1
|
Luo Y, Li M, You J, Jiang J, Zeng M, Luo M. Regulation of vascular smooth muscle cells phenotype by metformin up-regulated miR-1/ CCND1 axis via targeting AMPK/TGF-β signaling pathway. Mol Biol Rep 2025; 52:437. [PMID: 40299098 DOI: 10.1007/s11033-025-10532-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 04/22/2025] [Indexed: 04/30/2025]
Abstract
The phenotypic switch of vascular smooth muscle cells (VSMCs), characterized by the tissue-specific expression of certain microRNAs (miRNAs), is a critical factor in the development of diabetic vascular diseases. Metformin, a widely prescribed anti-diabetic medication for type 2 diabetes treatment, activates the adenosine monophosphate-activated protein kinase (AMPK) pathway and exerts a protective effect on vascular endothelium. Although the regulatory effects of metformin on the switch of the vascular smooth muscle cell phenotype have been identified, the specific role of miRNAs in this process remains unclear. We identified a specific miR-1 in response to metformin treatment and determined its effects on both miR-1 and its targets. Subsequently, we investigated the influence of these factors on the metformin-induced phenotype switch in vascular smooth muscle cells, specifically focusing on proliferation and migration, as well as activation of the AMPK/Transforming Growth Factor (TGF-β) axis. This was achieved using various methodologies, including bioinformatics analysis, quantitative real-time polymerase chain reaction (qRT-PCR), Western blot analysis, wound scratch assays, and Cell Counting Kit-8 assays. Our findings showed that metformin upregulated miR-1, which directly targets cyclin D1 (CCND1) in VSMCs. Metformin was observed to enhance the expression of contractile phenotype proteins, including α-smooth muscle actin (α-SMA) and smooth muscle myosin heavy chain (SMMHC), while simultaneously reducing the expression of proliferative phenotype proteins such as CCND1 and proliferating cell nuclear antigen (PCNA). The inhibition of miR-1 was found to reverse the effects of metformin on the phenotypic switch of VSMCs. This occurs partly through the AMPK/TGF-β signaling pathway and inhibits the migration and proliferation of VSMCs.
Collapse
Affiliation(s)
- Yulin Luo
- Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Clinical Trial Research Center, Ministry of Education, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Mengting Li
- Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Clinical Trial Research Center, Ministry of Education, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
- Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Municipal Key Laboratory of Thrombosis and Vascular Biology, Luzhou, Sichuan, China
| | - Jingcan You
- Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Clinical Trial Research Center, Ministry of Education, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
- Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Municipal Key Laboratory of Thrombosis and Vascular Biology, Luzhou, Sichuan, China
| | - Jun Jiang
- Department of General Surgery (Thyroid Surgery), The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
- Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Luzhou, Sichuan, China
| | - Min Zeng
- Department of Pharmacy, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Mao Luo
- Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Clinical Trial Research Center, Ministry of Education, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China.
- Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China.
- Municipal Key Laboratory of Thrombosis and Vascular Biology, Luzhou, Sichuan, China.
| |
Collapse
|
2
|
Zhang K, Wang L, Gao W, Guo R. Retinol-binding protein 4 in skeletal and cardiac muscle: molecular mechanisms, clinical implications, and future perspectives. Front Cell Dev Biol 2025; 13:1587165. [PMID: 40276651 PMCID: PMC12018443 DOI: 10.3389/fcell.2025.1587165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Accepted: 03/24/2025] [Indexed: 04/26/2025] Open
Abstract
Retinol-binding protein 4 (RBP4) has emerged as a critical adipokine involved in the pathophysiology of metabolic and cardiovascular diseases. Beyond its classical role in retinol transport, RBP4 influences insulin resistance, inflammation, lipid metabolism, mitochondrial function, and cellular apoptosis in both skeletal and cardiac muscles. Elevated levels of RBP4 are associated with obesity, type 2 mellitus diabetes, and cardiovascular diseases, making it a potential biomarker and therapeutic target. This comprehensive review elucidates the molecular mechanisms by which RBP4 affects skeletal and cardiac muscle physiology. We discuss its clinical implications as a biomarker for disease risk and progression, explore therapeutic strategies targeting RBP4, and highlight future research directions. Understanding the multifaceted roles of RBP4 could pave the way for novel interventions against metabolic and cardiovascular disorders.
