence has via its effects on other cell types, particularly the macrophage. The canonical roles of macrophages in cell clearance and in other physiological functions are discussed with reference to their functions in diseases of the kidney and other organs. We also explore the translational potential of different approaches based around the macrophage in future interventions to target senescent cells, with the goal of preventing or reversing pathologies driven or contributed to in part by senescent cell load in vivo.
Collapse
Affiliation(s)
- Ross A. Campbell
- Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Marie-Helena Docherty
- Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
- Department of Renal Medicine, Royal Infirmary of Edinburgh, Edinburgh, United Kingdom
| | - David A. Ferenbach
- Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
- Department of Renal Medicine, Royal Infirmary of Edinburgh, Edinburgh, United Kingdom
| | - Katie J. Mylonas
- Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
31
|
Li C, Shen Y, Huang L, Liu C, Wang J. Senolytic therapy ameliorates renal fibrosis postacute kidney injury by alleviating renal senescence. FASEB J 2021; 35:e21229. [PMID: 33368613 DOI: 10.1096/fj.202001855rr] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 11/06/2020] [Accepted: 11/11/2020] [Indexed: 11/11/2022]
Abstract
Acute kidney injury (AKI) is a common clinical problem, and patients who survive AKI have a high risk of chronic kidney disease (CKD). The mechanism of CKD post-AKI, characterized by progressive renal fibrosis, is still unclear. Maladaptive tubular epithelial cells (TECs) after AKI are considered a leading cause of renal fibrosis post-AKI. TECs under maladaptive repair manifest characteristics of senescence. Removing senescent TECs by genetic ablation has been proven effective in reducing renal fibrosis. Senolytics, which eliminate senescent cells by pharmacological intervention, have been studied in a series of degenerative diseases. To our knowledge, the effects of senolytics on renal fibrosis post-AKI have not been verified before. Here, we confirmed renal senescence in the unilateral ischemia/reperfusion injury murine model. Senescent TECs could activate fibroblasts and senolytics specifically induced apoptosis of senescent TECs. Next, we demonstrated that senolytics could reduce renal senescence and ameliorate renal fibrosis in both unilateral renal ischemia/reperfusion injury and multiple-cisplatin-treatment murine models. Our results indicate senescent TECs as a vital factor in renal fibrosis progression, and senolytic therapy might be promising for treating CKD post-AKI.
Collapse
Affiliation(s)
- Caizhen Li
- National Clinical Research Center of Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Yanting Shen
- National Clinical Research Center of Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Liuwei Huang
- National Clinical Research Center of Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Chongbin Liu
- National Clinical Research Center of Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Jun Wang
- National Clinical Research Center of Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, P.R. China
| |
Collapse
|
32
|
Mylonas KJ, O'Sullivan ED, Humphries D, Baird DP, Docherty MH, Neely SA, Krimpenfort PJ, Melk A, Schmitt R, Ferreira-Gonzalez S, Forbes SJ, Hughes J, Ferenbach DA. Cellular senescence inhibits renal regeneration after injury in mice, with senolytic treatment promoting repair. Sci Transl Med 2021; 13:eabb0203. [PMID: 34011625 DOI: 10.1126/scitranslmed.abb0203] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 12/01/2020] [Accepted: 04/30/2021] [Indexed: 12/19/2022]
Abstract
The ability of the kidney to regenerate successfully after injury is lost with advancing age, chronic kidney disease, and after irradiation. The factors responsible for this reduced regenerative capacity remain incompletely understood, with increasing interest in a potential role for cellular senescence in determining outcomes after injury. Here, we demonstrated correlations between senescent cell load and functional loss in human aging and chronic kidney diseases including radiation nephropathy. We dissected the causative role of senescence in the augmented fibrosis occurring after injury in aged and irradiated murine kidneys. In vitro studies on human proximal tubular epithelial cells and in vivo mouse studies demonstrated that senescent renal epithelial cells produced multiple components of the senescence-associated secretory phenotype including transforming growth factor β1, induced fibrosis, and inhibited tubular proliferative capacity after injury. Treatment of aged and irradiated mice with the B cell lymphoma 2/w/xL inhibitor ABT-263 reduced senescent cell numbers and restored a regenerative phenotype in the kidneys with increased tubular proliferation, improved function, and reduced fibrosis after subsequent ischemia-reperfusion injury. Senescent cells are key determinants of renal regenerative capacity in mice and represent emerging treatment targets to protect aging and vulnerable kidneys in man.
Collapse
Affiliation(s)
- Katie J Mylonas
- Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Eoin D O'Sullivan
- Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Duncan Humphries
- Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - David P Baird
- Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
- Royal Infirmary of Edinburgh, Edinburgh EH16 4SA, UK
| | - Marie-Helena Docherty
- Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Sarah A Neely
- Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
- Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, UK
| | | | - Anette Melk
- Hannover Medical School, 30625 Hannover, Germany
| | | | | | - Stuart J Forbes
- Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Jeremy Hughes
- Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - David A Ferenbach
- Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK.
| |
Collapse
|
33
|
Dai H, Hu W, Lin L, Wang L, Chen J, He Y. Tubular decoy receptor 2 as a predictor of prognosis in patients with immunoglobulin A nephropathy. Clin Kidney J 2021; 14:1458-1468. [PMID: 33959273 PMCID: PMC8087134 DOI: 10.1093/ckj/sfaa257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 11/13/2020] [Indexed: 11/14/2022] Open
Abstract
Background Accelerated senescence of renal tubular epithelial cells (RTECs) might contribute to immunoglobulin A nephropathy (IgAN) progression. This study aimed to determine whether the RTEC senescence marker, decoy receptor 2 (DcR2), could predict prognosis in IgAN. Methods We included a retrospective cohort of 105 patients with biopsy-proven IgAN. Tubular DcR2 expression was assessed at renal biopsy and the Oxford histological MEST-C score [mesangial hypercellularity (M), endocapillary proliferation (E), segmental sclerosis (S), interstitial fibrosis/tubular atrophy (T) and crescents (C)] defined disease severity. IgAN progression was defined as a composite of end-stage renal disease or a 30% decline in the estimated glomerular filtration rate (eGFR), analyzed using Kaplan–Meier and Cox regression analyses. Results Tubular DcR2 was overexpressed in IgAN. Numbers of DcR2 and p16 double-positive RTECs increased with increasing severity of tubular atrophy/interstitial fibrosis (T lesion). Patients with ≥25% tubular DcR2 expression experienced worse proteinuria, T lesions and a lower eGFR. Cumulative renal survival was significantly lower in patients with ≥25% DcR2 positivity. Multivariate regression analyses showed that ≥25% tubular DcR2 expression was significantly associated with worse eGFR slopes (the rate of renal function decline; P = 0.003) and the incidence of the composite outcome (P = 0.001) in IgAN. The addition of tubular DcR2 to a model with clinical data at biopsy (mean arterial pressure, proteinuria and eGFR) or MEST-C score significantly improved the 5-year risk prediction of IgAN progression, as confirmed by receiver operating characteristic curve analyses. Conclusions Tubular DcR2 expression detected at biopsy was a strong independent predictor for IgAN progression and might have prognostic value in addition to established risk markers.
