1
|
Nogueras Pérez R, Heredia-Nicolás N, de Lara-Peña L, López de Andrés J, Marchal JA, Jiménez G, Griñán-Lisón C. Unraveling the Potential of miRNAs from CSCs as an Emerging Clinical Tool for Breast Cancer Diagnosis and Prognosis. Int J Mol Sci 2023; 24:16010. [PMID: 37958993 PMCID: PMC10647353 DOI: 10.3390/ijms242116010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/02/2023] [Accepted: 11/03/2023] [Indexed: 11/15/2023] Open
Abstract
Breast cancer (BC) is the most diagnosed cancer in women and the second most common cancer globally. Significant advances in BC research have led to improved early detection and effective therapies. One of the key challenges in BC is the presence of BC stem cells (BCSCs). This small subpopulation within the tumor possesses unique characteristics, including tumor-initiating capabilities, contributes to treatment resistance, and plays a role in cancer recurrence and metastasis. In recent years, microRNAs (miRNAs) have emerged as potential regulators of BCSCs, which can modulate gene expression and influence cellular processes like BCSCs' self-renewal, differentiation, and tumor-promoting pathways. Understanding the miRNA signatures of BCSCs holds great promise for improving BC diagnosis and prognosis. By targeting BCSCs and their associated miRNAs, researchers aim to develop more effective and personalized treatment strategies that may offer better outcomes for BC patients, minimizing tumor recurrence and metastasis. In conclusion, the investigation of miRNAs as regulators of BCSCs opens new directions for advancing BC research through the use of bioinformatics and the development of innovative therapeutic approaches. This review summarizes the most recent and innovative studies and clinical trials on the role of BCSCs miRNAs as potential tools for early diagnosis, prognosis, and resistance.
Collapse
Affiliation(s)
- Raquel Nogueras Pérez
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, 18016 Granada, Spain; (R.N.P.); (N.H.-N.); (L.d.L.-P.); (J.L.d.A.); (J.A.M.)
| | - Noelia Heredia-Nicolás
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, 18016 Granada, Spain; (R.N.P.); (N.H.-N.); (L.d.L.-P.); (J.L.d.A.); (J.A.M.)
| | - Laura de Lara-Peña
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, 18016 Granada, Spain; (R.N.P.); (N.H.-N.); (L.d.L.-P.); (J.L.d.A.); (J.A.M.)
- Biosanitary Research Institute of Granada (ibs. GRANADA), University Hospitals of Granada, University of Granada, 18012 Granada, Spain
- Excellence Research Unit “Modeling Nature” (MNat), University of Granada, 18016 Granada, Spain
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, 18016 Granada, Spain
| | - Julia López de Andrés
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, 18016 Granada, Spain; (R.N.P.); (N.H.-N.); (L.d.L.-P.); (J.L.d.A.); (J.A.M.)
- Biosanitary Research Institute of Granada (ibs. GRANADA), University Hospitals of Granada, University of Granada, 18012 Granada, Spain
- Excellence Research Unit “Modeling Nature” (MNat), University of Granada, 18016 Granada, Spain
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, 18016 Granada, Spain
| | - Juan Antonio Marchal
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, 18016 Granada, Spain; (R.N.P.); (N.H.-N.); (L.d.L.-P.); (J.L.d.A.); (J.A.M.)
- Biosanitary Research Institute of Granada (ibs. GRANADA), University Hospitals of Granada, University of Granada, 18012 Granada, Spain
- Excellence Research Unit “Modeling Nature” (MNat), University of Granada, 18016 Granada, Spain
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, 18016 Granada, Spain
| | - Gema Jiménez
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, 18016 Granada, Spain; (R.N.P.); (N.H.-N.); (L.d.L.-P.); (J.L.d.A.); (J.A.M.)
- Biosanitary Research Institute of Granada (ibs. GRANADA), University Hospitals of Granada, University of Granada, 18012 Granada, Spain
- Excellence Research Unit “Modeling Nature” (MNat), University of Granada, 18016 Granada, Spain
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, 18016 Granada, Spain
| | - Carmen Griñán-Lisón
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, 18016 Granada, Spain; (R.N.P.); (N.H.-N.); (L.d.L.-P.); (J.L.d.A.); (J.A.M.)
- Biosanitary Research Institute of Granada (ibs. GRANADA), University Hospitals of Granada, University of Granada, 18012 Granada, Spain
- Excellence Research Unit “Modeling Nature” (MNat), University of Granada, 18016 Granada, Spain
- Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain
| |
Collapse
|
2
|
Asberger J, Berner K, Bicker A, Metz M, Jäger M, Weiß D, Kreutz C, Juhasz-Böss I, Mayer S, Ge I, Erbes T. In Vitro microRNA Expression Profile Alterations under CDK4/6 Therapy in Breast Cancer. Biomedicines 2023; 11:2705. [PMID: 37893081 PMCID: PMC10604872 DOI: 10.3390/biomedicines11102705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/16/2023] [Accepted: 09/27/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND Breast cancer is the most common type of cancer worldwide. Cyclin-dependent kinase inhibition is one of the backbones of metastatic breast cancer therapy. However, there are a significant number of therapy failures. This study evaluates the biomarker potential of microRNAs for the prediction of a therapy response under cyclin-dependent kinase inhibition. METHODS This study comprises the analysis of intracellular and extracellular microRNA-expression-level alterations of 56 microRNAs under palbociclib mono as well as combination therapy with letrozole. Breast cancer cell lines BT-474, MCF-7 and HS-578T were analyzed using qPCR. RESULTS A palbociclib-induced microRNA signature could be detected intracellularly as well as extracellularly. Intracellular miR-10a, miR-15b, miR-21, miR-23a and miR-23c were constantly regulated in all three cell lines, whereas let-7b, let-7d, miR-15a, miR-17, miR-18a, miR-20a, miR-191 and miR301a_3p were regulated only in hormone-receptor-positive cells. Extracellular miR-100, miR-10b and miR-182 were constantly regulated across all cell lines, whereas miR-17 was regulated only in hormone-receptor-positive cells. CONCLUSIONS Because they are secreted and significantly upregulated in the microenvironment of tumor cells, miRs-100, -10b and -182 are promising circulating biomarkers that can be used to predict or detect therapy responses under CDK inhibition. MiR-10a, miR-15b, miR-21, miR-23a and miR-23c are potential tissue-based biomarkers.
Collapse
Affiliation(s)
- Jasmin Asberger
- Department of Obstetrics and Gynecology, Medical Center—University Hospital Freiburg, 79106 Freiburg, Germany
- Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Kai Berner
- Department of Obstetrics and Gynecology, Medical Center—University Hospital Freiburg, 79106 Freiburg, Germany
- Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Anna Bicker
- Department of Obstetrics and Gynecology, Medical Center—University Hospital Freiburg, 79106 Freiburg, Germany
- Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- Department of Obstetrics and Gynecology, St. Josefs-Hospital Wiesbaden, 65189 Wiesbaden, Germany
| | - Marius Metz
- Department of Obstetrics and Gynecology, Medical Center—University Hospital Freiburg, 79106 Freiburg, Germany
- Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Markus Jäger
- Department of Obstetrics and Gynecology, Medical Center—University Hospital Freiburg, 79106 Freiburg, Germany
- Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Daniela Weiß
- Department of Obstetrics and Gynecology, Medical Center—University Hospital Freiburg, 79106 Freiburg, Germany
- Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Clemens Kreutz
- Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- Institute of Medical Biometry and Statistics, Medical Center – University of Freiburg, 79104 Freiburg, Germany
| | - Ingolf Juhasz-Böss
- Department of Obstetrics and Gynecology, Medical Center—University Hospital Freiburg, 79106 Freiburg, Germany
- Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Sebastian Mayer
- Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- Department of Gynaecology and Obstetrics, Hospital Krumbach, 86381 Krumbach, Germany
| | - Isabell Ge
- Department of Obstetrics and Gynecology, Medical Center—University Hospital Freiburg, 79106 Freiburg, Germany
- Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- Department of Obstetrics and Gynaecology, University Hospital of Basel, 4056 Basel, Switzerland
| | - Thalia Erbes
- Department of Obstetrics and Gynecology, Medical Center—University Hospital Freiburg, 79106 Freiburg, Germany
- Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- Department of Gynaecology and Obstetrics, Diako Mannheim, 68135 Mannheim, Germany
| |
Collapse
|
3
|
Treeck O, Haerteis S, Ortmann O. Non-Coding RNAs Modulating Estrogen Signaling and Response to Endocrine Therapy in Breast Cancer. Cancers (Basel) 2023; 15:cancers15061632. [PMID: 36980520 PMCID: PMC10046587 DOI: 10.3390/cancers15061632] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/28/2023] [Accepted: 03/02/2023] [Indexed: 03/09/2023] Open
Abstract
The largest part of human DNA is transcribed into RNA that does not code for proteins. These non-coding RNAs (ncRNAs) are key regulators of protein-coding gene expression and have been shown to play important roles in health, disease and therapy response. Today, endocrine therapy of ERα-positive breast cancer (BC) is a successful treatment approach, but resistance to this therapy is a major clinical problem. Therefore, a deeper understanding of resistance mechanisms is important to overcome this resistance. An increasing amount of evidence demonstrate that ncRNAs affect the response to endocrine therapy. Thus, ncRNAs are considered versatile biomarkers to predict or monitor therapy response. In this review article, we intend to give a summary and update on the effects of microRNAs (miRNAs), long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) on estrogen signaling in BC cells, this pathway being the target of endocrine therapy, and their role in therapy resistance. For this purpose, we reviewed articles on these topics listed in the PubMed database. Finally, we provide an assessment regarding the clinical use of these ncRNA types, particularly their circulating forms, as predictive BC biomarkers and their potential role as therapy targets to overcome endocrine resistance.