Collapse
Affiliation(s)
- Kangzhen Zhang
- Department of Geriatrics, Nanjing Central Hospital, Nanjing, China
| | - Lijuan Wang
- Department of General Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Wei Gao
- Department of Geriatrics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Rong Guo
- Department of Cardiology, Yangpu Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
3
|
Shen S, Tian B, Zhang H, Wang YC, Li T, Cao Y. Heart Failure and Gut Microbiota: What Is Cause and Effect? RESEARCH (WASHINGTON, D.C.) 2025; 8:0610. [PMID: 39981296 PMCID: PMC11839986 DOI: 10.34133/research.0610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/14/2025] [Accepted: 01/23/2025] [Indexed: 02/22/2025]
Abstract
Emerging evidence highlights the central role of gut microbiota in maintaining physiological homeostasis within the host. Disruptions in gut microbiota can destabilize systemic metabolism and inflammation, driving the onset and progression of cardiometabolic diseases. In heart failure (HF), intestinal dysfunction may induce the release of endotoxins and metabolites, leading to dysbiosis and exacerbating HF through the gut-heart axis. Understanding the relationship between gut microbiota and HF offers critical insights into disease mechanisms and therapeutic opportunities. Current research highlights promising potential to improve patient outcomes by restoring microbiota balance. In this review, we summarize the current studies in understanding the gut microbiota-HF connection and discuss avenues for future investigation.
Collapse
Affiliation(s)
- Shichun Shen
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine,
University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Beiduo Tian
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine,
University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Haizhu Zhang
- School of Basic Medical Sciences, Division of Life Sciences and Medicine,
University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Yu-Chen Wang
- Department of Medicine, Division of Cardiology, Department of Microbiology, Immunology and Molecular Genetics, and Department of Human Genetics,
University of California, Los Angeles, CA, USA
| | - Tao Li
- Department of Anesthesiology, Laboratory of Mitochondrial Metabolism and Perioperative Medicine, National Clinical Research Center for Geriatrics,
West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Yang Cao
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine,
University of Science and Technology of China, Hefei, Anhui 230001, China
- School of Basic Medical Sciences, Division of Life Sciences and Medicine,
University of Science and Technology of China, Hefei, Anhui 230027, China
| |
Collapse
|
4
|
Xu ZJ, Xu J, Lei WJ, Wang X, Zou QL, Lv LC, Liu C, Hu WM, Xiang YJ, Shen JY, Wei TM, Zeng CL. RANBP1 Regulates NOTCH3-Mediated Autophagy in High Glucose-Induced Vascular Smooth Muscle Cells. FRONT BIOSCI-LANDMRK 2025; 30:26850. [PMID: 40018934 DOI: 10.31083/fbl26850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 11/29/2024] [Accepted: 12/16/2024] [Indexed: 03/01/2025]
Abstract
BACKGROUND Vascular smooth muscle cells(VSMCs) phenotypic switching under hyperglycemic conditions accelerates atherosclerotic progression. Notch receptor 3(NOTCH3), a critical stabilizer of VSMC homeostasis implicated in cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) pathogenesis, ensures vascular integrity; however, its interplay with RAN Binding Protein 1(RANBP1) during pathological hyperglycemia remains uncharacterized. We hypothesize that hyperglycemia-induced autophagic dysregulation is mechanistically governed by theNotch receptor 3 (NOTCH3)/RANBP1 axis, proliferative capacity, and apoptotic signaling in high glucose (HG)-stimulated VSMCs. The aim of this study was to elucidate the regulatory mechanisms of autophagy in VSMCs under HG conditions, with a focus on the NOTCH3/RANBP1 axis and its implications for vascular health. METHODS Bioinformatics analysis was performed on NOTCH3 sequencing data, including weighted gene co-expression network analysis (WGCNA), screening of differentially expressed genes (DEGs), and construction of a protein-protein interaction (PPI) network, to identify the key