Collapse
Affiliation(s)
- Huanzi Dai
- Department of Nephrology, Daping Hospital, Army Medical University, Chongqing, China
| | - Wei Hu
- Department of Nephrology, Daping Hospital, Army Medical University, Chongqing, China.,Department of Nephrology, University-Town Hospital of Chongqing Medical University, Chongqing, China
| | - Lirong Lin
- Department of Nephrology, Daping Hospital, Army Medical University, Chongqing, China
| | - Liming Wang
- Department of Nephrology, Daping Hospital, Army Medical University, Chongqing, China
| | - Jia Chen
- Department of Nephrology, Daping Hospital, Army Medical University, Chongqing, China
| | - Yani He
- Department of Nephrology, Daping Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
34
|
Verzola D, Saio M, Picciotto D, Viazzi F, Russo E, Cipriani L, Carta A, Costigliolo F, Gaggero G, Salvidio G, Esposito P, Garibotto G, Poggi L. Cellular Senescence Is Associated with Faster Progression of Focal Segmental Glomerulosclerosis. Am J Nephrol 2021; 51:950-958. [PMID: 33440379 DOI: 10.1159/000511560] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 09/12/2020] [Indexed: 02/05/2023]
Abstract
BACKGROUND A current, albeit unproven, hypothesis is that an acceleration of cellular senescence is involved in impaired renal repair and progression of glomerular diseases. Focal segmental glomerulosclerosis (FSGS) is a glomerular disease with a substantial risk for progression to ESRD. However, if and to what extent cell senescence predicts a negative outcome in FSGS is still unknown. METHODS The hypothesis that cell senescence represents a proximate mechanism by which the kidney is damaged in FSGS (NOS phenotype) was investigated in 26 consecutive kidney biopsies from adult FSGS cases (eGFR 72 ± 4 mL/min, proteinuria 2.3 ± 0.6 g/day) who were incident for 2 years in a Northern Italian nephrology center and had a 6-year clinical follow-up. RESULTS Cell senescence (p16INK4A, SA-β-galactosidase [SA-β-Gal]) was upregulated by ∼3- to 4-fold in both glomerular and tubular cells in kidney biopsies of FSGS as compared to age-matched controls (p < 0.05-0.01). Tubular SA-β-Gal correlated with proteinuria and glomerulosclerosis, while only as a trend, tubular p16INK4A was directly associated with interstitial fibrosis. At univariate analysis, basal eGFR, proteinuria, and tubular expression of SA-β-Gal and p16INK4A were significantly directly related to the annual loss of eGFR. No correlation was observed between glomerular p16INK4A and eGFR loss. However, at multivariate analysis, eGFR, proteinuria, and tubular p16INK4A, but not SA-β-Gal, contributed significantly to the prediction of eGFR loss. CONCLUSIONS The results indicate that an elevated cell senescence rate, expressed by an upregulation of p16INK4A in tubules at the time of initial biopsy, represents an independent predictor of progression to ESRD in adult patients with FSGS.
Collapse
Affiliation(s)
- Daniela Verzola
- Division of Nephrology, Dialysis and Transplantation, Department of Internal Medicine and IRCCS Ospedale Policlinico San Martino, University of Genova, Genova, Italy
| | - Michela Saio
- Division of Nephrology, Dialysis and Transplantation, Department of Internal Medicine and IRCCS Ospedale Policlinico San Martino, University of Genova, Genova, Italy
| | - Daniela Picciotto
- Division of Nephrology, Dialysis and Transplantation, Department of Internal Medicine and IRCCS Ospedale Policlinico San Martino, University of Genova, Genova, Italy
| | - Francesca Viazzi
- Division of Nephrology, Dialysis and Transplantation, Department of Internal Medicine and IRCCS Ospedale Policlinico San Martino, University of Genova, Genova, Italy
| | - Elisa Russo
- Division of Nephrology, Dialysis and Transplantation, Department of Internal Medicine and IRCCS Ospedale Policlinico San Martino, University of Genova, Genova, Italy
| | - Leda Cipriani
- Division of Nephrology, Dialysis and Transplantation, Department of Internal Medicine and IRCCS Ospedale Policlinico San Martino, University of Genova, Genova, Italy
| | - Annalisa Carta
- Division of Nephrology, Dialysis and Transplantation, Department of Internal Medicine and IRCCS Ospedale Policlinico San Martino, University of Genova, Genova, Italy
| | - Francesca Costigliolo
- Division of Nephrology, Dialysis and Transplantation, Department of Internal Medicine and IRCCS Ospedale Policlinico San Martino, University of Genova, Genova, Italy
| | - Gabriele Gaggero
- Division of Pathology, IRCCS Ospedale Policlinico San Martino, University of Genova, Genova, Italy
| | - Gennaro Salvidio
- Division of Nephrology, Dialysis and Transplantation, Department of Internal Medicine and IRCCS Ospedale Policlinico San Martino, University of Genova, Genova, Italy
| | - Pasquale Esposito
- Division of Nephrology, Dialysis and Transplantation, Department of Internal Medicine and IRCCS Ospedale Policlinico San Martino, University of Genova, Genova, Italy
| | - Giacomo Garibotto
- Division of Nephrology, Dialysis and Transplantation, Department of Internal Medicine and IRCCS Ospedale Policlinico San Martino, University of Genova, Genova, Italy,
| | - Laura Poggi
- Division of Nephrology, Dialysis and Transplantation, Department of Internal Medicine and IRCCS Ospedale Policlinico San Martino, University of Genova, Genova, Italy
| |
Collapse
|
35
|
Chen XJ, Kim SR, Jiang K, Ferguson CM, Tang H, Zhu XY, Lerman A, Eirin A, Lerman LO. Renovascular Disease Induces Senescence in Renal Scattered Tubular-Like Cells and Impairs Their Reparative Potency. Hypertension 2021; 77:507-518. [PMID: 33390051 DOI: 10.1161/hypertensionaha.120.16218] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Scattered tubular-like cells (STCs), dedifferentiated renal tubular epithelial cells, contribute to renal self-healing, but severe injury might blunt their effectiveness. We hypothesized that ischemic renovascular disease (RVD) induces senescence in STC and impairs their reparative potency. CD24+/CD133+ STCs were isolated from swine kidneys after 16 weeks of RVD or healthy controls. To test their reparative capabilities in injured kidneys, control or RVD-STC (5×105) were prelabeled and injected into the aorta of 2 kidneys, 1-clip (2k,1c) mice 2 weeks after surgery. Murine renal function and oxygenation were studied in vivo 2 weeks after injection using micro-magnetic resonance imaging, and fibrosis, tubulointerstitial injury, capillary density, and expression of profibrotic and inflammatory genes ex vivo. STC isolated from swine RVD kidneys showed increased gene expression of senescence and senescence-associated secretory phenotype markers and positive SA-β-gal staining. Delivery of normal pig STCs in 2k,1c mice improved murine renal perfusion, blood flow, and glomerular filtration rate, and downregulated profibrotic and inflammatory gene expression. These renoprotective effects were blunted using STC harvested from RVD kidneys, which also failed to attenuate hypoxia, fibrosis, tubular injury, and capillary loss in injured mouse 2k,1c kidneys. Hence, RVD may induce senescence in endogenous STC and impair their reparative capacity. These observations implicate cellular senescence in the pathophysiology of ischemic kidney disease and support senolytic therapy to permit self-healing of senescent kidneys.
