1
|
Wagner JUG. Copper and cardiac fibrosis: a delicate balance of health and disease. Eur Heart J 2025:ehaf227. [PMID: 40197643 DOI: 10.1093/eurheartj/ehaf227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/10/2025] Open
Affiliation(s)
- Julian U G Wagner
- Institute of Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University Frankfurt, Building 25B, Theodor Stern Kai 7, D-60590 Frankfurt, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhein-Main, D-60590 Frankfurt, Germany
- Cardiopulmonary Institute (CPI), D-60590 Frankfurt, Germany
| |
Collapse
|
2
|
Fang Z, Raza U, Song J, Lu J, Yao S, Liu X, Zhang W, Li S. Systemic aging fuels heart failure: Molecular mechanisms and therapeutic avenues. ESC Heart Fail 2025; 12:1059-1080. [PMID: 39034866 PMCID: PMC11911610 DOI: 10.1002/ehf2.14947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/29/2024] [Accepted: 06/21/2024] [Indexed: 07/23/2024] Open
Abstract
Systemic aging influences various physiological processes and contributes to structural and functional decline in cardiac tissue. These alterations include an increased incidence of left ventricular hypertrophy, a decline in left ventricular diastolic function, left atrial dilation, atrial fibrillation, myocardial fibrosis and cardiac amyloidosis, elevating susceptibility to chronic heart failure (HF) in the elderly. Age-related cardiac dysfunction stems from prolonged exposure to genomic, epigenetic, oxidative, autophagic, inflammatory and regenerative stresses, along with the accumulation of senescent cells. Concurrently, age-related structural and functional changes in the vascular system, attributed to endothelial dysfunction, arterial stiffness, impaired angiogenesis, oxidative stress and inflammation, impose additional strain on the heart. Dysregulated mechanosignalling and impaired nitric oxide signalling play critical roles in the age-related vascular dysfunction associated with HF. Metabolic aging drives intricate shifts in glucose and lipid metabolism, leading to insulin resistance, mitochondrial dysfunction and lipid accumulation within cardiomyocytes. These alterations contribute to cardiac hypertrophy, fibrosis and impaired contractility, ultimately propelling HF. Systemic low-grade chronic inflammation, in conjunction with the senescence-associated secretory phenotype, aggravates cardiac dysfunction with age by promoting immune cell infiltration into the myocardium, fostering HF. This is further exacerbated by age-related comorbidities like coronary artery disease (CAD), atherosclerosis, hypertension, obesity, diabetes and chronic kidney disease (CKD). CAD and atherosclerosis induce myocardial ischaemia and adverse remodelling, while hypertension contributes to cardiac hypertrophy and fibrosis. Obesity-associated insulin resistance, inflammation and dyslipidaemia create a profibrotic cardiac environment, whereas diabetes-related metabolic disturbances further impair cardiac function. CKD-related fluid overload, electrolyte imbalances and uraemic toxins exacerbate HF through systemic inflammation and neurohormonal renin-angiotensin-aldosterone system (RAAS) activation. Recognizing aging as a modifiable process has opened avenues to target systemic aging in HF through both lifestyle interventions and therapeutics. Exercise, known for its antioxidant effects, can partly reverse pathological cardiac remodelling in the elderly by countering processes linked to age-related chronic HF, such as mitochondrial dysfunction, inflammation, senescence and declining cardiomyocyte regeneration. Dietary interventions such as plant-based and ketogenic diets, caloric restriction and macronutrient supplementation are instrumental in maintaining energy balance, reducing adiposity and addressing micronutrient and macronutrient imbalances associated with age-related HF. Therapeutic advancements targeting systemic aging in HF are underway. Key approaches include senomorphics and senolytics to limit senescence, antioxidants targeting mitochondrial stress, anti-inflammatory drugs like interleukin (IL)-1β inhibitors, metabolic rejuvenators such as nicotinamide riboside, resveratrol and sirtuin (SIRT) activators and autophagy enhancers like metformin and sodium-glucose cotransporter 2 (SGLT2) inhibitors, all of which offer potential for preserving cardiac function and alleviating the age-related HF burden.
Collapse
Affiliation(s)
- Zhuyubing Fang
- Cardiovascular Department of Internal MedicineKaramay Hospital of People's Hospital of Xinjiang Uygur Autonomous RegionKaramayXinjiang Uygur Autonomous RegionChina
| | - Umar Raza
- School of Basic Medical SciencesShenzhen UniversityShenzhenGuangdong ProvinceChina
| | - Jia Song
- Department of Medicine (Cardiovascular Research)Baylor College of MedicineHoustonTexasUSA
| | - Junyan Lu
- Department of CardiologyZengcheng Branch of Nanfang Hospital, Southern Medical UniversityGuangzhouGuangdong ProvinceChina
| | - Shun Yao
- Department of NeurosurgeryThe First Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouGuangdong ProvinceChina
| | - Xiaohong Liu
- Cardiovascular Department of Internal MedicineKaramay Hospital of People's Hospital of Xinjiang Uygur Autonomous RegionKaramayXinjiang Uygur Autonomous RegionChina
| | - Wei Zhang
- Outpatient Clinic of SurgeryThe First Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouGuangdong ProvinceChina
| | - Shujuan Li
- Department of Pediatric CardiologyThe First Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouGuangdong ProvinceChina
| |
Collapse
|
3
|
Xu T, Wang S, Zhao L, Wang J, Xing J. A two-sample Mendelian randomization study on the relationship of body weight, body mass index, and waist circumference with cardiac arrest. World J Emerg Med 2025; 16:129-135. [PMID: 40135218 PMCID: PMC11930557 DOI: 10.5847/wjem.j.1920-8642.2025.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 02/03/2025] [Indexed: 03/27/2025] Open
Abstract
BACKGROUND This study aims to explore the causal relationship of body weight, body mass index (BMI), and waist circumference (WC) with the risk of cardiac arrest (CA) using two-sample Mendelian randomization (MR). METHODS Data were summarized using genome-wide association studies (GWAS). Two-sample MR analyses were performed using the inverse variance weighting (IVW) method, the weighted median method, and the MR-Egger analysis. Heterogeneity test and sensitivity analysis were performed using Cochran's Q test and the leave-one-out method, respectively. The Steiger test was used to detect reverse causality. Bayesian model-averaged MR was used to identify the most influential risk factors. RESULTS A total of 13 GWAS data were collected for BMI, body weight and WC. IVW analyses showed a positive correlation of body weight, BMI, and WC with CA (all OR>1 and P<0.05), with MR-Egger and weighted median methods confirming the IVW findings. No horizontal pleiotropy or heterogeneity was observed. Sensitivity analysis indicated that no single nucleotide polymorphism (SNP) caused significant changes in overall causality. Bayesian model-averaged MR was also used to rank causality based on marginal inclusion probability (MIP), and the corresponding model-averaged causal estimate (MACE) were confirmed, which indicated that WC (GWAS ID: ukb-b-9405) was the highest-ranked risk factor (MIP=0.119, MACE=0.011); its posterior probability was 0.057. A total of 14 sex-specific GWAS data on weight, BMI, and WC were analyzed in relationship with CA, and the MR results showed no significant effects of sex-specific factors. CONCLUSION Body weight, BMI, and WC are causally associated with an increased risk of CA, with WC identified as the most important risk factor.
Collapse
Affiliation(s)
- Tingting Xu
- Department of Emergency Medicine, the First Hospital of Jilin University, Changchun 130000, China
| | - Shaokun Wang
- Department of Emergency Medicine, the First Hospital of Jilin University, Changchun 130000, China
| | - Liqiang Zhao
- Department of Emergency Medicine, Liaoyuan Municipal Central Hospital, Liaoyuan 136200, China
| | - Jiawen Wang
- Department of Nuclear Medicine, the First Hospital of Jilin University, Changchun 130000, China
| | - Jihong Xing
- Department of Emergency Medicine, the First Hospital of Jilin University, Changchun 130000, China
| |
Collapse
|
4
|
Schmidt CE, Müller HD. WITHDRAWN: Myocardial Fibrosis in Diabetic Cardiomyopathy: Mechanisms, Implications, and Therapeutic Perspectives. Curr Probl Cardiol 2024:102976. [PMID: 39706391 DOI: 10.1016/j.cpcardiol.2024.102976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 12/17/2024] [Indexed: 12/23/2024]
Abstract
This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/policies/article-withdrawal
Collapse
Affiliation(s)
- Clara Elisabeth Schmidt
- Bioanalytical Lab, Meso Scale Discovery, Rockville, MD 20850-3173, USA; Department of Pediatric Endocrinology and Rheumatology, Institute of Pediatrics, Poznan University of Medical Sciences, 60-572 Poznan, Poland
| | - Hans Dietrich Müller
- Department of Pediatric Endocrinology and Rheumatology, Institute of Pediatrics, Poznan University of Medical Sciences, 60-572 Poznan, Poland
| |
Collapse
|
5
|
Vorlat A, van Eijk J, Wiersma S, Smid L, Depooter S, Paelinck B, Guerti K, Peeters B, Sturkenboom N, Van Craenenbroeck E, Heidbuchel H, Van De Heyning C. Clinical determinants and biomarkers associated with cardiac fibrosis after heart transplantation as assessed by magnetic resonance: Size matters. IJC HEART & VASCULATURE 2024; 54:101479. [PMID: 39221115 PMCID: PMC11365389 DOI: 10.1016/j.ijcha.2024.101479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 09/04/2024]
Abstract
Background Cardiac fibrosis is increasingly recognized as a marker of worse outcomes in long-term follow-up after heart transplantation (HTX). We investigated the clinical determinants and biomarkers of focal and interstitial cardiac fibrosis as assessed with cardiac magnetic resonance (CMR). Methods Consecutive HTX recipients underwent CMR with late gadolinium enhancement for focal myocardial fibrosis and T1 mapping for interstitial fibrosis. We calculated the correlations of these findings with clinical parameters, history, biomarkers of fibrosis (B-type natriuretic peptide (BNP), growth differentiation factor-15, galectin-3 and soluble ligand ST2) and echocardiography. Results Forty-eight HTX patients were included: median age 63 ± 13 years, 11 ± 6 years after heart transplantation. Only donor weight (p 0.044) and the rate of a > 30 % mismatch between donor and recipient weight (p 0.02) were significantly different in patients with vs. without late LGE. Extracellular volume (ECV) was correlated with the weight mismatch between donor and recipient (r = 0.32, p 0.04), resulting in a higher ECV for oversized donors. BNP was the only biomarker of the four studied that was correlated with interstitial fibrosis as assessed by ECV (r = 0.35, p 0.04). T1 relaxation time was correlated with treated acute cellular rejection grade ≥ 2 (ISHLT grading) (r = 0.34, p 0.02). Conclusion Both focal and interstitial fibrosis, as determined by CMR, after heart transplantation are correlated with donor and recipient weight mismatch. BNP was the only biomarker clinically relevant to interstitial cardiac fibrosis.
Collapse
Affiliation(s)
- Anne Vorlat
- Department of Cardiology, Antwerp University Hospital, University of Antwerp, Belgium
| | | | | | - Leroy Smid
- Medicine, University of Antwerp, Belgium
| | | | - Bernard Paelinck
- Department Cardiac Surgery, Antwerp University Hospital, University of Antwerp, Belgium
| | - Khadija Guerti
- Department of Clinical Chemistry, Antwerp University Hospital, University of Antwerp, Belgium
| | - Bart Peeters
- Department of Clinical Chemistry, Antwerp University Hospital, University of Antwerp, Belgium
| | - Nicole Sturkenboom
- Department of Cardiology, Antwerp University Hospital, University of Antwerp, Belgium
| | | | - Hein Heidbuchel
- Department of Cardiology, Antwerp University Hospital, University of Antwerp, Belgium
| | | |
Collapse
|
6
|
Renton MC, McGee SL, Howlett KF. The role of protein kinase D (PKD) in obesity: Lessons from the heart and other tissues. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119814. [PMID: 39128598 DOI: 10.1016/j.bbamcr.2024.119814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/15/2024] [Accepted: 08/05/2024] [Indexed: 08/13/2024]
Abstract
Obesity causes a range of tissue dysfunctions that increases the risk for morbidity and mortality. Protein kinase D (PKD) represents a family of stress-activated intracellular signalling proteins that regulate essential processes such as cell proliferation and differentiation, cell survival, and exocytosis. Evidence suggests that PKD regulates the cellular adaptations to the obese environment in metabolically important tissues and drives the development of a variety of diseases. This review explores the role that PKD plays in tissue dysfunction in obesity, with special consideration of the development of obesity-mediated cardiomyopathy, a distinct cardiovascular disease that occurs in the absence of common comorbidities and leads to eventual heart failure and death. The downstream mechanisms mediated by PKD that could contribute to dysfunctions observed in the heart and other metabolically important tissues in obesity, and the predicted cell types involved are discussed to suggest potential targets for the development of therapeutics against obesity-related disease.
Collapse
Affiliation(s)
- Mark C Renton
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Science, Deakin University, Geelong, Australia; The Fralin Biomedical Research Institute at Virginia Tech Carilion, Centre for Vascular and Heart Research, Roanoke, VA, USA.
| | - Sean L McGee
- Institute for Mental and Physical Health and Clinical Translation, Metabolic Research Unit, School of Medicine, Deakin University, Geelong, Australia.
| | - Kirsten F Howlett
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Science, Deakin University, Geelong, Australia.
| |
Collapse
|
7
|
Santos KCC, Domingos LF, Nunes FM, Simmer LM, Cordeiro ER, Filetti FM, Bocalini DS, Corrêa CR, Lima-Leopoldo AP, Leopoldo AS. Capsinoids Increase Antioxidative Enzyme Activity and Prevent Obesity-Induced Cardiac Injury without Positively Modulating Body Fat Accumulation and Cardiac Oxidative Biomarkers. Nutrients 2024; 16:3183. [PMID: 39339783 PMCID: PMC11434772 DOI: 10.3390/nu16183183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/30/2024] [Accepted: 09/05/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND/OBJECTIVES Capsinoids are potential antioxidant agents capable of reducing oxidative damage and the resulting complications triggered by obesity. Thus, this study aimed to investigate the effects of capsinoids on adiposity and biomarkers of cardiac oxidative stress in obese rats induced by a high-fat diet. METHODS Male Wistar rats were exposed to a high-fat diet for 27 consecutive weeks. After the characterization of obesity (week 19), some of the obese animals began to receive capsinoids (10 mg/kg/day) by orogastric gavage. Adiposity and comorbidities were assessed. In the heart, remodeling, injury, and biomarkers of oxidative stress were determined. RESULTS The treatment did not reduce obesity-induced adiposity but was efficient in reducing cholesterol levels. Capsinoid treatment did not cause a difference in heart and LV mass, despite having reduced troponin I concentrations. Furthermore, capsinoids did not reduce the increase in the advanced oxidation of protein products and carbonylated proteins caused by obesity in cardiac tissue. In addition, obese rats treated with capsinoids presented high levels of malondialdehyde and greater antioxidant enzyme activity compared to untreated obese rats. CONCLUSIONS In conclusion, treatment with capsinoids increases antioxidative enzyme activity and prevents obesity-induced cardiac injury without positively modulating body fat accumulation and cardiac oxidative biomarkers.
