1
|
Desidério CS, Flávio-Reis VHP, Pessoa-Gonçalves YM, Tiveron RDR, Sales-Campos H, Felice AG, Soares SDC, Guillermo-Ferreira R, Rodrigues WF, Oliveira CJF. Binding Molecules in Tick Saliva for Targeting Host Cytokines, Chemokines, and Beyond. Biomolecules 2024; 14:1647. [PMID: 39766354 PMCID: PMC11674731 DOI: 10.3390/biom14121647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/13/2024] [Accepted: 12/18/2024] [Indexed: 01/11/2025] Open
Abstract
Ticks have coevolved with their hosts over millions of years, developing the ability to evade hemostatic, inflammatory, and immunological responses. Salivary molecules from these vectors bind to cytokines, chemokines, antibodies, complement system proteins, vasodilators, and molecules involved in coagulation and platelet aggregation, among others, inhibiting or blocking their activities. Initially studied to understand the complexities of tick-host interactions, these molecules have been more recently recognized for their potential clinical applications. Their ability to bind to soluble molecules and modulate important physiological systems, such as immunity, hemostasis, and coagulation, positions them as promising candidates for future therapeutic development. This review aims to identify the binding molecules present in tick saliva, determine their primary targets, and explore the tick species involved in these processes. By associating the binding molecules, the molecules to which they bind, and the effect caused, the review provides a basis for understanding how these molecules can contribute to possible future advances in clinical applications.
Collapse
Affiliation(s)
- Chamberttan Souza Desidério
- Department of Microbiology, Immunology and Parasitology, Institute of Biological and Natural Sciences, Federal University of Triângulo Mineiro, Uberaba 38025-180, MG, Brazil; (C.S.D.); (V.H.P.F.-R.); (Y.M.P.-G.); (R.D.R.T.); (A.G.F.); (S.d.C.S.); (W.F.R.)
| | - Victor Hugo Palhares Flávio-Reis
- Department of Microbiology, Immunology and Parasitology, Institute of Biological and Natural Sciences, Federal University of Triângulo Mineiro, Uberaba 38025-180, MG, Brazil; (C.S.D.); (V.H.P.F.-R.); (Y.M.P.-G.); (R.D.R.T.); (A.G.F.); (S.d.C.S.); (W.F.R.)
| | - Yago Marcos Pessoa-Gonçalves
- Department of Microbiology, Immunology and Parasitology, Institute of Biological and Natural Sciences, Federal University of Triângulo Mineiro, Uberaba 38025-180, MG, Brazil; (C.S.D.); (V.H.P.F.-R.); (Y.M.P.-G.); (R.D.R.T.); (A.G.F.); (S.d.C.S.); (W.F.R.)
| | - Rafael Destro Rosa Tiveron
- Department of Microbiology, Immunology and Parasitology, Institute of Biological and Natural Sciences, Federal University of Triângulo Mineiro, Uberaba 38025-180, MG, Brazil; (C.S.D.); (V.H.P.F.-R.); (Y.M.P.-G.); (R.D.R.T.); (A.G.F.); (S.d.C.S.); (W.F.R.)
| | - Helioswilton Sales-Campos
- Department of Bioscience and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiania 74605-050, GO, Brazil;
| | - Andrei Giacchetto Felice
- Department of Microbiology, Immunology and Parasitology, Institute of Biological and Natural Sciences, Federal University of Triângulo Mineiro, Uberaba 38025-180, MG, Brazil; (C.S.D.); (V.H.P.F.-R.); (Y.M.P.-G.); (R.D.R.T.); (A.G.F.); (S.d.C.S.); (W.F.R.)
| | - Siomar de Castro Soares
- Department of Microbiology, Immunology and Parasitology, Institute of Biological and Natural Sciences, Federal University of Triângulo Mineiro, Uberaba 38025-180, MG, Brazil; (C.S.D.); (V.H.P.F.-R.); (Y.M.P.-G.); (R.D.R.T.); (A.G.F.); (S.d.C.S.); (W.F.R.)
| | - Rhainer Guillermo-Ferreira
- LESTES Laboratory, Department of Biological Sciences, Federal University of Triângulo Mineiro, Uberaba 38025-180, MG, Brazil;
| | - Wellington Francisco Rodrigues
- Department of Microbiology, Immunology and Parasitology, Institute of Biological and Natural Sciences, Federal University of Triângulo Mineiro, Uberaba 38025-180, MG, Brazil; (C.S.D.); (V.H.P.F.-R.); (Y.M.P.-G.); (R.D.R.T.); (A.G.F.); (S.d.C.S.); (W.F.R.)
| | - Carlo José Freire Oliveira
- Department of Microbiology, Immunology and Parasitology, Institute of Biological and Natural Sciences, Federal University of Triângulo Mineiro, Uberaba 38025-180, MG, Brazil; (C.S.D.); (V.H.P.F.-R.); (Y.M.P.-G.); (R.D.R.T.); (A.G.F.); (S.d.C.S.); (W.F.R.)
| |
Collapse
|
2
|
Sant'Anna MRV, Pereira-Filho AA, Mendes-Sousa AF, Silva NCS, Gontijo NF, Pereira MH, Koerich LB, D'Avila Pessoa GC, Andersen J, Araujo RN. Inhibition of vertebrate complement system by hematophagous arthropods: inhibitory molecules, mechanisms, physiological roles, and applications. INSECT SCIENCE 2024; 31:1334-1352. [PMID: 38246860 DOI: 10.1111/1744-7917.13317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/28/2023] [Accepted: 12/07/2023] [Indexed: 01/23/2024]
Abstract
In arthropods, hematophagy has arisen several times throughout evolution. This specialized feeding behavior offered a highly nutritious diet obtained during blood feeds. On the other hand, blood-sucking arthropods must overcome problems brought on by blood intake and digestion. Host blood complement acts on the bite site and is still active after ingestion, so complement activation is a potential threat to the host's skin feeding environment and to the arthropod gut enterocytes. During evolution, blood-sucking arthropods have selected, either in their saliva or gut, anticomplement molecules that inactivate host blood complement. This review presents an overview of the complement system and discusses the arthropod's salivary and gut anticomplement molecules studied to date, exploring their mechanism of action and other aspects related to the arthropod-host-pathogen interface. The possible therapeutic applications of arthropod's anticomplement molecules are also discussed.