Collapse
Affiliation(s)
- Xiao-Jun Chen
- From the Division of Nephrology and Hypertension (X.-J.C., S.R.K., K.J., C.M.F., H.T., X.-Y.Z., A.E., L.O.L.), Mayo Clinic, Rochester, MN.,Department of Nephrology, The Second Xiangya Hospital of Central-South University, Changsha, Hunan, China (X.-J.C.)
| | - Seo Rin Kim
- From the Division of Nephrology and Hypertension (X.-J.C., S.R.K., K.J., C.M.F., H.T., X.-Y.Z., A.E., L.O.L.), Mayo Clinic, Rochester, MN.,Division of Nephrology, Pusan National University Yangsan Hospital, Korea (S.R.K.)
| | - Kai Jiang
- From the Division of Nephrology and Hypertension (X.-J.C., S.R.K., K.J., C.M.F., H.T., X.-Y.Z., A.E., L.O.L.), Mayo Clinic, Rochester, MN
| | - Christopher M Ferguson
- From the Division of Nephrology and Hypertension (X.-J.C., S.R.K., K.J., C.M.F., H.T., X.-Y.Z., A.E., L.O.L.), Mayo Clinic, Rochester, MN
| | - Hui Tang
- From the Division of Nephrology and Hypertension (X.-J.C., S.R.K., K.J., C.M.F., H.T., X.-Y.Z., A.E., L.O.L.), Mayo Clinic, Rochester, MN
| | - Xiang-Yang Zhu
- From the Division of Nephrology and Hypertension (X.-J.C., S.R.K., K.J., C.M.F., H.T., X.-Y.Z., A.E., L.O.L.), Mayo Clinic, Rochester, MN
| | - Amir Lerman
- Department of Cardiovascular Diseases (A.L.), Mayo Clinic, Rochester, MN
| | - Alfonso Eirin
- From the Division of Nephrology and Hypertension (X.-J.C., S.R.K., K.J., C.M.F., H.T., X.-Y.Z., A.E., L.O.L.), Mayo Clinic, Rochester, MN
| | - Lilach O Lerman
- From the Division of Nephrology and Hypertension (X.-J.C., S.R.K., K.J., C.M.F., H.T., X.-Y.Z., A.E., L.O.L.), Mayo Clinic, Rochester, MN
| |
Collapse
|
36
|
D'Marco L, Morillo V, Gorriz JL, Suarez MK, Nava M, Ortega Á, Parra H, Villasmil N, Rojas-Quintero J, Bermúdez V. SGLT2i and GLP-1RA in Cardiometabolic and Renal Diseases: From Glycemic Control to Adipose Tissue Inflammation and Senescence. J Diabetes Res 2021; 2021:9032378. [PMID: 34790827 PMCID: PMC8592766 DOI: 10.1155/2021/9032378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/01/2021] [Accepted: 10/18/2021] [Indexed: 12/16/2022] Open
Abstract
Background. Over the last few years, the use of sodium-glucose cotransporter 2 inhibitors (SGLT2i) and glucagon-like peptide 1 receptor agonists (GLP-1RA) has increased substantially in medical practice due to their documented benefits in cardiorenal and metabolic health. In this sense, and in addition to being used for glycemic control in diabetic patients, these drugs also have other favorable effects such as weight loss and lowering blood pressure, and more recently, they have been shown to have cardio and renoprotective effects with anti-inflammatory properties. Concerning the latter, the individual or associated use of these antihyperglycemic agents has been linked with a decrease in proinflammatory cytokines and with an improvement in the inflammatory profile in chronic endocrine-metabolic diseases. Hence, these drugs have been positioned as first-line therapy in the management of diabetes and its multiple comorbidities, such as obesity, which has been associated with persistent inflammatory states that induce dysfunction of the adipose tissue. Moreover, other frequent comorbidities in long-standing diabetic patients are chronic complications such as diabetic kidney disease, whose progression can be slowed by SGLT2i and/or GLP-1RA. The neuroendocrine and immunometabolism mechanisms underlying adipose tissue inflammation in individuals with diabetes and cardiometabolic and renal diseases are complex and not fully understood. Summary. This review intends to expose the probable molecular mechanisms and compile evidence of the synergistic or additive anti-inflammatory effects of SGLT2i and GLP-1RA and their potential impact on the management of patients with obesity and cardiorenal compromise.
Collapse
Affiliation(s)
- Luis D'Marco
- Hospital Clínico Universitario de Valencia, INCLIVA, Valencia 46010, Spain
- CEU Cardenal Herrera University, Valencia 46115, Spain
| | - Valery Morillo
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4004, Venezuela
| | - José Luis Gorriz
- Hospital Clínico Universitario de Valencia, INCLIVA, Valencia 46010, Spain
| | - María K. Suarez
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4004, Venezuela
| | - Manuel Nava
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4004, Venezuela
| | - Ángel Ortega
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4004, Venezuela
| | - Heliana Parra
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4004, Venezuela
| | - Nelson Villasmil
- School of Medicine, University of Zulia, Maracaibo 4004, Venezuela
| | - Joselyn Rojas-Quintero
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 77054, USA
| | - Valmore Bermúdez
- Universidad Simón Bolívar, Facultad de Ciencias de la Salud, Barranquilla 080002, Colombia
| |
Collapse
|
37
|
Xu J, Zhou L, Liu Y. Cellular Senescence in Kidney Fibrosis: Pathologic Significance and Therapeutic Strategies. Front Pharmacol 2020; 11:601325. [PMID: 33362554 PMCID: PMC7759549 DOI: 10.3389/fphar.2020.601325] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 10/21/2020] [Indexed: 01/10/2023] Open
Abstract
Age-related disorders such as chronic kidney disease (CKD) are increasingly prevalent globally and pose unprecedented challenges. In many aspects, CKD can be viewed as a state of accelerated and premature aging. Aging kidney and CKD share many common characteristic features with increased cellular senescence, a conserved program characterized by an irreversible cell cycle arrest with altered transcriptome and secretome. While developmental senescence and acute senescence may positively contribute to the fine-tuning of embryogenesis and injury repair, chronic senescence, when unresolved promptly, plays a crucial role in kidney fibrogenesis and CKD progression. Senescent cells elicit their fibrogenic actions primarily by secreting an assortment of inflammatory and profibrotic factors known as the senescence-associated secretory phenotype (SASP). Increasing evidence indicates that senescent cells could be a promising new target for therapeutic intervention known as senotherapy, which includes depleting senescent cells, modulating SASP and restoration of senescence inhibitors. In this review, we discuss current understanding of the role and mechanism of cellular senescence in kidney fibrosis. We also highlight potential options of targeting senescent cells for the treatment of CKD.