gene, RANBP1. In vitro experiments, including cell counting kit-8 (CCK-8) assays, quantitative real-time polymerase chain reaction (qRT-PCR), Western blotting (WB), and flow cytometry, were conducted to examine the effects of NOTCH3 knockdown combined with RANBP1 overexpression on glucose-induced autophagy marker expression and cell viability in VSMCs. RESULTS NOTCH3 knockdown suppressed VSMC proliferation and induced apoptosis, and the cell cycle was stopped at the S phase. Analysis of VSMC sequencing data revealed 38 overlapping genes between the turquoise module and DEGs, 11 (HPF1, RANBP1, CRNKL1, LGALS3, RDX, ECM1, CXCL5, PA2G4, CENPS, ZNF830, and HIST1H4L) of which were significantly underexpressed in VSMC samples with si-NOTCH3. In a dose-dependent manner, HG therapy altered the expression of autophagy-related markers, upregulated NOTCH3, and downregulated phosphorylated mammalian target of rapamycin (p-mTOR). Downregulation of NOTCH3 aggravated the effects of HG on cell viability and autophagy, whereas overexpression of RANBP1 reversed these effects, suggesting an offsetting effect on HG-induced autophagy. CONCLUSION On the basis of sequencing technology, bioinformatics analysis and cell experiments, we conclude that the RANBP1/NOTCH3 axis is essential for the control of autophagy and survival of VSMCs under hyperglycemic stress and could provide new insight for the clinical treatment of VSMC-related diseases.
Collapse
Affiliation(s)
- Zhong-Jiao Xu
- Department of Cardiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Central Hospital, 323000 Lishui, Zhejiang, China
| | - Jian Xu
- Department of Cardiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Central Hospital, 323000 Lishui, Zhejiang, China
| | - Wen-Jing Lei
- Department of Cardiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Central Hospital, 323000 Lishui, Zhejiang, China
| | - Xiang Wang
- Department of Cardiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Central Hospital, 323000 Lishui, Zhejiang, China
| | - Qi-Lin Zou
- Department of Cardiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Central Hospital, 323000 Lishui, Zhejiang, China
| | - Lin-Chun Lv
- Department of Cardiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Central Hospital, 323000 Lishui, Zhejiang, China
| | - Chong Liu
- Department of Cardiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Central Hospital, 323000 Lishui, Zhejiang, China
| | - Wu-Ming Hu
- Department of Cardiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Central Hospital, 323000 Lishui, Zhejiang, China
| | - Yi-Jia Xiang
- Department of Cardiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Central Hospital, 323000 Lishui, Zhejiang, China
| | - Jia-Yi Shen
- Department of Cardiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Central Hospital, 323000 Lishui, Zhejiang, China
| | - Tie-Min Wei
- Department of Cardiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Central Hospital, 323000 Lishui, Zhejiang, China
| | - Chun-Lai Zeng
- Department of Cardiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Central Hospital, 323000 Lishui, Zhejiang, China
| |
Collapse
|
5
|
Wang H, Yang F, Ye J, Dai X, Liao H, Xing C, Jiang Z, Peng C, Gao F, Cao H. Ginkgo biloba extract alleviates deltamethrin-induced testicular injury by upregulating SKP2 and inhibiting Beclin1-independent autophagy. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156245. [PMID: 39550920 DOI: 10.1016/j.phymed.2024.156245] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 10/19/2024] [Accepted: 11/08/2024] [Indexed: 11/19/2024]
Abstract
