1
|
Abstract
Human granulocytic anaplasmosis (HGA) is a bacterial infection caused by Anaplasma phagocytophilum and transmitted by the bite of the black-legged (deer tick) in North America. Its incidence is increasing. HGA can be transmitted after 24 to 48 hours of tick attachment. The incubation period is 5 to 14 days after a tick bite. Symptoms include fever, chills, headache, and myalgia. Complications include shock, organ dysfunction, and death. Mortality is less than 1% with appropriate treatment. Doxycycline is first line treatment for all ages. Start it empirically if symptoms and risk factors suggest HGA. PCR is the confirmatory test of choice.
Collapse
Affiliation(s)
- Douglas MacQueen
- Cayuga Medical Center, 101 Dates Drive, Ithaca, NY 14850, USA; Weill Cornell Medicine.
| | | |
Collapse
|
2
|
Ecology of Ixodes pacificus Ticks and Associated Pathogens in the Western United States. Pathogens 2022; 11:pathogens11010089. [PMID: 35056037 PMCID: PMC8780575 DOI: 10.3390/pathogens11010089] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/23/2021] [Accepted: 01/10/2022] [Indexed: 02/05/2023] Open
Abstract
Lyme disease is the most important vector-borne disease in the United States and is increasing in incidence and geographic range. In the Pacific west, the western black-legged tick, Ixodes pacificus Cooley and Kohls, 1943 is an important vector of the causative agent of Lyme disease, the spirochete, Borrelia burgdorferi. Ixodes pacificus life cycle is expected to be more than a year long, and all three stages (larva, nymph, and adult) overlap in spring. The optimal habitat consists of forest cover, cooler temperatures, and annual precipitation in the range of 200–500 mm. Therefore, the coastal areas of California, Oregon, and Washington are well suited for these ticks. Immature stages commonly parasitize Western fence lizards (Sceloporus occidentalis) and gray squirrels (Sciurus griseus), while adults often feed on deer mice (Peromyscus maniculatus) and black-tailed deer (Odocoileus h. columbianus). Ixodes pacificus carry several pathogens of human significance, such as Borrelia burgdorferi, Bartonella, and Rickettsiales. These pathogens are maintained in the environment by many hosts, including small mammals, birds, livestock, and domestic animals. Although a great deal of work has been carried out on Ixodes ticks and the pathogens they transmit, understanding I. pacificus ecology outside California still lags. Additionally, the dynamic vector–host–pathogen system means that new factors will continue to arise and shift the epidemiological patterns within specific areas. Here, we review the ecology of I. pacificus and the pathogens this tick is known to carry to identify gaps in our knowledge.
Collapse
|
3
|
El Hamiani Khatat S, Daminet S, Duchateau L, Elhachimi L, Kachani M, Sahibi H. Epidemiological and Clinicopathological Features of Anaplasma phagocytophilum Infection in Dogs: A Systematic Review. Front Vet Sci 2021; 8:686644. [PMID: 34250067 PMCID: PMC8260688 DOI: 10.3389/fvets.2021.686644] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 05/17/2021] [Indexed: 11/13/2022] Open
Abstract
Anaplasma phagocytophilum is a worldwide emerging zoonotic tick-borne pathogen transmitted by Ixodid ticks and naturally maintained in complex and incompletely assessed enzootic cycles. Several studies have demonstrated an extensive genetic variability with variable host tropisms and pathogenicity. However, the relationship between genetic diversity and modified pathogenicity is not yet understood. Because of their proximity to humans, dogs are potential sentinels for the transmission of vector-borne pathogens. Furthermore, the strong molecular similarity between human and canine isolates of A. phagocytophilum in Europe and the USA and the positive association in the distribution of human and canine cases in the USA emphasizes the epidemiological role of dogs. Anaplasma phagocytophilum infects and survives within neutrophils by disregulating neutrophil functions and evading specific immune responses. Moreover, the complex interaction between the bacterium and the infected host immune system contribute to induce inflammatory injuries. Canine granulocytic anaplasmosis is an acute febrile illness characterized by lethargy, inappetence, weight loss and musculoskeletal pain. Hematological and biochemistry profile modifications associated with this disease are unspecific and include thrombocytopenia, anemia, morulae within neutrophils and increased liver enzymes activity. Coinfections with other tick-borne pathogens (TBPs) may occur, especially with Borrelia burgdorferi, complicating the clinical presentation, diagnosis and response to treatment. Although clinical studies have been published in dogs, it remains unclear if several clinical signs and clinicopathological abnormalities can be related to this infection.