Collapse
Affiliation(s)
- Jie Xu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lili Zhou
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Youhua Liu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| |
Collapse
|
38
|
Luo ZF, Tang D, Xu HX, Lai LS, Chen JJ, Lin H, Yan Q, Zhang XZ, Wang G, Dai Y, Sui WG. Differential expression of transfer RNA-derived small RNAs in IgA nephropathy. Medicine (Baltimore) 2020; 99:e23437. [PMID: 33235128 PMCID: PMC7710249 DOI: 10.1097/md.0000000000023437] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND IgA nephropathy (IgAN) is one of the most common forms of primary glomerulonephritis. Recent studies have indicated that small noncoding RNAs, such as tRNA-derived small RNAs (tsRNAs), might be novel biomarkers for glomerulonephritis. We therefore investigated the potential roles and possible functions of the tsRNAs in IgAN. METHOD Peripheral blood mononuclear cells (PBMCs) were extracted from blood samples of the patients with IgAN and healthy control groups. The expression profiles of tsRNAs were assessed by small RNA sequencing (RNA-Seq) in PBMCs of the IgAN and control groups. Dysregulated tsRNAs were selected for validation by quantitative real-time polymerase chain reaction (qRT-PCR). Target gene prediction and enrichment were performed by bioinformatics analysis. RESULTS The results revealed that 143 significantly upregulated and 202 significantly downregulated tsRNAs were differentially altered in the IgAN group compared with the control group. Five upregulated tsRNAs (tRF-Val-AAC-007, tRF-Ala-AGC-063, tRF-Gln-CTG-010, tRF-Tyr-GTA-011 and tRF-Thr-AGT-007) and 3 downregulated tsRNAs (tiRNA-Val-TAC-004, tRF-Gly-CCC-005 and tRF-His-GTG-006) were selected for validation by qRT-PCR; the results were consistent with the sequencing data. Gene Ontology (GO) analysis revealed that the target genes predicted by upregulated tsRNAs were mostly enriched in "nucleic acid metabolic process,' "intracellular part,' and "ion binding,' whereas the target genes predicted by downregulated tsRNAs were mostly enriched in "regulation of cellular component organization,' "membrane-bound organelle,' and "ion binding.' Kyoto Encyclopedia of Genes and Genomes pathway analysis revealed that the target genes predicted by upregulated tsRNAs were mostly enriched in "herpes simplex virus 1 infection,' whereas the target genes predicted by downregulated tsRNAs were mostly enriched in "circadian rhythm CONCLUSIONS:: The present study confirmed the differential expression of tsRNAs in patients with IgAN, and these dysregulated tsRNAs might be novel potential targets for the diagnosis and treatment of IgAN.
Collapse
Affiliation(s)
- Zhi-Feng Luo
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong
- Department of Nephrology, Guangxi Key Laboratory of Metabolic Diseases Research, Affiliated No. 924 Military Hospital (Former No. 181 Military Hospital), Southern Medical University, Guilin, Guangxi
| | - Donge Tang
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong
- Department of Nephrology, Guangxi Key Laboratory of Metabolic Diseases Research, Affiliated No. 924 Military Hospital (Former No. 181 Military Hospital), Southern Medical University, Guilin, Guangxi
- Clinical Medical Research Center of The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, Guangdong
| | - Hui-Xuan Xu
- Clinical Medical Research Center of The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, Guangdong
| | - Liu-Sheng Lai
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong
- Department of Nephrology, Guangxi Key Laboratory of Metabolic Diseases Research, Affiliated No. 924 Military Hospital (Former No. 181 Military Hospital), Southern Medical University, Guilin, Guangxi
| | - Jie-Jing Chen
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong
- Department of Nephrology, Guangxi Key Laboratory of Metabolic Diseases Research, Affiliated No. 924 Military Hospital (Former No. 181 Military Hospital), Southern Medical University, Guilin, Guangxi
| | - Hua Lin
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong
- Department of Nephrology, Guangxi Key Laboratory of Metabolic Diseases Research, Affiliated No. 924 Military Hospital (Former No. 181 Military Hospital), Southern Medical University, Guilin, Guangxi
| | - Qiang Yan
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong
- Department of Nephrology, Guangxi Key Laboratory of Metabolic Diseases Research, Affiliated No. 924 Military Hospital (Former No. 181 Military Hospital), Southern Medical University, Guilin, Guangxi
| | - Xin-Zhou Zhang
- Clinical Medical Research Center of The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, Guangdong
| | - Gang Wang
- University of Chinese Academy of Sciences Shenzhen Hospital (Guangming), Shenzhen, Guangdong, China
| | - Yong Dai
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong
- Department of Nephrology, Guangxi Key Laboratory of Metabolic Diseases Research, Affiliated No. 924 Military Hospital (Former No. 181 Military Hospital), Southern Medical University, Guilin, Guangxi
- Clinical Medical Research Center of The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, Guangdong
| | - Wei-Guo Sui
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong
- Department of Nephrology, Guangxi Key Laboratory of Metabolic Diseases Research, Affiliated No. 924 Military Hospital (Former No. 181 Military Hospital), Southern Medical University, Guilin, Guangxi
| |
Collapse
|
39
|
Fang Y, Gong AY, Haller ST, Dworkin LD, Liu Z, Gong R. The ageing kidney: Molecular mechanisms and clinical implications. Ageing Res Rev 2020; 63:101151. [PMID: 32835891 PMCID: PMC7595250 DOI: 10.1016/j.arr.2020.101151] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 08/07/2020] [Accepted: 08/17/2020] [Indexed: 12/11/2022]
Abstract
As human life expectancy keeps increasing, ageing populations present a growing challenge for clinical practices. Human ageing is associated with molecular, structural, and functional changes in a variety of organ systems, including the kidney. During the ageing process, the kidney experiences progressive functional decline as well as macroscopic and microscopic histological alterations, which are accentuated by systemic comorbidities like hypertension and diabetes mellitus, or by preexisting or underlying kidney diseases. Although ageing per se does not cause kidney injury, physiologic changes associated with normal ageing processes are likely to impair the reparative capacity of the kidney and thus predispose older people to acute kidney disease, chronic kidney disease and other renal diseases. Mechanistically, cell senescence plays a key role in renal ageing, involving a number of cellular signaling mechanisms, many of which may be harnessed as international targets for slowing or even reversing kidney ageing. This review summarizes the clinical characteristics of renal ageing, highlights the latest progresses in deciphering the role of cell senescence in renal ageing, and envisages potential interventional strategies and novel therapeutic targets for preventing or improving renal ageing in the hope of maintaining long-term kidney health and function across the life course.