Collapse
Affiliation(s)
- Késsia Cristina Carvalho Santos
- Postgraduate Program in Nutrition and Health, Health Sciences Center, Federal University of Espírito Santo, Vitória 29075-910, ES, Brazil
| | - Lucas Furtado Domingos
- Postgraduate Program in Nutrition and Health, Health Sciences Center, Federal University of Espírito Santo, Vitória 29075-910, ES, Brazil
| | - Fabiane Merigueti Nunes
- Postgraduate Program in Nutrition and Health, Health Sciences Center, Federal University of Espírito Santo, Vitória 29075-910, ES, Brazil
| | - Luisa Martins Simmer
- Postgraduate Program in Nutrition and Health, Health Sciences Center, Federal University of Espírito Santo, Vitória 29075-910, ES, Brazil
| | - Evellyn Rodrigues Cordeiro
- Postgraduate Program in Physiological Sciences, Health Sciences Center, Federal University of Espírito Santo, Vitória 29075-910, ES, Brazil
| | - Filipe Martinuzo Filetti
- Postgraduate Program in Physiological Sciences, Health Sciences Center, Federal University of Espírito Santo, Vitória 29075-910, ES, Brazil
| | - Danilo Sales Bocalini
- Postgraduate Program in Physical Education, Physical Education and Sports Center, Federal University of Espírito Santo, Vitória 29075-910, ES, Brazil
| | - Camila Renata Corrêa
- Medical School, São Paulo State University (UNESP), Botucatu 18618-686, SP, Brazil
| | - Ana Paula Lima-Leopoldo
- Postgraduate Program in Nutrition and Health, Health Sciences Center, Federal University of Espírito Santo, Vitória 29075-910, ES, Brazil
- Postgraduate Program in Physical Education, Physical Education and Sports Center, Federal University of Espírito Santo, Vitória 29075-910, ES, Brazil
| | - André Soares Leopoldo
- Postgraduate Program in Nutrition and Health, Health Sciences Center, Federal University of Espírito Santo, Vitória 29075-910, ES, Brazil
- Postgraduate Program in Physiological Sciences, Health Sciences Center, Federal University of Espírito Santo, Vitória 29075-910, ES, Brazil
| |
Collapse
|
8
|
He HM, Xie YY, Chen Q, Li YK, Li XX, Mu YK, Duo XY, Gao YX, Zheng JG. The additive effect of the triglyceride-glucose index and estimated glucose disposal rate on long-term mortality among individuals with and without diabetes: a population-based study. Cardiovasc Diabetol 2024; 23:307. [PMID: 39175051 PMCID: PMC11342524 DOI: 10.1186/s12933-024-02396-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 08/07/2024] [Indexed: 08/24/2024] Open
Abstract
BACKGROUND The triglyceride-glucose (TyG) index and estimated glucose disposal rate (eGDR), which are calculated using different parameters, are widely used as markers of insulin resistance and are associated with cardiovascular diseases and prognosis. However, whether they have an additive effect on the risk of mortality remains unclear. This study aimed to explore whether the combined assessment of the TyG index and eGDR improved the prediction of long-term mortality in individuals with and without diabetes. METHODS In this cross-sectional and cohort study, data were derived from the National Health and Nutrition Examination Survey (NHANES) 2001-2018, and death record information was obtained from the National Death Index. The associations of the TyG index and eGDR with all-cause and cardiovascular mortality were determined by multivariate Cox regression analysis and restricted cubic splines. RESULTS Among the 17,787 individuals included in the analysis, there were 1946 (10.9%) all-cause deaths and 649 (3.6%) cardiovascular deaths during a median follow-up of 8.92 years. In individuals with diabetes, the restricted cubic spline curves for the associations of the TyG index and eGDR with mortality followed a J-shape and an L-shape, respectively. The risk of mortality significantly increased after the TyG index was > 9.04 (all-cause mortality) or > 9.30 (cardiovascular mortality), and after eGDR was < 4 mg/kg/min (both all-cause and cardiovascular mortality). In individuals without diabetes, the association between eGDR and mortality followed a negative linear relationship. However, there was no association between the TyG index and mortality. Compared with individuals in the low TyG and high eGDR group, those in the high TyG and low eGDR group (TyG > 9.04 and eGDR < 4) showed the highest risk for all-cause mortality (hazard ratio [HR] = 1.592, 95% confidence interval [CI] 1.284-1.975) and cardiovascular mortality (HR = 1.683, 95% CI 1.179-2.400) in the overall population. Similar results were observed in individuals with and without diabetes. CONCLUSIONS There was a potential additive effect of the TyG index and eGDR on the risk of long-term mortality in individuals with and without diabetes, which provided additional information for prognostic prediction and contributed to improving risk stratification.
Collapse
Affiliation(s)
- Hao-Ming He
- China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Department of Cardiology, China-Japan Friendship Hospital, No. 2 East Yinghua Road, Chaoyang District, 100029, Beijing, China
| | - Ying-Ying Xie
- China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Department of Cardiology, China-Japan Friendship Hospital, No. 2 East Yinghua Road, Chaoyang District, 100029, Beijing, China
| | - Qiang Chen
- China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Department of Cardiology, China-Japan Friendship Hospital, No. 2 East Yinghua Road, Chaoyang District, 100029, Beijing, China
| | - Yi-Ke Li
- China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Department of Cardiology, China-Japan Friendship Hospital, No. 2 East Yinghua Road, Chaoyang District, 100029, Beijing, China
| | - Xue-Xi Li
- China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Department of Cardiology, China-Japan Friendship Hospital, No. 2 East Yinghua Road, Chaoyang District, 100029, Beijing, China
| | - Ya-Kun Mu
- China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Department of Cardiology, China-Japan Friendship Hospital, No. 2 East Yinghua Road, Chaoyang District, 100029, Beijing, China
| | - Xiao-Yan Duo
- Department of Cardiology, China-Japan Friendship Hospital, No. 2 East Yinghua Road, Chaoyang District, 100029, Beijing, China
| | - Yan-Xiang Gao
- Department of Cardiology, China-Japan Friendship Hospital, No. 2 East Yinghua Road, Chaoyang District, 100029, Beijing, China.
| | - Jin-Gang Zheng
- China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
- Department of Cardiology, China-Japan Friendship Hospital, No. 2 East Yinghua Road, Chaoyang District, 100029, Beijing, China.
| |
Collapse
|
9
|
Radano I, Mabritto B, Luceri S, Bongioanni S, Maiellaro F, Zappia L, Lario C, Macera A, Cirillo S, Pizzuti A, Citro R, Galasso G, Musumeci G. Intramyocardial calcification in apical hypertrophic cardiomyopathy assessed using multimodality imaging: a case series. ESC Heart Fail 2024; 11:2415-2420. [PMID: 38634252 PMCID: PMC11287301 DOI: 10.1002/ehf2.14775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 02/21/2024] [Accepted: 03/15/2024] [Indexed: 04/19/2024] Open
Abstract
Apical hypertrophic cardiomyopathy (ApHCM) is an HCM variant, affecting frequently males in midlife. It is characterized by apical obliteration and persistent diastolic contraction, often resulting in microvascular ischaemia. We report five cases of ApHCM, with evidence of intramyocardial calcification on echocardiogram. On cardiac magnetic imaging (MRI), a hypointense component at early gadolinium enhancement (EGE) sequences, compatible with calcium, and a deep layer, with hyperintensity at late gadolinium enhancement (LGE) sequences, referable to fibrosis, suggest an endomyocardial fibrosis (EMF) diagnosis. EMF pathologic hallmark is endocardium and myocardium scarring, evolving to dystrophic calcification. It is found only in few ApHCM patients. Our series is the largest one described until now. Analysing patients' history, coexistent inflammatory triggers were evident in all of them, so their co-morbidities could represent a further cause of small vessel disease, in the context of ischaemic microvascular stress due to hypertrophy, leading to fibrosis and dystrophic calcification. This series could demonstrate the relation between apical fibrosis/calcification and microvascular ischaemia due to hypertrophy and inflammatory triggers.
Collapse
Affiliation(s)
- Ilaria Radano
- Department of CardiologyMauriziano HospitalTorinoItaly
| | | | | | | | | | - Luca Zappia
- Department of CardiologyMauriziano HospitalTorinoItaly
| | - Chiara Lario
- Department of RadiologyMauriziano HospitalTorinoItaly
| | | | | | | | - Rodolfo Citro
- Department of CardiologyUniversity Hospital San Giovanni di Dio e Ruggi d'AragonaSalernoItaly
| | - Gennaro Galasso
- Department of CardiologyUniversity Hospital San Giovanni di Dio e Ruggi d'AragonaSalernoItaly
| | | |
Collapse
|
10
|
Zaniker EJ, Zhang M, Hughes L, La Follette L, Atazhanova T, Trofimchuk A, Babayev E, Duncan FE. Shear wave elastography to assess stiffness of the human ovary and other reproductive tissues across the reproductive lifespan in health and disease†. Biol Reprod 2024; 110:1100-1114. [PMID: 38609185 PMCID: PMC11180622 DOI: 10.1093/biolre/ioae050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/15/2024] [Accepted: 03/20/2024] [Indexed: 04/14/2024] Open
Abstract
The ovary is one of the first organs to show overt signs of aging in the human body, and ovarian aging is associated with a loss of gamete quality and quantity. The age-dependent decline in ovarian function contributes to infertility and an altered endocrine milieu, which has ramifications for overall health. The aging ovarian microenvironment becomes fibro-inflammatory and stiff with age, and this has implications for ovarian physiology and pathology, including follicle growth, gamete quality, ovulation dynamics, and ovarian cancer. Thus, developing a non-invasive tool to measure and monitor the stiffness of the human ovary would represent a major advance for female reproductive health and longevity. Shear wave elastography is a quantitative ultrasound imaging method for evaluation of soft tissue stiffness. Shear wave elastography has been used clinically in assessment of liver fibrosis and characterization of tendinopathies and various neoplasms in thyroid, breast, prostate, and lymph nodes as a non-invasive diagnostic and prognostic tool. In this study, we review the underlying principles of shear wave elastography and its current clinical uses outside the reproductive tract as well as its successful application of shear wave elastography to reproductive tissues, including the uterus and cervix. We also describe an emerging use of this technology in evaluation of human ovarian stiffness via transvaginal ultrasound. Establishing ovarian stiffness as a clinical biomarker of ovarian aging may have implications for predicting the ovarian reserve and outcomes of Assisted Reproductive Technologies as well as for the assessment of the efficacy of emerging therapeutics to extend reproductive longevity. This parameter may also have broad relevance in other conditions where ovarian stiffness and fibrosis may be implicated, such as polycystic ovarian syndrome, late off target effects of chemotherapy and radiation, premature ovarian insufficiency, conditions of differences of sexual development, and ovarian cancer. Summary sentence: Shear Wave Elastography is a non-invasive technique to study human tissue stiffness, and here we review its clinical applications and implications for reproductive health and disease.
Collapse
Affiliation(s)
- Emily J Zaniker
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Man Zhang
- Department of Radiology, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Lydia Hughes
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | | | - Tomiris Atazhanova
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Alexis Trofimchuk
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Elnur Babayev
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Francesca E Duncan
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Center for Reproductive Longevity and Equality, Buck Institute for Research on Aging, Novato, CA, USA
| |
Collapse
|
11
|
Li GA, Huang J, Wang J, Fan L. Association between the triglyceride-glucose index and subclinical left ventricular systolic dysfunction in obese patients. Cardiovasc Diabetol 2024; 23:161. [PMID: 38715070 PMCID: PMC11077869 DOI: 10.1186/s12933-024-02253-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 04/26/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND The association between the triglyceride-glucose (TyG) index and subclinical left ventricular (LV) systolic dysfunction in obese patients remains unclear. This study aimed to investigate the relationship between the TyG index and LV global longitudinal strain (GLS) in obese patients. METHODS A total of 1028 obese patients from January 2019 to January 2024 were included in the present study. Clinical parameters and biochemical and echocardiographic data were obtained from the participants. LV GLS was obtained from the GE EchoPAC workstation for evaluating subclinical LV function. The TyG index was calculated as Ln (fasting TG [mg/dL] × fasting glucose [mg/dL]/2). LV GLS was compared between obese patients with a high TyG index and those with a low TyG index. RESULTS Obese patients with a high TyG index had greater incidences of hypertension, diabetes mellitus and hyperlipidaemia. The LV GLS was significantly lower in the high TyG index group than in the low TyG index group (P = 0.01). After adjusting for sex, age, body mass index, heart rate, hypertension, diabetes mellitus, dyslipidaemia, blood urea nitrogen, serum creatinine, LV mass and LV hypertrophy, the TyG index remained an independent risk indicator related to an LV GLS < 20% (OR: 1.520, 95% CI: 1.040 to 2.221; P = 0.031). CONCLUSIONS We concluded that an increase in the TyG index is independently associated with subclinical LV systolic dysfunction in obese patients.