Collapse
Affiliation(s)
- Sarah El Hamiani Khatat
- Department of Medicine, Surgery and Reproduction, Hassan II Institute of Agronomy and Veterinary Medicine, Rabat, Morocco
| | - Sylvie Daminet
- Department of Companion Animals, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - Luc Duchateau
- Department of Comparative Physiology and Biometrics, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - Latifa Elhachimi
- Department of Pathology and Veterinary Public Health, Unit of Parasitology, Hassan II Institute of Agronomy and Veterinary Medicine, Rabat, Morocco
| | - Malika Kachani
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, CA, United States
| | - Hamid Sahibi
- Department of Pathology and Veterinary Public Health, Unit of Parasitology, Hassan II Institute of Agronomy and Veterinary Medicine, Rabat, Morocco
| |
Collapse
|
4
|
Rar V, Tkachev S, Tikunova N. Genetic diversity of Anaplasma bacteria: Twenty years later. INFECTION GENETICS AND EVOLUTION 2021; 91:104833. [PMID: 33794351 DOI: 10.1016/j.meegid.2021.104833] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 03/26/2021] [Accepted: 03/28/2021] [Indexed: 01/04/2023]
Abstract
The genus Anaplasma (family Anaplasmataceae, order Rickettsiales) includes obligate intracellular alphaproteobacteria that multiply within membrane-bound vacuoles and are transmitted by Ixodidae ticks to vertebrate hosts. Since the last reclassification of Anaplasmataceae twenty years ago, two new Anaplasma species have been identified. To date, the genus includes eight Anaplasma species (A. phagocytophilum, A. marginale, A. centrale, A. ovis, A. bovis, A. platys, A. odocoilei, and A. capra) and a large number of unclassified genovariants that cannot be assigned to known species. Members of the genus can cause infection in humans and a wide range of domestic animals with different degrees of severity. Long-term persistence which, in some cases, is manifested as cyclic bacteremia has been demonstrated for several Anaplasma species. Zoonotic potential has been shown for A. phagocytophilum, the agent of human granulocytic anaplasmosis, and for some other Anaplasma spp. that suggests a broader medical relevance of this genus. Genetic diversity of Anaplasma spp. has been intensively studied in recent years, and it has been shown that some Anaplasma spp. can be considered as a complex of genetically distinct lineages differing by geography, vectors, and host tropism. The aim of this review was to summarize the current knowledge concerning the natural history, pathogenic properties, and genetic diversity of Anaplasma spp. and some unclassified genovariants with particular attention to their genetic characteristics. The high genetic variability of Anaplasma spp. prompted us to conduct a detailed phylogenetic analysis for different Anaplasma species and unclassified genovariants, which were included in this review. The genotyping of unclassified genovariants has led to the identification of at least four distinct clades that might be considered in future as new candidate species.
Collapse
Affiliation(s)
- Vera Rar
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, Novosibirsk, Russian Federation.
| | - Sergey Tkachev
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, Novosibirsk, Russian Federation
| | - Nina Tikunova
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, Novosibirsk, Russian Federation
| |
Collapse
|
5
|
Pascoe EL, Plourde BT, Lopéz-Perez AM, Foley JE. Response of small mammal and tick communities to a catastrophic wildfire and implications for tick-borne pathogens. JOURNAL OF VECTOR ECOLOGY : JOURNAL OF THE SOCIETY FOR VECTOR ECOLOGY 2020; 45:269-284. [PMID: 33207067 DOI: 10.1111/jvec.12398] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 07/25/2020] [Indexed: 06/11/2023]
Abstract
Through their potentially devastating impacts on the environment, wildfires may impact pathogen, vector, and host interactions, leading to changing risks of vector-borne disease in humans and other animals. Despite established risks for tick-borne disease and increasing frequency and severity of wildfires in the United States, impacts of wildfire on ticks and tick-borne pathogens are understudied. In 2015, the large Wragg fire extensively burned a long-term field site at Stebbins Cold Canyon University of California Reserve (CC). We characterized the tick, reservoir host and pathogen community over a two-year period after the burn, comparing our findings to pre-fire data and to data from Quail Ridge Reserve (QR), a nearby unburned site. After the fire, there were 5.5 times more rodent, primarily Peromyscus spp., captures at CC than QR (compared to 3.5 times more pre-fire). There were significantly fewer dusky-footed woodrats (Neotoma fuscipes) at both sites post-fire, likely due to drought but not fire. Pre-fire tick infestation prevalence on rodents was comparable across sites (12.5% at CC and 9.9% at QR) and remained low at CC post-fire (13.7%) but was significantly higher at QR (48.0%), suggesting that ticks or their habitat were destroyed during the burn. Normalized difference vegetation indices documented a 16-fold loss of vegetation post- compared to pre-fire at CC; loss of vegetation and direct impacts on fauna are likely the main drivers of the post-fire differences in ticks we saw at CC. These data contribute to our understanding of tick-associated disease risks in our increasingly disturbed landscapes.