Collapse
Affiliation(s)
- Oliver Treeck
- Department of Gynecology and Obstetrics, University Medical Center Regensburg, 93053 Regensburg, Germany
- Correspondence:
| | - Silke Haerteis
- Institute for Molecular and Cellular Anatomy, University of Regensburg, 93053 Regensburg, Germany
| | - Olaf Ortmann
- Department of Gynecology and Obstetrics, University Medical Center Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
4
|
Zhang YL, Ma Y, Zeng YQ, Liu Y, He EP, Liu YT, Qiao FL, Yu R, Wang YS, Wu XY, Leng P. A narrative review of research progress on FoxM1 in breast cancer carcinogenesis and therapeutics. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1704. [PMID: 34988213 PMCID: PMC8667115 DOI: 10.21037/atm-21-5271] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 10/29/2021] [Indexed: 02/05/2023]
Abstract
OBJECTIVE The purpose of this review is to clarify the potential roles of forkhead box transcription factor M1 (FoxM1) in the occurrence and progression of breast cancer, as well as the predictive value of FoxM1 as a prognostic biomarker and potential therapeutic target for breast cancer. BACKGROUND Breast cancer, well-known as a molecularly heterogeneous cancer, is still one of the most frequently diagnosed malignant tumors among females worldwide. Tumor recurrence and metastasis are the central causes of high mortality in breast cancer patients. Many factors contribute to the occurrence and progression of breast cancer, including FoxM1. FoxM1, widely regarded as a classic proliferation-related transcription factor, plays pivotal roles in the occurrence, proliferation, invasion, migration, drug resistance, and epithelial-mesenchymal transition (EMT) processes of multiple human tumors including breast cancer. METHODS The PubMed database was searched for articles published in English from February 2008 to May 2021 using related keywords such as "forkhead box transcription factor M1", "human breast cancer", "FoxM1", and "human tumor". About 90 research papers and reports written in English were identified, most of which were published after 2015. These papers mainly concentrated on the functions of FoxM1 in the occurrence, development, drug resistance, and treatment of human breast cancer. CONCLUSIONS Considering that the abnormal expression of FoxM1 plays a significant role in the proliferation, invasion, metastasis, and chemotherapy drug resistance of breast cancer, and its overexpression is closely correlated with the unfavorable clinicopathological characteristics of breast tumor patients, it is considerably important to comprehend the regulatory mechanism of FoxM1 in breast cancer. This will provide strong evidence for FoxM1 as a potential biomarker for the targeted treatment and prognostic evaluation of breast cancer patients.
Collapse
Affiliation(s)
- Yan-Ling Zhang
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yan Ma
- Emergency Department of West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China.,Institute of Disaster Medicine, Sichuan University, Chengdu, China
| | - You-Qin Zeng
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yan Liu
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - En-Ping He
- Department of Clinical Laboratory, The Second Affiliated Hospital of Chengdu Medical College-Nuclear Industry 416 Hospital, Chengdu, China
| | - Yi-Tong Liu
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Feng-Ling Qiao
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Rong Yu
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ying-Shuang Wang
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xin-Yu Wu
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ping Leng
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
5
|
A Signature of Four Circulating microRNAs as Potential Biomarkers for Diagnosing Early-Stage Breast Cancer. Int J Mol Sci 2021; 22:ijms22116121. [PMID: 34204158 PMCID: PMC8200990 DOI: 10.3390/ijms22116121] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 05/08/2021] [Accepted: 05/14/2021] [Indexed: 12/13/2022] Open
Abstract
Breast cancer (BC) is the most predominant type of cancer among women. The aim of this study is to find new biomarkers that can help in early detection of BC, especially for those who are too young to be screened using mammography as per guidelines. Using microRNA microarray, we previously showed dysregulation of 74 microRNAs in tumors from early BC patients as compared with normal adjacent tissues, which we were interested in studying in blood circulation. In this study, we investigated the expression of 12 microRNA (miR-21/miR-155/miR-23a/miR-130a/miR-145/miR-425-5p/miR-139-5p/miR-451/miR-195/miR-125b/miR-100, and miR-182) in the plasma of 41 newly diagnosed Lebanese BC patients with early invasive ductal carcinoma as compared with 32 healthy controls. Total RNA was extracted from plasma, and expression levels of miRNA of interest were measured using RT-qPCR followed by statistical analysis; miR-21, miR-155, miR-23a, miR-130a, miR-145, miR-425-5p, and miR-139-5p were significantly upregulated and miR-451 was significantly downregulated, in the plasma of BC patients as compared with healthy controls. The positively correlated miR-23a, miR-21, and miR-130a had a high diagnostic accuracy (86%). Importantly, the combination of miR-145/miR-425-5p/miR-139-5p/miR-130a scored the highest diagnostic accuracy of 95% with AUC = 0.97 (sensitivity 97% and specificity 91%). MicroRNAs are promising non-invasive diagnostic biomarkers for early-stage BC with the panel of miR-145/miR-425-5p/miR-139-5p/miR-130a having the highest diagnostic accuracy.
Collapse
|
6
|
Kalathil D, John S, Nair AS. FOXM1 and Cancer: Faulty Cellular Signaling Derails Homeostasis. Front Oncol 2021; 10:626836. [PMID: 33680951 PMCID: PMC7927600 DOI: 10.3389/fonc.2020.626836] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 12/30/2020] [Indexed: 12/13/2022] Open
Abstract
Forkhead box transcription factor, FOXM1 is implicated in several cellular processes such as proliferation, cell cycle progression, cell differentiation, DNA damage repair, tissue homeostasis, angiogenesis, apoptosis, and redox signaling. In addition to being a boon for the normal functioning of a cell, FOXM1 turns out to be a bane by manifesting in several disease scenarios including cancer. It has been given an oncogenic status based on several evidences indicating its role in tumor development and progression. FOXM1 is highly expressed in several cancers and has also been implicated in poor prognosis. A comprehensive understanding of various aspects of this molecule has revealed its role in angiogenesis, invasion, migration, self- renewal and drug resistance. In this review, we attempt to understand various mechanisms underlying FOXM1 gene and protein regulation in cancer including the different signaling pathways, post-transcriptional and post-translational modifications. Identifying crucial molecules associated with these processes can aid in the development of potential pharmacological approaches to curb FOXM1 mediated tumorigenesis.
Collapse
Affiliation(s)
- Dhanya Kalathil
- Cancer Research Program-4, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| | - Samu John
- Cancer Research Program-4, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India.,Research Centre, University of Kerala, Thiruvananthapuram, India
| | - Asha S Nair
- Cancer Research Program-4, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India.,Research Centre, University of Kerala, Thiruvananthapuram, India
| |
Collapse
|
7
|
Oltra SS, Peña-Chilet M, Martinez MT, Tormo E, Cejalvo JM, Climent J, Eroles P, Lluch A, Ribas G. miRNA Expression Analysis: Cell Lines HCC1500 and HCC1937 as Models for Breast Cancer in Young Women and the miR-23a as a Poor Prognostic Biomarker. BREAST CANCER-BASIC AND CLINICAL RESEARCH 2020; 14:1178223420977845. [PMID: 33311984 PMCID: PMC7716059 DOI: 10.1177/1178223420977845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 11/06/2020] [Indexed: 11/16/2022]
Abstract
PURPOSE The study of breast cancer nearly always involves patients close to menopause or older. Therefore, young patients are mostly underrepresented. Our aim in this study was to demonstrate biological differences in breast cancer of young people using as a model available cell lines derived from people with breast cancer younger than 35 years. METHODS Global miRNA expression was analyzed in breast cancer cells from young (HCC1500, HCC1937) and old patients (MCF-7, MDA-MB-231, HCC1806, and MDA-MB-468). In addition, it was compared with same type of results from patients. RESULTS We observed a differential profile for 155 miRNAs between young and older cell lines. We identified a set of 24 miRNA associated with aggressiveness that were regulating pluripotency of stem cell-related pathways. Combining the miRNA expression data from cell lines and breast cancer patients, 132 miRNAs were differently expressed between young and old samples, most of them previously found in cell lines. MiR-23a-downregulation was also associated with poor survival in young patients. CONCLUSIONS Our results suggest that HCC1500 and HCC1937 cell lines could be suitable cellular models for breast cancer affecting young women. The miR-23a-downregulation could have a potential role as a poor prognosis biomarker in this age group.