Collapse
Affiliation(s)
- Guang-An Li
- Department of Echocardiography, The Affiliated Changzhou Second People's Hospital with Nanjing Medical University, 213003, Changzhou, China
| | - Jun Huang
- Department of Echocardiography, The Affiliated Changzhou Second People's Hospital with Nanjing Medical University, 213003, Changzhou, China.
| | - Jing Wang
- Department of Weight Loss Metabolic Surgery, The Affiliated Changzhou Second People's Hospital with Nanjing Medical University, 213003, Changzhou, China
| | - Li Fan
- Department of Echocardiography, The Affiliated Changzhou Second People's Hospital with Nanjing Medical University, 213003, Changzhou, China
| |
Collapse
|
12
|
Leon G, Preston RJS. Peptidylarginine deiminase 4: casting the NET over obesity? J Thromb Haemost 2024; 22:1316-1318. [PMID: 38670685 DOI: 10.1016/j.jtha.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 02/08/2024] [Accepted: 02/08/2024] [Indexed: 04/28/2024]
Affiliation(s)
- Gemma Leon
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons Ireland University of Medicine and Health Sciences, Dublin, Ireland; National Children's Research Centre, Children's Health Ireland Crumlin, Dublin, Ireland.
| | - Roger J S Preston
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons Ireland University of Medicine and Health Sciences, Dublin, Ireland; National Children's Research Centre, Children's Health Ireland Crumlin, Dublin, Ireland
| |
Collapse
|
13
|
Zhang S, Liu Z, Zhang H, Zhou X, Wang X, Chen Y, Miao X, Zhu Y, Jiang W. Effect and mechanism of Qing Gan Zi Shen decoction on heart damage induced by obesity and hypertension. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117163. [PMID: 37741474 DOI: 10.1016/j.jep.2023.117163] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 08/15/2023] [Accepted: 09/07/2023] [Indexed: 09/25/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Qing Gan Zi Shen Decoction (QGZS) is a traditional Chinese formula. It has been extensively used for decades in the treatment of hypertension combined with metabolic diseases, but its cardioprotective effects and underlying mechanisms are poorly understood. AIM OF THE STUDY To explore the cardioprotective effects and potential mechanisms of QGZS in an animal model of obese hypertension. MATERIALS AND METHODS In this study, spontaneously hypertensive rats (SHRs) were utilized as an animal model to examine the effects of a high-fat diet and two concentrations of QGZS. Echocardiography, hematoxylin eosin (H&E) staining, and wheat germ agglutinin (WGA) staining were employed to assess the cardiac structure and function of the SHRs throughout a 16-week therapy period. Furthermore, Western blotting (WB) and immunofluorescence (IF) were employed to identify the levels of Nrf2 expression in the mitochondria, cytoplasm, and nucleus of the myocardium. Additionally, transmission electron microscopy and enzyme-linked immunosorbent assay (ELISA) were utilized to measure mitochondrial morphology and pro-inflammatory cytokine levels, respectively. Furthermore, Western blotting (WB), immunohistochemistry (IHC), and immunofluorescence (IF) techniques were employed to quantify the levels of marker proteins associated with myocardial fibrosis, cardiac inflammation, oxidative stress, and mitochondrial dysfunction. RESULTS QGZS inhibited weight gain and depressed systolic and mean arterial pressures in high-fat-fed SHRs. Echocardiographic results demonstrated that QGZS prevented the increase in left ventricular mass, restricted the growth of left ventricular diameter, and improved ejection fraction (EF), fractional shortening (FS), and the ratio of early diastolic peak velocity of transmitral flow (E) to late diastolic peak velocity (A) in high-fat-fed SHRs. This suggested that QGZS prevented ventricular remodeling and protected cardiac systolic and diastolic functions. H&E and WGA staining showed that QGZS improved cardiomyocyte disorders and restricted cardiomyocyte hypertrophy. The underlying mechanisms, QGZS attenuated the oxidative stress state, including reducing the generation of reactive oxygen species (ROS) in the myocardium, revitalizing the antioxidant enzyme system, and protecting mitochondrial function. Moreover, QGZS alleviated the pro-inflammatory state in high-fat-fed SHRs. What's more, QGZS significantly increased the expression level of Nrf2 in nuclei and mitochondria in rat heart tissues, exerting a proximate Nrf2 agonist effect. CONCLUSIONS QGZS exerted cardioprotective effects, in part due to its increasing expression of Nrf2 protein in the heart, which promoted Nrf2 nuclear expression.
Collapse
Affiliation(s)
- Shujie Zhang
- Department of Cardiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, PR China
| | - Zitian Liu
- Department of Cardiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, PR China
| | - Han Zhang
- Department of Cardiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, PR China
| | - Xiaonian Zhou
- Department of Cardiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, PR China
| | - Xiuming Wang
- Department of Cardiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, PR China
| | - Yan Chen
- Department of Cardiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, PR China
| | - Xiaofan Miao
- Department of Cardiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, PR China
| | - Yao Zhu
- Department of Cardiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, PR China.
| | - Weimin Jiang
- Department of Cardiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, PR China.
| |
Collapse
|
14
|
Lu P, Zhang M, Chen Z, Xu Q, Liu M, Zhao F, Liu X, Wang X. Salvianolic Acid B Inhibits Myocardial Fibrosis during Diabetic Cardiomyopathy via Suppressing TRPC6 and TGF‐ β/Smad3 Pathway. J Food Biochem 2024; 2024. [DOI: 10.1155/2024/5525825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 07/18/2024] [Indexed: 01/05/2025]
Abstract
Salvianolic acid B (Sal B), the main water‐soluble polyphenolic constituent of Danshen, is noted for its anti‐inflammatory, antioxidant, and antiapoptotic properties, particularly in cardiovascular protection. However, the mechanisms by which Sal B affects myocardial fibrosis require further investigation. In vivo, we established a diabetic mouse model using a high‐fat diet and intraperitoneal streptozotocin (STZ) administration. Mice were then treated with Sal B, the transient receptor potential channel 6 (TRPC6) inducers, or their combination. Upregulation of TRPC6 worsened myocardial pathology, leading to cardiac hypertrophy and collagen fiber deposition. In vitro, transforming growth factor (TGF)‐β1 induced transdifferentiation of cardiac fibroblasts into myofibroblasts, creating a myofibroblast cell model. Sal B, TRPC6 inducers, or their combination were administered. TRPC6 upregulation increased procollagen type I C‐terminal propeptide (PICP) and procollagen type III N‐terminal propeptide (PIIINP) secretion, promoting myofibroblast proliferation and migration. Our study indicates that TRPC6 expression is upregulated in myocardial fibrosis, enhancing TGF‐β/Smad3 signaling and promoting collagen I (COL‐1) synthesis. Sal B inhibited abnormal TRPC6 expression and TGF‐β/Smad3 activation, mitigating these effects. Thus, Sal B alleviates myocardial fibrosis in diabetes by modulating TRPC6 expression and TGF‐β/Smad3 signaling pathway.
Collapse
|
15
|
Kainulainen S, Suni A, Lipponen JA, Kulkas A, Duce B, Korkalainen H, Nikkonen S, Sillanmäki S. Morbid obesity influences the nocturnal electrocardiogram wave and interval durations among suspected sleep apnea patients. Ann Noninvasive Electrocardiol 2024; 29:e13101. [PMID: 38031823 PMCID: PMC10770811 DOI: 10.1111/anec.13101] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 08/20/2023] [Accepted: 11/15/2023] [Indexed: 12/01/2023] Open
Abstract
BACKGROUND Obesity is a global issue with a major impact on cardiovascular health. This study explores how obesity influences nocturnal cardiac electrophysiology in suspected obstructive sleep apnea (OSA) patients. METHODS We randomly selected 12 patients from each of the five World Health Organization body mass index (BMI) classifications groups (ntotal = 60) while keeping the group's age and sex matched. We evaluated 1965 nocturnal electrocardiography (ECG) samples (10 s) using modified lead II recorded during normal saturation conditions. R-wave peaks were detected and confirmed using dedicated software, with the exclusion of ventricular extrasystoles and artifacts. The duration of waves and intervals was manually marked. The average electric potential graphs were computed for each segment. Thresholds for abnormal ECG waveforms were P-wave > 120 ms, PQ interval > 200 ms, QRS complex > 120 ms for, and QTc > 440 ms. RESULTS Obesity was significantly (p < .05) associated with prolonged conduction times. Compared to the normal weight (18.5 ≤ BMI < 25) group, the morbidly obese patients (BMI ≥ 40) had a significantly longer P-wave duration (101.7 vs. 117.2 ms), PQ interval (175.8 vs. 198.0 ms), QRS interval (89.9 vs. 97.7 ms), and QTc interval (402.8 vs. 421.2 ms). We further examined ECG waveform prolongations related to BMI. Compared to other patient groups, the morbidly obese patients had the highest number of ECG segments with PQ interval (44% of the ECG samples), QRS duration (14%), and QTc duration (20%) above the normal limits. CONCLUSIONS Morbid obesity predisposes patients to prolongation of cardiac conduction times. This might increase the risk of arrhythmias, stroke, and even sudden cardiac death.
Collapse
Affiliation(s)
- Samu Kainulainen
- Diagnostic Imaging CenterKuopio University HospitalKuopioFinland
- Department of Applied PhysicsUniversity of Eastern FinlandKuopioFinland
| | - Aaron Suni
- The School of MedicineUniversity of Eastern FinlandKuopioFinland
| | - Jukka A. Lipponen
- Department of Applied PhysicsUniversity of Eastern FinlandKuopioFinland
- Department of Emergency CareKuopio University HospitalKuopioFinland
| | - Antti Kulkas
- Department of Applied PhysicsUniversity of Eastern FinlandKuopioFinland
- Department of Clinical NeurophysiologySeinäjoki Central HospitalSeinäjokiFinland
| | - Brett Duce
- Sleep Disorders Centre, Department of Respiratory & Sleep MedicinePrincess Alexandra HospitalWoolloongabbaQueenslandAustralia
- Institute for Health and Biomedical InnovationQueensland University of TechnologyBrisbaneQueenslandAustralia
| | - Henri Korkalainen
- Diagnostic Imaging CenterKuopio University HospitalKuopioFinland
- Department of Applied PhysicsUniversity of Eastern FinlandKuopioFinland
| | - Sami Nikkonen
- Diagnostic Imaging CenterKuopio University HospitalKuopioFinland
- Department of Applied PhysicsUniversity of Eastern FinlandKuopioFinland
| | - Saara Sillanmäki
- Diagnostic Imaging CenterKuopio University HospitalKuopioFinland
- Institute of Clinical MedicineUniversity of Eastern FinlandKuopioFinland
| |
Collapse
|
16
|
Rafaqat S, Sharif S, Majeed M, Naz S, Saqib M, Manzoor F. Association of adiponectin gene expression with atrial fibrillation in a Pakistani populace. Sci Rep 2023; 13:22589. [PMID: 38114533 PMCID: PMC10730827 DOI: 10.1038/s41598-023-46388-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 10/31/2023] [Indexed: 12/21/2023] Open
Abstract
Adiponectin, an adipocytokine produced and secreted by adipose tissue, has anti-diabetic, anti-atherogenic, and anti-inflammatory properties. This case-control study was aimed to assess the expression and serum levels of adiponectin in subject suffereing from atrial fibrillation (AF). The study's subjects (n = 690) were enrolled from the Punjab Institute of Cardiology, Lahore and were grouped into control, AF without Metabolic syndrome (MetS), and AF with MetS groups. Along with the collection of demographic data, an analysis of adiponectin and biochemical parameters were performed. A highly significant difference in serum levels of adiponectin was observed among the control, AF without MetS, and AF with MetS groups (61.61 ± 45.30 ng/ml, 37.20 ± 19.46 ng/ml, 63.78 ± 61.69 ng/ml). The expression analysis of adiponectin was decreased (n-fold = ̴ 0.30) in AF without MetS group as compared to control group (n-fold = ~ 1.16) but increased in AF with MetS group (n-fold = ̴ 6.26). The correlation analysis revealed a highly significant positive relationship between the expression of the adiponectin gene with waist-to-hip ratio (WHR) in AF without MetS group. Whereas, serum adiponectin was negatively related to serum triglycerides (TG) in AF with MetS group. In multiple regression analysis using adiponectin expression as the dependent variable, WHR was a determinant in AF without MetS. Whereas, when serum adiponectin was used as the dependent variable, serum TG was the determinant in group AF with MetS. The present study implicates that decreased expression and serum levels of adiponectin were associated with the development of AF in which WHR and serum TG also contributed towards the onset of atrial fibrillation.
Collapse
Affiliation(s)
- Saira Rafaqat
- Department of Zoology, Lahore College for Women University, Lahore, Pakistan
| | - Saima Sharif
- Department of Zoology, Lahore College for Women University, Lahore, Pakistan.
| | - Mona Majeed
- Emergency Department, Punjab Institute of Cardiology, Lahore, Pakistan
| | - Shagufta Naz
- Department of Zoology, Lahore College for Women University, Lahore, Pakistan
| | - Muhammad Saqib
- Department of Medicine, Sir Ganga Ram Hospital, Lahore, Pakistan
| | - Farkhanda Manzoor
- Department of Zoology, Lahore College for Women University, Lahore, Pakistan
| |
Collapse
|
17
|
Arvunescu AM, Ionescu RF, Cretoiu SM, Dumitrescu SI, Zaharia O, Nanea IT. Inflammation in Heart Failure-Future Perspectives. J Clin Med 2023; 12:7738. [PMID: 38137807 PMCID: PMC10743797 DOI: 10.3390/jcm12247738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/01/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Chronic heart failure is a terminal point of a vast majority of cardiac or extracardiac causes affecting around 1-2% of the global population and more than 10% of the people above the age of 65. Inflammation is persistently associated with chronic diseases, contributing in many cases to the progression of disease. Even in a low inflammatory state, past studies raised the question of whether inflammation is a constant condition, or if it is, rather, triggered in different amounts, according to the phenotype of heart failure. By evaluating the results of clinical studies which focused on proinflammatory cytokines, this review aims to identify the ones that are independent risk factors for heart failure decompensation or cardiovascular death. This review assessed the current evidence concerning the inflammatory activation cascade, but also future possible targets for inflammatory response modulation, which can further impact the course of heart failure.
Collapse
Affiliation(s)
- Alexandru Mircea Arvunescu
- Department of Internal Medicine and Cardiology, “Prof. Dr. Th. Burghele” Clinical Hospital, 061344 Bucharest, Romania; (O.Z.); (I.T.N.)
- Department of Cardio-Thoracic Pathology, Cardio-Thoracic Pathology, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050471 Bucharest, Romania
| | - Ruxandra Florentina Ionescu
- Department of Cardiology I, Central Military Emergency Hospital “Dr Carol Davila”, 030167 Bucharest, Romania (S.I.D.)
- Department of Morphological Sciences, Cell and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Sanda Maria Cretoiu
- Department of Morphological Sciences, Cell and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Silviu Ionel Dumitrescu
- Department of Cardiology I, Central Military Emergency Hospital “Dr Carol Davila”, 030167 Bucharest, Romania (S.I.D.)
- Department of Cardiology, Faculty of Medicine, Titu Maiorescu University, 040441 Bucharest, Romania
| | - Ondin Zaharia
- Department of Internal Medicine and Cardiology, “Prof. Dr. Th. Burghele” Clinical Hospital, 061344 Bucharest, Romania; (O.Z.); (I.T.N.)
- Department of Cardio-Thoracic Pathology, Cardio-Thoracic Pathology, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050471 Bucharest, Romania
| | - Ioan Tiberiu Nanea
- Department of Internal Medicine and Cardiology, “Prof. Dr. Th. Burghele” Clinical Hospital, 061344 Bucharest, Romania; (O.Z.); (I.T.N.)