Collapse
Affiliation(s)
- Emily L Pascoe
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, CA, 95616, U.S.A
| | - Benjamin T Plourde
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, CA, 95616, U.S.A
| | - Andrés M Lopéz-Perez
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, CA, 95616, U.S.A
| | - Janet E Foley
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, CA, 95616, U.S.A
| |
Collapse
|
6
|
Sholty K, Pascoe EL, Foley J, Stephenson N, Hacker G, Straub M, Roy A, Brown R. Borrelia burgdorferi and Anaplasma phagocytophilum Genospecies in Northern California. Vector Borne Zoonotic Dis 2020; 20:325-333. [PMID: 32155394 DOI: 10.1089/vbz.2019.2483] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The sensu lato (s.l.) complexes of Borrelia burgdorferi and Anaplasma phagocytophilum include pathogenic genospecies each with distinct ecologies in northern California, yet, most work conflates the genospecies of each pathogen into one sensu lato species. Detailed understanding of the differences in geographic distributions and ecology among genospecies is lacking. We aimed to evaluate whether two B. burgdorferi and two A. phagocytophilum genospecies in high-risk locations in coastal northern California were spatially clustered and if presence of a particular genospecies was associated with geographical site, host species, or other demographic or ecological variables. DNA sequencing was performed to differentiate genospecies of Borreliae and Anaplasma from PCR-positive dusky-footed woodrats (Neotoma fuscipes) and sciurids (chipmunks, Tamias spp., and Douglas squirrels, Tamiasciurus douglasii) at four sites in northwestern California. Logistic regression was performed to assess associations of genospecies with the predictor variables host species, host sex, site, season, and year. Spatial clustering was assessed using a Poisson spatial scan statistic in SaTScan. Host species was a significant predictor for Borrelia bissettiae, B. burgdorferi sensu stricto (s.s.), A. phagocytophilum s.s., and the DU1 Anaplasma genospecies. Woodrats were significantly more likely to be PCR-positive for B. bissettiae and A. phagocytophilum DU1 genospecies, while A. phagocytophilum s.s. and B. burgdorferi s.s. were significantly associated with sciurids. We report a single Borrelia lanei in an Allen's chipmunk (Tamias senex) from the Hoopa Valley Tribal Reservation. A significant spatial cluster of A. phagocytophilum s.s. was detected at Hendy Woods State Park in Mendocino County. These results highlight the need to better understand genospecies partitioning according to host species to further assess human risks, aid in future surveillance, and inform targeted research.
Collapse
Affiliation(s)
- Kathleen Sholty
- Department of Wildlife, Humboldt State University, Arcata, California, USA
| | - Emily L Pascoe
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, Davis, California, USA
| | - Janet Foley
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, Davis, California, USA
| | - Nicole Stephenson
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, Davis, California, USA
| | - Greg Hacker
- Department of Wildlife, Humboldt State University, Arcata, California, USA
| | - Mary Straub
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, Davis, California, USA
| | - Austin Roy
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, Davis, California, USA
| | - Richard Brown
- Department of Wildlife, Humboldt State University, Arcata, California, USA
| |
Collapse
|
7
|
HAMIDINEJAT H, BAHRAMI S, MOSALANEJAD B, PAHLAVAN S. First Molecular Survey on Anaplasma phagocytophilum Revealed High Prevalence in Rural Dogs from Khuzestan Province, Iran. IRANIAN JOURNAL OF PARASITOLOGY 2019; 14:297-302. [PMID: 31543918 PMCID: PMC6737366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Anaplasmosis due to Anaplasma phagocytophilum is an important tick-borne zoonotic disease, which affects dogs, horses, cattle and human as well. This study aimed to probe the existence of this organism by means of molecular biology techniques for the first time in rural dogs of Khuzestan province, Southwestern Iran. METHODS During Sep 2014 to Apr 2015 blood samples of 103 apparently healthy rural dogs (60 males) were collected for A. phagocytophilum detection by light microscopical examination of Giemsa stained slides and Nested PCR on a fragment of 16S rRNA gene. RESULTS From the examined slides, 11.65% were positive for A. morulae while 57.28% of infection was revealed by Nested PCR method. There was no statistical difference between ages and sexes of dogs and infection in molecular survey of A. phagocytophilum. CONCLUSION Molecular prevalence of A. phagocytophilum was noticeably high. It may cause the incidence of disease in human population.
Collapse
Affiliation(s)
- Hossein HAMIDINEJAT
- Department of Parasitology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Somayeh BAHRAMI
- Department of Parasitology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran,Correspondence
| | - Bahman MOSALANEJAD
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Sharareh PAHLAVAN
- Department of Parasitology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| |
Collapse
|
8
|
André MR. Diversity of Anaplasma and Ehrlichia/Neoehrlichia Agents in Terrestrial Wild Carnivores Worldwide: Implications for Human and Domestic Animal Health and Wildlife Conservation. Front Vet Sci 2018; 5:293. [PMID: 30533417 PMCID: PMC6265506 DOI: 10.3389/fvets.2018.00293] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 11/01/2018] [Indexed: 12/12/2022] Open
Abstract
Recently, the incidence and awareness of tick-borne diseases in humans and animals have increased due to several factors, which in association favor the chances of contact among wild animals and their ectoparasites, domestic animals and humans. Wild and domestic carnivores are considered the primary source of tick-borne zoonotic agents to humans. Among emergent tick-borne pathogens, agents belonging to family Anaplasmataceae (Order Rickettsiales) agents stand out due their worldwide distribution and zoonotic potential. In this review we aimed to review the genetic diversity of the tick-transmitted genera Ehrlichia, Anaplasma and "Candidatus Neoehrlichia sp." in wild carnivores Caniformia (Canidae, Mustelidae and Ursidae) and Feliformia (Felidae, Hyanidae, Procyonidae and Viverridae) worldwide, discussing the implications for human and domestic animal health and wildlife conservation. Red foxes (Vulpes vulpes) have been identified as hosts for Anaplasma spp. (A. phagocytophilum, Anaplasma ovis, A. platys), Ehrlichia canis and "Candidatus Neoehrlichia sp." (FU98 strain) and may contribute to the maintaenance of A. phagocytophilum in Europe. Raccoons (Procyon lotor) have been reported as hosts for E. canis, A. bovis, "Candidatus Neoehrlichia lotoris" and A. phagocytophilum, and play a role in the maintenance of A. phagocytophilum in the USA. Raccoon dogs (Nyctereutes procyonoides) may play a role as hosts for A. bovis and A. phagocytophilum. New Ehrlichia and/or Anaplasma genotypes circulate in wild canids and felids from South America and Africa. While Ehrlichia sp. closely related to E. canis has been reported in wild felids from Brazil and Japan, Anaplasma sp. closely related to A. phagocytophilum has been detected in wild felids from Brazil and Africa. Red foxes and mustelids (otters) are exposed to E. canis in countries located in the Mediaterranean basin, probably as a consequence of spillover from domestic dogs. Similarly, E. canis occurs in procyonids in North (raccoons in USA, Spain) and South (Nasua nasua in Brazil) Hemispheres, in areas where E. canis is frequent in dogs. While "Candidatus Neoehrlichia lotoris" seems to be a common and specific agent of raccoons in the USA, "Candidatus Neoehrlichia sp." (FU98 strain) seems to show a broader range of hosts, since it has been detected in red fox, golden jackal (Canis aureus) and badger (Meles meles) in Europe so far. Brown (Ursus arctos) and black (Ursus americanus) bears seem to play a role as hosts for A. phagocytophilum in the North Hemisphere. Anaplasma bovis has been detected in wild Procyonidae, Canidae and Felidae in Asia and Brazil. In order to assess the real identity of the involved agents, future works should benefit from the application of MLST (Multi Locus Sequence Typing), WGS (Whole Genome Sequencing) and NGS (Next Generation Sequencing) technologies aiming at shedding some light on the role of wild carnivores in the epidemiology of Anaplasmataceae agents.