Collapse
Affiliation(s)
- Sara S Oltra
- Medical Oncology and Hematology Unit, INCLIVA Health Research Institute, INCLIVA Biomedical Research Institute, Valencia, Spain
| | - Maria Peña-Chilet
- Medical Oncology and Hematology Unit, INCLIVA Health Research Institute, INCLIVA Biomedical Research Institute, Valencia, Spain
| | - Maria T Martinez
- Medical Oncology and Hematology Unit, INCLIVA Health Research Institute, INCLIVA Biomedical Research Institute, Valencia, Spain
| | - Eduardo Tormo
- Medical Oncology and Hematology Unit, INCLIVA Health Research Institute, INCLIVA Biomedical Research Institute, Valencia, Spain.,Center for Biomedical Network Research on Cancer (CIBERONC), Valencia, Spain
| | - Juan Miguel Cejalvo
- Medical Oncology and Hematology Unit, INCLIVA Health Research Institute, INCLIVA Biomedical Research Institute, Valencia, Spain
| | - Joan Climent
- Medical Oncology and Hematology Unit, INCLIVA Health Research Institute, INCLIVA Biomedical Research Institute, Valencia, Spain
| | - Pilar Eroles
- Medical Oncology and Hematology Unit, INCLIVA Health Research Institute, INCLIVA Biomedical Research Institute, Valencia, Spain.,Center for Biomedical Network Research on Cancer (CIBERONC), Valencia, Spain
| | - Ana Lluch
- Medical Oncology and Hematology Unit, INCLIVA Health Research Institute, INCLIVA Biomedical Research Institute, Valencia, Spain.,Center for Biomedical Network Research on Cancer (CIBERONC), Valencia, Spain
| | - Gloria Ribas
- Medical Oncology and Hematology Unit, INCLIVA Health Research Institute, INCLIVA Biomedical Research Institute, Valencia, Spain.,Center for Biomedical Network Research on Cancer (CIBERONC), Valencia, Spain
| |
Collapse
|
8
|
Hippo/MST blocks breast cancer by downregulating WBP2 oncogene expression via miRNA processor Dicer. Cell Death Dis 2020; 11:669. [PMID: 32820148 PMCID: PMC7441404 DOI: 10.1038/s41419-020-02901-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 08/06/2020] [Accepted: 08/07/2020] [Indexed: 02/07/2023]
Abstract
WBP2 transcription coactivator is an emerging oncoprotein and a key node of convergence between EGF and Wnt signaling pathways. Understanding how WBP2 is regulated has important implications for cancer therapy. WBP2 is tightly controlled by post-translational modifications, including phosphorylation and ubiquitination, leading to changes in subcellular localization, protein–protein interactions, and protein turnover. As the function of WBP2 is intricately linked to YAP and TAZ, we hypothesize that WBP2 is negatively regulated by the Hippo tumor suppressor pathway. Indeed, MST is demonstrated to negatively regulate WBP2 expression in a kinase-dependent but LATS-independent manner. This was observed in the majority of the breast cancer cell lines tested. The effect of MST was enhanced by SAV and concomitant with the inhibition of the transcription co-activation, in vitro and in vivo tumorigenesis activities of WBP2, resulting in good prognosis in xenografts. Downregulation of WBP2 by MST involved miRNA but not proteasomal or lysosomal degradation. Our data support the existence of a novel MST-Dicer signaling axis, which in turn regulates both WBP2 CDS- and UTR-targeting miRNAs expression, including miR-23a. MiR-23a targets the 3′UTR of WBP2 mRNA directly. Significant inverse relationships between WBP2 and MST or miR23a expression levels in clinical specimens were observed. In conclusion, WBP2 is a target of the Hippo/MST kinase; MST is identified as yet another rheostat in the regulation of WBP2 and its oncogenic function. The findings have implications in targeted therapeutics and precision medicine for breast cancer.
Collapse
|
9
|
Ritter A, Hirschfeld M, Berner K, Jaeger M, Grundner-Culemann F, Schlosser P, Asberger J, Weiss D, Noethling C, Mayer S, Erbes T. Discovery of potential serum and urine-based microRNA as minimally-invasive biomarkers for breast and gynecological cancer. Cancer Biomark 2020; 27:225-242. [PMID: 32083575 DOI: 10.3233/cbm-190575] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Deregulated microRNAs (miRNAs) in breast and gynecological cancer might contribute to improve early detection of female malignancies. OBJECTIVE Specification of miRNA types in serum and urine as minimally-invasive biomarkers for breast (BC), endometrial (EC) and ovarian cancer (OC). METHODS In a discovery phase, serum and urine samples from 17 BC, five EC and five OC patients vs. ten healthy controls (CTRL) were analyzed with Agilent human miRNA microarray chip. Selected miRNA types were further investigated by RT-qPCR in serum (31 BC, 13 EC, 15 OC patients, 32 CTRL) and urine (25 BC, 10 EC, 10 OC patients, 30 CTRL) applying two-sample t-tests. RESULTS Several miRNA biomarker candidates exhibited diagnostic features due to distinctive expression levels (serum: 26; urine: 22). Among these, miR-518b, -4719 and -6757-3p were found specifically deregulated in BC serum. Four, non-entity-specific, novel biomarker candidates with unknown functional roles were identified in urine (miR-3973; -4426; -5089-5p and -6841). RT-qPCR identified miR-484/-23a (all p⩽ 0.001) in serum as potential diagnostic markers for EC and OC while miR-23a may also serve as an endogenous control in BC diagnosis. CONCLUSIONS Promising miRNAs as liquid biopsy-based tools in the detection of BC, EC and OC qualified for external validation in larger cohorts.
Collapse
Affiliation(s)
- Andrea Ritter
- Department of Obstetrics and Gynecology, Medical Center, University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Marc Hirschfeld
- Department of Obstetrics and Gynecology, Medical Center, University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Institute of Veterinary Medicine, Georg-August-University Goettingen, Goettingen, Germany
| | - Kai Berner
- Department of Obstetrics and Gynecology, Medical Center, University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Markus Jaeger
- Department of Obstetrics and Gynecology, Medical Center, University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Franziska Grundner-Culemann
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - Pascal Schlosser
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - Jasmin Asberger
- Department of Obstetrics and Gynecology, Medical Center, University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Daniela Weiss
- Department of Obstetrics and Gynecology, Medical Center, University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Claudia Noethling
- Department of Obstetrics and Gynecology, Medical Center, University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Sebastian Mayer
- Department of Gynecology and Obstetrics, Hospital Memmingen, Memmingen, Germany
| | - Thalia Erbes
- Department of Obstetrics and Gynecology, Medical Center, University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
10
|
Autenschlyus AI, Bernado AV, Davletova KI, Arkhipov SA, Zhurakovsky IP, Mikhailova ES, Proskura AV, Bogachuk AP, Lipkin VM, Lyakhovich VV. [Proteins and immunohistochemical markers of breast diseases]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2020; 66:167-173. [PMID: 32420899 DOI: 10.18097/pbmc20206602167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In this work, we have compared malignant and non-malignant diseases of the mammary gland using 8 proteins: HRG, MUC1, PAI-1, HSP90αA1, CDH1, ERα, PGR and IL-12. Their concentrations in the supernatants of blood cells and breast biopsies were compared in terms of spontaneous production, induced by a polyclonal activator and after exposure to biopsy samples of the HLDF differentiation factor, as well as the indices of the effect of the polyclonal activator and HLDF on the protein production. In addition, the correlation relationships of the above indicators with the expression of markers of the epithelial-mesenchymal transition: collagen type II (CII), β-1 integrin (CD29) and cadherin-E (CDH1) were studied. The study revealed statistically significant differences in the concentration of HRG in the supernatant of blood cells, IL-12 during spontaneous production by biopsy specimens, PGR production of biopsy specimens induced by the polyclonal activator, CDH1 and IL-12 production biopsy specimens exposed to HLDF. According to the influence index of the polyclonal activator and HLDF, statistically significant differences were found for CDH1production. Comparison of non-specific invasive carcinoma biopsy specimens and non-malignant breast diseases by means of the markers of the epithelial-mesenchymal transition revealed statistically significant differences in CD29 expression and the lack of differences in the expression of CDH1 and CII. This indicates the presence of cell atypia in samples of non-malignant breast diseases; it is confirmed by the recognized correlation between the production of certain proteins and the expression of the epithelial-mesenchymal transition markers.