- Department of Cardio-Thoracic Pathology, Cardio-Thoracic Pathology, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050471 Bucharest, Romania
| |
Collapse
|
18
|
Huang J, Li GA, Wang J, Jiao YW, Qian ZF, Fan L, Tang LM. Evaluation of subclinical left ventricular systolic dysfunction in obese patients by global myocardial work. Diabetol Metab Syndr 2023; 15:254. [PMID: 38057836 DOI: 10.1186/s13098-023-01230-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 11/24/2023] [Indexed: 12/08/2023] Open
Abstract
OBJECTIVE To evaluate subclinical LV systolic dysfunction in obese patients by global myocardial work (MW). METHODS A total of 589 obese patients and 100 normal controls were enrolled in the study. The global longitudinal strain (GLS), global work index (GWI), global constructive work (GCW), global wasted work (GWW) and global work efficiency (GWE) were generated by a noninvasive pressure-strain loop (PSL) in apical 3-, 4- and 2-chamber views acquired by two-dimensional echocardiography. All obese patients were divided into three groups: class I obesity (mild) 30-35 kg/m2, class II obesity (moderate) 35-40 kg/m2 and class III obesity (severe) > 40 kg/m2. These values were compared among the three groups. The independent influencing factors of subclinical LV systolic dysfunction in obese patients were explored by constructing a multiple regression model. ROC analysis was performed to determine the performance of MW to detect subclinical LV systolic dysfunction in obese patients. RESULTS The absolute value of GLS in obese patients was significantly lower than that in normal controls (P < 0.001). The values of GWI, GCW, GWE and GCW/GWW in obese patients were significantly lower than those in normal controls (P < 0.05), while GWW was significantly larger than that in normal controls (P < 0.001). Subgroup analysis and trend analysis showed that the values of GWI, GCW, GWE and GCW/GWW in severe obese patients were lower than those in moderate obese patients and lower than those in mild obese patients (P < 0.01), while GWW in severe obese patients was larger than that in moderate obese patients and larger than that in mild obese patients (P < 0.05). Female sex, BMI and SBP were independent influencing factors of impaired GWI (β = 0.15, P < 0.001) (β=-0.18, P < 0.001) (β = 0.50, P < 0.001) and GCW (β = 0.17, P < 0.001) (β=-0.19, P < 0.001) (β = 0.57, P < 0.001). ROC analysis showed that the AUC of the combined global MW was significantly higher than the AUCs of the individual indices (P < 0.05). CONCLUSION In this study, we conclude that subclinical LV systolic dysfunction was detected by the novel global MW technique in obese patients. Elevated BMI in obese patients results in an increased risk of subclinical LV systolic dysfunction, although the LVEF is normal. Controlling BMI in obese patients may reduce the impairment to the LV myocardial systolic function. Global MW is a novel and reproducible technique that can be well applied in the clinical evaluation of subclinical LV systolic dysfunction.
Collapse
Affiliation(s)
- Jun Huang
- Department of Echocardiography, The Affiliated Changzhou Second People's Hospital with Nanjing Medical University, Changzhou, 213003, China
| | - Guang-An Li
- Department of Echocardiography, The Affiliated Changzhou Second People's Hospital with Nanjing Medical University, Changzhou, 213003, China
| | - Jing Wang
- Department of Weight Loss Metabolic Surgery, The Affiliated Changzhou Second People's Hospital with Nanjing Medical University, Changzhou, 213003, China
| | - Yu-Wen Jiao
- Department of Weight Loss Metabolic Surgery, The Affiliated Changzhou Second People's Hospital with Nanjing Medical University, Changzhou, 213003, China
| | - Zhi-Feng Qian
- Department of Weight Loss Metabolic Surgery, The Affiliated Changzhou Second People's Hospital with Nanjing Medical University, Changzhou, 213003, China
| | - Li Fan
- Department of Echocardiography, The Affiliated Changzhou Second People's Hospital with Nanjing Medical University, Changzhou, 213003, China
| | - Li-Ming Tang
- Department of Weight Loss Metabolic Surgery, The Affiliated Changzhou Second People's Hospital with Nanjing Medical University, Changzhou, 213003, China.
| |
Collapse
|
19
|
Huang L, Zhao X, Liang L, Tian P, Chen Y, Zhai M, Huang Y, Zhou Q, Zhang Y, Zhang J. Obesity Paradox in Heart Failure Revisited: Etiology as Effect Modifier. Am J Cardiol 2023; 207:294-301. [PMID: 37769574 DOI: 10.1016/j.amjcard.2023.09.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 08/27/2023] [Accepted: 09/06/2023] [Indexed: 10/03/2023]
Abstract
The prognostic value of overweight/obesity in heart failure (HF) may vary according to HF etiologies. We aim to determine whether body mass index has differential impacts on survival among hospitalized HF patients with varying etiologies. Consecutive hospitalized HF patients between December 2006 and December 2017 were included. Multivariable analyses, including Cox proportional hazard models and restricted cubic splines, were used to investigate the impact of body mass index on mortality by HF etiology. Among the 3,836 patients included (mean age 57.1 years, 28.4% women), 1,475 (38.5%) were identified as having ischemic etiology. Of the remaining 2,361 patients with non-ischemic etiologies, dilated cardiomyopathy (DCM) accounted for 45.6% (n = 1,077). The rest of the patients were uniformly classified as having non-ischemic-non-DCM HF. The unadjusted data demonstrated an adiposity-related survival paradox in HF across all etiologies. However, the paradox holds only among non-ischemic-non-DCM HF patients after multivariate adjustment, wherein overweight patients exhibit the lowest mortality compared with their normal-weight counterparts (adjusted hazard ratio [aHR] 0.69, 95% confidence interval [CI] 0.52 to 0.91), with a nadir in mortality risk at 28.18 kg/m2. Similar survival benefits of overweight were not demonstrated in ischemic or DCM HF patients (ischemic etiology: aHR 1.07, 95% CI 0.84 to 1.36; DCM etiology: aHR 0.97, 95% CI 0.74 to 1.28). In conclusion, being overweight or obese does not confer better survival in HF patients of ischemic or DCM etiology, and the prognostic benefit of being overweight is maintained only in non-ischemic-non-DCM HF patients. Pathophysiologic interpretations are warranted, and whether patients of certain etiologies would benefit from weight reduction needs to be explored.
Collapse
Affiliation(s)
- Liyan Huang
- Heart Failure Center, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Xuemei Zhao
- Heart Failure Center, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Lin Liang
- Heart Failure Center, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Pengchao Tian
- Heart Failure Center, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Yuyi Chen
- Heart Failure Center, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Mei Zhai
- Heart Failure Center, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Yan Huang
- Heart Failure Center, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Qiong Zhou
- Heart Failure Center, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Yuhui Zhang
- Heart Failure Center, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China.
| | - Jian Zhang
- Heart Failure Center, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China.
| |
Collapse
|
20
|
Musale V, Wasserman DH, Kang L. Extracellular matrix remodelling in obesity and metabolic disorders. LIFE METABOLISM 2023; 2:load021. [PMID: 37383542 PMCID: PMC10299575 DOI: 10.1093/lifemeta/load021] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 05/07/2023] [Accepted: 05/17/2023] [Indexed: 06/30/2023]
Abstract
Obesity causes extracellular matrix (ECM) remodelling which can develop into serious pathology and fibrosis, having metabolic effects in insulin-sensitive tissues. The ECM components may be increased in response to overnutrition. This review will focus on specific obesity-associated molecular and pathophysiological mechanisms of ECM remodelling and the impact of specific interactions on tissue metabolism. In obesity, complex network of signalling molecules such as cytokines and growth factors have been implicated in fibrosis. Increased ECM deposition contributes to the pathogenesis of insulin resistance at least in part through activation of cell surface integrin receptors and CD44 signalling cascades. These cell surface receptors transmit signals to the cell adhesome which orchestrates an intracellular response that adapts to the extracellular environment. Matrix proteins, glycoproteins, and polysaccharides interact through ligand-specific cell surface receptors that interact with the cytosolic adhesion proteins to elicit specific actions. Cell adhesion proteins may have catalytic activity or serve as scaffolds. The vast number of cell surface receptors and the complexity of the cell adhesome have made study of their roles challenging in health and disease. Further complicating the role of ECM-cell receptor interactions is the variation between cell types. This review will focus on recent insights gained from studies of two highly conserved, ubiquitously axes and how they contribute to insulin resistance and metabolic dysfunction in obesity. These are the collagen-integrin receptor-IPP (ILK-PINCH-Parvin) axis and the hyaluronan-CD44 interaction. We speculate that targeting ECM components or their receptor-mediated cell signalling may provide novel insights into the treatment of obesity-associated cardiometabolic complications.
Collapse
Affiliation(s)
- Vishal Musale
- Division of Systems Medicine, School of Medicine, University of Dundee, Dundee DD1 9SY, United Kingdom
| | - David H Wasserman
- Department of Molecular Physiology and Biophysics, Mouse Metabolic Phenotyping Center, Vanderbilt University, Nashville, TN 37235, United States
| | - Li Kang
- Division of Systems Medicine, School of Medicine, University of Dundee, Dundee DD1 9SY, United Kingdom
| |
Collapse
|
21
|
Meza-Ramos A, Alcarraz A, Lazo-Rodriguez M, Sangüesa G, Banon-Maneus E, Rovira J, Ramirez-Bajo MJ, Sitges M, Mont L, Ventura-Aguiar P, Batlle M, Guasch E. High-Intensity Exercise Promotes Deleterious Cardiovascular Remodeling in a High-Cardiovascular-Risk Model: A Role for Oxidative Stress. Antioxidants (Basel) 2023; 12:1462. [PMID: 37508000 PMCID: PMC10376780 DOI: 10.3390/antiox12071462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 07/01/2023] [Accepted: 07/03/2023] [Indexed: 07/30/2023] Open
Abstract
Although the benefits of moderate exercise in patients at high cardiovascular risk are well established, the effects of strenuous exercise remain unknown. We aimed to study the impact of strenuous exercise in a very high cardiovascular risk model. Nephrectomized aged Zucker obese rats were trained at a moderate (MOD) or high (INT) intensity or were kept sedentary (SED) for 10 weeks. Subsequently, echocardiography and ex vivo vascular reactivity assays were performed, and blood, aortas, perivascular adipose tissue (PVAT), and left ventricles (LVs) were harvested. An improved risk profile consisting of decreased body weight and improved response to a glucose tolerance test was noted in the trained groups. Vascular reactivity experiments in the descending thoracic aorta demonstrated increased endothelial NO release in the MOD group but not in the INT group, compared with SED; the free radical scavenger TEMPOL improved endothelial function in INT rats to a similar level as MOD. An imbalance in the expression of oxidative stress-related genes toward a pro-oxidant environment was observed in the PVAT of INT rats. In the heart, INT training promoted eccentric hypertrophy and a mild reduction in ejection fraction. Obesity was associated with LV fibrosis and a transition toward β-myosin heavy chain and the N2Ba titin isoform. Exercise reverted the myosin imbalance, but only MOD reduced the predominance of the N2Ba titin isoform. In conclusion, moderate exercise yields the most intense cardiovascular benefits in a high-cardiovascular-risk animal model, while intense training partially reverts them.
Collapse
Affiliation(s)
- Aline Meza-Ramos
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Medicine Department, Universitat de Barcelona, 08036 Barcelona, Spain
- Consejo Nacional de Ciencia y Tecnología (CONACyT), Ciudad de México 03940, Mexico
| | - Anna Alcarraz
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Medicine Department, Universitat de Barcelona, 08036 Barcelona, Spain
| | - Marta Lazo-Rodriguez
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Laboratori Experimental de Nefrologia i Trasplantament (LENIT), 08036 Barcelona, Spain
| | - Gemma Sangüesa
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Elisenda Banon-Maneus
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Laboratori Experimental de Nefrologia i Trasplantament (LENIT), 08036 Barcelona, Spain
| | - Jordi Rovira
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Laboratori Experimental de Nefrologia i Trasplantament (LENIT), 08036 Barcelona, Spain
| | - Maria Jose Ramirez-Bajo
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Laboratori Experimental de Nefrologia i Trasplantament (LENIT), 08036 Barcelona, Spain
| | - Marta Sitges
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Medicine Department, Universitat de Barcelona, 08036 Barcelona, Spain
- Cardiovascular Institute, Clínic Barcelona, 08036 Barcelona, Spain
- Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - Lluís Mont
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Medicine Department, Universitat de Barcelona, 08036 Barcelona, Spain
- Cardiovascular Institute, Clínic Barcelona, 08036 Barcelona, Spain
- Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - Pedro Ventura-Aguiar
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Laboratori Experimental de Nefrologia i Trasplantament (LENIT), 08036 Barcelona, Spain
- Department of Nephrology and Kidney Transplantation, Clínic Barcelona, 08036 Barcelona, Spain
| | - Montserrat Batlle
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - Eduard Guasch
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Medicine Department, Universitat de Barcelona, 08036 Barcelona, Spain
- Cardiovascular Institute, Clínic Barcelona, 08036 Barcelona, Spain
- Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| |
Collapse
|
22
|
Pan KL, Hsu YC, Chang ST, Chung CM, Lin CL. The Role of Cardiac Fibrosis in Diabetic Cardiomyopathy: From Pathophysiology to Clinical Diagnostic Tools. Int J Mol Sci 2023; 24:8604. [PMID: 37239956 PMCID: PMC10218088 DOI: 10.3390/ijms24108604] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/04/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Diabetes mellitus (DM) is a chronic metabolic disorder characterized by hyperglycemia due to inadequate insulin secretion, resistance, or both. The cardiovascular complications of DM are the leading cause of morbidity and mortality in diabetic patients. There are three major types of pathophysiologic cardiac remodeling including coronary artery atherosclerosis, cardiac autonomic neuropathy, and DM cardiomyopathy in patients with DM. DM cardiomyopathy is a distinct cardiomyopathy characterized by myocardial dysfunction in the absence of coronary artery disease, hypertension, and valvular heart disease. Cardiac fibrosis, defined as the excessive deposition of extracellular matrix (ECM) proteins, is a hallmark of DM cardiomyopathy. The pathophysiology of cardiac fibrosis in DM cardiomyopathy is complex and involves multiple cellular and molecular mechanisms. Cardiac fibrosis contributes to the development of heart failure with preserved ejection fraction (HFpEF), which increases mortality and the incidence of hospitalizations. As medical technology advances, the severity of cardiac fibrosis in DM cardiomyopathy can be evaluated by non-invasive imaging modalities such as echocardiography, heart computed tomography (CT), cardiac magnetic resonance imaging (MRI), and nuclear imaging. In this review article, we will discuss the pathophysiology of cardiac fibrosis in DM cardiomyopathy, non-invasive imaging modalities to evaluate the severity of cardiac fibrosis, and therapeutic strategies for DM cardiomyopathy.
Collapse
Affiliation(s)
- Kuo-Li Pan
- Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital, Chiayi Branch, Chiayi City 613, Taiwan; (K.-L.P.); (S.-T.C.); (C.-M.C.)
- College of Medicine, Chang Gung University, Taoyuan City 333, Taiwan
- Heart Failure Center, Chang Gung Memorial Hospital, Chiayi Branch, Chiayi City 613, Taiwan
| | - Yung-Chien Hsu
- Department of Nephrology, Kidney and Diabetic Complications Research Team (KDCRT), Chang Gung Memorial Hospital, Chiayi Branch, Chiayi City 613, Taiwan;
| | - Shih-Tai Chang
- Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital, Chiayi Branch, Chiayi City 613, Taiwan; (K.-L.P.); (S.-T.C.); (C.-M.C.)
- College of Medicine, Chang Gung University, Taoyuan City 333, Taiwan
| | - Chang-Min Chung
- Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital, Chiayi Branch, Chiayi City 613, Taiwan; (K.-L.P.); (S.-T.C.); (C.-M.C.)