Collapse
Affiliation(s)
- Mauricio Roberto Vianna Sant'Anna
- Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, RJ, Brazil
| | - Adalberto Alves Pereira-Filho
- Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Naylene Carvalho Sales Silva
- Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Nelder Figueiredo Gontijo
- Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, RJ, Brazil
| | - Marcos Horácio Pereira
- Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, RJ, Brazil
| | - Leonardo Barbosa Koerich
- Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, RJ, Brazil
| | - Grasielle Caldas D'Avila Pessoa
- Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, RJ, Brazil
| | - John Andersen
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| | - Ricardo Nascimento Araujo
- Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
3
|
Mood R, Mohankumar K, Vijay M, Srivastava A. The serine protease inhibitor HAMpin-1 produced by the ectoparasite Hyalomma anatolicum salivary gland modulates the host complement system. J Biol Chem 2024; 300:107684. [PMID: 39159811 PMCID: PMC11417211 DOI: 10.1016/j.jbc.2024.107684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 07/14/2024] [Accepted: 08/07/2024] [Indexed: 08/21/2024] Open
Abstract
Ticks are notable vectors of diseases affecting both humans and animals, with Hyalomma anatolicum being of particular significance due to its wide distribution and capability to transmit a variety of pathogens, including Theileriaannulata and Crimean-Congo haemorrhagic fever virus. This study aimed to investigate the inhibitory effects of H. anatolicum salivary gland extract (HaSGE) and the identification of its key component on the complement system of the host's innate immune defense. We demonstrated that HaSGE exerts a dose-dependent inhibition on the complement activation in a host-specific manner. Mechanistic studies revealed that HaSGE interferes with deposition and cleavage of complement proteins C3 and C5, thus preventing the formation of the membrane attack complex. Further, we identified a serine protease inhibitor, Hyalomma anatolicum serpin-1 (HAMpin-1), from the HaSGE through proteomic analysis and characterized its structure, function, and interaction with complement proteins. HAMpin-1 exhibited potent inhibitory activity against chymotrypsin and cathepsin-G, and notably, it is the first serpin from ticks shown to inhibit the classical and lectin pathways of the complement system. The expression of HAMpin-1 was highest in the salivary glands, suggesting its crucial role in blood feeding and immune evasion. Our findings revealed one of the potential mechanisms used by H. anatolicum to modulate host immune responses at the interface, offering new insights into tick-host interactions.
Collapse
Affiliation(s)
- Rajitha Mood
- Molecular Pathogenesis and Vector Laboratory, National Institute of Animal Biotechnology (NIAB), Hyderabad, Telangana, India; Regional Centre for Biotechnology (RCB), Faridabad, India
| | - Krishnagaanth Mohankumar
- Molecular Pathogenesis and Vector Laboratory, National Institute of Animal Biotechnology (NIAB), Hyderabad, Telangana, India; Regional Centre for Biotechnology (RCB), Faridabad, India
| | - Macha Vijay
- Molecular Pathogenesis and Vector Laboratory, National Institute of Animal Biotechnology (NIAB), Hyderabad, Telangana, India; Regional Centre for Biotechnology (RCB), Faridabad, India
| | - Anand Srivastava
- Molecular Pathogenesis and Vector Laboratory, National Institute of Animal Biotechnology (NIAB), Hyderabad, Telangana, India; Regional Centre for Biotechnology (RCB), Faridabad, India.
| |
Collapse
|
4
|
Ansari MA, Nguyen TT, Kocurek KI, Kim WTH, Kim TK, Mulenga A. Recombinant Ixodes scapularis Calreticulin Binds Complement Proteins but Does Not Protect Borrelia burgdorferi from Complement Killing. Pathogens 2024; 13:560. [PMID: 39057787 PMCID: PMC11280304 DOI: 10.3390/pathogens13070560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024] Open
Abstract
Ixodes scapularis is a blood-feeding obligate ectoparasite responsible for transmitting the Lyme disease (LD) agent, Borrelia burgdorferi. During the feeding process, I. scapularis injects B. burgdorferi into the host along with its saliva, facilitating the transmission and colonization of the LD agent. Tick calreticulin (CRT) is one of the earliest tick saliva proteins identified and is currently utilized as a biomarker for tick bites. Our recent findings revealed elevated levels of CRT in the saliva proteome of B. burgdorferi-infected I. scapularis nymphs compared to uninfected ticks. Differential precipitation of proteins (DiffPOP) and LC-MS/MS analyses were used to identify the interactions between Ixs (I. scapularis) CRT and human plasma proteins and further explore its potential role in shielding B. burgdorferi from complement killing. We observed that although yeast-expressed recombinant (r) IxsCRT binds to the C1 complex (C1q, C1r, and C1s), the activator of complement via the classical cascade, it did not inhibit the deposition of the membrane attack complex (MAC) via the classical pathway. Intriguingly, rIxsCRT binds intermediate complement proteins (C3, C5, and C9) and reduces MAC deposition through the lectin pathway. Despite the inhibition of MAC deposition in the lectin pathway, rIxsCRT did not protect a serum-sensitive B. burgdorferi strain (B314/pBBE22Luc) from complement-induced killing. As B. burgdorferi establishes a local dermal infection before disseminating to secondary organs, it is noteworthy that rIxsCRT promotes the replication of B. burgdorferi in culture. We hypothesize that rIxsCRT may contribute to the transmission and/or host colonization of B. burgdorferi by acting as a decoy activator of complement and by fostering B. burgdorferi replication at the transmission site.