Collapse
Affiliation(s)
- A I Autenschlyus
- Novosibirsk State Medical University, Novosibirsk, Russia; Institute of Molecular Biology and Biophysics, Novosibirsk, Russia
| | - A V Bernado
- Novosibirsk State Medical University, Novosibirsk, Russia
| | - K I Davletova
- Novosibirsk State Medical University, Novosibirsk, Russia
| | - S A Arkhipov
- Novosibirsk State Medical University, Novosibirsk, Russia; Institute of Molecular Biology and Biophysics, Novosibirsk, Russia
| | - I P Zhurakovsky
- Novosibirsk State Medical University, Novosibirsk, Russia; Institute of Molecular Biology and Biophysics, Novosibirsk, Russia
| | - E S Mikhailova
- Novosibirsk State Medical University, Novosibirsk, Russia; Institute of Molecular Biology and Biophysics, Novosibirsk, Russia
| | - A V Proskura
- Institute of Molecular Biology and Biophysics, Novosibirsk, Russia
| | - A P Bogachuk
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | - V M Lipkin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | - V V Lyakhovich
- Institute of Molecular Biology and Biophysics, Novosibirsk, Russia
| |
Collapse
|
11
|
Koi Y, Tsutani Y, Nishiyama Y, Ueda D, Ibuki Y, Sasada S, Akita T, Masumoto N, Kadoya T, Yamamoto Y, Takahashi RU, Tanaka J, Okada M, Tahara H. Predicting the presence of breast cancer using circulating small RNAs, including those in the extracellular vesicles. Cancer Sci 2020; 111:2104-2115. [PMID: 32215990 PMCID: PMC7293081 DOI: 10.1111/cas.14393] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 03/15/2020] [Accepted: 03/17/2020] [Indexed: 12/26/2022] Open
Abstract
Emerging evidence indicates that small RNAs, including microRNAs (miRNAs) and their isoforms (isomiRs), and transfer RNA fragments (tRFs), are differently expressed in breast cancer (BC) and can be detected in blood circulation. Circulating small RNAs and small RNAs in extracellular vesicles (EVs) have emerged as ideal markers in small RNA‐based applications for cancer detection. In this study, we first undertook small RNA sequencing to assess the expression of circulating small RNAs in the serum of BC patients and cancer‐free individuals (controls). Expression of 3 small RNAs, namely isomiR of miR‐21‐5p (3′ addition C), miR‐23a‐3p and tRF‐Lys (TTT), was significantly higher in BC samples and was validated by small RNA sequencing in an independent cohort. Our constructed model using 3 small RNAs showed high diagnostic accuracy with an area under the receiver operating characteristic curve of 0.92 and discriminated early‐stage BCs at stage 0 from control. To test the possibility that these small RNAs are released from cancer cells, we next examined EVs from the serum of BC patients and controls. Two of the 3 candidate small RNAs were identified, and shown to be abundant in EVs of BC patients. Interestingly, these 2 small RNAs are also more abundantly detected in culture media of breast cancer cell lines (MCF‐7 and MDA‐MB‐231). The same tendency in selective elevation seen in total serum, serum EV, and EV derived from cell culture media could indicate the efficiency of this model using total serum of patients. These findings indicate that small RNAs serve as significant biomarkers for BC detection.
Collapse
Affiliation(s)
- Yumiko Koi
- Surgical Oncology, Division of Radiation Biology and Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.,Department of Surgical Oncology, Research Center for Radiation Casualty Medicine, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Yasuhiro Tsutani
- Department of Surgical Oncology, Research Center for Radiation Casualty Medicine, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Yukie Nishiyama
- Department of Cellular and Molecular Biology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Daisuke Ueda
- Surgical Oncology, Division of Radiation Biology and Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.,Department of Surgical Oncology, Research Center for Radiation Casualty Medicine, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Yuta Ibuki
- Surgical Oncology, Division of Radiation Biology and Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.,Department of Surgical Oncology, Research Center for Radiation Casualty Medicine, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Shinsuke Sasada
- Department of Surgical Oncology, Research Center for Radiation Casualty Medicine, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Tomoyuki Akita
- Department of Epidemiology, Infectious Disease Control and Prevention, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Norio Masumoto
- Department of Surgical Oncology, Research Center for Radiation Casualty Medicine, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Takayuki Kadoya
- Department of Surgical Oncology, Research Center for Radiation Casualty Medicine, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Yuki Yamamoto
- Department of Cellular and Molecular Biology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Ryou-U Takahashi
- Department of Cellular and Molecular Biology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Junko Tanaka
- Department of Epidemiology, Infectious Disease Control and Prevention, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Morihito Okada
- Department of Surgical Oncology, Research Center for Radiation Casualty Medicine, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Hidetoshi Tahara
- Department of Cellular and Molecular Biology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.,Collaborative laboratory of Liquid Biopsy, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
12
|
Zhang J, Lu J, Chen Y, Li H, Lin L. WHSC1 promotes wnt/β-catenin signaling in a FoxM1-dependent manner facilitating proliferation, invasion and epithelial-mesenchymal transition in breast cancer. J Recept Signal Transduct Res 2020; 40:410-418. [PMID: 32314642 DOI: 10.1080/10799893.2020.1747490] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Objectives: Wolf-Hirschhorn syndrome candidate gene-1 (WHSC1) is highly expressed in various malignant tumors. We investigated the correlation and regulatory pathway of WHSC1 in the progression of breast cancer (BC).Methods: The expression and distribution of WHSC1 in the BC tissues and cell lines were determined by quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and immunohistochemical staining. Spearman correlation analysis demonstrated the correlation between WHSC1 high expression level and the clinical characteristics of BC patients. The effects of WHSC1 on the proliferation, apoptosis, migration and invasion of BC cells were analyzed by cell transfection, MTT, colony formation, scratch assay, and transwell. Furthermore, the expression of Forkhead box M1 (FoxM1) and the location of β-catenin were detected by qRT-PCR and western blot.Results: Firstly, WHSC1 expression was up-regulated in BC tissues and cell lines. The high expression of WHSC1 in BC is associated with the tumor size (p = 0.027), metastasis (p = 0.018) and pathological stages (p = 0.025) of the BC patients. The knockdown of WHSC1 inhibited the growth, proliferation migration, invasion and EMT of BC cell lines. Furthermore, WHSC1 could promote the expression of FoxM1 in BC cells and tissues. WHSC1 enhanced the expression of FoxM1, and promoted the nuclear localization of β-catenin, and thus activated the downstream genes expression of Wnt/β-catenin signaling pathway to regulate the development of BC.Conclusion: In summary, our study elucidates the correlation and specific regulatory mechanism between WHSC1 and the progression of BC, thus implying that WHSC1 may function as molecular diagnosis, prognosis and molecular targeted therapy of BC.
Collapse
Affiliation(s)
- Jinfan Zhang
- Department of Breast Surgery, The Affiliated Hospital of Putian University, Putian City, Fujian Province, China
| | - Jingyu Lu
- Department of Breast Surgery, The Affiliated Hospital of Putian University, Putian City, Fujian Province, China
| | - Yu Chen
- Department of Breast Surgery, The Affiliated Hospital of Putian University, Putian City, Fujian Province, China
| | - Hang Li
- Department of Breast Surgery, The Affiliated Hospital of Putian University, Putian City, Fujian Province, China
| | - Lisheng Lin
- Department of Breast Surgery, The Affiliated Hospital of Putian University, Putian City, Fujian Province, China
| |
Collapse
|
13
|
Li X, Zou W, Wang Y, Liao Z, Li L, Zhai Y, Zhang L, Gu S, Zhao X. Plasma-based microRNA signatures in early diagnosis of breast cancer. Mol Genet Genomic Med 2020; 8:e1092. [PMID: 32124558 PMCID: PMC7216817 DOI: 10.1002/mgg3.1092] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 11/12/2019] [Accepted: 11/20/2019] [Indexed: 12/24/2022] Open
Abstract
Background MicroRNAs (miRNAs) play an important role in the development and progression of breast cancer (BC). The purpose of the present study was to identify plasma miRNAs enabling early diagnosis of BC. Materials and Methods Expression levels of seven plasma miRNAs (miR‐23a‐3p, miR‐29b‐2‐5p, miR‐130a‐5p, miR‐144‐3p, miR‐148a‐3p, miR‐152‐3p, and miR‐182‐5p) in 106 patients with newly diagnosed BC and 96 healthy participants were analyzed by qRT‐PCR. We also evaluated the relationship between the expression levels of these miRNAs and clinicopathological features of patients with BC. Results Compared with healthy controls, we found that miR‐23a‐3p (p = .025), miR‐130a‐5p (p = .006), miR‐144‐3p (p = .040), miR‐148a‐3p (p = .023), and miR‐152‐3p (p = .019) were downregulated in the plasma of patients with BC. MiR‐130a‐5p, miR‐144‐3p, and miR‐152‐3p were downexpressed in BC tissues as well as plasma. The expression of the miR‐23a‐3p, miR‐144‐3p, and miR‐152‐3p was related to ER positive and PR positive. Besides, miR‐23a‐3p, miR‐144‐3p, and miR‐152‐3p did show the significant difference in the staging compromised to the control, especially in stage I‐II. Moreover, we also found that miR‐144‐3p and miR‐148a‐3p were associated with lymph node invasion. Conclusions The expression levels of the miR‐23a‐3p, miR‐130a‐5p, miR‐144‐3p, miR‐148a‐3p, and miR‐152‐3p were lower in patients with BC compared to healthy controls and were associated with ex hormone receptor, clinical stage, and lymph node metastasis, indicating the diagnostic potential of these miRNAs in BC.