- College of Medicine, Chang Gung University, Taoyuan City 333, Taiwan
| | - Chun-Liang Lin
- College of Medicine, Chang Gung University, Taoyuan City 333, Taiwan
- Department of Nephrology, Kidney and Diabetic Complications Research Team (KDCRT), Chang Gung Memorial Hospital, Chiayi Branch, Chiayi City 613, Taiwan;
- Kidney Research Center, Chang Gung Memorial Hospital, Taipei 105, Taiwan
- Center for Shockwave Medicine and Tissue Engineering, Department of Medical Research, Chang Gung Memorial Hospital, Kaohsiung City 833, Taiwan
| |
Collapse
|
23
|
McElhinney K, Irnaten M, O’Brien C. p53 and Myofibroblast Apoptosis in Organ Fibrosis. Int J Mol Sci 2023; 24:ijms24076737. [PMID: 37047710 PMCID: PMC10095465 DOI: 10.3390/ijms24076737] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/23/2023] [Accepted: 03/28/2023] [Indexed: 04/07/2023] Open
Abstract
Organ fibrosis represents a dysregulated, maladaptive wound repair response that results in progressive disruption of normal tissue architecture leading to detrimental deterioration in physiological function, and significant morbidity/mortality. Fibrosis is thought to contribute to nearly 50% of all deaths in the Western world with current treatment modalities effective in slowing disease progression but not effective in restoring organ function or reversing fibrotic changes. When physiological wound repair is complete, myofibroblasts are programmed to undergo cell death and self-clearance, however, in fibrosis there is a characteristic absence of myofibroblast apoptosis. It has been shown that in fibrosis, myofibroblasts adopt an apoptotic-resistant, highly proliferative phenotype leading to persistent myofibroblast activation and perpetuation of the fibrotic disease process. Recently, this pathological adaptation has been linked to dysregulated expression of tumour suppressor gene p53. In this review, we discuss p53 dysregulation and apoptotic failure in myofibroblasts and demonstrate its consistent link to fibrotic disease development in all types of organ fibrosis. An enhanced understanding of the role of p53 dysregulation and myofibroblast apoptosis may aid in future novel therapeutic and/or diagnostic strategies in organ fibrosis.
Collapse
Affiliation(s)
- Kealan McElhinney
- UCD Clinical Research Centre, Mater Misericordiae University Hospital, D07 R2WY Dublin, Ireland
| | - Mustapha Irnaten
- UCD Clinical Research Centre, Mater Misericordiae University Hospital, D07 R2WY Dublin, Ireland
| | - Colm O’Brien
- UCD Clinical Research Centre, Mater Misericordiae University Hospital, D07 R2WY Dublin, Ireland
| |
Collapse
|
24
|
Wang J, Cai E, An X, Wang J. Ginaton reduces M1-polarized macrophages in hypertensive cardiac remodeling via NF-κB signaling. Front Pharmacol 2023; 14:1104871. [PMID: 36992835 PMCID: PMC10040779 DOI: 10.3389/fphar.2023.1104871] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 02/23/2023] [Indexed: 03/16/2023] Open
Abstract
Introduction: Macrophages play a critical role in cardiac remodeling, and dysregulated macrophage polarization between the proinflammatory M1 and anti-inflammatory M2 phenotypes promotes excessive inflammation and cardiac damage. Ginaton is a natural extract extracted from Ginkgo biloba. Because of its anti-inflammatory properties, it has long been used to treat a variety of diseases. However, the role of Ginaton in modulating the diverse macrophage functional phenotypes brought on by Ang II-induced hypertension and cardiac remodeling is unknown.Methods: In the present study, we fed C57BL/6J mice in the age of eight weeks with Ginaton (300 mg/kg/day) or PBS control, and then injected Ang II (1000 ng/kg/min) or saline for 14 days to investigate the specific efficacy of Ginaton. Systolic blood pressure was recorded, cardiac function was detected by echocardiography, and pathological changes in cardiac tissue were assessed by histological staining. Different functional phenotypes of the macrophages were assessed by immunostaining. The mRNA expression of genes was assessed by qPCR analysis. Protein levels were detected by immunoblotting.Results: Our results showed that Ang II infusion significantly enhanced the activation and infiltration of macrophages with hypertension, cardiac insufficiency, myocardial hypertrophy, fibrosis and M1 phenotype macrophages compared with the saline group. Instead, Ginaton attenuated these effects. In addition, in vitro experiments showed that Ginaton inhibited Ang II-induced activation, adhesion and migration of M1 phenotype macrophages.Conclusion: Our study showed that Ginaton treatment inhibits Ang II-induced M1 phenotype macrophage activation, macrophage adhesion, and mitigation, as well as the inflammatory response leading to impaired and dysfunctional hypertension and cardiac remodeling. Gianton may be a powerful treatment for heart disease.
Collapse
Affiliation(s)
- Jie Wang
- Department of Cardiology, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Enze Cai
- Department of Cardiology, the Fifth People’s Hospital of Dalian, Dalian, China
| | - Xiangbo An
- Department of Interventional Therapy, First Affiliated Hospital of Dalian Medical University, Dalian, China
- *Correspondence: Xiangbo An, ; Junjie Wang,
| | - Junjie Wang
- Department of Cardiology, First Affiliated Hospital of Dalian Medical University, Dalian, China
- *Correspondence: Xiangbo An, ; Junjie Wang,
| |
Collapse
|
25
|
Cheng Y, Wang Y, Yin R, Xu Y, Zhang L, Zhang Y, Yang L, Zhao D. Central role of cardiac fibroblasts in myocardial fibrosis of diabetic cardiomyopathy. Front Endocrinol (Lausanne) 2023; 14:1162754. [PMID: 37065745 PMCID: PMC10102655 DOI: 10.3389/fendo.2023.1162754] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 03/20/2023] [Indexed: 04/03/2023] Open
Abstract
Diabetic cardiomyopathy (DCM), a main cardiovascular complication of diabetes, can eventually develop into heart failure and affect the prognosis of patients. Myocardial fibrosis is the main factor causing ventricular wall stiffness and heart failure in DCM. Early control of myocardial fibrosis in DCM is of great significance to prevent or postpone the progression of DCM to heart failure. A growing body of evidence suggests that cardiomyocytes, immunocytes, and endothelial cells involve fibrogenic actions, however, cardiac fibroblasts, the main participants in collagen production, are situated in the most central position in cardiac fibrosis. In this review, we systematically elaborate the source and physiological role of myocardial fibroblasts in the context of DCM, and we also discuss the potential action and mechanism of cardiac fibroblasts in promoting fibrosis, so as to provide guidance for formulating strategies for prevention and treatment of cardiac fibrosis in DCM.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Dong Zhao
- *Correspondence: Longyan Yang, ; Dong Zhao,
| |
Collapse
|
26
|
Nguyen IT, Joles JA, Verhaar MC, Lamb HJ, Dekkers IA. Obesity in relation to cardiorenal function. VISCERAL AND ECTOPIC FAT 2023:243-264. [DOI: 10.1016/b978-0-12-822186-0.00006-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
27
|
Forte M, Rodolico D, Ameri P, Catalucci D, Chimenti C, Crotti L, Schirone L, Pingitore A, Torella D, Iacovone G, Valenti V, Schiattarella GG, Perrino C, Sciarretta S. Molecular mechanisms underlying the beneficial effects of exercise and dietary interventions in the prevention of cardiometabolic diseases. J Cardiovasc Med (Hagerstown) 2022; 24:e3-e14. [PMID: 36729582 DOI: 10.2459/jcm.0000000000001397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Cardiometabolic diseases still represent a major cause of mortality worldwide. In addition to pharmacological approaches, lifestyle interventions can also be adopted for the prevention of these morbid conditions. Lifestyle changes include exercise and dietary restriction protocols, such as calorie restriction and intermittent fasting, which were shown to delay cardiovascular ageing and elicit health-promoting effects in preclinical models of cardiometabolic diseases. Beneficial effects are mediated by the restoration of multiple molecular mechanisms in heart and vessels that are compromised by metabolic stress. Exercise and dietary restriction rescue mitochondrial dysfunction, oxidative stress and inflammation. They also improve autophagy. The result of these effects is a marked improvement of vascular and heart function. In this review, we provide a comprehensive overview of the molecular mechanisms involved in the beneficial effects of exercise and dietary restriction in models of diabetes and obesity. We also discuss clinical studies and gap in animal-to-human translation.
Collapse
Affiliation(s)
- Maurizio Forte
- Department of AngioCardioNeurology, IRCCS Neuromed, Pozzilli
| | - Daniele Rodolico
- Department of Cardiovascular and Pulmonary Sciences, Catholic University of the Sacred Heart, Rome
| | - Pietro Ameri
- Cardiovascular Disease Unit, IRCCS Ospedale Policlinico.,Department of Internal Medicine, University of Genova, Genova
| | - Daniele Catalucci
- Humanitas Research Hospital, IRCCS, Rozzano.,National Research Council, Institute of Genetic and Biomedical Research - UOS, Milan
| | - Cristina Chimenti
- Department of Clinical, Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Rome
| | - Lia Crotti
- Istituto Auxologico Italiano, IRCCS, Department of Cardiovascular, Neural and Metabolic Sciences, San Luca Hospital.,Department of Medicine and Surgery, Università Milano-Bicocca, Milan
| | - Leonardo Schirone
- Department of Medical and Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina
| | - Annachiara Pingitore
- Department of General and Specialistic Surgery 'Paride Stefanini' Sapienza University of Rome
| | - Daniele Torella
- Molecular and Cellular Cardiology Laboratory, Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro
| | | | | | - Gabriele G Schiattarella
- Division of Cardiology, Department of Advanced Biomedical Sciences, Federico II University of Naples, Naples, Italy
| | - Cinzia Perrino
- Division of Cardiology, Department of Advanced Biomedical Sciences, Federico II University of Naples, Naples, Italy
| | - Sebastiano Sciarretta
- Department of AngioCardioNeurology, IRCCS Neuromed, Pozzilli.,Department of Medical and Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina
| | | |
Collapse
|
28
|
Proteomic Insights into Cardiac Fibrosis: From Pathophysiological Mechanisms to Therapeutic Opportunities. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248784. [PMID: 36557919 PMCID: PMC9781843 DOI: 10.3390/molecules27248784] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022]
Abstract
Cardiac fibrosis is a common pathophysiologic process in nearly all forms of heart disease which refers to excessive deposition of extracellular matrix proteins by cardiac fibroblasts. Activated fibroblasts are the central cellular effectors in cardiac fibrosis, and fibrotic remodelling can cause several cardiac dysfunctions either by reducing the ejection fraction due to a stiffened myocardial matrix, or by impairing electric conductance. Recently, there is a rising focus on the proteomic studies of cardiac fibrosis for pathogenesis elucidation and potential biomarker mining. This paper summarizes the current knowledge of molecular mechanisms underlying cardiac fibrosis, discusses the potential of imaging and circulating biomarkers available to recognize different phenotypes of this lesion, reviews the currently available and potential future therapies that allow individualized management in reversing progressive fibrosis, as well as the recent progress on proteomic studies of cardiac fibrosis. Proteomic approaches using clinical specimens and animal models can provide the ability to track pathological changes and new insights into the mechanisms underlining cardiac fibrosis. Furthermore, spatial and cell-type resolved quantitative proteomic analysis may also serve as a minimally invasive method for diagnosing cardiac fibrosis and allowing for the initiation of prophylactic treatment.
Collapse
|
29
|
Yao Y, Xue J, Li B. Obesity and sudden cardiac death: Prevalence, pathogenesis, prevention and intervention. Front Cell Dev Biol 2022; 10:1044923. [PMID: 36531958 PMCID: PMC9757164 DOI: 10.3389/fcell.2022.1044923] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 11/24/2022] [Indexed: 02/04/2024] Open
Abstract
Obesity and sudden cardiac death (SCD) share common risk factors. Obesity, in and of itself, can result in the development of SCD. Numerous epidemiologic and clinical studies have demonstrated the close relationships between obesity and SCD, however, the underlying mechanisms remain incompletely understood. Various evidences support the significance of excess adiposity in determining the risk of SCD, including anatomical remodeling, electrical remodeling, metabolic dysfunction, autonomic imbalance. Weight reduction has improved obesity related comorbidities, and reversed abnormal cardiac remodeling. Indeed, it is still unknown whether weight loss contributes to decreased risk of SCD. Further high-quality, prospective trials are needed to strengthen our understanding on weight management and SCD.
Collapse
Affiliation(s)
- Yan Yao
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | | | | |
Collapse
|
30
|
Aboulgheit A, Karbasiafshar C, Sabra M, Zhang Z, Sodha N, Abid MR, Sellke FW. Extracellular vesicles improve diastolic function and substructure in normal and high-fat diet models of chronic myocardial ischemia. J Thorac Cardiovasc Surg 2022; 164:e371-e384. [PMID: 34756431 PMCID: PMC9005578 DOI: 10.1016/j.jtcvs.2021.07.062] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/29/2021] [Accepted: 07/15/2021] [Indexed: 10/20/2022]
Abstract
OBJECTIVE The burden of mortality and morbidity of cardiovascular disease is in part due to substantial fibrosis accelerated by coexisting risk factors. This study aims to evaluate the effect of extracellular vesicle therapy on diastolic function and myocardial fibrosis in the setting of chronic myocardial ischemia with and without a high-fat diet. METHODS Forty male Yorkshire swine were administered a normal or high-fat diet. At 11 weeks of age, they underwent placement of an ameroid constrictor on their left circumflex coronary artery. Both dietary groups then received either intramyocardial injection of vehicle saline as controls or extracellular vesicles as treatment into the ischemic territory (normal diet control, n = 8; high-fat diet controls, n = 11) or extracellular vesicles (normal diet extracellular vesicles, n = 9; high-fat diet extracellular vesicles, n = 12). Five weeks later, hemodynamic parameters, histology, and selected protein expression were evaluated. RESULTS Extracellular vesicles reduced end-diastolic pressure volume relationship (P = .002), perivascular collagen density (P = .031), calcium mineralization (P = .026), and cardiomyocyte diameter (P < .0001), and upregulated osteopontin (P = .0046) and mechanistic target of rapamycin (P = .021). An interaction between extracellular vesicles and diet was observed in the vimentin area (P = .044) and fraction of myofibroblast markers to total vimentin (P = .049). Significant changes across diet were found with reductions in muscle fiber area (P = .026), tumor necrosis factor α (P = .0002), NADPH oxidase 2 and 4 (P = .0036, P = .008), superoxide dismutase 1 (P = .034), and phosphorylated glycogen synthase kinase 3β (P = .020). CONCLUSIONS Extracellular vesicle therapy improved the myocardium's ability to relax and is likely due to structural improvements at the extracellular matrix and cellular levels.