Collapse
Affiliation(s)
- Moiz Ashraf Ansari
- Department of Veterinary Pathobiology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA; (M.A.A.); (T.-T.N.); (W.T.H.K.)
| | - Thu-Thuy Nguyen
- Department of Veterinary Pathobiology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA; (M.A.A.); (T.-T.N.); (W.T.H.K.)
| | | | - William Tae Heung Kim
- Department of Veterinary Pathobiology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA; (M.A.A.); (T.-T.N.); (W.T.H.K.)
| | - Tae Kwon Kim
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA;
| | - Albert Mulenga
- Department of Veterinary Pathobiology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA; (M.A.A.); (T.-T.N.); (W.T.H.K.)
| |
Collapse
|
5
|
Esperante D, Flisser A, Mendlovic F. The many faces of parasite calreticulin. Front Immunol 2023; 14:1101390. [PMID: 36993959 PMCID: PMC10040973 DOI: 10.3389/fimmu.2023.1101390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/23/2023] [Indexed: 03/16/2023] Open
Abstract
Calreticulin from parasites and its vertebrate hosts share ~50% identity and many of its functions are equally conserved. However, the existing amino acid differences can affect its biological performance. Calreticulin plays an important role in Ca2+ homeostasis and as a chaperone involved in the correct folding of proteins within the endoplasmic reticulum. Outside the endoplasmic reticulum, calreticulin is involved in several immunological functions such as complement inhibition, enhancement of efferocytosis, and immune upregulation or inhibition. Several parasite calreticulins have been shown to limit immune responses and promote infectivity, while others are strong immunogens and have been used for the development of potential vaccines that limit parasite growth. Furthermore, calreticulin is essential in the dialogue between parasites and hosts, inducing Th1, Th2 or regulatory responses in a species-specific manner. In addition, calreticulin participates as initiator of endoplasmic reticulum stress in tumor cells and promotion of immunogenic cell death and removal by macrophages. Direct anti-tumoral activity has also been reported. The highly immunogenic and pleiotropic nature of parasite calreticulins, either as positive or negative regulators of the immune response, render these proteins as valuable tools to modulate immunopathologies and autoimmune disorders, as well as a potential treatment of neoplasms. Moreover, the disparities in the amino acid composition of parasite calreticulins might provide subtle variations in the mechanisms of action that could provide advantages as therapeutic tools. Here, we review the immunological roles of parasite calreticulins and discuss possible beneficial applications.
Collapse
Affiliation(s)
- Diego Esperante
- Plan de Estudios Combinados en Medicina (PECEM), Facultad de Medicine, Universidad Nacional Autonóma de México (UNAM), Mexico City, Mexico
| | - Ana Flisser
- Plan de Estudios Combinados en Medicina (PECEM), Facultad de Medicine, Universidad Nacional Autonóma de México (UNAM), Mexico City, Mexico
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autonóma de México (UNAM), Mexico City, Mexico
| | - Fela Mendlovic
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autonóma de México (UNAM), Mexico City, Mexico
- Facultad de Ciencias de la Salud, Universidad Anahuac Mexico Norte, Huixquilucan, Mexico
- *Correspondence: Fela Mendlovic,
| |
Collapse
|
6
|
Mulenga A, Radulovic Z, Porter L, Britten TH, Kim TK, Tirloni L, Gaithuma AK, Adeniyi-Ipadeola GO, Dietrich JK, Moresco JJ, Yates JR. Identification and characterization of proteins that form the inner core Ixodes scapularis tick attachment cement layer. Sci Rep 2022; 12:21300. [PMID: 36494396 PMCID: PMC9734129 DOI: 10.1038/s41598-022-24881-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 11/22/2022] [Indexed: 12/13/2022] Open
Abstract
Ixodes scapularis long-term blood feeding behavior is facilitated by a tick secreted bio adhesive (tick cement) that attaches tick mouthparts to skin tissue and prevents the host from dislodging the attached tick. Understanding tick cement formation is highly sought after as its disruption will prevent tick feeding. This study describes proteins that form the inner core layer of I. scapularis tick cement as disrupting these proteins will likely stop formation of the outer cortical layer. The inner core cement layer completes formation by 24 h of tick attachment. Thus, we used laser-capture microdissection to isolate cement from cryosections of 6 h and 24 h tick attachment sites and to distinguish between early and late inner core cement proteins. LC-MS/MS analysis identified 138 tick cement proteins (TCPs) of which 37 and 35 were unique in cement of 6 and 24 h attached ticks respectively. We grouped TCPs in 14 functional categories: cuticular protein (16%), tick specific proteins of unknown function, cytoskeletal proteins, and enzymes (13% each), enzymes (10%), antioxidant, glycine rich, scaffolding, heat shock, histone, histamine binding, proteases and protease inhibitors, and miscellaneous (3-6% each). Gene ontology analysis confirm that TCPs are enriched for bio adhesive properties. Our data offer insights into tick cement bonding patterns and set the foundation for understanding the molecular basis of I. scapularis tick cement formation.