BACKGROUND Male infertility is a worldwide concern that is associated with a decline in sperm quality. Environmental pollutants such as deltamethrin (DM) have harmful effects on male reproductive organs. By maintaining intracellular redox homeostasis, ginkgo biloba extract (GBE) can alleviate male reproductive dysfunction. However, research on the mechanisms by which GBE alleviates reproductive toxicity induced by DM is limited. PURPOSE In this study, we investigated whether GBE can alleviate DM-induced testicular and Sertoli cell reproductive toxicity by modulating SKP2 and Beclin1, thus providing a theoretical basis for the development of novel therapeutic approaches. STUDY DESIGN We explored the role of GBE in mitigating DM-induced testicular damage, with a specific focus on the intricate involvement of ubiquitination and autophagy. METHODS An experimental model was constructed using ICR male mice and the TM4 cell line. Tissue, cellular, and sperm morphological changes were observed through methods such as Hematoxylin and Eosin (H&E) staining, Periodate-Schiff (PAS) staining, ultrastructural observation, immunohistochemistry, and immunofluorescence. Enzyme and hormone levels were measured, and gene and protein levels were detected using real-time quantitative polymerase chain reaction (RT-qPCR) and Western blotting techniques. RESULTS In vivo experiments showed that DM exposure led to decreased sex hormone levels, increased seminiferous tubule diameter and impaired spermatogenesis. Meanwhile, DM exposure was found to decrease ubiquitination levels, leading to mitochondrial damage and further escalation of mitochondrial autophagy. Furthermore, in the DM-induced cell model, the upregulation of Beclin1 expression was associated with the inhibition of the ubiquitin‒proteasome system (UPS) and SKP2, thereby exacerbating autophagy. However, GBE has demonstrated notable efficacy in alleviating the reproductive toxicity induced by DM. CONCLUSION Our findings highlighted that SKP2 is a key regulator of Beclin1-independent autophagy and that GBE exerts therapeutic effects by upregulating SKP2 and inhibiting Beclin1 activation, which ameliorates autophagy and reduces DM-induced testicular damage.
Collapse
Affiliation(s)
- Huating Wang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China
| | - Fan Yang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China
| | - Junhua Ye
- Nanchang Institute of Technology Medical College, No. 901, Hero Avenue, Nanchang Economic Development Zone, Nanchang 330044, Jiangxi, PR China
| | - Xueyan Dai
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China
| | - Huan Liao
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China
| | - Chenghong Xing
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China
| | - Zhou Jiang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China
| | - Chengcheng Peng
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China
| | - Feiyan Gao
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China
| | - Huabin Cao
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China.
| |
Collapse
|
6
|
Fan J, Hu J. Retinol binding protein 4 and type 2 diabetes: from insulin resistance to pancreatic β-cell function. Endocrine 2024; 85:1020-1034. [PMID: 38520616 DOI: 10.1007/s12020-024-03777-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 03/01/2024] [Indexed: 03/25/2024]
Abstract
BACKGROUND AND AIM Retinol binding protein 4 (RBP4) is an adipokine that has been explored as a key biomarker of type 2 diabetes mellitus (T2DM) in recent years. Researchers have conducted a series of experiments to understand the interplay between RBP4 and T2DM, including its role in insulin resistance and pancreatic β-cell function. The results of these studies indicate that RBP4 has a significant influence on T2DM and is considered a potential biomarker of T2DM. However, there have also been some controversies about the relationship between RBP4 levels and T2DM. In this review, we update and summarize recent studies focused on the relationship between RBP4 and T2DM and its role in insulin resistance and pancreatic β-cell function to clarify the existing controversy and provide evidence for future studies. We also assessed the potential therapeutic applications of RBP4 in treating T2DM. METHODS A narrative review. RESULTS Overall, there were significant associations between RBP4 levels, insulin resistance, pancreatic β-cell function, and T2DM. CONCLUSIONS More mechanistic studies are needed to determine the role of RBP4 in the onset of T2DM, especially in terms of pancreatic β-cell function. In addition, further studies are required to evaluate the effects of drug intervention, lifestyle intervention, and bariatric surgery on RBP4 levels to control T2DM and the role of reducing RBP4 levels in improving insulin sensitivity and pancreatic β-cell function.