Collapse
Affiliation(s)
- Marcos Rogério André
- Laboratório de Imunoparasitologia, Departamento de Patologia Veterinária, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista (FCAV/UNESP), Jaboticabal, Brazil
| |
Collapse
|
9
|
Trost CN, Lindsay LR, Dibernardo A, Chilton NB. Three genetically distinct clades of Anaplasma phagocytophilum in Ixodes scapularis. Ticks Tick Borne Dis 2018; 9:1518-1527. [DOI: 10.1016/j.ttbdis.2018.07.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 07/02/2018] [Accepted: 07/02/2018] [Indexed: 10/28/2022]
|
10
|
Hoyt K, Chandrashekar R, Beall M, Leutenegger C, Lappin MR. Evidence for Clinical Anaplasmosis and Borreliosis in Cats in Maine. Top Companion Anim Med 2018; 33:40-44. [PMID: 30223986 DOI: 10.1053/j.tcam.2018.05.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 05/12/2018] [Accepted: 05/15/2018] [Indexed: 11/11/2022]
Abstract
The objectives of this study were to use data from client-owned cats in an Ixodes scapularis endemic area to evaluate for clinical associations with diagnostic test results for Anaplasma phagocytophilum and Borrelia burgdorferi and to provide information from a group of cats with possible borreliosis as the cause of clinical manifestations of disease. All cases were evaluated at one clinic, medical records were evaluated, and sera from all cats were tested using one of two commercially available assays labeled for the use with dog sera (SNAP 4Dx or SNAP 4Dx Plus; IDEXX Laboratories, Westbrook, ME). Of the 159 cats evaluated, 42 cats (26.4%) had clinical signs consistent with A. phagocytophilum or B. burgdorferi infection and 117 cats (73.6%) were apparently healthy. Antibodies against B. burgdorferi or A. phagocytophilum were detected in sera of 18.2% and 6.3% of the 159 cats, respectively. Cats with clinical signs of disease were 4 times more likely to have antibodies against one or both agents than healthy cats (95% confidence interval [CI] 1.7928-8.9246; P = .0007), cats allowed outdoors were 5 times more likely to have antibodies against one or both agents than cats housed exclusively indoors (95% CI 2.0196-12.4497; P = .0005), and cats of owners who purchased acaricides were more likely (odds ratio = .3977) to have antibodies against one or both agents than cats of owners who did not purchase acaricides (95% CI .1659-.9534; P = .0387). The cats in the case series were believed to have B. burgdorferi infection as the most likely cause of illness based on serological testing, select clinical information, and apparent response to administration of doxycycline. The results suggest that both A. phagocytophilum and B. burgdorferi are associated with clinical illness in cats. Owners of cats allowed outdoors should be diligent in the use of acaricides.
Collapse
Affiliation(s)
- Kris Hoyt
- Cats on Call Hospital, Scarborough, ME, USA
| | | | | | | | - Michael R Lappin
- Center for Companion Animal Studies, Department of Clinical Sciences, Colorado State University, Fort Collins, CO, USA.