Collapse
Affiliation(s)
- Albert Mulenga
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, TX, USA.
| | - Zeljko Radulovic
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, TX, USA
- Department of Biology, Stephen F. Austin State University, Nacogdoches, TX, USA
| | - Lindsay Porter
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, TX, USA
- Department of Biology, Stephen F. Austin State University, Nacogdoches, TX, USA
| | - Taylor Hollman Britten
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, TX, USA
| | - Tae Kwon Kim
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, TX, USA
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Lucas Tirloni
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, TX, USA
- Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, Hamilton, MT, USA
| | - Alex Kiarie Gaithuma
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, TX, USA
| | - Grace O Adeniyi-Ipadeola
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, TX, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Jolene K Dietrich
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
- Mass Spectrometry Core, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - James J Moresco
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
- Center for Genetics of Host Defense, UT Southwestern Medical Center, Dallas, TX, USA
| | - John R Yates
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| |
Collapse
|
7
|
Zheng W, Hu H, Jiang J, Sun X, Fu R, Tao H, Liu Y, Chen H, Ma H, Chen S. Haemaphysalis longicornis calreticulin is not an effective molecular tool for tick bite diagnosis and disruption of tick infestations. Vet Parasitol 2022; 309:109775. [PMID: 35939902 DOI: 10.1016/j.vetpar.2022.109775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/01/2022] [Accepted: 08/02/2022] [Indexed: 11/19/2022]
Abstract
BACKGROUND Tick calreticulin (CRT) is a calcium-binding protein secreted into the host during blood feeding. It has been used as a biomarker of tick exposure and has potential as an anti-tick vaccine, but there is no information about these uses for Haemaphysalis longicornis CRT (HlCRT). We synthesized recombinant H. longicornis CRT (rHlCRT) and evaluated its potential for tick bite diagnosis and for disrupting tick infestations. METHODS The responses of mice and rabbits exposed to H. longicornis ticks were measured with ELISA to determine the antibody level against rHlCRT. To evaluate the effects of rHlCRT-induced anti-tick immunity, engorgement weight, tick engorgement index (TEI), feeding duration, ecdysis rate, and egg weight per engorged tick were compared between ticks fed on immunized and normal mice. RESULTS Mean anti-tick CRT antibody levels in sera collected from mice at 1 and 15 days after primary tick exposure were not significantly different from the mean antibody levels in negative control mice that were not bitten by ticks (all P values > 0.05). No significant anti-HlCRT IgG responses developed in mice after second exposure to tick bites compared with the level of anti-HlCRT antibody response in negative control mice (all P values > 0.25). For rabbits, no significant differences in the antibody levels were observed in animals before challenge infestation and after tick exposures, and in animals after two tick exposures (all P values > 0.10). There were no significant differences in the body weight of ticks fed on immunized and normal mice (all P values > 0.15). No significant differences in TEI were observed between ticks fed on immunized mice and normal control mice (all P values > 0.50). There were no significant differences in feeding duration for female ticks, and feeding duration and ecdysis rate for nymphs in the experimental and control groups (all P values > 0.10 for feeding duration and P value = 0.19 for ecdysis rate). We did not observe a significant difference in egg weight per tick in the rHlCRT-immunized and the control groups (P = 0.88). CONCLUSIONS HlCRT in H. longicornis tick saliva proteins appears to be nonimmunogenic to mammalian hosts like mice and rabbits. Vaccination with rHlCRT did not generate effective immunity against parthenogenetic and bisexual H. longicornis nymphs or female ticks. These results indicate that HlCRT is not a suitable molecular candidate for H. longicornis tick bite diagnosis and not effective for the disruption of tick infestations.
Collapse
Affiliation(s)
- Weiqing Zheng
- The Collaboration Unit for Field Epidemiology of State Key Laboratory for Infectious Disease Prevention and Control, Jiangxi Provincial key Laboratory of Animal-origin and Vector-borne Diseases, Nanchang Center for Disease Control and Prevention, Honggutan District, Nanchang, Jiangxi 330038, China
| | - Haijun Hu
- The Collaboration Unit for Field Epidemiology of State Key Laboratory for Infectious Disease Prevention and Control, Jiangxi Provincial key Laboratory of Animal-origin and Vector-borne Diseases, Nanchang Center for Disease Control and Prevention, Honggutan District, Nanchang, Jiangxi 330038, China
| | - Jiafu Jiang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Xiangrong Sun
- The Collaboration Unit for Field Epidemiology of State Key Laboratory for Infectious Disease Prevention and Control, Jiangxi Provincial key Laboratory of Animal-origin and Vector-borne Diseases, Nanchang Center for Disease Control and Prevention, Honggutan District, Nanchang, Jiangxi 330038, China
| | - Renlong Fu
- The Collaboration Unit for Field Epidemiology of State Key Laboratory for Infectious Disease Prevention and Control, Jiangxi Provincial key Laboratory of Animal-origin and Vector-borne Diseases, Nanchang Center for Disease Control and Prevention, Honggutan District, Nanchang, Jiangxi 330038, China
| | - Huiying Tao
- The Collaboration Unit for Field Epidemiology of State Key Laboratory for Infectious Disease Prevention and Control, Jiangxi Provincial key Laboratory of Animal-origin and Vector-borne Diseases, Nanchang Center for Disease Control and Prevention, Honggutan District, Nanchang, Jiangxi 330038, China
| | - Yangqing Liu
- The Collaboration Unit for Field Epidemiology of State Key Laboratory for Infectious Disease Prevention and Control, Jiangxi Provincial key Laboratory of Animal-origin and Vector-borne Diseases, Nanchang Center for Disease Control and Prevention, Honggutan District, Nanchang, Jiangxi 330038, China
| | - Haiying Chen
- The Collaboration Unit for Field Epidemiology of State Key Laboratory for Infectious Disease Prevention and Control, Jiangxi Provincial key Laboratory of Animal-origin and Vector-borne Diseases, Nanchang Center for Disease Control and Prevention, Honggutan District, Nanchang, Jiangxi 330038, China
| | - Hongmei Ma
- The Collaboration Unit for Field Epidemiology of State Key Laboratory for Infectious Disease Prevention and Control, Jiangxi Provincial key Laboratory of Animal-origin and Vector-borne Diseases, Nanchang Center for Disease Control and Prevention, Honggutan District, Nanchang, Jiangxi 330038, China.