Collapse
Affiliation(s)
- Yudong Fang
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Division of Nephrology, University of Toledo College of Medicine, Toledo, Ohio, USA
| | - Athena Y Gong
- Division of Nephrology, University of Toledo College of Medicine, Toledo, Ohio, USA
| | - Steven T Haller
- Division of Cardiology, University of Toledo College of Medicine, Toledo, Ohio, USA
| | - Lance D Dworkin
- Department of Medicine, University of Toledo College of Medicine, Toledo, Ohio, USA
| | - Zhangsuo Liu
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Rujun Gong
- Division of Nephrology, University of Toledo College of Medicine, Toledo, Ohio, USA; Department of Medicine, University of Toledo College of Medicine, Toledo, Ohio, USA; Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, Ohio, USA.
| |
Collapse
|
40
|
Yoo KH, Yim HE, Bae ES. Angiotensin inhibition and cellular senescence in the developing rat kidney. Exp Mol Pathol 2020; 117:104551. [PMID: 33010296 DOI: 10.1016/j.yexmp.2020.104551] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/11/2020] [Accepted: 09/28/2020] [Indexed: 11/29/2022]
Abstract
Cellular senescence is important for the maintenance of tissue homeostasis during normal development. In this study, we aimed to investigate the effect of renin angiotensin system (RAS) blockade on renal cell senescence in the developing rat kidney. Newborn rat pups were treated with enalapril (30 mg/kg/day) or vehicle for seven days after birth. We investigated the intrarenal expressions of cell cycle regulators p21 and p16 with immunoblots and immunohistochemistry at postnatal day 8. For the determination of renal cellular senescence, immunostaining for senescence-associated β-galactosidase (SA-β-gal) and telomerase reverse transcriptase (TERT) was also performed. Enalapril treatment showed significant alterations in cellular senescence in neonatal rat kidneys. In the enalapril-treated group, intrarenal p16 and p21 protein expressions decreased compared to controls. The expressions of both p21 and p16 were reduced throughout the renal cortex and medulla of enalapril-treated rats. The immunoreactivity of TERT in enalapril-treated kidneys was also weaker than that in control kidneys. Control kidneys revealed a clear positive SA-β-gal signal in the cortical tubules; however, SA-β-gal activity was noticeably lower in the enalapril-treated kidneys than in control kidneys. Interruption of the RAS during postnatal nephrogenesis may disrupt physiologic renal cellular senescence in the developing rat kidney.
Collapse
Affiliation(s)
- Kee Hwan Yoo
- Department of Pediatrics, College of Medicine, Korea University, Seoul 02841, Republic of Korea
| | - Hyung Eun Yim
- Department of Pediatrics, College of Medicine, Korea University, Seoul 02841, Republic of Korea.
| | - Eun Soo Bae
- Department of Pediatrics, College of Medicine, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
41
|
Sun IO, Kwon SH. Extracellular vesicles: a novel window into kidney function and disease. Curr Opin Nephrol Hypertens 2020; 29:613-619. [PMID: 32889979 DOI: 10.1097/mnh.0000000000000641] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
PURPOSE OF REVIEW There has been an increasing interest in extracellular vesicles as potential diagnostic, prognostic or therapeutic biomarkers for various kidney diseases, as extracellular vesicles mediate cell-cell or intercellular communication. This review explores the current state of knowledge regarding extracellular vesicles as a tool for examining kidney physiology and disease. RECENT FINDINGS Urinary extracellular vesicles may be useful as biomarkers to detect abnormal function in renal endothelial and tubular cells as well as podocytes. Recent studies suggest that urinary extracellular vesicles may facilitate early diagnosis and/or monitoring in acute kidney injury, glomerular disease, autosomal dominanat polycyst kidney disease and urinary tract malignancies. Circulating extracellular vesicles may serve as biomarkers to assess cardiovascular disease. SUMMARY Urinary and circulating extracellular vesicles have gained significant interest as potential biomarkers of renal diseases. Analysis of extracellular vesicles may serve as a logical diagnostic approach for nephrologists as well as provide information about disease pathophysiology.
Collapse
Affiliation(s)
- In O Sun
- Division of Nephrology, Department of Internal Medicine, Presbyterian Medical Center, Jeonju
| | - Soon Hyo Kwon
- Division of Nephrology, Department of Internal Medicine, Soonchunhyang University Seoul Hospital, Seoul, Korea
| |
Collapse
|
42
|
Abstract
Kidney diseases secondary to several pathogeneses affect millions of people worldwide and have become increasingly recognized as a global public health problem. Recent evidence suggests that cellular senescence plays an important role in the pathogenesis of different forms of renal damage, including acute and chronic kidney disease, and renal transplantation. Renal senescence involves cell cycle arrest and affects several cellular pathways, manifesting in downregulation of klotho, elevated expression of cyclin-dependent kinase inhibitors, cellular telomere shortening, and oxidative stress. Furthermore, senescent cells might induce kidney injury by paracrine release of inflammatory factors. Yet, cellular senescence may be renoprotective during development and in some models of renal diseases, reflecting the yin/yang duality of cellular senescence. This review provides an overview of the role of this emerging player in renal injury, with emphasis on new findings of cellular senescence.
Collapse
Affiliation(s)
- Yongxin Li
- From the Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN (Y.L., L.O.L.).,Department of Vascular Surgery, The Affiliated Hospital of Qingdao University, PR China (Y.L.)
| | - Lilach O Lerman
- From the Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN (Y.L., L.O.L.)
| |
Collapse
|
43
|
Liu T, Yang Q, Zhang X, Qin R, Shan W, Zhang H, Chen X. Quercetin alleviates kidney fibrosis by reducing renal tubular epithelial cell senescence through the SIRT1/PINK1/mitophagy axis. Life Sci 2020; 257:118116. [PMID: 32702447 DOI: 10.1016/j.lfs.2020.118116] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/06/2020] [Accepted: 07/14/2020] [Indexed: 12/11/2022]
Abstract
Emerging evidence implicates accelerated renal tubular epithelial cell (RTEC) senescence in renal fibrosis progression. Mitophagy protects against kidney injury. However, the mechanistic interplay between cell senescence and mitophagy in RTECs is not clearly defined. The purpose of this study was to evaluate the inhibition of RTEC senescence and renal fibrosis by quercetin and explore the underlying mechanisms. We found that quercetin attenuated RTEC senescence induced by angiotensin II (AngII) in vitro and unilateral ureteral obstruction in vivo. Moreover, we demonstrated that mitochondrial abnormalities such as elevated reactive oxygen species, decreased membrane potential, and fragmentation and accumulation of mitochondrial mass, occurred in AngII-treated RTECs. Quercetin treatment reversed these effects. Furthermore, quercetin enhanced mitophagy in AngII-treated RTECs, which was markedly reduced by treatment with mitophagy-specific inhibitors. Sirtuin-1 (SIRT1) was involved in quercetin-mediated PTEN-induced kinase 1 (PINK1)/Parkin-associated mitophagy activation. Pharmacological antagonism of SIRT1 in AngII-treated RTECs blocked the effects of quercetin on mitophagy and cellular senescence. Finally, quercetin alleviated kidney fibrosis by reducing RTEC senescence via mitophagy. Collectively, the antifibrotic effect of quercetin involved inhibition of RTEC senescence, possibly through activation of SIRT1/PINK1/Parkin-mediated mitophagy. These findings suggest that pharmacological elimination of senescent cells and stimulation of mitophagy represent effective therapeutic strategies to prevent kidney fibrosis.