Collapse
Affiliation(s)
- Jiahua Fan
- State Key Laboratory of Respiratory Disease, Guangzhou Key Laboratory of Tuberculosis Research, Department of Clinical Nutrition, Guangzhou Chest Hospital, Institute of Tuberculosis, Guangzhou Medical University, Guangzhou, 510095, Guangdong, PR China.
| | - Jinxing Hu
- State Key Laboratory of Respiratory Disease, Guangzhou Key Laboratory of Tuberculosis Research, Department of Tuberculosis, Guangzhou Chest Hospital, Institute of Tuberculosis, Guangzhou Medical University, Guangzhou, 510095, Guangdong, PR China
| |
Collapse
|
7
|
Huyan T, Fan L, Zheng ZY, Zhao JH, Han ZR, Wu P, Ma Q, Du YQ, Shi YD, Gu CY, Li XJ, Wang WH, Zhang L, Tie L. ROCK1 inhibition improves wound healing in diabetes via RIPK4/AMPK pathway. Acta Pharmacol Sin 2024; 45:1477-1491. [PMID: 38538716 PMCID: PMC11192920 DOI: 10.1038/s41401-024-01246-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 02/19/2024] [Indexed: 06/23/2024]
Abstract
Refractory wounds are a severe complication of diabetes mellitus that often leads to amputation because of the lack of effective treatments and therapeutic targets. The pathogenesis of refractory wounds is complex, involving many types of cells. Rho-associated protein kinase-1 (ROCK1) phosphorylates a series of substrates that trigger downstream signaling pathways, affecting multiple cellular processes, including cell migration, communication, and proliferation. The present study investigated the role of ROCK1 in diabetic wound healing and molecular mechanisms. Our results showed that ROCK1 expression significantly increased in wound granulation tissues in diabetic patients, streptozotocin (STZ)-induced diabetic mice, and db/db diabetic mice. Wound healing and blood perfusion were dose-dependently improved by the ROCK1 inhibitor fasudil in diabetic mice. In endothelial cells, fasudil and ROCK1 siRNA significantly elevated the phosphorylation of adenosine monophosphate-activated protein kinase at Thr172 (pThr172-AMPKα), the activity of endothelial nitric oxide synthase (eNOS), and suppressed the levels of mitochondrial reactive oxygen species (mtROS) and nitrotyrosine formation. Experiments using integrated bioinformatics analysis and coimmunoprecipitation established that ROCK1 inhibited pThr172-AMPKα by binding to receptor-interacting serine/threonine kinase 4 (RIPK4). These results suggest that fasudil accelerated wound repair and improved angiogenesis at least partially through the ROCK1/RIPK4/AMPK pathway. Fasudil may be a potential treatment for refractory wounds in diabetic patients.
Collapse
Affiliation(s)
- Tianru Huyan
- Department of Pharmacology, School of Basic Medical Sciences, Peking University and Beijing Key Laboratory of Tumor Systems Biology, Peking University, Beijing, 100191, China
- Department of Wound Healing Center and Interventional Radiology and Vascular Surgery, Peking University Third Hospital, Beijing, 100191, China
| | - Lu Fan
- Department of Pharmacology, School of Basic Medical Sciences, Peking University and Beijing Key Laboratory of Tumor Systems Biology, Peking University, Beijing, 100191, China
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zhong-Yuan Zheng
- Department of Pharmacology, School of Basic Medical Sciences, Peking University and Beijing Key Laboratory of Tumor Systems Biology, Peking University, Beijing, 100191, China
| | - Jing-Hui Zhao
- Department of Wound Healing Center and Interventional Radiology and Vascular Surgery, Peking University Third Hospital, Beijing, 100191, China
| | - Zhen-Ru Han
- Department of Pharmacology, School of Basic Medical Sciences, Peking University and Beijing Key Laboratory of Tumor Systems Biology, Peking University, Beijing, 100191, China
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Pin Wu
- Department of Pharmacology, School of Basic Medical Sciences, Peking University and Beijing Key Laboratory of Tumor Systems Biology, Peking University, Beijing, 100191, China
| | - Qun Ma
- Department of Pharmacology, School of Basic Medical Sciences, Peking University and Beijing Key Laboratory of Tumor Systems Biology, Peking University, Beijing, 100191, China
| | - Ya-Qin Du
- Department of Pharmacology, School of Basic Medical Sciences, Peking University and Beijing Key Laboratory of Tumor Systems Biology, Peking University, Beijing, 100191, China
| | - Yun-di Shi
- Department of Pharmacology, School of Basic Medical Sciences, Peking University and Beijing Key Laboratory of Tumor Systems Biology, Peking University, Beijing, 100191, China
| | - Chun-Yan Gu
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xue-Jun Li
- Department of Pharmacology, School of Basic Medical Sciences, Peking University and Beijing Key Laboratory of Tumor Systems Biology, Peking University, Beijing, 100191, China
| | - Wen-Hui Wang
- Department of Dermatology, Peking University Third Hospital, Beijing, 100191, China
| | - Long Zhang
- Department of Wound Healing Center and Interventional Radiology and Vascular Surgery, Peking University Third Hospital, Beijing, 100191, China.