| |
Collapse
|
11
|
Stephenson N, Wong J, Foley J. Host, habitat and climate preferences of Ixodes angustus (Acari: Ixodidae) and infection with Borrelia burgdorferi and Anaplasma phagocytophilum in California, USA. EXPERIMENTAL & APPLIED ACAROLOGY 2016; 70:239-252. [PMID: 27416728 DOI: 10.1007/s10493-016-0068-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 07/05/2016] [Indexed: 06/06/2023]
Abstract
The Holarctic tick Ixodes angustus is a competent vector for Borrelia burgdorferi, the etiologic agent of Lyme disease, and possibly Anaplasma phagocytophilum, the etiologic agent of granulocytic anaplasmosis, as well. From 2005 to 2013, we collected host-feeding I. angustus individuals from live-trapped small mammals and by flagging vegetation from 12 study sites in northern and central California, and tested for B. burgdorferi sensu lato, A. phagocytophilum, and Rickettsia spp. DNA by real-time PCR. Among 261 I. angustus collected (259 from hosts and two by flagging), the most common hosts were tree squirrels (20 % of ticks) and chipmunks (37 %). The PCR-prevalence for A. phagocytophilum and B. burgdorferi in ticks was 2 % and zero, respectively. The minimum infection prevalence on pooled DNA samples was 10 % for Rickettsia spp. DNA sequencing of the ompA gene identified this rickettsia as Candidatus Rickettsia angustus, a putative endosymbiont. A zero-inflated negative binomial mixed effects model was used to evaluate geographical and climatological predictors of I. angustus burden. When host species within study site and season within year were included in the model as nested random effects, all significant variables revealed that I. angustus burden increased as temperature decreased. Together with published data, these findings suggest that I. angustus is a host generalist, has a broad geographic distribution, is more abundant in areas with lower temperature within it's range, and is rarely infected with the pathogens A. phagocytophilum and B. burgdorferi.
Collapse
Affiliation(s)
- Nicole Stephenson
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California Davis, Davis, CA, 95616, USA.
| | - Johnny Wong
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California Davis, Davis, CA, 95616, USA
| | - Janet Foley
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California Davis, Davis, CA, 95616, USA
| |
Collapse
|
12
|
Parallelisms and Contrasts in the Diverse Ecologies of the Anaplasma phagocytophilum and Borrelia burgdorferi Complexes of Bacteria in the Far Western United States. Vet Sci 2016; 3:vetsci3040026. [PMID: 29056734 PMCID: PMC5606591 DOI: 10.3390/vetsci3040026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 09/03/2016] [Accepted: 09/14/2016] [Indexed: 11/17/2022] Open
Abstract
Anaplasma phagocytophilum and Borrelia burgdorferi are two tick-borne bacteria that cause disease in people and animals. For each of these bacteria, there is a complex of closely related genospecies and/or strains that are genetically distinct and have been shown through both observational and experimental studies to have different host tropisms. In this review we compare the known ecologies of these two bacterial complexes in the far western USA and find remarkable similarities, which will help us understand evolutionary histories and coadaptation among vertebrate host, tick vector, and bacteria. For both complexes, sensu stricto genospecies (those that infect humans) share a similar geographic range, are vectored mainly by ticks in the Ixodes ricinus-complex, utilize mainly white-footed mice (Peromyscus leucopus) as a reservoir in the eastern USA and tree squirrels in the far west, and tend to be generalists, infecting a wider variety of vertebrate host species. Other sensu lato genospecies within each complex are generally more specialized, occurring often in local enzootic cycles within a narrow range of vertebrate hosts and specialized vector species. We suggest that these similar ecologies may have arisen through utilization of a generalist tick species as a vector, resulting in a potentially more virulent generalist pathogen that spills over into humans, vs. utilization of a specialized tick vector on a particular vertebrate host species, promoting microbe specialization. Such tight host-vector-pathogen coupling could also facilitate high enzootic prevalence and the evolution of host immune-tolerance and bacterial avirulence.
Collapse
|
13
|
Natural Anaplasmataceae infection in Rhipicephalus bursa ticks collected from sheep in the French Basque Country. Ticks Tick Borne Dis 2016; 8:18-24. [PMID: 27666778 DOI: 10.1016/j.ttbdis.2016.09.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 09/13/2016] [Accepted: 09/18/2016] [Indexed: 11/21/2022]
Abstract
Rhipicephalus bursa is one of 79 species of the genus Rhipicephalus in the family of Ixodidae. In this study, we investigated Anaplasmataceae bacteria associated with R. bursa collected after an epizootic outbreak of ovine anaplasmosis. 76 adult ticks, (60 male and 16 female ticks), were removed from sheep in two farms and all identified as R. bursa, all females were partially engorged. We found that 50% of the ticks were positive in the initial Anaplasmataceae qPCR screening. Bacterial species was identified by analyzing the sequences of amplicons of 23S rRNA, groEL and rpoB genes. 22.4% of ticks contained DNA of Anaplasma phagocytophilum and 7.9% the DNA of Anaplasma ovis. Based on 23S rRNA and groEL genes analysis, we found that 19.7% of ticks contained a potentially new species of Ehrlichia. We propose the status of Candidatus for this uncultured species and we provisionally name it Candidatus Ehrlichia urmitei. No Wolbachia were identified. These results show that R. bursa can be a carrier of Anaplasmataceae bacteria.