| | - Shengen Chen
- The Collaboration Unit for Field Epidemiology of State Key Laboratory for Infectious Disease Prevention and Control, Jiangxi Provincial key Laboratory of Animal-origin and Vector-borne Diseases, Nanchang Center for Disease Control and Prevention, Honggutan District, Nanchang, Jiangxi 330038, China.
| |
Collapse
|
8
|
Liu L, Yan F, Zhang L, Wu ZF, Duan DY, Cheng TY. Protein profiling of hemolymph in Haemaphysalis flava ticks. Parasit Vectors 2022; 15:179. [PMID: 35610668 PMCID: PMC9128142 DOI: 10.1186/s13071-022-05287-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 04/16/2022] [Indexed: 11/29/2022] Open
Abstract
Background Tick hemolymph bathes internal organs, acts as an exchange medium for nutrients and cellular metabolites, and offers protection against pathogens. Hemolymph is abundant in proteins. However, there has been limited integrated protein analysis in tick hemolymph thus far. Moreover, there are difficulties in differentiating tick-derived proteins from the host source. The aim of this study was to profile the tick/host protein components in the hemolymph of Haemaphysalis flava. Methods Hemolymph from adult engorged H. flava females was collected by leg amputation from the Erinaceus europaeus host. Hemolymph proteins were extracted by a filter-aided sample preparation protocol, digested by trypsin, and assayed by liquid chromatography–tandem mass spectrometry (LC–MS/MS). MS raw data were searched against the UniProt Erinaceidae database and H. flava protein database for host- and tick-derived protein identification. Protein abundance was further quantified by intensity-based absolute quantification (iBAQ). Results Proteins extracted from hemolymph unevenly varied in size with intense bands between 100 and 130 kDa. In total, 312 proteins were identified in the present study. Therein 40 proteins were identified to be host-derived proteins, of which 18 were high-confidence proteins. Top 10 abundant host-derived proteins included hemoglobin subunit-α and subunit-β, albumin, serotransferrin-like, ubiquitin-like, haptoglobin, α-1-antitrypsin-like protein, histone H2B, apolipoprotein A-I, and C3-β. In contrast, 169 were high-confidence tick-derived proteins. These proteins were classified into six categories based on reported functions in ticks, i.e., enzymes, enzyme inhibitors, transporters, immune-related proteins, muscle proteins, and heat shock proteins. The abundance of Vg, microplusin and α-2-macroglobulin was the highest among tick-derived proteins as indicated by iBAQ. Conclusions Numerous tick- and host-derived proteins were identified in hemolymph. The protein profile of H. flava hemolymph revealed a sophisticated protein system in the physiological processes of anticoagulation, digestion of blood meal, and innate immunity. More investigations are needed to characterize tick-derived proteins in hemolymph. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-022-05287-7.
Collapse
Affiliation(s)
- Lei Liu
- Research Center for Parasites & Vectors (RCPV), College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Fen Yan
- Research Center for Parasites & Vectors (RCPV), College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Lu Zhang
- Research Center for Parasites & Vectors (RCPV), College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Zhi-Feng Wu
- Research Center for Parasites & Vectors (RCPV), College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - De-Yong Duan
- Research Center for Parasites & Vectors (RCPV), College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Tian-Yin Cheng
- Research Center for Parasites & Vectors (RCPV), College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China.
| |
Collapse
|
9
|
Ali A, Zeb I, Alouffi A, Zahid H, Almutairi MM, Ayed Alshammari F, Alrouji M, Termignoni C, Vaz IDS, Tanaka T. Host Immune Responses to Salivary Components - A Critical Facet of Tick-Host Interactions. Front Cell Infect Microbiol 2022; 12:809052. [PMID: 35372098 PMCID: PMC8966233 DOI: 10.3389/fcimb.2022.809052] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 02/04/2022] [Indexed: 12/15/2022] Open
Abstract
Tick sialome is comprised of a rich cocktail of bioactive molecules that function as a tool to disarm host immunity, assist blood-feeding, and play a vibrant role in pathogen transmission. The adaptation of the tick's blood-feeding behavior has lead to the evolution of bioactive molecules in its saliva to assist them to overwhelm hosts' defense mechanisms. During a blood meal, a tick secretes different salivary molecules including vasodilators, platelet aggregation inhibitors, anticoagulants, anti-inflammatory proteins, and inhibitors of complement activation; the salivary repertoire changes to meet various needs such as tick attachment, feeding, and modulation or impairment of the local dynamic and vigorous host responses. For instance, the tick's salivary immunomodulatory and cement proteins facilitate the tick's attachment to the host to enhance prolonged blood-feeding and to modulate the host's innate and adaptive immune responses. Recent advances implemented in the field of "omics" have substantially assisted our understanding of host immune modulation and immune inhibition against the molecular dynamics of tick salivary molecules in a crosstalk between the tick-host interface. A deep understanding of the tick salivary molecules, their substantial roles in multifactorial immunological cascades, variations in secretion, and host immune responses against these molecules is necessary to control these parasites. In this article, we reviewed updated knowledge about the molecular mechanisms underlying host responses to diverse elements in tick saliva throughout tick invasion, as well as host defense strategies. In conclusion, understanding the mechanisms involved in the complex interactions between the tick salivary components and host responses is essential to decipher the host defense mechanisms against the tick evasion strategies at tick-host interface which is promising in the development of effective anti-tick vaccines and drug therapeutics.