Collapse
Affiliation(s)
- Tao Liu
- Department of Pharmacology, College of Pharmacy and Laboratory Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Qunfang Yang
- Department of Pharmacology, College of Pharmacy and Laboratory Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Xuan Zhang
- Department of Pharmacology, College of Pharmacy and Laboratory Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Rongxing Qin
- Department of Pharmacology, College of Pharmacy and Laboratory Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Wenjun Shan
- Department of Pharmacology, College of Pharmacy and Laboratory Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Haigang Zhang
- Department of Pharmacology, College of Pharmacy and Laboratory Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Xiaohong Chen
- Department of Pharmacology, College of Pharmacy and Laboratory Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China.
| |
Collapse
|
44
|
Kumar A, Bano D, Ehninger D. Cellular senescence in vivo: From cells to tissues to pathologies. Mech Ageing Dev 2020; 190:111308. [PMID: 32622996 DOI: 10.1016/j.mad.2020.111308] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/24/2020] [Accepted: 06/26/2020] [Indexed: 01/22/2023]
Abstract
Senescent cells accumulate during aging in a variety of tissues. Although scarce, they could influence tissue function non-cell-autonomously via secretion of a range of factors in their neighborhood. Recent studies support a role of senescent cells in age-related morbidity, including neurodegenerative diseases, cardiovascular pathologies, cancers, aging-associated nephrological alterations, chronic pulmonary disease and osteoarthritis, indicating that senescent cells could represent an interesting target for therapeutic exploitation across a range of pathophysiological contexts. In this article, we review data available to indicate which cell types can undergo senescence within various mammalian tissue environments and how these processes may contribute to tissue-specific pathologies associated with old age. We also consider markers used to identify senescent cells in vitro and in vivo. The data discussed may serve as an important starting point for an extended definition of molecular and functional characteristics of senescent cells in different organs and may hence promote the development and refinement of targeting strategies aimed at removing senescent cells from aging tissues.
Collapse
Affiliation(s)
- Avadh Kumar
- Translational Biogerontology Lab, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, 53127 Bonn, Germany
| | - Daniele Bano
- Aging and Neurodegeneration Lab, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, 53127 Bonn, Germany
| | - Dan Ehninger
- Translational Biogerontology Lab, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, 53127 Bonn, Germany.
| |
Collapse
|
45
|
Docherty MH, Baird DP, Hughes J, Ferenbach DA. Cellular Senescence and Senotherapies in the Kidney: Current Evidence and Future Directions. Front Pharmacol 2020; 11:755. [PMID: 32528288 PMCID: PMC7264097 DOI: 10.3389/fphar.2020.00755] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 05/06/2020] [Indexed: 01/10/2023] Open
Abstract
Cellular senescence refers to a cellular phenotype characterized by an altered transcriptome, pro-inflammatory secretome, and generally irreversible growth arrest. Acutely senescent cells are widely recognized as performing key physiological functions in vivo promoting normal organogenesis, successful wound repair, and cancer defense. In contrast, the accumulation of chronically senescent cells in response to aging, cell stress, genotoxic damage, and other injurious stimuli is increasingly recognized as an important contributor to organ dysfunction, tissue fibrosis, and the more generalized aging phenotype. In this review, we summarize our current knowledge of the role of senescent cells in promoting progressive fibrosis and dysfunction with a particular focus on the kidney and reference to other organ systems. Specific differences between healthy and senescent cells are reviewed along with a summary of several experimental pharmacological approaches to deplete or manipulate senescent cells to preserve organ integrity and function with aging and after injury. Finally, key questions for future research and clinical translation are discussed.
Collapse
Affiliation(s)
- Marie Helena Docherty
- Department of Renal Medicine, Royal Infirmary of Edinburgh, Edinburgh, United Kingdom.,Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - David P Baird
- Department of Renal Medicine, Royal Infirmary of Edinburgh, Edinburgh, United Kingdom.,Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Jeremy Hughes
- Department of Renal Medicine, Royal Infirmary of Edinburgh, Edinburgh, United Kingdom.,Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - David A Ferenbach
- Department of Renal Medicine, Royal Infirmary of Edinburgh, Edinburgh, United Kingdom.,Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
46
|
Chen K, Chen J, Wang L, Yang J, Xiao F, Wang X, Yuan J, Wang L, He Y. Parkin ubiquitinates GATA4 and attenuates the GATA4/GAS1 signaling and detrimental effects on diabetic nephropathy. FASEB J 2020; 34:8858-8875. [PMID: 32436607 DOI: 10.1096/fj.202000053r] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 04/13/2020] [Accepted: 05/05/2020] [Indexed: 01/26/2023]
Abstract
Renal tubular injury contributes to the progression of diabetic nephropathy (DN). This study explored the role and mechanisms of E3-ubiquitin ligase Parkin in the renal tubular injury of DN. We found that Parkin expression gradually decreased and was inversely associated with IL-6, TGF-β1, and GATA4 expression in the kidney during the progression of DN. Parkin over-expression (OE) reduced inflammation, fibrosis, premature senescence of renal tubular epithelial cells (RTECs), and improved renal function while Parkin knockout (KO) had opposite effects in DN mice. Parkin-OE decreased GATA4 protein, but not its mRNA transcripts in the kidney of DN mice and high glucose (HG)-treated RTECs. Immunoprecipitation indicated that Parkin directly interacted with GATA4 in DN kidney. Parkin-OE enhanced GATA4 ubiquitination. Furthermore, Parkin-KO upregulated growth arrest-specific gene 1 (GAS1) expression in renal tubular tissues of DN mice and GATA4-OE enhanced the HG-upregulated GAS1 expression in RTECs. Conversely, GAS1-OE mitigated the effect of Parkin-OE on HG-induced P21, IL-6, and TGF-β1 expression in RTECs. These results indicate that Parkin inhibits the progression of DN by promoting GATA4 ubiquitination and downregulating the GATA4/GAS1 signaling to inhibit premature senescence, inflammation, and fibrosis in DN mice. Thus, these findings uncover new mechanisms underlying the action of Parkin during the process of DN.