Collapse
|
14
|
Foley JE, Hasty JM, Lane RS. Diversity of rickettsial pathogens in Columbian black-tailed deer and their associated keds (Diptera: Hippoboscidae) and ticks (Acari: Ixodidae). JOURNAL OF VECTOR ECOLOGY : JOURNAL OF THE SOCIETY FOR VECTOR ECOLOGY 2016; 41:41-47. [PMID: 27232123 DOI: 10.1111/jvec.12192] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 10/02/2015] [Indexed: 06/05/2023]
Abstract
Cervids host multiple species of ixodid ticks, other ectoparasites, and a variety of rickettsiae. However, diagnostic test cross-reactivity has precluded understanding the specific role of deer in rickettsial ecology. In our survey of 128 Columbian black-tailed deer (Odocoileus hemionus columbianus (Richardson)) and their arthropod parasites from two northern Californian herds, combined with reports from the literature, we identified four distinct Anaplasma spp. and one Ehrlichia species. Two keds, Lipoptena depressa (Say) and Neolipoptena ferrisi Bequaert, and two ixodid ticks, Ixodes pacificus Cooley and Kohls and Dermacentor occidentalis Marx, were removed from deer. One D. occidentalis was PCR-positive for E. chaffeensis; because it was also PCR-positive for Anaplasma sp., this is an Anaplasma/Ehrlichia co-infection prevalence of 4.3%. 29% of L. depressa, 23% of D. occidentalis, and 14% of deer were PCR-positive for Anaplasma spp. DNA sequencing confirmed A. bovis and A. ovis infections in D. occidentalis, A. odocoilei in deer and keds, and Anaplasma phagocytophilum strain WI-1 in keds and deer. This is the first report of Anaplasma spp. in a North America deer ked, and begs the question whether L. depressa may be a competent vector of Anaplasma spp. or merely acquire such bacteria while feeding on rickettsemic deer.
Collapse
Affiliation(s)
- Janet E Foley
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, CA 95616, U.S.A..
| | - Jeomhee M Hasty
- Department of Health, Sanitation Branch Vector Control Program, Honolulu, HI 96813, U.S.A
| | - Robert S Lane
- Department of Environmental Science, Policy and Management, University of California, Berkeley, CA 94720, U.S.A
| |
Collapse
|
15
|
Nieto NC, Salkeld DJ. Epidemiology and Genetic Diversity of Anaplasma phagocytophilum in the San Francisco Bay Area, California. Am J Trop Med Hyg 2016; 95:50-4. [PMID: 27139447 DOI: 10.4269/ajtmh.15-0707] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 02/17/2016] [Indexed: 11/07/2022] Open
Abstract
In California, the agent of human granulocytic anaplasmosis (HGA), Anaplasma phagocytophilum, is transmitted by western black-legged ticks (Ixodes pacificus). Cases of HGA are infrequent in California but do occur annually. We investigated nymphal and adult western black-legged tick populations in 20 recreational areas in California's San Francisco Bay Area (Marin, Napa, San Mateo, Santa Clara, Santa Cruz, and Sonoma counties). Overall, prevalence of A. phagocytophilum in adult ticks was 0.8% (11/1,465), and in nymphal ticks was 4.2% (24/568), though presence was patchy and prevalence varied locally. We detected significant sequence variation in our quantitative polymerase chain reaction (qPCR)-positive samples. This included four sequences that grouped within a clade that contains clinical human and veterinary isolates as well as four others that grouped with sequences from PCR-positive lizards from northern California. Tick populations in our study sites harbor genetically diverse strains of A. phagocytophilum, which may influence potential risk in the region.
Collapse
Affiliation(s)
- Nathan C Nieto
- Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona.
| | - Daniel J Salkeld
- Department of Biology, Colorado State University, Fort Collins, Colorado. Woods Center for the Environment, Stanford University, Stanford, California
| |
Collapse
|
16
|
Foley J, Rejmanek D, Foley C, Matocq M. Fine-scale genetic structure of woodrat populations (Genus: Neotoma) and the spatial distribution of their tick-borne pathogens. Ticks Tick Borne Dis 2015; 7:243-253. [PMID: 26530982 DOI: 10.1016/j.ttbdis.2015.10.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2014] [Revised: 10/20/2015] [Accepted: 10/22/2015] [Indexed: 11/26/2022]
Abstract
Dusky-footed woodrats are territorial cricetid rodents that individually occupy large stick houses from which they foray to gather food, find mates, and engage in other activities. These rodents are often bitten by Ixodes spp. ticks and are reservoirs of some strains of tick-borne bacterial pathogens such as Anaplasma phagocytophilum and Borrelia burgdorferi. Limited dispersal by hosts and vectors could create fine-scale population structure where related hosts and pathogen exposure are co-distributed in space. To quantify population genetic structure and infection status, we genotyped 167 woodrats using a panel of 15 microsatellite loci from three northern California study sites: Soquel (SD), Cold Canyon (CC), and Quail Ridge (QR). We used quantitative PCR and serology to test for infection with A. phagocytophilum and B. burgdorferi. All three populations maintained similar, moderately high levels of genetic variation. For A. phagocytophilum, the PCR-prevalence was higher at SD (30.0%) than CC (13%) and QR (7%) whereas the seroprevalence was similar at all three sites (13-18%). The B. burgdorferi PCR-prevalence at CC was 11%, no woodrats were PCR-positive at QR, and none were tested at SD. We found a negative correlation between pairwise genetic relatedness and spatial distance with the majority of highest order relatives occurring within 200m of one another. Related dyads were more likely to be adult females than males, suggesting that adult female residents are the primary source of spatially proximate, high-order relatives in woodrat populations. Despite spatial genetic clustering of hosts, our spatial window test found no significant clustering of pathogens. Woodrats that were seropositive for A. phagocytophilum had higher heterozygosity than seronegative woodrats, which could be consistent with genetically diverse individuals having greater capacity to mount an immune response. Overall, our analyses show that limited dispersal of individual woodrats leads to fine-scale genetic structure within populations. Genetic structure, coupled with the limited dispersal of I. pacificus ticks could result in disease dynamics that are uniquely restricted to small spatial scales. By combining host genetic and disease studies we are able to infer limited dispersal and structured populations among hosts which affect infectious disease clustering and dynamics.