Collapse
Affiliation(s)
- Ahmed Aboulgheit
- Cardiovascular Research Center, Rhode Island Hospital, Providence, RI; Division of Cardiothoracic Surgery, Alpert Medical School of Brown University and Rhode Island Hospital, Providence, RI
| | | | - Mohamed Sabra
- Cardiovascular Research Center, Rhode Island Hospital, Providence, RI
| | - Zhiqi Zhang
- Cardiovascular Research Center, Rhode Island Hospital, Providence, RI; Division of Cardiothoracic Surgery, Alpert Medical School of Brown University and Rhode Island Hospital, Providence, RI
| | - Neel Sodha
- Division of Cardiothoracic Surgery, Alpert Medical School of Brown University and Rhode Island Hospital, Providence, RI
| | - M Ruhul Abid
- Cardiovascular Research Center, Rhode Island Hospital, Providence, RI; Division of Cardiothoracic Surgery, Alpert Medical School of Brown University and Rhode Island Hospital, Providence, RI
| | - Frank W Sellke
- Cardiovascular Research Center, Rhode Island Hospital, Providence, RI; Division of Cardiothoracic Surgery, Alpert Medical School of Brown University and Rhode Island Hospital, Providence, RI.
| |
Collapse
|
31
|
Schmidkonz C, Kuwert T, Atzinger A, Cordes M, Schett G, Ramming A, Götz T. Fibroblast Activation Protein Inhibitor Imaging in Nonmalignant Diseases: A New Perspective for Molecular Imaging. J Nucl Med 2022; 63:1786-1792. [PMID: 36109182 DOI: 10.2967/jnumed.122.264205] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/13/2022] [Indexed: 01/11/2023] Open
Abstract
Fibroblast activation protein-α (FAP-α) is a type II transmembrane glycoprotein that is overexpressed in activated fibroblasts such as those in the stroma of tumors or in the fibrotic processes accompanying various benign diseases. The recent development and clinical implementation of radiolabeled quinolone-based tracers suitable for PET that act as FAP inhibitors (FAPIs) have opened a new perspective in molecular imaging. Although multiple studies have investigated the use of FAPI imaging in cancer, evidence concerning its use in nonmalignant diseases is still scarce. Herein, we provide a comprehensive review of FAPI imaging in nonmalignant diseases to clarify the current and potential role of this class of molecules in nuclear medicine.
Collapse
Affiliation(s)
- Christian Schmidkonz
- Department of Nuclear Medicine, Friedrich-Alexander University Erlangen-Nürnberg and University Hospital Erlangen, Erlangen, Germany; .,Institute for Medical Engineering, Technical University of Applied Sciences Amberg-Weiden, Weiden, Germany; and
| | - Torsten Kuwert
- Department of Nuclear Medicine, Friedrich-Alexander University Erlangen-Nürnberg and University Hospital Erlangen, Erlangen, Germany
| | - Armin Atzinger
- Department of Nuclear Medicine, Friedrich-Alexander University Erlangen-Nürnberg and University Hospital Erlangen, Erlangen, Germany
| | - Michael Cordes
- Department of Nuclear Medicine, Friedrich-Alexander University Erlangen-Nürnberg and University Hospital Erlangen, Erlangen, Germany
| | - Georg Schett
- Rheumatology and Immunology, Department of Internal Medicine 3, Friedrich-Alexander University Erlangen-Nürnberg and University Hospital Erlangen, Erlangen, Germany
| | - Andreas Ramming
- Rheumatology and Immunology, Department of Internal Medicine 3, Friedrich-Alexander University Erlangen-Nürnberg and University Hospital Erlangen, Erlangen, Germany
| | - Theresa Götz
- Institute for Medical Engineering, Technical University of Applied Sciences Amberg-Weiden, Weiden, Germany; and
| |
Collapse
|
32
|
Peng T, Liu M, Hu L, Guo D, Wang D, Qi B, Ren G, Hu C, Zhang F, Chun HJ, Song L, Hu J, Li Y. LncRNA Airn alleviates diabetic cardiac fibrosis by inhibiting activation of cardiac fibroblasts via a m6A-IMP2-p53 axis. Biol Direct 2022; 17:32. [PMID: 36384975 PMCID: PMC9670606 DOI: 10.1186/s13062-022-00346-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 11/08/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Cardiac fibrosis is a leading cause of cardiac dysfunction in patients with diabetes. However, the underlying mechanisms of cardiac fibrosis remain unclear. This study aimed to investigate the role of the long non-coding RNA (LncRNA) Airn in the pathogenesis of cardiac fibrosis in diabetic cardiomyopathy (DCM) and its underlying mechanism. METHODS Diabetes mellitus (DM) was induced in mice by streptozotocin injection. An intramyocardial adeno-associated virus (AAV) was used to manipulate Airn expression. The functional significance and underlying mechanisms in DCM fibrosis were investigated both in vitro and in vivo. RESULTS Diabetic hearts showed a significant impairment in cardiac function, accompanied by obviously increased cardiac fibrosis. Interestingly, lncRNA Airn expression was significantly decreased in both diabetic hearts and high glucose (HG)-treated cardiac fibroblasts (CFs). AAV-mediated Airn reconstitution prevented cardiac fibrosis and the development of DCM, while Airn knockdown induced cardiac fibrosis phenotyping DCM. As in vitro, Airn reversed HG-induced fibroblast-myofibroblast transition, aberrant CFs proliferation and section of collagen I. In contrast, Airn knockdown mimicked a HG-induced CFs phenotype. Mechanistically, we identified that Airn exerts anti-fibrotic effects by directly binding to insulin-like growth factor 2 mRNA-binding protein 2 (IMP2) and further prevents its ubiquitination-dependent degradation. Moreover, we revealed that Airn/IMP2 protected p53 mRNA from degradation in m6A manner, leading to CF cell cycle arrest and reduced cardiac fibrosis. As a result, ablation of p53 blunted the inhibitory effects of Airn on fibroblast activation and cardiac fibrosis. CONCLUSIONS Our study demonstrated for the first time that Airn prevented the development of cardiac fibrosis in diabetic heart via IMP2-p53 axis in an m6A dependent manner. LncRNA Airn could be a promising therapeutic target for cardiac fibrosis in DCM.
Collapse
Affiliation(s)
- Tingwei Peng
- Department of Cardiology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, People's Republic of China
| | - Mingchuan Liu
- Department of Cardiology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, People's Republic of China
| | - Lang Hu
- Department of Cardiology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, People's Republic of China
| | - Dong Guo
- Department of Cardiology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, People's Republic of China
| | - Di Wang
- Department of Cardiology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, People's Republic of China
| | - Bingchao Qi
- Department of Cardiology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, People's Republic of China
| | - Gaotong Ren
- Department of Cardiology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, People's Republic of China
| | - Chenchen Hu
- Department of Immunology, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, People's Republic of China
| | - Feng Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, People's Republic of China
| | - Hyung J Chun
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, 06511, USA
| | - Liqiang Song
- Department of Pulmonary and Critical Care Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710038, People's Republic of China
| | - Jianqiang Hu
- Department of Cardiology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, People's Republic of China.
| | - Yan Li
- Department of Cardiology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, People's Republic of China.
| |
Collapse
|
33
|
Kelley RC, Lapierre SS, Muscato DR, Hahn D, Christou DD, Ferreira LF. Cardiac and respiratory muscle responses to dietary N-acetylcysteine in rats consuming a high-saturated fat, high-sucrose diet. Exp Physiol 2022; 107:1312-1325. [PMID: 35938289 PMCID: PMC9633399 DOI: 10.1113/ep090332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 07/22/2022] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS What is the central question of this study? This study addresses whether a high-fat, high-sucrose diet causes cardiac and diaphragm muscle abnormalities in male rats and whether supplementation with the antioxidant N-acetylcysteine reverses diet-induced dysfunction. What is the main finding and its importance? N-Acetylcysteine attenuated the effects of high-fat, high-sucrose diet on markers of cardiac hypertrophy and diastolic dysfunction, but neither high-fat, high-sucrose diet nor N-acetylcysteine affected the diaphragm. These results support the use of N-acetylcysteine to attenuate cardiovascular dysfunction induced by a 'Western' diet. ABSTRACT Individuals with overweight or obesity display respiratory and cardiovascular dysfunction, and oxidative stress is a causative factor in the general aetiology of obesity and of skeletal and cardiac muscle pathology. Thus, this preclinical study aimed to define diaphragmatic and cardiac morphological and functional alterations in response to an obesogenic diet in rats and the therapeutic potential of an antioxidant supplement, N-acetylcysteine (NAC). Young male Wistar rats consumed ad libitum a 'lean' or high-saturated fat, high-sucrose (HFHS) diet for ∼22 weeks and were randomized to control or NAC (2 mg/ml in the drinking water) for the last 8 weeks of the dietary intervention. We then evaluated diaphragmatic and cardiac morphology and function. Neither HFHS diet nor NAC supplementation affected diaphragm-specific force, peak power or morphology. Right ventricular weight normalized to estimated body surface area, left ventricular fractional shortening and posterior wall maximal shortening velocity were higher in HFHS compared with lean control animals and not restored by NAC. In HFHS rats, the elevated deceleration rate of early transmitral diastolic velocity was prevented by NAC. Our data showed that the HFHS diet did not compromise diaphragmatic muscle morphology or in vitro function, suggesting other possible contributors to breathing abnormalities in obesity (e.g., abnormalities of neuromuscular transmission). However, the HFHS diet resulted in cardiac functional and morphological changes suggestive of hypercontractility and diastolic dysfunction. Supplementation with NAC did not affect diaphragm morphology or function but attenuated some of the cardiac abnormalities in the rats receiving the HFHS diet.
Collapse
Affiliation(s)
- Rachel C. Kelley
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL
| | - Stephanie S. Lapierre
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL
| | - Derek R. Muscato
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL
| | - Dongwoo Hahn
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL
| | - Demetra D. Christou
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL
| | - Leonardo F. Ferreira
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL
| |
Collapse
|
34
|
Karimi-Sales E, Jeddi S, Alipour MR. trans-Chalcone inhibits transforming growth factor-β1 and connective tissue growth factor-dependent collagen expression in the heart of high-fat diet-fed rats. Arch Physiol Biochem 2022; 128:1221-1224. [PMID: 32407146 DOI: 10.1080/13813455.2020.1764045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Objective: Non-alcoholic fatty liver disease (NAFLD) is one of the main risk factors for cardiovascular mortality and morbidity. This study, for the first time, explored the effects of trans-chalcone on cardiac expressions of myocardial fibrosis-related genes, including transforming growth factor -β1 (TGF-β1), connective tissue growth factor (CTGF/CCN2), and collagen type I.Materials and methods: Twenty-eight rats were randomly divided into four groups: control, received 10% tween 80; chalcone, received trans-chalcone; HFD, received high-fat diet (HFD) and 10% tween 80; HFD + chalcone, received HFD and trans-chalcone, by once-daily gavage for 6 weeks. Finally, cardiac expression levels of TGF-β1, CTGF, and collagen type I were determined.Results: HFD feeding increased mRNA levels of collagen type I, TGF-β1, and CTGF in the heart of rats. However, trans-chalcone inhibited HFD-induced changes.Conclusions: trans-Chalcone can act as a cardioprotective compound by inhibiting TGF-β1 and CTGF-dependent stimulation of collagen type I synthesis in the heart of HFD-fed rats.
Collapse
Affiliation(s)
- Elham Karimi-Sales
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sajad Jeddi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Alipour
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
35
|
Lyu Z, Han W, Zhao H, Jiao Y, Xu P, Wang Y, Shen Q, Yang S, Zhao C, Tian L, Fu P. A clinical study on relationship between visualization of cardiac fibroblast activation protein activity by Al18F-NOTA-FAPI-04 positron emission tomography and cardiovascular disease. Front Cardiovasc Med 2022; 9:921724. [PMID: 36072860 PMCID: PMC9441604 DOI: 10.3389/fcvm.2022.921724] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 08/03/2022] [Indexed: 11/13/2022] Open
Abstract
Objective FAP plays a vital role in myocardial injury and fibrosis. Although initially used to study imaging of primary and metastatic tumors, the use of FAPI tracers has recently been studied in cardiac remodeling after myocardial infarction. The study aimed to investigate the application of FAPI PET/CT imaging in human myocardial fibrosis and its relationship with clinical factors. Materials and methods Retrospective analysis of FAPI PET/CT scans of twenty-one oncological patients from 05/2021 to 03/2022 with visual uptake of FAPI in the myocardium were applying the American Heart Association 17-segment model of the left ventricle. The patients’ general data, echocardiography, and laboratory examination results were collected, and the correlation between PET imaging data and the above data was analyzed. Linear regression models, Kendall’s TaU-B test, the Spearman test, and the Mann–Whitney U test were used for the statistical analysis. Results 21 patients (60.1 ± 9.4 years; 17 men) were evaluated with an overall mean LVEF of 59.3 ± 5.4%. The calcific plaque burden of LAD, LCX, and RCA are 14 (66.7%), 12 (57.1%), and 9 (42.9%). High left ventricular SUVmax correlated with BMI (P < 0.05) and blood glucose level (P < 0.05), and TBR correlated with age (P < 0.05). A strong correlation was demonstrated between SUVmean and CTnImax (r = 0.711, P < 0.01). Negative correlation of SUVmean and LVEF (r = −0.61, P < 0.01), SUVmax and LVEF (r = −0.65, P < 0.01) were found. ROC curve for predicting calcified plaques by myocardial FAPI uptake (SUVmean) in LAD, LCX, and RCA territory showed AUCs were 0.786, 0.759, and 0.769. Conclusion FAPI PET/CT scans might be used as a new potential method to evaluate cardiac fibrosis to help patients’ management further. FAPI PET imaging can reflect the process of myocardial fibrosis. High FAPI uptakes correlate with cardiovascular risk factors and the distribution of coronary plaques.
Collapse
Affiliation(s)
- Zhehao Lyu
- Department of Nuclear Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wei Han
- Department of Nuclear Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hongyue Zhao
- Department of Nuclear Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yuying Jiao
- Department of Nuclear Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Peng Xu
- Department of Nuclear Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yangyang Wang
- Department of Nuclear Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Qiuyi Shen
- Department of Nuclear Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shuai Yang
- Department of Nuclear Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Changjiu Zhao
- Department of Nuclear Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Lin Tian
- Department of Pathology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Lin Tian,
| | - Peng Fu
- Department of Nuclear Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- *Correspondence: Peng Fu,
| |
Collapse
|
36
|
Krause-Hauch M, Fedorova J, Zoungrana LI, Wang H, Fatmi MK, Li Z, Iglesias M, Slotabec L, Li J. Targeting on Nrf2/Sesn2 Signaling to Rescue Cardiac Dysfunction during High-Fat Diet-Induced Obesity. Cells 2022; 11:cells11162614. [PMID: 36010689 PMCID: PMC9406590 DOI: 10.3390/cells11162614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 12/14/2022] Open
Abstract
Obesity is of concern to the population because it is known to cause inflammation and oxidative stress throughout the body, leading to patient predisposition for health conditions such as diabetes, hypertension, and some cancers. However, some proteins that are activated in times of oxidative stress may provide cytoprotective properties. In this study, we aim to gain further understanding of the interconnection between Nrf2 and Sesn2 during obesity-related stress and how this relationship can play a role in cardio-protection. Cardiomyocyte-specific Sesn2 knockout (cSesn2-/-) and Sesn2 overexpressed (tTa-tet-Sesn2) mice and their wildtype littermates (Sesn2flox/flox and tet-Sesn2, respectively) were assigned to either a normal chow (NC) or a high-fat (HF) diet to induce obesity. After 16 weeks of dietary intervention, heart function was evaluated via echocardiography and cardiac tissue was collected for analysis. Immunoblotting, histology, and ROS staining were completed. Human heart samples were obtained via the LifeLink Foundation and were also subjected to analysis. Overall, these results indicated that the overexpression of Sesn2 appears to have cardio-protective effects on the obese heart through the reduction of ROS and fibrosis present in the tissues and in cardiac function. These results were consistent for both mouse and human heart samples. In human samples, there was an increase in Sesn2 and Nrf2 expression in the obese patients' LV tissue. However, there was no observable pattern of Sesn2/Nrf2 expression in mouse LV tissue samples. Further investigation into the link between the Sesn2/Nrf2 pathway and obesity-related oxidative stress is needed.