Collapse
Affiliation(s)
- Xu Li
- Department of Medicine Oncology, Affiliated Hospital of Medical College of Xi'an Jiaotong University (Shaanxi Provincial Cancer Hospital), Xi'an, China
| | - Wenjing Zou
- Department of Geriatrics, Xi'an No 5 Hospital, Xi'an, China
| | - Yuzhen Wang
- Department of Medicine Oncology, Affiliated Hospital of Medical College of Xi'an Jiaotong University (Shaanxi Provincial Cancer Hospital), Xi'an, China
| | - Zijun Liao
- Department of Medicine Oncology, Affiliated Hospital of Medical College of Xi'an Jiaotong University (Shaanxi Provincial Cancer Hospital), Xi'an, China
| | - Lina Li
- Department of Medicine Oncology, Affiliated Hospital of Medical College of Xi'an Jiaotong University (Shaanxi Provincial Cancer Hospital), Xi'an, China
| | - Yang Zhai
- Department of Medicine Oncology, Affiliated Hospital of Medical College of Xi'an Jiaotong University (Shaanxi Provincial Cancer Hospital), Xi'an, China
| | - Lingxiao Zhang
- Department of Medicine Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Shanzhi Gu
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Xinhan Zhao
- Department of Medicine Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
14
|
Kashyap D, Kaur H. Cell-free miRNAs as non-invasive biomarkers in breast cancer: Significance in early diagnosis and metastasis prediction. Life Sci 2020; 246:117417. [PMID: 32044304 DOI: 10.1016/j.lfs.2020.117417] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/28/2020] [Accepted: 02/05/2020] [Indexed: 02/07/2023]
Abstract
Breast cancer is one of the genetic diseases causing a high mortality among women around the world. Despite the availability of advanced diagnostic tools and treatment strategies, the incidence of breast cancer is increasing every year. This is due to the lack of accurate and reliable biomarkers whose deficiency creates difficulty in early breast cancer recognition, subtypes determination, and metastasis prophecy. Although biomarkers such as ER, PR, Her2, Ki-67, and other genetic platforms e.g. MammaPrint®, Oncotype DX®, Prosigna® or EndoPredict® are available for determination of breast cancer diagnosis and prognosis. However, pertaining to heterogeneous nature, lack of sensitivity, and specificity of these markers, it is still incessant to overcome breast cancer burden. Therefore, a novel biomarker is urgently needed for therapeutic diagnosis and improving prognosis. Lately, it has become more evident that cell-free miRNAs might be useful as good non-invasive biomarkers that are associated with different events in carcinogenesis. For example, some known biomarkers such as miR-21, miR-23a, miR-34a are associated with molecular subtyping and different biomolecular aspects i.e. apoptosis, angiogenesis, metastasis, and miR-1, miR-10b, miR-16 are associated with drug response. Cell-free miRNAs present in human body fluids have proven to be potential biomarkers with significant prognostic and predictive values. Numerous studies have found a distinct expression profile of circulating miRNAs in breast tumour versus non-tumour and in early and advanced-stage, thus implicating its clinical relevance. This review article will highlight the importance of different cell-free miRNAs as a biomarker for early breast cancer detection, subtype classification, and metastasis forecast.
Collapse
Affiliation(s)
- Dharambir Kashyap
- Department of Histopathology, Postgraduation Institute of Medical Education and Research (PGIMER), Chandigarh 160012, India
| | - Harmandeep Kaur
- Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, Ontario, Canada.
| |
Collapse
|
15
|
MiR-23a-3p promoted G1/S cell cycle transition by targeting protocadherin17 in hepatocellular carcinoma. J Physiol Biochem 2020; 76:123-134. [PMID: 31994011 DOI: 10.1007/s13105-020-00726-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Accepted: 01/12/2020] [Indexed: 12/21/2022]
Abstract
MiR-23a-3p has been shown to promote liver cancer cell growth and metastasis and regulate that of chemosensitivity. Protocadherin17 (PCDH17) is a tumor suppressor gene and plays an essential part in cell cycle of hepatocellular carcinoma (HCC). This study aimed at evaluating the effects of miR-23a-3p and PCDH17 on HCC cell cycle and underlining the mechanism. The level of miR-23a-3p was up-regulated, while PCDH17 level was down-regulated in HCC tissues compared to adjacent tissues. For the in vitro studies, high expression of miR-23a-3p down-regulated PCDH17 level; increased cell viability; promoted G1/S cell cycle transition; up-regulated cyclin D1, cyclin E, CDK2, CDK4, p-p27, and p-RB levels; and down-regulated the expression of p27. Dual luciferase reporter assay suggested PCDH17 was a target gene of miR-23a-3p. MiR-23a-3p inhibitor and PCDH17 siRNA led to an increase in cell viability and the number of cells in the S phase and up-regulated cyclin D1 and cyclin E levels, compared with miR-23a-3p inhibitor and NC siRNA group. For the in vivo experiments, high expression of miR-23a-3p promoted tumor growth and reduced PCDH17 level in the cytoplasm. These results indicated that high expression of miR-23a-3p might promote G1/S cell cycle transition by targeting PCDH17 in HCC cells. The miR-23a-3p could be considered as a molecular target for HCC detection.
Collapse
|
16
|
Zhang J, Zhang Z, Sun J, Ma Q, Zhao W, Chen X, Qiao H. MiR-942 regulates the function of breast cancer cell by targeting FOXA2. Biosci Rep 2019; 39:BSR20192298. [PMID: 31701999 PMCID: PMC6879377 DOI: 10.1042/bsr20192298] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 10/17/2019] [Accepted: 10/25/2019] [Indexed: 01/08/2023] Open
Abstract
MicroRNA (MiR)-942 regulates the development of a variety of tumors, however, its function in breast cancer (BCa) has been less reported. Therefore, the present study investigated the regulatory effects of miR-942 on BCa cells. The expression of miR-942 in whole blood samples and BCa cell lines was detected by quantitative real-time (qRT)-PCR. Direct target gene for miR-942 was confirmed by dual-luciferase reporter assay. FOXA2 expression in adjacent tissues was detected by qRT-PCR. The effects of miR-942, or miR-942 with FOXA2, on the cell viability, proliferation, apoptosis, migration and invasion of BCa cells were determined by cell counting kit-8 (CCK-8), colony formation assay, flow cytometry, wound scratch and Transwell, respectively. The levels of N-Cadherin, E-Cadherin and Snail were determined by Western blot. Kaplan-Meier was used to explore the relationship among the expressions of miR-942 and FOXA2 and the prognosis of BCa patients. MiR-942 had high expressed in BCa, while its low expression significantly suppressed the cell viability, proliferation, migration and invasion of BCa, but increased cell apoptosis. Down-regulation of N-Cadherin and Snail and up-regulation of E-Cadherin were also induced by low-expression of miR-942. FOXA2, which was proved as the direct target gene for miR-942 and was low-expressed in BCa, partially reversed the effect of overexpressed miR-942 on promoting cell viability, proliferation, migration and invasion, and suppressed cell apoptosis. A lower survival rate was observed in BCa patients with a high expression of miR-942 and a low expression of FOXA2. MiR-942 promoted the progression of BCa by down-regulating the expression of FOXA2.
Collapse
Affiliation(s)
- Jinku Zhang
- Department of Pathology, Baoding No.1 Central Hospital, Baoding City, Hebei Province, China
| | - Zhiqiang Zhang
- Department of Thoracic Surgery, Baoding No.1 Central Hospital, Baoding City, Hebei Province, China
| | - Jirui Sun
- Department of Pathology, Baoding No.1 Central Hospital, Baoding City, Hebei Province, China
| | - Qiushuang Ma
- Department of Pathology, Baoding No.1 Central Hospital, Baoding City, Hebei Province, China
| | - Wenming Zhao
- Department of Pathology, Baoding No.1 Central Hospital, Baoding City, Hebei Province, China
| | - Xue Chen
- Department of Pathology, Baoding No.1 Central Hospital, Baoding City, Hebei Province, China
| | - Haizhi Qiao
- Department of Pathology, Baoding No.1 Central Hospital, Baoding City, Hebei Province, China
| |
Collapse
|
17
|
Wang H, Sun L, Jiang J, Yu S, Zhou Q. Suppression of the proliferation and invasion of breast cancer cells by ST7L occurs through inhibition of activation of Wnt/GSK-3β/β-catenin signalling. Clin Exp Pharmacol Physiol 2019; 47:119-126. [PMID: 31429477 DOI: 10.1111/1440-1681.13166] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 07/19/2019] [Accepted: 08/13/2019] [Indexed: 12/20/2022]
Abstract
Emerging evidence has indicated that suppression of tumorigenicity 7-like (ST7L) is a tumour suppressor in multiple types of cancers. However, the functional involvement of ST7L has not been studied in breast cancer. In the present study, we aimed to investigate the potential biological function of ST7L in breast cancer. Herein, we found that ST7L expression was frequently downregulated in breast cancer cell lines. Functional assays revealed that ST7L overexpression significantly inhibited the proliferation and invasion of breast cancer cells, while ST7L silencing showed opposite effect. Notably, ST7L was found to decrease glycogen synthase kinase (GSK)-3β phosphorylation and downregulate active β-catenin protein expression, thereby leading to repression of β-catenin transcriptional activity. Activation of Wnt/β-catenin signalling by treatment of GSK-3β inhibitor significantly abrogated ST7L-mediated antitumour effect. Additionally, ST7L overexpression blunted the tumorigenicity of breast cancer cells in vivo in xenograft mice. Taken together, our results demonstrate that ST7L exerts antitumor function in breast cancer associated with the suppression of Wnt/β-catenin signalling, suggesting ST7L as a potential therapeutic target for breast cancer.