Collapse
Affiliation(s)
- Janet Foley
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA.
| | - Daniel Rejmanek
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA; One Health Institute, School of Veterinary Medicine, University of California, Davis, CA 95616, USA.
| | - Colin Foley
- Department of English, Chico State University, Chico, CA 95929, USA.
| | - Marjorie Matocq
- Department of Natural Resources and Environmental Science, Program in Ecology, Evolution and Conservation Biology, University of Nevada, Reno, NV 89557, USA.
| |
Collapse
|
17
|
Stephenson N, Hodzic E, Mapes S, Rejmanek D, Foley J. A real-time PCR assay for differentiating pathogenic Anaplasma phagocytophilum from an apathogenic, woodrat-adapted genospecies from North America. Ticks Tick Borne Dis 2015; 6:774-8. [DOI: 10.1016/j.ttbdis.2015.07.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 06/25/2015] [Accepted: 07/02/2015] [Indexed: 10/23/2022]
|
18
|
Lappin MR, Chandrashekar R, Stillman B, Liu J, Mather TN. Evidence of Anaplasma phagocytophilum and Borrelia burgdorferi infection in cats after exposure to wild-caught adult Ixodes scapularis. J Vet Diagn Invest 2015; 27:522-5. [PMID: 26179101 DOI: 10.1177/1040638715593598] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Cats are infected by Anaplasma phagocytophilum and Borrelia burgdorferi when exposed to infected Ixodes scapularis (black-legged ticks). The purpose of our study was to allow wild-caught I. scapularis to feed on healthy research cats (n = 4) and temporally evaluate for A. phagocytophilum DNA in blood by a polymerase chain reaction (PCR) assay as well as for antibody responses to the B. burgdorferi C6 peptide, to the A. phagocytophilum P44 peptide, and to a novel A. phagocytophilum peptide (P44-4). Prior to I. scapularis infestation, all cats were negative for antibodies against both organisms based on a kit optimized for dog serum, and negative for A. phagocytophilum DNA in blood using a conventional PCR assay. Using the pre-infestation samples, an enzyme-linked immunosorbent assay for detecting antibodies against the P44-4 peptide was optimized. Cats were infested with wild-caught I. scapularis for 7 days. Genomic DNA of A. phagocytophilum was amplified from the blood before antibodies were detected in all 4 cats. Antibodies against the C6 peptide, P44 peptide, and P44-4 peptide were detected in the sera of all 4 cats. Antibodies against P44-4 were detected prior to those against P44 in 3 out of 4 cats. The results suggest that a PCR assay should be considered in acutely ill cats with suspected anaplasmosis that are seronegative.
Collapse
Affiliation(s)
- Michael R Lappin
- Department of Clinical Sciences, Colorado State University, Fort Collins, CO (Lappin)IDEXX Laboratories Inc., Portland, ME (Chandrashekar, Stillman, Liu)Center for Vector-Borne Disease, University of Rhode Island, Kingston, RI (Mather)
| | - Ramaswamy Chandrashekar
- Department of Clinical Sciences, Colorado State University, Fort Collins, CO (Lappin)IDEXX Laboratories Inc., Portland, ME (Chandrashekar, Stillman, Liu)Center for Vector-Borne Disease, University of Rhode Island, Kingston, RI (Mather)
| | - Brett Stillman
- Department of Clinical Sciences, Colorado State University, Fort Collins, CO (Lappin)IDEXX Laboratories Inc., Portland, ME (Chandrashekar, Stillman, Liu)Center for Vector-Borne Disease, University of Rhode Island, Kingston, RI (Mather)
| | - Jiayou Liu
- Department of Clinical Sciences, Colorado State University, Fort Collins, CO (Lappin)IDEXX Laboratories Inc., Portland, ME (Chandrashekar, Stillman, Liu)Center for Vector-Borne Disease, University of Rhode Island, Kingston, RI (Mather)
| | - Thomas N Mather
- Department of Clinical Sciences, Colorado State University, Fort Collins, CO (Lappin)IDEXX Laboratories Inc., Portland, ME (Chandrashekar, Stillman, Liu)Center for Vector-Borne Disease, University of Rhode Island, Kingston, RI (Mather)
| |
Collapse
|
19
|
Chastagner A, Dugat T, Vourc'h G, Verheyden H, Legrand L, Bachy V, Chabanne L, Joncour G, Maillard R, Boulouis HJ, Haddad N, Bailly X, Leblond A. Multilocus sequence analysis of Anaplasma phagocytophilum reveals three distinct lineages with different host ranges in clinically ill French cattle. Vet Res 2014; 45:114. [PMID: 25487348 PMCID: PMC4334609 DOI: 10.1186/s13567-014-0114-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 10/21/2014] [Indexed: 11/10/2022] Open
Abstract
Molecular epidemiology represents a powerful approach to elucidate the complex epidemiological cycles of multi-host pathogens, such as Anaplasma phagocytophilum. A. phagocytophilum is a tick-borne bacterium that affects a wide range of wild and domesticated animals. Here, we characterized its genetic diversity in populations of French cattle; we then compared the observed genotypes with those found in horses, dogs, and roe deer to determine whether genotypes of A. phagocytophilum are shared among different hosts. We sampled 120 domesticated animals (104 cattle, 13 horses, and 3 dogs) and 40 wild animals (roe deer) and used multilocus sequence analysis on nine loci (ankA, msp4, groESL, typA, pled, gyrA, recG, polA, and an intergenic region) to characterize the genotypes of A. phagocytophilum present. Phylogenic analysis revealed three genetic clusters of bacterial variants in domesticated animals. The two principal clusters included 98% of the bacterial genotypes found in cattle, which were only distantly related to those in roe deer. One cluster comprised only cattle genotypes, while the second contained genotypes from cattle, horses, and dogs. The third contained all roe deer genotypes and three cattle genotypes. Geographical factors could not explain this clustering pattern. These results suggest that roe deer do not contribute to the spread of A. phagocytophilum in cattle in France. Further studies should explore if these different clusters are associated with differing disease severity in domesticated hosts. Additionally, it remains to be seen if the three clusters of A. phagocytophilum genotypes in cattle correspond to distinct epidemiological cycles, potentially involving different reservoir hosts.