Collapse
Affiliation(s)
- Kehong Chen
- Department of Nephrology, Daping Hospital, Army Medical University, Chongqing, China
| | - Jia Chen
- Department of Nephrology, Daping Hospital, Army Medical University, Chongqing, China
| | - Ling Wang
- Department of Nephrology, Daping Hospital, Army Medical University, Chongqing, China
| | - Jie Yang
- Department of Nephrology, Daping Hospital, Army Medical University, Chongqing, China
| | - Fei Xiao
- Department of Nephrology, Daping Hospital, Army Medical University, Chongqing, China
| | - Xianyue Wang
- Department of Nephrology, Daping Hospital, Army Medical University, Chongqing, China
| | - Junjie Yuan
- Department of Nephrology, Daping Hospital, Army Medical University, Chongqing, China
| | - Limin Wang
- Department of Nephrology, Daping Hospital, Army Medical University, Chongqing, China
| | - Yani He
- Department of Nephrology, Daping Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
47
|
Kim SR, Jiang K, Ferguson CM, Tang H, Chen X, Zhu X, Hickson LJ, Tchkonia T, Kirkland JL, Lerman LO. Transplanted senescent renal scattered tubular-like cells induce injury in the mouse kidney. Am J Physiol Renal Physiol 2020; 318:F1167-F1176. [PMID: 32223312 PMCID: PMC7294341 DOI: 10.1152/ajprenal.00535.2019] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 03/22/2020] [Accepted: 03/23/2020] [Indexed: 12/21/2022] Open
Abstract
Cellular senescence, a permanent arrest of cell proliferation, is characterized by a senescence-associated secretory phenotype (SASP), which reinforces senescence and exerts noxious effects on adjacent cells. Recent studies have suggested that transplanting small numbers of senescent cells suffices to provoke tissue inflammation. We hypothesized that senescent cells can directly augment renal injury. Primary scattered tubular-like cells (STCs) acquired from pig kidneys were irradiated by 10 Gy of cesium radiation, and 3 wk later cells were characterized for levels of senescence and SASP markers. Control or senescent STCs were then prelabeled and injected (5 × 105 cells) into the aorta of C57BL/6J mice. Four weeks later, renal oxygenation was studied in vivo using 16.4-T magnetic resonance imaging and function by plasma creatinine level. Renal markers of SASP, fibrosis, and microvascular density were evaluated ex vivo. Per flow cytometry, irradiation induced senescence in 80-99% of STCs, which showed increased gene expression of senescence and SASP markers, senescence-associated β-galactosidase staining, and cytokine levels (especially IL-6) secreted in conditioned medium. Four weeks after injection, cells were detected engrafted in the mouse kidneys with no evidence for rejection. Plasma creatinine and renal tissue hypoxia increased in senescent compared with control cells. Senescent kidneys were more fibrotic, with fewer CD31+ endothelial cells, and showed upregulation of IL-6 gene expression. Therefore, exogenously delivered senescent renal STCs directly injure healthy mouse kidneys. Additional studies are needed to determine the role of endogenous cellular senescence in the pathogenesis of kidney injury and evaluate the utility of senolytic therapy.
Collapse
Affiliation(s)
- Seo Rin Kim
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
- Department of Nephrology and Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Korea
| | - Kai Jiang
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| | | | - Hui Tang
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| | - Xiaojun Chen
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - XiangYang Zhu
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| | - LaTonya J Hickson
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| | - Tamara Tchkonia
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, Minnesota
| | - James L Kirkland
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, Minnesota
| | - Lilach O Lerman
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
48
|
Jia C, Ke-Hong C, Fei X, Huan-Zi D, Jie Y, Li-Ming W, Xiao-Yue W, Jian-Guo Z, Ya-Ni H. Decoy receptor 2 mediation of the senescent phenotype of tubular cells by interacting with peroxiredoxin 1 presents a novel mechanism of renal fibrosis in diabetic nephropathy. Kidney Int 2020; 98:645-662. [PMID: 32739204 DOI: 10.1016/j.kint.2020.03.026] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 02/20/2020] [Accepted: 03/05/2020] [Indexed: 12/14/2022]
Abstract
Premature senescence of renal tubular epithelial cell (RTEC), which is involved in kidney fibrosis, is a key event in the progression of diabetic nephropathy. However, the underlying mechanism remains unclear. Here we investigated the role and mechanism of decoy receptor 2 (DcR2) in kidney fibrosis and the senescent phenotype of RTEC. DcR2 was specifically expressed in senescent RTEC and associated with kidney fibrosis in patients with diabetic nephropathy and mice with streptozotocin-induced with diabetic nephropathy. Knockdown of DcR2 decreased the expression of α-smooth muscle actin, collagen I, fibronectin and serum creatinine levels in streptozotocin-induced mice. DcR2 knockdown also inhibited the expression of senescent markers p16, p21, senescence-associated beta-galactosidase and senescence-associated heterochromatic foci and promoted the secretion of a senescence-associated secretory phenotype including IL-6, TGF-β1, and matrix metalloproteinase 2 in vitro and in vivo. However, DcR2 overexpression showed the opposite effects. Quantitative proteomics and validation studies revealed that DcR2 interacted with peroxiredoxin 1 (PRDX1), which regulated the cell cycle and senescence. Knockdown of PRDX1 upregulated p16 and cyclin D1 while downregulating cyclin-dependent kinase 6 expression in vitro, resulting in RTEC senescence. Furthermore, PRDX1 knockdown promoted DcR2-induced p16, cyclin D1, IL-6, and TGF-β1 expression, whereas PRDX1 overexpression led to the opposite results. Subsequently, DcR2 regulated PRDX1 phosphorylation, which could be inhibited by the specific tyrosine kinase inhibitor genistein. Thus, DcR2 mediated the senescent phenotype of RTEC and kidney fibrosis by interacting with PRDX1. Hence, DcR2 may act as a potential therapeutic target for the amelioration of diabetic nephropathy progression.