Collapse
Affiliation(s)
- Hua Wang
- Department of Ultrasound, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Lei Sun
- Department of Ultrasound, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Jue Jiang
- Department of Ultrasound, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Shanshan Yu
- Department of Ultrasound, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Qi Zhou
- Department of Ultrasound, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|
18
|
Xu Y, Lin S, Zhao H, Wang J, Zhang C, Dong Q, Hu C, Desi S, Wang L, Xu Y. Quantifying Risk Pathway Crosstalk Mediated by miRNA to Screen Precision drugs for Breast Cancer Patients. Genes (Basel) 2019; 10:E657. [PMID: 31466383 PMCID: PMC6770221 DOI: 10.3390/genes10090657] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/25/2019] [Accepted: 08/26/2019] [Indexed: 12/13/2022] Open
Abstract
Breast cancer has become the most common cancer that leads to women's death. Breast cancer is a complex, highly heterogeneous disease classified into various subtypes based on histological features, which determines the therapeutic options. System identification of effective drugs for each subtype remains challenging. In this work, we present a computational network biology approach to screen precision drugs for different breast cancer subtypes by considering the impact intensity of candidate drugs on the pathway crosstalk mediated by miRNAs. Firstly, we constructed and analyzed the subtype-specific risk pathway crosstalk networks mediated by miRNAs. Then, we evaluated 36 Food and Drug Administration (FDA)-approved anticancer drugs by quantifying their effects on these subtype-specific pathway crosstalk networks and combining with survival analysis. Finally, some first-line treatments of breast cancer, such as Paclitaxel and Vincristine, were optimized for each subtype. In particular, we performed precision screening of subtype-specific therapeutic drugs and also confirmed some novel drugs suitable for breast cancer treatment. For example, Sorafenib was applicable for the basal subtype treatment, Irinotecan was optimum for Her2 subtype treatment, Vemurafenib was suitable for the LumA subtype treatment, and Vorinostat could apply to LumB subtype treatment. In addition, the mechanism of these optimal therapeutic drugs in each subtype of breast cancer was further dissected. In summary, our study offers an effective way to screen precision drugs for various breast cancer subtype treatments. We also dissected the mechanism of optimal therapeutic drugs, which may provide novel insight into the precise treatment of cancer and promote researches on the mechanisms of action of drugs.
Collapse
Affiliation(s)
- Yingqi Xu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Shuting Lin
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Hongying Zhao
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Jingwen Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Chunlong Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Qun Dong
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Congxue Hu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Shang Desi
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Li Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Yanjun Xu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China.
| |
Collapse
|
19
|
Zhu X, Zhang A, Dong J, Yao Y, Zhu M, Xu K, Al Hamda MH. MicroRNA-23a contributes to hippocampal neuronal injuries and spatial memory impairment in an experimental model of temporal lobe epilepsy. Brain Res Bull 2019; 152:175-183. [PMID: 31336125 DOI: 10.1016/j.brainresbull.2019.07.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 07/05/2019] [Accepted: 07/18/2019] [Indexed: 10/26/2022]
Abstract
Temporal lobe epilepsy (TLE) is the most common form of epilepsy characterized by spontaneous recurrent seizures. It has been widely accepted that individuals with TLE tend to have neuronal injuries and memory impairment. However, little is known about the underlying molecular mechanisms. MicroRNAs (miRNAs) are small noncoding RNAs that regulate the expression of target genes at the posttranscriptional level. An increasing body of evidence suggests that miRNAs play pivotal roles in the pathogenesis of epilepsy. Here, we sought to determine the role of miR-23a, one of the most common miRNAs involved in various cancer types, in hippocampal neuronal injuries and spatial memory impairment in an experimental model of TLE. We found that miR-23a is upregulated in the hippocampus after status epilepticus (SE) in kanic acid (KA)-induced TLE mice. Furthermore, the upregulation of miR-23a is accompanied by hippocampal oxidative damage, neuronal injuries and spatial memory impairment in TLE mice. Inhibition of miR-23a expression by miR-23a antagomirs reduced hippocampal oxidative stress, neuronal injuries and improved spatial memory, while an increase in miR-23a expression by miR-23a agomir exacerbated hippocampal oxidative stress, neuronal injuries and spatial memory impairment in TLE mice. Our findings suggest that miR-23a contributes to hippocampal oxidative damage and neuronal injuries, which may consequently contribute to spatial memory impairment in TLE mice. Thus, targeting miR-23a in the epileptic brain may provide a novel strategy for protecting against hippocampal neuronal injuries and improving spatial memory in TLE patients.
Collapse
Affiliation(s)
- Xinjian Zhu
- Department of Pharmacology, Medical School of Southeast University, Nanjing, China.
| | - Aifeng Zhang
- Department of Pathology, Medical School of Southeast University, Nanjing, China
| | - Jingde Dong
- Department of Geriatric Neurology, Nanjing Brain Hospital Affiliated with Nanjing Medical University, Nanjing, China
| | - Yuanyuan Yao
- Department of Pharmacology, Medical School of Southeast University, Nanjing, China
| | - Mengyi Zhu
- Department of Pharmacology, Medical School of Southeast University, Nanjing, China
| | - Kangni Xu
- Department of Pharmacology, Medical School of Southeast University, Nanjing, China
| | | |
Collapse
|
20
|
Autenshlyus AI, Golovanova AV, Studenikina AA, Brusentsov II, Proskura AV, Zhurakovskiy IP, Arkhipov SA, Sidorov SV, Vavilin VA, Lyakhovich VV. Personalized Approach to Assessing mRNA Expression of Histidine-Rich Glycoprotein and Immunohistochemical Markers in Diseases of the Breast. DOKL BIOCHEM BIOPHYS 2019; 484:59-62. [PMID: 31012015 DOI: 10.1134/s1607672919010162] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Indexed: 11/23/2022]
Abstract
Biopsy material of patients with malignant and benign breast diseases was examined. HRG mRNA expression was detected in 70% of cases in biopsy material obtained from patients with nonspecific invasive carcinoma and in 66.7% of cases in biopsy material of patients with benign breast diseases. Immunohistochemical analysis revealed expression of collagen II, the beta-1 integrin, and E-cadherin-markers of epithelial-mesenchymal transition. The use of RT-qPCR combined with immunohistochemical study made it possible to identify atypical cells, which can be regarded as precancerous changes, in individual patients.
Collapse
Affiliation(s)
- A I Autenshlyus
- Novosibirsk State Medical University, Ministry of Health of the Russian Federation, 630091, Novosibirsk, Russia. .,Research Institute of Molecular Biology and Biophysics, 630117, Novosibirsk, Russia.
| | - A V Golovanova
- Novosibirsk State Medical University, Ministry of Health of the Russian Federation, 630091, Novosibirsk, Russia
| | - A A Studenikina
- Novosibirsk State Medical University, Ministry of Health of the Russian Federation, 630091, Novosibirsk, Russia
| | - I I Brusentsov
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, 630090, Novosibirsk, Russia
| | - A V Proskura
- Research Institute of Molecular Biology and Biophysics, 630117, Novosibirsk, Russia
| | - I P Zhurakovskiy
- Novosibirsk State Medical University, Ministry of Health of the Russian Federation, 630091, Novosibirsk, Russia
| | - S A Arkhipov
- Novosibirsk State Medical University, Ministry of Health of the Russian Federation, 630091, Novosibirsk, Russia.,Research Institute of Molecular Biology and Biophysics, 630117, Novosibirsk, Russia
| | - S V Sidorov
- National Research Novosibirsk State University, 630090, Novosibirsk, Russia
| | - V A Vavilin
- Research Institute of Molecular Biology and Biophysics, 630117, Novosibirsk, Russia
| | - V V Lyakhovich
- Research Institute of Molecular Biology and Biophysics, 630117, Novosibirsk, Russia
| |
Collapse
|
21
|
Wang N, Tan HY, Feng YG, Zhang C, Chen F, Feng Y. microRNA-23a in Human Cancer: Its Roles, Mechanisms and Therapeutic Relevance. Cancers (Basel) 2018; 11:7. [PMID: 30577536 PMCID: PMC6356664 DOI: 10.3390/cancers11010007] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 12/07/2018] [Accepted: 12/17/2018] [Indexed: 12/17/2022] Open
Abstract
microRNA-23a (miR-23a) is one of the most extensively studied miRNAs in different types of human cancer, and plays various roles in the initiation, progression, and treatment of tumors. Here, we comprehensively summarize and discuss the recent findings about the role of miR-23a in cancer. The differential expression of tissue miR-23a was reported, potentially indicating cancer stages, angiogenesis, and metastasis. miR-23a in human biofluid, such as plasma and salivary fluid, may be a sensitive and specific marker for early diagnosis of cancer. Tissue and circulating miR-23a serves as a prognostic factor for cancer patient survival, as well as a predictive factor for response to anti-tumor treatment. The direct and indirect regulation of miR-23a on multiple gene expression and signaling transduction mediates carcinogenesis, tumor proliferation, survival, cell migration and invasion, as well as the response to anti-tumor treatment. Tumor cell-derived miR-23a regulates the microenvironment of human cancer through manipulating both immune function and tumor vascular development. Several transcriptional and epigenetic factors may contribute to the dysregulation of miR-23a in cancer. This evidence highlights the essential role of miR-23a in the application of cancer diagnosis, prognosis, and treatment.