Collapse
Affiliation(s)
- Amélie Chastagner
- INRA, UR346 Epidémiologie Animale, F-63122, Saint Genès Champanelle, France.
| | - Thibaud Dugat
- Université Paris-Est, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, 23 avenue du Général de Gaulle, 94706, Maisons-Alfort, France.
| | - Gwenaël Vourc'h
- INRA, UR346 Epidémiologie Animale, F-63122, Saint Genès Champanelle, France.
| | - Hélène Verheyden
- INRA, CEFS, UR035, 24 chemin de Borde Rouge - Auzeville, CS 52627, F-31326, Castanet Tolosan, France.
| | - Loïc Legrand
- LABÉO - Frank Duncombe, Unite Risques Microbiens (U2RM), Normandie Universite, EA 4655, Caen, Normandy, France.
| | - Véronique Bachy
- Laboratoire Vétérinaire Départemental du Rhône, Campus vétérinaire VetAgro Sup, 1 avenue Bourgelat, 69280, Marcy l'Etoile, France.
| | - Luc Chabanne
- Université de Lyon, VetAgro Sup, Jeune Equipe Hémopathogènes Vectorisés, F-69280, Marcy l'Etoile, France.
| | - Guy Joncour
- Groupe Vétérinaire de Callac, 26 rue du Cleumeur, 22160, Callac, France.
| | - Renaud Maillard
- Ecole Nationale Vétérinaire de Toulouse, Unité pathologie des ruminants, 23 Chemin des Capelles, 31076, Toulouse, France.
| | - Henri-Jean Boulouis
- Université Paris-Est, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, 23 avenue du Général de Gaulle, 94706, Maisons-Alfort, France.
| | - Nadia Haddad
- Université Paris-Est, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, 23 avenue du Général de Gaulle, 94706, Maisons-Alfort, France.
| | - Xavier Bailly
- INRA, UR346 Epidémiologie Animale, F-63122, Saint Genès Champanelle, France.
| | - Agnès Leblond
- INRA, UR346 Epidémiologie Animale, F-63122, Saint Genès Champanelle, France. .,Département Hippique, VetAgroSup, F-69280, Marcy L'Etoile, France.
| |
Collapse
|
20
|
Moroff S, Sokolchik I, Woodring T, Woodruff C, Atkinson B, Lappin MR. Detection of antibodies against Anaplasma phagocytophilum in dogs using an automated fluorescence based system. Vet J 2014; 202:348-52. [PMID: 25312718 DOI: 10.1016/j.tvjl.2014.08.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2014] [Revised: 08/15/2014] [Accepted: 08/16/2014] [Indexed: 11/29/2022]
Abstract
Infection with Anaplasma phagocytophilum can cause significant illness in some dogs and accurate diagnostic assays are needed. The objectives of the study were to optimize an automated fluorescence system for the detection of antibodies against A. phagocytophilum in canine serum. Serum and blood was collected temporally from seven dogs inoculated parenterally with culture-derived A. phagocytophilum and from 36 dogs exposed to wild-caught, adult Ixodes scapularis for 7 days. The system was optimized using the samples from the parenterally inoculated dogs. The ability to detect antibodies against A. phagocytophilum in the I. scapularis exposed dogs by the automated system was compared with a diagnostic kit (ELISA) and an indirect fluorescent antibody assay (IFA). Each blood sample was also assayed for A. phagocytophilum DNA by polymerase chain reaction (PCR). Of the 36 dogs exposed to I. scapularis, A. phagocytophilum DNA was amplified from blood from 22 dogs by PCR with first positive results occurring on weeks 1 (seven dogs), 2 (nine dogs), 3 (four dogs), 4 (one dog), or 5 (one dog). PCR results were positive prior to detection of antibodies in any of the three antibody assays for 19 dogs. The automated fluorescence system and IFA detected antibodies against A. phagocytophilum earlier than the ELISA. In conclusion, A. phagocytophilum PCR assays on blood are indicated in dogs with suspected acute anaplasmosis if serum antibody assays are negative.
Collapse
Affiliation(s)
| | | | | | | | | | - Michael R Lappin
- Center for Companion Animal Studies at Colorado State University, Fort Collins, CO, USA.
| |
Collapse
|