Collapse
Affiliation(s)
- Abid Ali
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Ismail Zeb
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Abdulaziz Alouffi
- King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Hafsa Zahid
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Mashal M. Almutairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Fahdah Ayed Alshammari
- College of Sciences and Literature Microbiology, Nothern Border University, Rafha, Saudi Arabia
| | - Mohammed Alrouji
- College of Applied Medical Sciences, Shaqra University, Shaqra, Saudi Arabia
| | - Carlos Termignoni
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Itabajara da Silva Vaz
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Tetsuya Tanaka
- Laboratory of Infectious Diseases, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| |
Collapse
|
10
|
Kim TK, Tirloni L, Bencosme-Cuevas E, Kim TH, Diedrich JK, Yates JR, Mulenga A. Borrelia burgdorferi infection modifies protein content in saliva of Ixodes scapularis nymphs. BMC Genomics 2021; 22:152. [PMID: 33663385 PMCID: PMC7930271 DOI: 10.1186/s12864-021-07429-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 02/08/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Lyme disease (LD) caused by Borrelia burgdorferi is the most prevalent tick-borne disease. There is evidence that vaccines based on tick proteins that promote tick transmission of B. burgdorferi could prevent LD. As Ixodes scapularis nymph tick bites are responsible for most LD cases, this study sought to identify nymph tick saliva proteins associated with B. burgdorferi transmission using LC-MS/MS. Tick saliva was collected using a non-invasive method of stimulating ticks (uninfected and infected: unfed, and every 12 h during feeding through 72 h, and fully-fed) to salivate into 2% pilocarpine-PBS for protein identification using LC-MS/MS. RESULTS We identified a combined 747 tick saliva proteins of uninfected and B. burgdorferi infected ticks that were classified into 25 functional categories: housekeeping-like (48%), unknown function (18%), protease inhibitors (9%), immune-related (6%), proteases (8%), extracellular matrix (7%), and small categories that account for <5% each. Notably, B. burgdorferi infected ticks secreted high number of saliva proteins (n=645) than uninfected ticks (n=376). Counter-intuitively, antimicrobial peptides, which function to block bacterial infection at tick feeding site were suppressed 23-85 folds in B. burgdorferi infected ticks. Similar to glycolysis enzymes being enhanced in mammalian cells exposed to B. burgdorferi : eight of the 10-glycolysis pathway enzymes were secreted at high abundance by B. burgdorferi infected ticks. Of significance, rabbits exposed to B. burgdorferi infected ticks acquired potent immunity that caused 40-60% mortality of B. burgdorferi infected ticks during the second infestation compared to 15-28% for the uninfected. This might be explained by ELISA data that show that high expression levels of immunogenic proteins in B. burgdorferi infected ticks. CONCLUSION Data here suggest that B. burgdorferi infection modified protein content in tick saliva to promote its survival at the tick feeding site. For instance, enzymes; copper/zinc superoxide dismutase that led to production of H2O2 that is toxic to B. burgdorferi were suppressed, while, catalase and thioredoxin that neutralize H2O2, and pyruvate kinase which yields pyruvate that protects Bb from H2O2 killing were enhanced. We conclude data here is an important resource for discovery of effective antigens for a vaccine to prevent LD.
Collapse
Affiliation(s)
- Tae Kwon Kim
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, Texas, United States of America
- Department of Diagnostic Medicine and Veterinary Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, United States of America
| | - Lucas Tirloni
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, Texas, United States of America
- Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, Hamilton, Montana, United States of America
| | - Emily Bencosme-Cuevas
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, Texas, United States of America
| | - Tae Heung Kim
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, Texas, United States of America
| | - Jolene K Diedrich
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, United States of America
- Mass Spectrometry Core, Salk Institute for Biological Studies, La Jolla, California, United States of America
| | - John R Yates
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, United States of America
| | - Albert Mulenga
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, Texas, United States of America.
| |
Collapse
|
11
|
Ramírez-Toloza G, Aguilar-Guzmán L, Valck C, Ferreira VP, Ferreira A. The Interactions of Parasite Calreticulin With Initial Complement Components: Consequences in Immunity and Virulence. Front Immunol 2020; 11:1561. [PMID: 32793217 PMCID: PMC7391170 DOI: 10.3389/fimmu.2020.01561] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 06/12/2020] [Indexed: 12/17/2022] Open
Abstract
Because of its capacity to increase a physiologic inflammatory response, to stimulate phagocytosis, to promote cell lysis and to enhance pathogen immunogenicity, the complement system is a crucial component of both the innate and adaptive immune responses. However, many infectious agents resist the activation of this system by expressing or secreting proteins with a role as complement regulatory, mainly inhibitory, proteins. Trypanosoma cruzi, the causal agent of Chagas disease, a reemerging microbial ailment, possesses several virulence factors with capacity to inhibit complement at different stages of activation. T. cruzi calreticulin (TcCalr) is a highly-conserved, endoplasmic reticulum-resident chaperone that the parasite translocates to the extracellular environment, where it exerts a variety of functions. Among these functions, TcCalr binds C1, MBL and ficolins, thus inhibiting the classical and lectin pathways of complement at their earliest stages of activation. Moreover, the TcCalr/C1 interaction also mediates infectivity by mimicking a strategy used by apoptotic cells for their removal. More recently, it has been determined that these Calr strategies are also used by a variety of other parasites. In addition, as reviewed elsewhere, TcCalr inhibits angiogenesis, promotes wound healing and reduces tumor growth. Complement C1 is also involved in some of these properties. Knowledge on the role of virulence factors, such as TcCalr, and their interactions with complement components in host-parasite interactions, may lead toward the description of new anti-parasite therapies and prophylaxis.