| | - Lu Tie
- Department of Pharmacology, School of Basic Medical Sciences, Peking University and Beijing Key Laboratory of Tumor Systems Biology, Peking University, Beijing, 100191, China.
| |
Collapse
|
8
|
Yu L, Huang T, Zhao J, Zhou Z, Cao Z, Chi Y, Meng S, Huang Y, Xu Y, Xia L, Jiang H, Yin Z, Wang H. Branched-chain amino acid catabolic defect in vascular smooth muscle cells drives thoracic aortic dissection via mTOR hyperactivation. Free Radic Biol Med 2024; 210:25-41. [PMID: 37956909 DOI: 10.1016/j.freeradbiomed.2023.11.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/30/2023] [Accepted: 11/06/2023] [Indexed: 11/21/2023]
Abstract
Metabolic reprogramming of vascular smooth muscle cell (VSMC) plays a critical role in the pathogenesis of thoracic aortic dissection (TAD). Previous researches have mainly focused on dysregulation of fatty acid or glucose metabolism, while the impact of amino acids catabolic disorder in VSMCs during the development of TAD remains elusive. Here, we identified branched-chain amino acid (BCAA) catabolic defect as a metabolic hallmark of TAD. The bioinformatics analysis and data from human aorta revealed impaired BCAA catabolism in TAD individuals. This was accompanied by upregulated branched-chain α-ketoacid dehydrogenase kinase (BCKDK) expression and BCKD E1 subunit alpha (BCKDHA) phosphorylation, enhanced vascular inflammation, and hyperactivation of mTOR signaling. Further in vivo experiments demonstrated that inhibition of BCKDK with BT2 (a BCKDK allosteric inhibitor) treatment dephosphorylated BCKDHA and re-activated BCAA catabolism, attenuated VSMCs phenotypic switching, alleviated aortic remodeling, mitochondrial reactive oxygen species (ROS) damage and vascular inflammation. Additionally, the beneficial actions of BT2 were validated in a TNF-α challenged murine VSMC cell line. Meanwhile, rapamycin conferred similar beneficial effects against VSMC phenotypic switching, cellular ROS damage as well as inflammatory response. However, co-treatment with MHY1485 (a classic mTOR activator) reversed the beneficial effects of BT2 by reactivating mTOR signaling. Taken together, the in vivo and in vitro evidence showed that impairment of BCAA catabolism resulted in aortic accumulation of BCAA and further caused VSMC phenotypic switching, mitochondrial ROS damage and inflammatory response via mTOR hyperactivation. BCKDK and mTOR signaling may serve as the potential drug targets for the prevention and treatment of TAD.
Collapse
Affiliation(s)
- Liming Yu
- Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning, 110016, PR China
| | - Tao Huang
- Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning, 110016, PR China
| | - Jikai Zhao
- Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning, 110016, PR China
| | - Zijun Zhou
- Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning, 110016, PR China
| | - Zijun Cao
- Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning, 110016, PR China; Graduate School, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, 110847, PR China
| | - Yanbang Chi
- Department of Obstetrics and Gynecology, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning, 110016, PR China
| | - Shan Meng
- Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning, 110016, PR China; Graduate School, Jinzhou Medical University, Jinzhou, Liaoning, 121001, PR China
| | - Yuting Huang
- Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning, 110016, PR China
| | - Yinli Xu
- Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning, 110016, PR China
| | - Lin Xia
- Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning, 110016, PR China
| | - Hui Jiang
- Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning, 110016, PR China
| | - Zongtao Yin
- Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning, 110016, PR China
| | - Huishan Wang
- Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning, 110016, PR China.
| |
Collapse
|