Collapse
Affiliation(s)
- Meredith Krause-Hauch
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
- James A. Haley Veterans’ Hospital, Tampa, FL 33612, USA
| | - Julia Fedorova
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Linda Ines Zoungrana
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Hao Wang
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Mohammad Kasim Fatmi
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Zehui Li
- Department of Medical Engineering, College of Engineering and Morsani College of Medicine, Tampa, FL 33612, USA
| | - Migdalia Iglesias
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Lily Slotabec
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Ji Li
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
- James A. Haley Veterans’ Hospital, Tampa, FL 33612, USA
- Correspondence: ; Tel.: +1-813-974-4917
| |
Collapse
|
37
|
Pan X, Chen X, Ren Q, Yue L, Niu S, Li Z, Zhu R, Chen X, Jia Z, Zhen R, Ban J, Chen S. Single-cell transcriptome reveals effects of semaglutide on non-cardiomyocytes of obese mice. Biochem Biophys Res Commun 2022; 622:22-29. [PMID: 35843090 DOI: 10.1016/j.bbrc.2022.07.034] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/07/2022] [Accepted: 07/08/2022] [Indexed: 11/02/2022]
Abstract
Non-cardiomyocytes (nonCMs) play an important part in cardiac fibrosis pathophysiology, but the underlying molecular pathways are unknown. Semaglutide has cardioprotective properties, but it is still unclear whether it helps with cardiac fibrosis and what the processes are. The goal of this study is to use single cell transcriptomics approaches to investigate the molecular mechanism of semaglutide's cardioprotective action in obese mice. We found 15 non-CMs, with fibroblasts making up the majority of them. We found eight DEGs that altered significantly following semaglutide treatment by screening for differentially expressed genes (DEGs). DEGs were shown to have biological activities primarily related to extracellular matrix and collagen synthesis and distribution, with Serpinh1 and Pcolce expression being the most dramatically altered. Serpinh1 and Pcolce were mostly found in fibroblasts, which play a key role in the fibrosis of the heart. Furthermore, we discovered that semaglutide lowered cardiac collagen content and alleviated obesity-induced ventricular wall hypertrophy. As a result, our findings show that Serpinh1 and Pcolce, which are expressed by fibroblasts, may play a role in the development of obese cardiac fibrosis. By reducing Serpinh1 and Pcolce expression and delaying cardiac fibrosis, semaglutide may have a cardioprotective effect.
Collapse
Affiliation(s)
- Xiaoyu Pan
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, Hebei, China; Department of Endocrinology, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Xing Chen
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, Hebei, China; Department of Nephrology, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Qingjuan Ren
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, Hebei, China; Department of Endocrinology, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Lin Yue
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, Hebei, China; Department of Endocrinology, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Shu Niu
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, Hebei, China; Department of Endocrinology, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Zelin Li
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, Hebei, China; Department of Endocrinology, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Ruiyi Zhu
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, Hebei, China; Department of Endocrinology, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Xiaoyi Chen
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Zhuoya Jia
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, Hebei, China; Department of Endocrinology, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Ruoxi Zhen
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, Hebei, China; Department of Endocrinology, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Jiangli Ban
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Shuchun Chen
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, Hebei, China; Department of Endocrinology, Hebei General Hospital, Shijiazhuang, Hebei, China.
| |
Collapse
|
38
|
Fan J, Ren M, He Y. Diagnostic and Therapeutic Properties of Exosomes in Cardiac Fibrosis. Front Cell Dev Biol 2022; 10:931082. [PMID: 35859903 PMCID: PMC9289295 DOI: 10.3389/fcell.2022.931082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
Cardiac fibrosis results from both the differentiation of cardiac fibroblasts and excessive accumulation of extracellular matrix (ECM), leading to myocardial stiffness and reduced compliance of the ventricular wall. The conversion of cardiac fibroblasts to myofibroblasts is the most important initiating step in the process of this pathological cardiac remodeling. It occurs during the progression of many cardiovascular diseases, adversely influencing both the clinical course and outcome of the disease. The pathogenesis is complex and there is no effective treatment. Exosomes are extracellular vesicles that mediate intercellular communication through delivering specific cargoes of functional nucleic acids and proteins derived from particular cell types. Recent studies have found that exosomes play an important role in the diagnosis and treatment of cardiac fibrosis, and is a potential biotherapeutics and drug delivery vectors for the treatment of cardiac fibrosis. The present review aimed to summarize the current knowledge of exosome-related mechanisms underlying cardiac fibrosis and to suggest potential therapy that could be used to treat the condition.
Collapse
Affiliation(s)
- Jiwen Fan
- Department of Cardiology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Meng Ren
- Department of Medical Oncology, Jilin Provincial Cancer Hospital, Changchun, China
| | - Yuquan He
- Department of Cardiology, China-Japan Union Hospital of Jilin University, Changchun, China
- *Correspondence: Yuquan He,
| |
Collapse
|
39
|
Mia MM, Cibi DM, Ghani SABA, Singh A, Tee N, Sivakumar V, Bogireddi H, Cook SA, Mao J, Singh MK. Loss of Yap/Taz in cardiac fibroblasts attenuates adverse remodelling and improves cardiac function. Cardiovasc Res 2022; 118:1785-1804. [PMID: 34132780 DOI: 10.1093/cvr/cvab205] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 06/13/2021] [Indexed: 02/06/2023] Open
Abstract
AIMS Fibrosis is associated with all forms of adult cardiac diseases including myocardial infarction (MI). In response to MI, the heart undergoes ventricular remodelling that leads to fibrotic scar due to excessive deposition of extracellular matrix mostly produced by myofibroblasts. The structural and mechanical properties of the fibrotic scar are critical determinants of heart function. Yes-associated protein (Yap) and transcriptional coactivator with PDZ-binding motif (Taz) are the key effectors of the Hippo signalling pathway and are crucial for cardiomyocyte proliferation during cardiac development and regeneration. However, their role in cardiac fibroblasts, regulating post-MI fibrotic and fibroinflammatory response, is not well established. METHODS AND RESULTS Using mouse model, we demonstrate that Yap/Taz are activated in cardiac fibroblasts after MI and fibroblasts-specific deletion of Yap/Taz using Col1a2Cre(ER)T mice reduces post-MI fibrotic and fibroinflammatory response and improves cardiac function. Consistently, Yap overexpression elevated post-MI fibrotic response. Gene expression profiling shows significant downregulation of several cytokines involved in post-MI cardiac remodelling. Furthermore, Yap/Taz directly regulate the promoter activity of pro-fibrotic cytokine interleukin-33 (IL33) in cardiac fibroblasts. Blocking of IL33 receptor ST2 using the neutralizing antibody abrogates the Yap-induced pro-fibrotic response in cardiac fibroblasts. We demonstrate that the altered fibroinflammatory programme not only affects the nature of cardiac fibroblasts but also the polarization as well as infiltration of macrophages in the infarcted hearts. Furthermore, we demonstrate that Yap/Taz act downstream of both Wnt and TGFβ signalling pathways in regulating cardiac fibroblasts activation and fibroinflammatory response. CONCLUSION We demonstrate that Yap/Taz play an important role in controlling MI-induced cardiac fibrosis by modulating fibroblasts proliferation, transdifferentiation into myofibroblasts, and fibroinflammatory programme.
Collapse
Affiliation(s)
- Masum M Mia
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, 169857Singapore
| | - Dasan Mary Cibi
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, 169857Singapore
| | | | - Anamika Singh
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, 169857Singapore
| | - Nicole Tee
- National Heart Research Institute Singapore, National Heart Centre Singapore, 169609Singapore
| | - Viswanathan Sivakumar
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, 169857Singapore
| | - Hanumakumar Bogireddi
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, 169857Singapore
| | - Stuart A Cook
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, 169857Singapore.,National Heart Research Institute Singapore, National Heart Centre Singapore, 169609Singapore
| | - Junhao Mao
- Department of Molecular, Cell and Cancer Biology, Medical School, University of Massachusetts, Worcester, MA 01605, USA
| | - Manvendra K Singh
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, 169857Singapore.,National Heart Research Institute Singapore, National Heart Centre Singapore, 169609Singapore
| |
Collapse
|
40
|
Müller-Eigner A, Sanz-Moreno A, de-Diego I, Venkatasubramani AV, Langhammer M, Gerlini R, Rathkolb B, Aguilar-Pimentel A, Klein-Rodewald T, Calzada-Wack J, Becker L, Palma-Vera S, Gille B, Forne I, Imhof A, Meng C, Ludwig C, Koch F, Heiker JT, Kuhla A, Caton V, Brenmoehl J, Reyer H, Schoen J, Fuchs H, Gailus-Durner V, Hoeflich A, de Angelis MH, Peleg S. Dietary intervention improves health metrics and life expectancy of the genetically obese Titan mouse. Commun Biol 2022; 5:408. [PMID: 35505192 PMCID: PMC9065075 DOI: 10.1038/s42003-022-03339-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 04/04/2022] [Indexed: 01/02/2023] Open
Abstract
Suitable animal models are essential for translational research, especially in the case of complex, multifactorial conditions, such as obesity. The non-inbred mouse (Mus musculus) line Titan, also known as DU6, is one of the world’s longest selection experiments for high body mass and was previously described as a model for metabolic healthy (benign) obesity. The present study further characterizes the geno- and phenotypes of this non-inbred mouse line and tests its suitability as an interventional obesity model. In contrast to previous findings, our data suggest that Titan mice are metabolically unhealthy obese and short-lived. Line-specific patterns of genetic invariability are in accordance with observed phenotypic traits. Titan mice also show modifications in the liver transcriptome, proteome, and epigenome linked to metabolic (dys)regulations. Importantly, dietary intervention partially reversed the metabolic phenotype in Titan mice and significantly extended their life expectancy. Therefore, the Titan mouse line is a valuable resource for translational and interventional obesity research. This study further characterizes the non-inbred Titan (also known as DU6) mouse line, which could be a useful model for obesity research.
Collapse
Affiliation(s)
- Annika Müller-Eigner
- Research Group Epigenetics, Metabolism and Longevity, Research Institute for Farm Animal Biology (FBN), 18196, Dummerstorf, Germany
| | - Adrián Sanz-Moreno
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environment and Health (GmbH), 85764, Neuherberg, Germany
| | - Irene de-Diego
- Research Group Epigenetics, Metabolism and Longevity, Research Institute for Farm Animal Biology (FBN), 18196, Dummerstorf, Germany
| | | | - Martina Langhammer
- Institute Genetics and Biometry, Lab Animal Facility, Research Institute for Farm Animal Biology (FBN), 18196, Dummerstorf, Germany
| | - Raffaele Gerlini
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environment and Health (GmbH), 85764, Neuherberg, Germany.,German Center for Diabetes Research (DZD), 85764, Neuherberg, Germany
| | - Birgit Rathkolb
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environment and Health (GmbH), 85764, Neuherberg, Germany.,German Center for Diabetes Research (DZD), 85764, Neuherberg, Germany.,Institute of Molecular Animal Breeding and Biotechnology, Gene Center, Ludwig-Maximilians-University Munich, 81377, Munich, Germany
| | - Antonio Aguilar-Pimentel
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environment and Health (GmbH), 85764, Neuherberg, Germany
| | - Tanja Klein-Rodewald
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environment and Health (GmbH), 85764, Neuherberg, Germany
| | - Julia Calzada-Wack
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environment and Health (GmbH), 85764, Neuherberg, Germany
| | - Lore Becker
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environment and Health (GmbH), 85764, Neuherberg, Germany
| | - Sergio Palma-Vera
- Institute of Reproductive Biology, Research Institute for Farm Animal Biology (FBN), 18196, Dummerstorf, Germany
| | - Benedikt Gille
- Research Group Epigenetics, Metabolism and Longevity, Research Institute for Farm Animal Biology (FBN), 18196, Dummerstorf, Germany
| | - Ignasi Forne
- Department of Molecular Biology, Biomedical Center Munich, Ludwig-Maximilians University, 82152, Planegg-Martinsried, Germany
| | - Axel Imhof
- Department of Molecular Biology, Biomedical Center Munich, Ludwig-Maximilians University, 82152, Planegg-Martinsried, Germany
| | - Chen Meng
- Bavarian Center for Biomolecular Mass Spectrometry (BayBioMS), Technical University of Munich, 85354, Freising, Germany
| | - Christina Ludwig
- Bavarian Center for Biomolecular Mass Spectrometry (BayBioMS), Technical University of Munich, 85354, Freising, Germany
| | - Franziska Koch
- Institute of Nutritional Physiology, Research Institute for Farm Animal Biology (FBN), 18196, Dummerstorf, Germany
| | - John T Heiker
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany
| | - Angela Kuhla
- Institute for Experimental Surgery, Rostock University Medical Center, Rostock, Germany
| | - Vanessa Caton
- Institute for Genome Biology, Research Institute for Farm Animal Biology (FBN), 18196, Dummerstorf, Germany
| | - Julia Brenmoehl
- Institute for Genome Biology, Research Institute for Farm Animal Biology (FBN), 18196, Dummerstorf, Germany
| | - Henry Reyer
- Institute for Genome Biology, Research Institute for Farm Animal Biology (FBN), 18196, Dummerstorf, Germany
| | - Jennifer Schoen
- Institute of Reproductive Biology, Research Institute for Farm Animal Biology (FBN), 18196, Dummerstorf, Germany.,Department of Reproduction Biology, Leibniz Institute for Zoo and Wildlife Research (IZW), Berlin, Germany
| | - Helmut Fuchs
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environment and Health (GmbH), 85764, Neuherberg, Germany
| | - Valerie Gailus-Durner
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environment and Health (GmbH), 85764, Neuherberg, Germany
| | - Andreas Hoeflich
- Institute for Genome Biology, Research Institute for Farm Animal Biology (FBN), 18196, Dummerstorf, Germany
| | - Martin Hrabe de Angelis
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environment and Health (GmbH), 85764, Neuherberg, Germany.,German Center for Diabetes Research (DZD), 85764, Neuherberg, Germany.,Chair of Experimental Genetics, TUM School of Life Sciences (SoLS), Technische Universität München, 85354, Freising, Germany
| | - Shahaf Peleg
- Research Group Epigenetics, Metabolism and Longevity, Research Institute for Farm Animal Biology (FBN), 18196, Dummerstorf, Germany. .,Institute of Neuroregeneration and Neurorehabilitation of Qingdao University, Qingdao, China.
| |
Collapse
|
41
|
Anti-Inflammatory and Antioxidant Properties of Tart Cherry Consumption in the Heart of Obese Rats. BIOLOGY 2022; 11:biology11050646. [PMID: 35625374 PMCID: PMC9138407 DOI: 10.3390/biology11050646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/20/2022] [Accepted: 04/21/2022] [Indexed: 12/15/2022]
Abstract
Obesity is a risk factor for cardiovascular diseases, frequently related to oxidative stress and inflammation. Dietary antioxidant compounds improve heart health. Here, we estimate the oxidative grade and inflammation in the heart of dietary-induced obese (DIO) rats after exposure to a high-fat diet compared to a standard diet. The effects of tart cherry seed powder and seed powder plus tart cherries juice were explored. Morphological analysis and protein expressions were performed in the heart. The oxidative status was assessed by the measurement of protein oxidation and 4-hydroxynonenal in samples. Immunochemical and Western blot assays were performed to elucidate the involved inflammatory markers as proinflammatory cytokines and cellular adhesion molecules. In the obese rats, cardiomyocyte hypertrophy was accompanied by an increase in oxidative state proteins and lipid peroxidation. However, the intake of tart cherries significantly changed these parameters. An anti-inflammatory effect was raised from tart cherry consumption, as shown by the downregulation of analyzed endothelial cell adhesion molecules and cytokines compared to controls. Tart cherry intake should be recommended as a dietary supplement to prevent or counteract heart injury in obese conditions.