Collapse
Affiliation(s)
- Galia Ramírez-Toloza
- Department of Preventive Veterinary Medicine, Faculty of Veterinary Medicine and Livestock Sciences, University of Chile, Santiago, Chile
| | - Lorena Aguilar-Guzmán
- Department of Pathology, Faculty of Veterinary Medicine and Livestock Sciences, University of Chile, Santiago, Chile
| | - Carolina Valck
- Department of Immunology, ICBM, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Viviana P Ferreira
- Department of Medical Microbiology and Immunology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, United States
| | - Arturo Ferreira
- Department of Immunology, ICBM, Faculty of Medicine, University of Chile, Santiago, Chile
| |
Collapse
|
12
|
Zheng W, Umemiya-Shirafuji R, Chen S, Okado K, Adjou Moumouni PF, Suzuki H, Yang S, Liu M, Xuan X. Identification of Haemaphysalis longicornis Genes Differentially Expressed in Response to Babesia microti Infection. Pathogens 2020; 9:378. [PMID: 32423088 PMCID: PMC7281432 DOI: 10.3390/pathogens9050378] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/02/2020] [Accepted: 05/12/2020] [Indexed: 12/31/2022] Open
Abstract
Haemaphysalis longicornis is a tick and a vector of various pathogens, including the human pathogenetic Babesia microti. The objective of this study was to identify female H. longicornis genes differentially expressed in response to infection with B. microti Gray strain by using a suppression subtractive hybridization (SSH) procedure. A total of 302 randomly selected clones were sequenced and analyzed in the forward subtracted SSH cDNA library related to Babesia infection, and 110 clones in the reverse cDNA library. Gene ontology assignments and sequence analyses of tick sequences in the forward cDNA library showed that 14 genes were related to response to stimulus or/and immune system process, and 7 genes had the higher number of standardized sequences per kilobase (SPK). Subsequent real-time PCR detection showed that eight genes including those encoding for Obg-like ATPase 1 (ola1), Calreticulin (crt), vitellogenin 1 (Vg1) and Vg2 were up-regulated in fed ticks. Compared to uninfected ticks, infected ticks had six up-regulated genes, including ola1, crt and Vg2. Functional analysis of up-regulated genes in fed or Babesia-infected ticks by RNA interference showed that knockdown of crt and Vg2 in infected ticks and knockdown of ola1 in uninfected ticks accelerated engorgement. In contrast, Vg1 knockdown in infected ticks had delayed engorgement. Knockdown of crt and Vg1 in infected ticks decreased engorged female weight. Vg2 knockdown reduced B. microti infection levels by 51% when compared with controls. The results reported here increase our understanding of roles of H. longicornis genes in blood feeding and B. microti infection.
Collapse
Affiliation(s)
- Weiqing Zheng
- The Collaboration Unit for Field Epidemiology of State Key Laboratory for Infectious Disease Prevention and Control, Jiangxi Provincial key Laboratory of Animal-Origin and Vector-Borne Diseases, Nanchang Center for Disease Control and Prevention, Honggutan New District, Nanchang 330038, China; (W.Z.); (S.C.)
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-Cho, Obihiro, Hokkaido 080-8555, Japan; (K.O.); (P.F.A.M.); (H.S.); (M.L.)
| | - Rika Umemiya-Shirafuji
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-Cho, Obihiro, Hokkaido 080-8555, Japan; (K.O.); (P.F.A.M.); (H.S.); (M.L.)
| | - Shengen Chen
- The Collaboration Unit for Field Epidemiology of State Key Laboratory for Infectious Disease Prevention and Control, Jiangxi Provincial key Laboratory of Animal-Origin and Vector-Borne Diseases, Nanchang Center for Disease Control and Prevention, Honggutan New District, Nanchang 330038, China; (W.Z.); (S.C.)
| | - Kiyoshi Okado
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-Cho, Obihiro, Hokkaido 080-8555, Japan; (K.O.); (P.F.A.M.); (H.S.); (M.L.)
| | - Paul Franck Adjou Moumouni
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-Cho, Obihiro, Hokkaido 080-8555, Japan; (K.O.); (P.F.A.M.); (H.S.); (M.L.)
| | - Hiroshi Suzuki
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-Cho, Obihiro, Hokkaido 080-8555, Japan; (K.O.); (P.F.A.M.); (H.S.); (M.L.)
| | - Shu Yang
- The Collaboration Unit for Field Epidemiology of State Key Laboratory for Infectious Disease Prevention and Control, Jiangxi Provincial key Laboratory of Animal-Origin and Vector-Borne Diseases, Nanchang Center for Disease Control and Prevention, Honggutan New District, Nanchang 330038, China; (W.Z.); (S.C.)
| | - Mingming Liu
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-Cho, Obihiro, Hokkaido 080-8555, Japan; (K.O.); (P.F.A.M.); (H.S.); (M.L.)
| | - Xuenan Xuan
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-Cho, Obihiro, Hokkaido 080-8555, Japan; (K.O.); (P.F.A.M.); (H.S.); (M.L.)
| |
Collapse
|
13
|
Ramírez-Toloza G, Sosoniuk-Roche E, Valck C, Aguilar-Guzmán L, Ferreira VP, Ferreira A. Trypanosoma cruzi Calreticulin: Immune Evasion, Infectivity, and Tumorigenesis. Trends Parasitol 2020; 36:368-381. [PMID: 32191851 DOI: 10.1016/j.pt.2020.01.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 01/25/2020] [Accepted: 01/26/2020] [Indexed: 02/06/2023]
Abstract
To successfully infect, Trypanosoma cruzi evades and modulates the host immune response. T. cruzi calreticulin (TcCalr) is a multifunctional, endoplasmic reticulum (ER)-resident chaperone that, translocated to the external microenvironment, mediates crucial host-parasite interactions. TcCalr binds and inactivates C1 and mannose-binding lectin (MBL)/ficolins, important pattern- recognition receptors (PRRs) of the complement system. Using an apoptotic mimicry strategy, the C1-TcCalr association facilitates the infection of target cells. T. cruzi infection also seems to confer protection against tumorigenesis. Thus, recombinant TcCalr has important antiangiogenic properties, detected in vitro, ex vivo, and in ovum, most likely contributing at least in part, to its antitumor properties. Consequently, TcCalr is useful for investigating key issues of host-parasite interactions and possible new immunological/pharmacological interventions in the areas of Chagas' disease and experimental cancer.