Collapse
Affiliation(s)
- Ning Wang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong, China.
| | - Hor-Yue Tan
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong, China.
| | - Yi-Gang Feng
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou 510006, China.
| | - Cheng Zhang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong, China.
| | - Feiyu Chen
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong, China.
| | - Yibin Feng
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong, China.
| |
Collapse
|
22
|
Chen B, Zhu A, Tian L, Xin Y, Liu X, Peng Y, Zhang J, Miao Y, Wei J. miR‑23a suppresses pancreatic cancer cell progression by inhibiting PLK‑1 expression. Mol Med Rep 2018; 18:105-112. [PMID: 29749476 PMCID: PMC6059658 DOI: 10.3892/mmr.2018.8941] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 04/17/2018] [Indexed: 11/06/2022] Open
Abstract
The present study aimed to explore the effects and underlying mechanisms of microRNA (miR)‑23a on pancreatic cancer (PC) cells progression. Reverse transcription‑quantitative polymerase chain reaction and western blot analysis were used to detect the mRNA and protein miR‑23a and PLK‑1 level. Cell viability, cell cycle, migration and invasion assasy, and in vivo tumorigenicity assay were used to investigate the effects of miR‑204. Further luciferase reporter assay was used to explore the mechanisms contributing to miR‑204 effects. It was observed that miR‑23a expression was upregulated and negatively associated with polo‑like kinase‑1 (PLK‑1) expression in human PC tissues. PLK‑1 was a direct target of miR‑23a in PC cells. Functional analysis demonstrated that miR‑23a overexpression suppressed cell proliferation, inhibited cell migration and invasion and promoted cell apoptosis in vitro. When PC cells were transfected with has‑miR‑23a PLK‑1 was downregulated and its downstream molecules were deregulated, including decreased expression of B‑cell lymphoma‑2, cyclin B1 and vimentin, and increased expression of Bax and E‑cadherin. The inhibitory effect of miR‑23a on PC cell progression was observed in vivo tumor xenografts. The results of the study suggest that miR‑23a inhibits PC cell progression by directly targeting PLK‑1‑associated signaling and promoting miR‑23a expression may be a potential method for treating patients with PC.
Collapse
Affiliation(s)
- Bin Chen
- Hepatopancreatobiliary Surgery Department, The Affiliated Hangzhou Hospital of Nanjing Medical University, Hangzhou, Zhejiang 310006, P.R. China
- Hepatopancreatobiliary Surgery Department, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang 311121, P.R. China
| | - Akao Zhu
- Hepatopancreatobiliary Surgery Department, The Affiliated Hangzhou Hospital of Nanjing Medical University, Hangzhou, Zhejiang 310006, P.R. China
| | - Lei Tian
- The Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Ying Xin
- Thyroid Breast Surgery Department, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Xinchun Liu
- The Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Yunpeng Peng
- The Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Jingjing Zhang
- The Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Yi Miao
- The Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Jishu Wei
- The Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| |
Collapse
|
23
|
Razaviyan J, Hadavi R, Tavakoli R, Kamani F, Paknejad M, Mohammadi-Yeganeh S. Expression of miRNAs Targeting mTOR and S6K1 Genes of mTOR Signaling Pathway Including miR-96, miR-557, and miR-3182 in Triple-Negative Breast Cancer. Appl Biochem Biotechnol 2018; 186:1074-1089. [PMID: 29862445 DOI: 10.1007/s12010-018-2773-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 04/23/2018] [Indexed: 12/15/2022]
Abstract
Triple-negative breast cancer (TNBC) is a highly aggressive form of breast cancer. Aberrant expression of genes in mTOR pathway and their targeting miRNAs plays an important role in TNBC. The aim of this study was to determine the expression of mTOR and S6K1 and their targeting miRNAs in breast cancer cell lines and clinical samples. miRNAs targeting 3'-UTR of mTOR and S6K1 mRNAs were predicted using bioinformatic algorithms. MDA-MB-231, MCF-7, and MCF-10A as well as 20 TNBC samples were analyzed for gene and miRNA expression using quantitative real-time PCR (RT-qPCR). A receiver operating characteristic (ROC) curve analysis was performed for evaluation of candidate miRNAs as diagnostic biomarkers. miR-96 and miR-557 targeting mTOR and S6K1 mRNAs, respectively, were selected, and miR-3182 was selected as the miRNA targeting both genes. The miRNAs were down-regulated in cell lines, while their target mRNAs were up-regulated. Similar findings were observed in clinical samples. The ROC curve analysis revealed decline in expression of these miRNAs. We suggest that miR-96, miR-557, and miR-3182 can be used as inhibitory agents for mTOR and S6K1 in TNBC-targeted therapy.
Collapse
Affiliation(s)
- Javad Razaviyan
- Department of Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Razie Hadavi
- Department of Biochemistry and Student Research Committee, Semnan University of Medical School, Semnan, Iran
- Department of Molecular Biology and Genetic Engineering, Stem Cell Technology Research Center, Tehran, Iran
| | - Rezvan Tavakoli
- Department of Molecular Biology and Genetic Engineering, Stem Cell Technology Research Center, Tehran, Iran
| | - Fereshteh Kamani
- Department of Surgery, Taleghani Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maliheh Paknejad
- Department of Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Samira Mohammadi-Yeganeh
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
24
|
Autenshlyus AI, Brusentsov II, Marinkin IO, Smirnova SA, Rukavishnikov MY, Lyakhovich VV. Messenger RNA of the Histidine-Rich Glycoprotein in Breast Tumors. DOKL BIOCHEM BIOPHYS 2018. [PMID: 29536307 DOI: 10.1134/s1607672918010106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The content of mRNA of the histidine-rich glycoprotein (HRG), a potential marker of malignant neoplasia, which can be used in differential diagnosis of breast tumors, was determined in 110 breast tumor biopsy samples. The presence of HRG mRNA did not depend on the cancer type, on the preoperative treatment or its absence, as well as on the tumor progression stage and the presence of metastases.
Collapse
Affiliation(s)
- A I Autenshlyus
- Ministry of Healthcare of the Russian Federation, Novosibirsk State Medical University, Novosibirsk, 630091, Russia. .,Research Institute of Molecular Biology and Biophysics, Novosibirsk, 630117, Russia.
| | - I I Brusentsov
- Ministry of Healthcare of the Russian Federation, Novosibirsk State Medical University, Novosibirsk, 630091, Russia.,Federal Research Center Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - I O Marinkin
- Ministry of Healthcare of the Russian Federation, Novosibirsk State Medical University, Novosibirsk, 630091, Russia
| | - S A Smirnova
- JSC Vector-Best, Kol'tsovo, Novosibirsk oblast, 633159, Russia
| | | | - V V Lyakhovich
- Research Institute of Molecular Biology and Biophysics, Novosibirsk, 630117, Russia
| |
Collapse
|
25
|
Fan X, Sun L, Li K, Yang X, Cai B, Zhang Y, Zhu Y, Ma Y, Guan Z, Wu Y, Zhang L, Yang Z. The Bioactivity of D-/L-Isonucleoside- and 2'-Deoxyinosine-Incorporated Aptamer AS1411s Including DNA Replication/MicroRNA Expression. MOLECULAR THERAPY. NUCLEIC ACIDS 2017; 9:218-229. [PMID: 29246300 PMCID: PMC5651494 DOI: 10.1016/j.omtn.2017.09.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 09/28/2017] [Accepted: 09/28/2017] [Indexed: 12/20/2022]
Abstract
In this study, chemical modification of 2'-deoxyinosine (2'-dI) and D-/L-isothymidine (D-/L-isoT) was performed on AS1411. They could promote the nucleotide-protein interaction by changing the local conformation. Twenty modified sequences were obtained, FCL-I and FCL-II showed the most noticeable activity improvement. They stabilized the G-quadruplex, remained highly resistant to serum degradation and specificity for nucleolin, further inhibited tumor cell growth, exhibited a stronger ability to influence the different phases of the tumor cell cycle, induced S-phase arrest, promoted the inhibition of DNA replication, and suppressed the unwound function of a large T antigen as powerful as AS1411. The microarray analysis and TaqMan PCR results showed that FCL-II can upregulate the expression of four breast-cancer-related, lowly expressed miRNAs and downregulate the expression of three breast-cancer-related, highly expressed miRNAs (>2.5-fold). FCL-II resulted in enhanced treatment effects greater than AS1411 in animal experiments (p < 0.01). The computational results further proved that FCL-II exhibits more structural advantages than AS1411 for binding to the target protein nucleolin, indicating its great potential in antitumor therapy.
Collapse
Affiliation(s)
- Xinmeng Fan
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, PR China
| | - Lidan Sun
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University Medical College, Yichang 443002, PR China
| | - Kunfeng Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, PR China
| | - Xiantao Yang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, PR China
| | - Baobin Cai
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, PR China
| | - Yanfen Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, PR China
| | - Yuejie Zhu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, PR China
| | - Yuan Ma
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, PR China
| | - Zhu Guan
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, PR China
| | - Yun Wu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, PR China
| | - Lihe Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, PR China
| | - Zhenjun Yang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, PR China.
| |
Collapse
|
26
|
miR clusters target cellular functional complexes by defining their degree of regulatory freedom. Cancer Metastasis Rev 2017; 35:289-322. [PMID: 26970968 DOI: 10.1007/s10555-016-9617-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Using the two paralog miR-23∼27∼24 clusters as an example and combining experimental and clinical data in a systematical approach to microRNA (miR) function and dysregulation, a complex picture of their roles in cancer is drawn. Various findings appear to be contradictory to a larger extent and cannot be fully explained by the classical regulatory network models and feedback loops that are mainly considered by one-to-one regulatory interactions of the involved molecules. Here, we propose an extended model of the regulatory role of miRs that, at least, supplements the usually considered single/oligo-target regulation of certain miRs. The cellular availability of the participating miR members in this model reflects an upper hierarchy level of intracellular and extracellular environmental influences, such as neighboring cells, soluble factors, hypoxia, chemotherapeutic drugs, and irradiation, among others. The novel model is based on the understanding of cellular functional complexes, such as for apoptosis, migration, and proliferation. These complexes consist of many regulatory components that can be targeted by miR cluster members to a different extent but may affect the functional complex in different ways. We propose that the final miR-related effect is a result of the possible degree of regulatory freedom provided by the miR effects on the whole functional complex structure. This degree of regulatory freedom defines to which extent the cellular functional complex can react in response to regulatory triggers, also understood as sensitization (more regulatory response options) or de-sensitization (less regulatory response options) of the system rather than single molecules.