Collapse
|
42
|
Remodeling and Fibrosis of the Cardiac Muscle in the Course of Obesity-Pathogenesis and Involvement of the Extracellular Matrix. Int J Mol Sci 2022; 23:ijms23084195. [PMID: 35457013 PMCID: PMC9032681 DOI: 10.3390/ijms23084195] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 04/09/2022] [Indexed: 12/16/2022] Open
Abstract
Obesity is a growing epidemiological problem, as two-thirds of the adult population are carrying excess weight. It is a risk factor for the development of cardiovascular diseases (hypertension, ischemic heart disease, myocardial infarct, and atrial fibrillation). It has also been shown that chronic obesity in people may be a cause for the development of heart failure with preserved ejection fraction (HFpEF), whose components include cellular hypertrophy, left ventricular diastolic dysfunction, and increased extracellular collagen deposition. Several animal models with induced obesity, via the administration of a high-fat diet, also developed increased heart fibrosis as a result of extracellular collagen accumulation. Excessive collagen deposition in the extracellular matrix (ECM) in the course of obesity may increase the stiffness of the myocardium and thereby deteriorate the heart diastolic function and facilitate the occurrence of HFpEF. In this review, we include a rationale for that process, including a discussion about possible putative factors (such as increased renin–angiotensin–aldosterone activity, sympathetic overdrive, hemodynamic alterations, hypoadiponectinemia, hyperleptinemia, and concomitant heart diseases). To address the topic clearly, we include a description of the fundamentals of ECM turnover, as well as a summary of studies assessing collagen deposition in obese individuals.
Collapse
|
43
|
Liu Y, Li Y, Liang J, Sun Z, Wu Q, Liu Y, Sun C. Leptin: an entry point for the treatment of peripheral tissue fibrosis and related diseases. Int Immunopharmacol 2022; 106:108608. [PMID: 35180626 DOI: 10.1016/j.intimp.2022.108608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/24/2022] [Accepted: 02/02/2022] [Indexed: 11/26/2022]
Abstract
Leptin is a small peptide mainly secreted by adipocyte, which acts on the central nervous system of the hypothalamus to regulate the body's energy balance by inhibiting food intake, it also can directly act on specific cells through leptin receptors (for example, ObRa, which exists in the blood-brain barrier or kidneys), thereby affect cell metabolism. Excessive deposition of extracellular matrix (ECM) causes damage to normal tissues or destruction of organ structure, which will eventually lead to tissue or organ fibrosis. The sustainable development of fibrosis can lead to structural damage and functional decline of organs, and even exhaustion, which seriously threatens human health and life. In recent years, studies have found that leptin directly alleviates the fibrosis process of various tissues and organs in mammals. Therefore, we speculate that leptin may become a significant treatment for fibrosis of various tissues and organs in the future. So, the main purpose of this review is to explore the specific mechanism of leptin in the process of fibrosis in multiple tissues and organs, and to provide a theoretical basis for the treatment of various tissues and organs fibrosis and related diseases caused by it, which is of great significance in the future.
Collapse
Affiliation(s)
- Yuexia Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Yizhou Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Juntong Liang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Zhuwen Sun
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Qiong Wu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China; Medical College, Qinghai University, Xining, 810000, China.
| | - Yongnian Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China; Medical College, Qinghai University, Xining, 810000, China.
| | - Chao Sun
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
44
|
Guo X, Sunil C, Qian G. Obesity and the Development of Lung Fibrosis. Front Pharmacol 2022; 12:812166. [PMID: 35082682 PMCID: PMC8784552 DOI: 10.3389/fphar.2021.812166] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 12/16/2021] [Indexed: 12/20/2022] Open
Abstract
Obesity is an epidemic worldwide and the obese people suffer from a range of respiratory complications including fibrotic changes in the lung. The influence of obesity on the lung is multi-factorial, which is related to both mechanical injury and various inflammatory mediators produced by excessive adipose tissues, and infiltrated immune cells. Adiposity causes increased production of inflammatory mediators, for example, cytokines, chemokines, and adipokines, both locally and in the systemic circulation, thereby rendering susceptibility to respiratory diseases, and altered responses. Lung fibrosis is closely related to chronic inflammation in the lung. Current data suggest a link between lung fibrosis and diet-induced obesity, although the mechanism remains incomplete understood. This review summarizes findings on the association of lung fibrosis with obesity, highlights the role of several critical inflammatory mediators (e.g., TNF-α, TGF-β, and MCP-1) in obesity related lung fibrosis and the implication of obesity in the outcomes of idiopathic pulmonary fibrosis patients.
Collapse
Affiliation(s)
- Xia Guo
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, The University of Texas at Tyler, Tyler, TX, United States
| | - Christudas Sunil
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, The University of Texas at Tyler, Tyler, TX, United States
| | - Guoqing Qian
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, The University of Texas at Tyler, Tyler, TX, United States
| |
Collapse
|
45
|
Metabolic Effects of CCN5/WISP2 Gene Deficiency and Transgenic Overexpression in Mice. Int J Mol Sci 2021; 22:ijms222413418. [PMID: 34948212 PMCID: PMC8709456 DOI: 10.3390/ijms222413418] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/08/2021] [Accepted: 12/12/2021] [Indexed: 11/17/2022] Open
Abstract
CCN5/WISP2 is a matricellular protein, the expression of which is under the regulation of Wnt signaling and IGF-1. Our initial characterization supports the notion that CCN5 might promote the proliferation and survival of pancreatic β-cells and thus improve the metabolic profile of the animals. More recently, the roles of endogenous expression of CCN5 and its ectopic, transgenic overexpression on metabolic regulation have been revealed through two reports. Here, we attempt to compare the experimental findings from those studies, side-by-side, in order to further establish its roles in metabolic regulation. Prominent among the discoveries was that a systemic deficiency of CCN5 gene expression caused adipocyte hypertrophy, increased adipogenesis, and lipid accumulation, resulting in insulin resistance and glucose intolerance, which were further exacerbated upon high-fat diet feeding. On the other hand, the adipocyte-specific and systemic overexpression of CCN5 caused an increase in lean body mass, improved insulin sensitivity, hyperplasia of cardiomyocytes, and increased heart mass, but decreased fasting glucose levels. CCN5 is clearly a regulator of adipocyte proliferation and maturation, affecting lean/fat mass ratio and insulin sensitivity. Not all results from these models are consistent; moreover, several important aspects of CCN5 physiology are yet to be explored.
Collapse
|
46
|
Hopes and Hurdles of Employing Mesenchymal Stromal Cells in the Treatment of Cardiac Fibrosis. Int J Mol Sci 2021; 22:ijms222313000. [PMID: 34884805 PMCID: PMC8657815 DOI: 10.3390/ijms222313000] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 11/25/2021] [Accepted: 11/29/2021] [Indexed: 12/04/2022] Open
Abstract
Excessive cardiac fibrosis plays a crucial role in almost all types of heart disease. Generally, cardiac fibrosis is a scarring process triggered in response to stress, injury, or aging and is characterized by the accumulation of activated myofibroblasts that deposit high levels of extracellular matrix proteins in the myocardium. While it is beneficial for cardiac repair in the short term, it can also result in pathological remodeling, tissue stiffening, and cardiac dysfunction, contributing to the progression of heart failure, arrhythmia, and sudden cardiac death. Despite its high prevalence, there is a lack of effective and safe therapies that specifically target myofibroblasts to inhibit or even reverse pathological cardiac fibrosis. In the past few decades, cell therapy has been under continuous evaluation as a potential treatment strategy, and several studies have shown that transplantation of mesenchymal stromal cells (MSCs) can reduce cardiac fibrosis and improve heart function. Mechanistically, it is believed that the heart benefits from MSC therapy by stimulating innate anti-fibrotic and regenerative reactions. The mechanisms of action include paracrine signaling and cell-to-cell interactions. In this review, we provide an overview of the anti-fibrotic properties of MSCs and approaches to enhance them and discuss future directions of MSCs for the treatment of cardiac fibrosis.
Collapse
|
47
|
Wang Y, Sun X, Sun X. The Functions of LncRNA H19 in the Heart. Heart Lung Circ 2021; 31:341-349. [PMID: 34840062 DOI: 10.1016/j.hlc.2021.10.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/20/2021] [Accepted: 10/27/2021] [Indexed: 10/19/2022]
Abstract
Cardiovascular diseases (CVDs) are major causes of morbidity and mortality worldwide. Great effort has been put into exploring early diagnostic biomarkers and innovative therapeutic strategies for preventing CVD progression over the last two decades. Long non-coding RNAs (lncRNAs) have been identified as novel regulators in cardiac development and cardiac pathogenesis. For example, lncRNA H19 (H19), also known as a fetal gene abundant in adult heart and skeletal muscles and evolutionarily conserved in humans and mice, has a regulatory role in aortic aneurysm, myocardial hypertrophy, extracellular matrix reconstitution, and coronary artery diseases. Yet, the exact function of H19 in the heart remains unknown. This review summarises the functions of H19 in the heart and discusses the challenges and possible strategies of H19 research for cardiovascular disease.
Collapse
Affiliation(s)
- Yao Wang
- Shandong Institute of Endocrine and Metabolic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Xiaojing Sun
- Department of Geriatrics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xianglan Sun
- Department of Geriatrics, Department of Geriatric Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.
| |
Collapse
|
48
|
Correia ETDO, Barbetta LMDS, Costa OSD, Miranda PEHD, Mesquita ET. Tecido Adiposo Epicárdico nos Fenótipos de Insuficiência Cardíaca – Uma Metanálise. Arq Bras Cardiol 2021; 118:625-633. [PMID: 35137776 PMCID: PMC8959032 DOI: 10.36660/abc.20200755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 06/16/2021] [Indexed: 11/18/2022] Open
|
49
|
Monroe TB, Anderson EJ. A Catecholaldehyde Metabolite of Norepinephrine Induces Myofibroblast Activation and Toxicity via the Receptor for Advanced Glycation Endproducts: Mitigating Role of l-Carnosine. Chem Res Toxicol 2021; 34:2194-2201. [PMID: 34609854 PMCID: PMC8527521 DOI: 10.1021/acs.chemrestox.1c00262] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Indexed: 01/12/2023]
Abstract
Monoamine oxidase (MAO) is rapidly gaining appreciation for its pathophysiologic role in cardiac injury and failure. Oxidative deamination of norepinephrine by MAO generates H2O2 and the catecholaldehyde 3,4-dihydroxyphenylglycolaldehyde (DOPEGAL), the latter of which is a highly potent and reactive electrophile that has been linked to cardiotoxicity. However, many questions remain as to whether catecholaldehydes regulate basic physiological processes in the myocardium and the pathways involved. Here, we examined the role of MAO-derived oxidative metabolites in mediating the activation of cardiac fibroblasts in response to norepinephrine. In neonatal murine cardiac fibroblasts, norepinephrine increased reactive oxygen species (ROS), accumulation of catechol-modified protein adducts, expression and secretion of collagens I/III, and other markers of profibrotic activation including STAT3 phosphorylation. These effects were attenuated with MAO inhibitors, the aldehyde-scavenging dipeptide l-carnosine, and FPS-ZM1, an antagonist for the receptor for advanced glycation endproducts (RAGE). Interestingly, treatment of cardiac fibroblasts with a low dose (1 μM) of DOPEGAL-modified albumin phenocopied many of the effects of norepinephrine and also induced an increase in RAGE expression. Higher doses (>10 μM) of DOPEGAL-modified albumin were determined to be toxic to cardiac fibroblasts in a RAGE-dependent manner, which was mitigated by l-carnosine. Collectively, these findings suggest that norepinephrine may influence extracellular matrix remodeling via an adrenergic-independent redox pathway in cardiac fibroblasts involving the MAO-mediated generation of ROS, catecholaldehydes, and RAGE. Furthermore, since elevations in the catecholaminergic tone and oxidative stress in heart disease are linked with cardiac fibrosis, this study illustrates novel drug targets that could potentially mitigate this serious disorder.
Collapse
Affiliation(s)
- T. Blake Monroe
- Department
of Pharmaceutical Sciences and Experimental Therapeutics, College
of Pharmacy, University of Iowa, Iowa City, Iowa 52242, United States
| | - Ethan J. Anderson
- Department
of Pharmaceutical Sciences and Experimental Therapeutics, College
of Pharmacy, University of Iowa, Iowa City, Iowa 52242, United States
- Fraternal
Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa 52242, United States
| |
Collapse
|
50
|
Goette A, Lendeckel U. Atrial Cardiomyopathy: Pathophysiology and Clinical Consequences. Cells 2021; 10:cells10102605. [PMID: 34685585 PMCID: PMC8533786 DOI: 10.3390/cells10102605] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 09/26/2021] [Indexed: 12/18/2022] Open
Abstract
Around the world there are 33.5 million patients suffering from atrial fibrillation (AF) with an annual increase of 5 million cases. Most AF patients have an established form of an atrial cardiomyopathy. The concept of atrial cardiomyopathy was introduced in 2016. Thus, therapy of underlying diseases and atrial tissue changes appear as a cornerstone of AF therapy. Furthermore, therapy or prevention of atrial endocardial changes has the potential to reduce atrial thrombogenesis and thereby cerebral stroke. The present manuscript will summarize the underlying pathophysiology and remodeling processes observed in the development of an atrial cardiomyopathy, thrombogenesis, and atrial fibrillation. In particular, the impact of oxidative stress, inflammation, diabetes, and obesity will be addressed.
Collapse
Affiliation(s)
- Andreas Goette
- Department of Cardiology and Intensive Care Medicine, St. Vincenz Hospital, 33098 Paderborn, Germany
- MAESTRIA Consortium/AFNET, 48149 Münster, Germany
- Correspondence:
| | - Uwe Lendeckel
- Institute of Medical Biochemistry and Molecular Biology, University Medicine Greifswald, 17475 Greifswald, Germany;
| |
Collapse
|