Collapse
Affiliation(s)
- Chen Jia
- Department of Nephrology, Daping Hospital, Army Medical University, Chongqing, China
| | - Chen Ke-Hong
- Department of Nephrology, Daping Hospital, Army Medical University, Chongqing, China
| | - Xiao Fei
- Department of Nephrology, Daping Hospital, Army Medical University, Chongqing, China
| | - Dai Huan-Zi
- Department of Nephrology, Daping Hospital, Army Medical University, Chongqing, China
| | - Yang Jie
- Department of Nephrology, Daping Hospital, Army Medical University, Chongqing, China
| | - Wang Li-Ming
- Department of Nephrology, Daping Hospital, Army Medical University, Chongqing, China
| | - Wang Xiao-Yue
- Department of Nephrology, Daping Hospital, Army Medical University, Chongqing, China
| | - Zhang Jian-Guo
- Department of Nephrology, Daping Hospital, Army Medical University, Chongqing, China
| | - He Ya-Ni
- Department of Nephrology, Daping Hospital, Army Medical University, Chongqing, China.
| |
Collapse
|
49
|
Zhou B, Wan Y, Chen R, Zhang C, Li X, Meng F, Glaser S, Wu N, Zhou T, Li S, Francis H, Alpini G, Zou P. The emerging role of cellular senescence in renal diseases. J Cell Mol Med 2020; 24:2087-2097. [PMID: 31916698 PMCID: PMC7011136 DOI: 10.1111/jcmm.14952] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 12/06/2019] [Accepted: 12/17/2019] [Indexed: 12/12/2022] Open
Abstract
Cellular senescence represents the state of irreversible cell cycle arrest during cell division. Cellular senescence not only plays a role in diverse biological events such as embryogenesis, tissue regeneration and repair, ageing and tumour occurrence prevention, but it is also involved in many cardiovascular, renal and liver diseases through the senescence-associated secretory phenotype (SASP). This review summarizes the molecular mechanisms underlying cellular senescence and its possible effects on a variety of renal diseases. We will also discuss the therapeutic approaches based on the regulation of senescent and SASP blockade, which is considered as a promising strategy for the management of renal diseases.
Collapse
Affiliation(s)
- Bingru Zhou
- Department of Pathophysiology, Southwest Medical University, Luzhou, China
| | - Ying Wan
- Department of Pathophysiology, Southwest Medical University, Luzhou, China
| | - Rong Chen
- Department of Pathophysiology, Southwest Medical University, Luzhou, China
| | - Chunmei Zhang
- Department of Pathophysiology, Southwest Medical University, Luzhou, China
| | - Xuesen Li
- School of Basic Medical Sciences, Institute for Cancer Medicine, Southwest Medical University, Luzhou, China
| | - Fanyin Meng
- Richard L. Roudebush VA Medical Center, Indiana University, Indianapolis, IN, USA.,Division of Gastroenterology, Department of Medicine, Indiana University, Indianapolis, IN, USA.,Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Shannon Glaser
- Department of Medical Physiology, Texas A&M University College of Medicine, Bryan, TX, USA
| | - Nan Wu
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Tianhao Zhou
- Department of Medical Physiology, Texas A&M University College of Medicine, Bryan, TX, USA
| | - Siwen Li
- Department of Physiology, Southwest Medical University, Luzhou, China
| | - Heather Francis
- Richard L. Roudebush VA Medical Center, Indiana University, Indianapolis, IN, USA.,Division of Gastroenterology, Department of Medicine, Indiana University, Indianapolis, IN, USA.,Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Gianfranco Alpini
- Richard L. Roudebush VA Medical Center, Indiana University, Indianapolis, IN, USA.,Division of Gastroenterology, Department of Medicine, Indiana University, Indianapolis, IN, USA.,Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Ping Zou
- Department of Pathophysiology, Southwest Medical University, Luzhou, China
| |
Collapse
|
50
|
Chen J, Hu W, Xiao F, Lin L, Chen K, Wang L, Wang X, He Y. DCR2, a Cellular Senescent Molecule, Is a Novel Marker for Assessing Tubulointerstitial Fibrosis in Patients with Immunoglobulin A Nephropathy. Kidney Blood Press Res 2019; 44:1063-1074. [PMID: 31487717 DOI: 10.1159/000502233] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 07/19/2019] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS Stress-induced cell senescence, which contributes to cell cycle arrest and is independent of age, plays an important role in chronic kidney disease (CKD) progression. DcR2, as a senescent marker, exclusively expressed in senescent tubular epithelia. The objective of this study was to examine whether urinary DcR2 (uDcR2) could be a potential biomarker for tubulointerstitial fibrosis (TIF) in patients with immunoglobulin A nephropathy (IgAN). METHODS This study included 210 IgAN patients and 80 healthy volunteers, with uDcR2 levels measured using enzyme-linked immunosorbent assay. We examined the relationship among uDcR2/Cr levels, renal function, and pathological parameters, using regression analysis to identify risk factors for TIF and the area under the curve (AUC) approach to predict TIF. Renal DcR2 expression was quantified by immunohistochemistry. Co-expression of DcR2 with fibrotic markers (α-smooth muscle actin [α-SMA], collagen III) was analyzed by confocal microscopy. RESULTS Levels of uDcR2/Cr were significantly higher in IgAN patients and in those with more severe TIF, compared with healthy controls. Serum DcR2 levels were similar across groups. The proportion of IgAN patients with stages 1-2 CKD and T0 was highest among those with uDcR2/Cr <130 ng/g. In contrast, the majority of those with uDcR2/Cr >201 ng/g had stages 4-5 CKD and T2. Levels of uDcR2/Cr were positively associated with urinary albumin to creatinine ratio (ACR), urinary N-acetyl-β-D-glucosaminidase (uNAG)/Cr, and TIF scores and negatively associated with estimated glomerular filtration rate (eGFR). uDcR2/Cr, uNAG, ACR, and eGFR were independent predictors for TIF, with AUC of 0.907 for uDcR2/Cr. This AUC value was higher than that observed for eGFR, uNAG/Cr, or ACR. The sensitivity and specificity of uDcR2/Cr in predicting TIF were 87.0 and 80.5%, respectively. Moreover, uDcR2/Cr levels were positively associated with the percentage of renal DcR2 expression. Renal DcR2 co-localized with α-SMA and collagen III in the kidneys of IgAN patients. CONCLUSIONS Levels of uDcR2/Cr were closely associated with the severity of TIF and renal function parameters. uDcR2/Cr represents a potential biomarker for predicting TIF in IgAN patients.
Collapse
Affiliation(s)
- Jia Chen
- Department of Nephrology, Daping Hospital, Research Institute of Surgery, Army Military Medical University, Chongqing, China
| | - Wei Hu
- Department of Nephrology, Daping Hospital, Research Institute of Surgery, Army Military Medical University, Chongqing, China.,Department of Nephrology, Army 958 Hospital, Chongqing, China
| | - Fei Xiao
- Department of Nephrology, Daping Hospital, Research Institute of Surgery, Army Military Medical University, Chongqing, China
| | - Lirong Lin
- Department of Nephrology, Daping Hospital, Research Institute of Surgery, Army Military Medical University, Chongqing, China
| | - Kehong Chen
- Department of Nephrology, Daping Hospital, Research Institute of Surgery, Army Military Medical University, Chongqing, China
| | - Liming Wang
- Department of Nephrology, Daping Hospital, Research Institute of Surgery, Army Military Medical University, Chongqing, China
| | - Xiaoyue Wang
- Department of Nephrology, Daping Hospital, Research Institute of Surgery, Army Military Medical University, Chongqing, China
| | - Yani He
- Department of Nephrology, Daping Hospital, Research Institute of Surgery, Army Military Medical University, Chongqing, China,
| |
Collapse
|