Collapse
|
27
|
Nassar FJ, Nasr R, Talhouk R. MicroRNAs as biomarkers for early breast cancer diagnosis, prognosis and therapy prediction. Pharmacol Ther 2016; 172:34-49. [PMID: 27916656 DOI: 10.1016/j.pharmthera.2016.11.012] [Citation(s) in RCA: 151] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Breast cancer is a major health problem that affects one in eight women worldwide. As such, detecting breast cancer at an early stage anticipates better disease outcome and prolonged patient survival. Extensive research has shown that microRNA (miRNA) are dysregulated at all stages of breast cancer. miRNA are a class of small noncoding RNA molecules that can modulate gene expression and are easily accessible and quantifiable. This review highlights miRNA as diagnostic, prognostic and therapy predictive biomarkers for early breast cancer with an emphasis on the latter. It also examines the challenges that lie ahead in their use as biomarkers. Noteworthy, this review addresses miRNAs reported in patients with early breast cancer prior to chemotherapy, radiotherapy, surgical procedures or distant metastasis (unless indicated otherwise). In this context, miRNA that are mentioned in this review were significantly modulated using more than one statistical test and/or validated by at least two studies. A standardized protocol for miRNA assessment is proposed starting from sample collection to data analysis that ensures comparative analysis of data and reproducibility of results.
Collapse
Affiliation(s)
- Farah J Nassar
- Department of Biology, Faculty of Arts and Sciences, American University of Beirut, Beirut, Lebanon
| | - Rihab Nasr
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.
| | - Rabih Talhouk
- Department of Biology, Faculty of Arts and Sciences, American University of Beirut, Beirut, Lebanon.
| |
Collapse
|
28
|
Amorim M, Salta S, Henrique R, Jerónimo C. Decoding the usefulness of non-coding RNAs as breast cancer markers. J Transl Med 2016; 14:265. [PMID: 27629831 PMCID: PMC5024523 DOI: 10.1186/s12967-016-1025-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 08/31/2016] [Indexed: 12/19/2022] Open
Abstract
Although important advances in the management of breast cancer (BC) have been recently accomplished, it still constitutes the leading cause of cancer death in women worldwide. BC is a heterogeneous and complex disease, making clinical prediction of outcome a very challenging task. In recent years, gene expression profiling emerged as a tool to assist in clinical decision, enabling the identification of genetic signatures that better predict prognosis and response to therapy. Nevertheless, translation to routine practice has been limited by economical and technical reasons and, thus, novel biomarkers, especially those requiring non-invasive or minimally invasive collection procedures, while retaining high sensitivity and specificity might represent a significant development in this field. An increasing amount of evidence demonstrates that non-coding RNAs (ncRNAs), particularly microRNAs (miRNAs) and long noncoding RNAs (lncRNAs), are aberrantly expressed in several cancers, including BC. miRNAs are of particular interest as new, easily accessible, cost-effective and non-invasive tools for precise management of BC patients because they circulate in bodily fluids (e.g., serum and plasma) in a very stable manner, enabling BC assessment and monitoring through liquid biopsies. This review focus on how ncRNAs have the potential to answer present clinical needs in the personalized management of patients with BC and comprehensively describes the state of the art on the role of ncRNAs in the diagnosis, prognosis and prediction of response to therapy in BC.
Collapse
Affiliation(s)
- Maria Amorim
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPOPorto), Research Center-LAB 3, F Bdg, 1st floor, Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal.,Institute of Biomedical Sciences Abel Salazar, University of Porto (ICBAS-UP), Porto, Portugal
| | - Sofia Salta
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPOPorto), Research Center-LAB 3, F Bdg, 1st floor, Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal.,Institute of Biomedical Sciences Abel Salazar, University of Porto (ICBAS-UP), Porto, Portugal
| | - Rui Henrique
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPOPorto), Research Center-LAB 3, F Bdg, 1st floor, Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal.,Department of Pathology, Portuguese Oncology Institute of Porto, Porto, Portugal.,Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar, University of Porto (ICBAS-UP), Porto, Portugal
| | - Carmen Jerónimo
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPOPorto), Research Center-LAB 3, F Bdg, 1st floor, Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal. .,Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar, University of Porto (ICBAS-UP), Porto, Portugal.
| |
Collapse
|
29
|
Alarmo EL, Havunen R, Häyrynen S, Penkki S, Ketolainen J, Nykter M, Kallioniemi A. Bone morphogenetic protein 4 regulates microRNA expression in breast cancer cell lines in diverse fashion. Genes Chromosomes Cancer 2015; 55:227-36. [PMID: 26684238 DOI: 10.1002/gcc.22324] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 10/02/2015] [Accepted: 10/02/2015] [Indexed: 01/15/2023] Open
Abstract
Bone morphogenetic protein 4 (BMP4) is a remarkably powerful inhibitor of breast cancer cell proliferation, but it is also able to induce breast cancer cell migration in certain cellular contexts. Previous data demonstrate that BMP4 controls the transcription of a variety of protein-coding genes, but not much is known about microRNAs (miRNA) regulated by BMP4. To address this question, miRNA expression profiles following BMP4 treatment were determined in one mammary epithelial and seven breast cancer cell lines using microarrays. While the analysis revealed an extensive variation in differentially expressed miRNA across cell lines, four miRNAs (miR-16-5p, miR-106b-5p, miR-23a-3p, and miR-23b-3p) were commonly induced in a subset of breast cancer cells upon BMP4 treatment. Inhibition of their expression demonstrated an increase in BT-474 cell number, indicating that they possess tumor suppressive properties. However, with the exception of miR-106b-5p, these effects were independent of BMP4 treatment. Scratch assay with miR-16-5p and miR-106b-5p inhibitors on BMP4-treated MDA-MB-231 cells resulted in enhanced cell migration, suggesting that these miRNAs are engaged in BMP4-induced motility. Taken together, we have for the first time characterized the BMP4-induced miRNA expression profiles in breast cancer cell lines, showing that induced miRNAs contribute to the fine-tuning of proliferation and migration phenotypes.
Collapse
Affiliation(s)
- Emma-Leena Alarmo
- Institute of Biosciences and Medical Technology (BioMediTech), University of Tampere, Tampere, Finland.,Fimlab Laboratories, Tampere, Finland
| | - Riikka Havunen
- Institute of Biosciences and Medical Technology (BioMediTech), University of Tampere, Tampere, Finland.,Fimlab Laboratories, Tampere, Finland
| | - Sergei Häyrynen
- Institute of Biosciences and Medical Technology (BioMediTech), University of Tampere, Tampere, Finland
| | - Sanna Penkki
- Institute of Biosciences and Medical Technology (BioMediTech), University of Tampere, Tampere, Finland.,Fimlab Laboratories, Tampere, Finland
| | - Johanna Ketolainen
- Institute of Biosciences and Medical Technology (BioMediTech), University of Tampere, Tampere, Finland.,Fimlab Laboratories, Tampere, Finland
| | - Matti Nykter
- Institute of Biosciences and Medical Technology (BioMediTech), University of Tampere, Tampere, Finland
| | - Anne Kallioniemi
- Institute of Biosciences and Medical Technology (BioMediTech), University of Tampere, Tampere, Finland.,Fimlab Laboratories, Tampere, Finland
| |
Collapse
|
30
|
Abstract
Therapies targeting estrogen receptor alpha (ERα), including selective ER modulators such as tamoxifen, selective ER downregulators such as fulvestrant (ICI 182 780), and aromatase inhibitors such as letrozole, are successfully used in treating breast cancer patients whose initial tumor expresses ERα. Unfortunately, the effectiveness of endocrine therapies is limited by acquired resistance. The role of microRNAs (miRNAs) in the progression of endocrine-resistant breast cancer is of keen interest in developing biomarkers and therapies to counter metastatic disease. This review focuses on miRNAs implicated as disruptors of antiestrogen therapies, their bona fide gene targets and associated pathways promoting endocrine resistance.
Collapse
Affiliation(s)
- Penn Muluhngwi
- Department of Biochemistry and Molecular GeneticsCenter for Genetics and Molecular Medicine, University of Louisville School of Medicine, Louisville, Kentucky 40292, USA
| | - Carolyn M Klinge
- Department of Biochemistry and Molecular GeneticsCenter for Genetics and Molecular Medicine, University of Louisville School of Medicine, Louisville, Kentucky 40292, USA
| |
Collapse
|