Collapse
Affiliation(s)
- Galia Ramírez-Toloza
- Faculty of Veterinary Medicine and Livestock Sciences, University of Chile, Santiago, Chile.
| | | | - Carolina Valck
- Department of Immunology, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Lorena Aguilar-Guzmán
- Faculty of Veterinary Medicine and Livestock Sciences, University of Chile, Santiago, Chile
| | - Viviana P Ferreira
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, OH, USA
| | - Arturo Ferreira
- Department of Immunology, Faculty of Medicine, University of Chile, Santiago, Chile.
| |
Collapse
|
14
|
Liu Y, Wei W, Wang Y, Wan C, Bai Y, Sun X, Ma J, Zheng F. TNF-α/calreticulin dual signaling induced NLRP3 inflammasome activation associated with HuR nucleocytoplasmic shuttling in rheumatoid arthritis. Inflamm Res 2019; 68:597-611. [PMID: 31119302 DOI: 10.1007/s00011-019-01244-w] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 02/21/2019] [Accepted: 05/02/2019] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVE The present study was undertaken to validate whether TNF-α and calreticulin (CRT) serve as dual signaling to activate nucleotide-binding oligomerization domain-, leucine-rich repeat- and pyrin domain-containing 3 (NLRP3) inflammasome in rheumatoid arthritis (RA) fibroblast-like synoviocytes (FLS) and HUVECs. The effect of human antigen R (HuR) in NLRP3 inflammasome activation was also explored in RA FLS. METHODS Immunofluorescence was used to determine the expression of NLRP3 and adaptor protein apoptosis associated speck-like protein containing a CARD (ASC) in RA synovial tissue and HuR location in RA FLS. Western blot and quantitative real-time PCR were employed to measure the priming effect of NLRP3 inflammasome in cells and HuR expression in synovial tissue. The concentrations of IL-1β and IL-18 were detected by enzyme linked immunosorbent assay. Immunohistochemistry was used to visualize the expression of HuR in synovial tissue. HuR knockdown in RA FLS was achieved by siRNA-mediated gene silencing. RESULTS Higher expression of NLRP3 and ASC in RA synovial tissue than those in osteoarthritis was detected. The staining of NLRP3, ASC and cleaved IL-1β were observed in FLS and vascular endothelial cells in RA synovium. Expression of NLRP3 and pro-IL-1β in RA FLS and HUVECs treated with TNF-α was increased. The pro-IL-18 expression was also enhanced in HUVECs, but not in RA FLS. TNF-α/CRT dual stimulation of cells gave rise to caspase-1 p20 expression and the secretion of IL-1β. The secreted IL-18 was also elevated in HUVECs but not in RA FLS. HuR expression was significantly elevated in RA synovial tissue. TNF-α initiated the nucleocytoplasmic shuttling of HuR in both FLS and HUVECs. The knockdown of HuR in FLS incubated with TNF-α led to reduced caspase-1 p20 protein expression and further resulted in decreased secretion of IL-1β in the presence of CRT. CONCLUSIONS TNF-α/CRT dual signaling induced NLRP3 inflammasome activation, which could be suppressed by HuR knockdown presumably due to the block of HuR translocating from nucleus to cytoplasma.
Collapse
Affiliation(s)
- Yixin Liu
- Department of Clinical Immunology, School of Medical Laboratory, Tianjin Medical University, Tianjin, 300203, China
| | - Wei Wei
- Department of Rheumatology, General Hospital, Tianjin Medical University, Tianjin, 300052, China
| | - Yang Wang
- Department of Clinical Immunology, School of Medical Laboratory, Tianjin Medical University, Tianjin, 300203, China
| | - Chunyou Wan
- Center of Joint Surgery, Tianjin Hospital, Tianjin, 300210, China
| | - Yingyu Bai
- Department of Clinical Immunology, School of Medical Laboratory, Tianjin Medical University, Tianjin, 300203, China
| | - Xuguo Sun
- Department of Clinical Immunology, School of Medical Laboratory, Tianjin Medical University, Tianjin, 300203, China
| | - Jun Ma
- Department of Health Statistics, College of Public Health, Tianjin Medical University, Tianjin, 300070, China.
| | - Fang Zheng
- Department of Clinical Immunology, School of Medical Laboratory, Tianjin Medical University, Tianjin, 300203, China.
| |
Collapse
|
15
|
Vechtova P, Sterbova J, Sterba J, Vancova M, Rego ROM, Selinger M, Strnad M, Golovchenko M, Rudenko N, Grubhoffer L. A bite so sweet: the glycobiology interface of tick-host-pathogen interactions. Parasit Vectors 2018; 11:594. [PMID: 30428923 PMCID: PMC6236881 DOI: 10.1186/s13071-018-3062-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 08/14/2018] [Indexed: 11/10/2022] Open
Abstract
Vector-borne diseases constitute 17% of all infectious diseases in the world; among the blood-feeding arthropods, ticks transmit the highest number of pathogens. Understanding the interactions between the tick vector, the mammalian host and the pathogens circulating between them is the basis for the successful development of vaccines against ticks or the tick-transmitted pathogens as well as for the development of specific treatments against tick-borne infections. A lot of effort has been put into transcriptomic and proteomic analyses; however, the protein-carbohydrate interactions and the overall glycobiology of ticks and tick-borne pathogens has not been given the importance or priority deserved. Novel (bio)analytical techniques and their availability have immensely increased the possibilities in glycobiology research and thus novel information in the glycobiology of ticks and tick-borne pathogens is being generated at a faster pace each year. This review brings a comprehensive summary of the knowledge on both the glycosylated proteins and the glycan-binding proteins of the ticks as well as the tick-transmitted pathogens, with emphasis on the interactions allowing the infection of both the ticks and the hosts by various bacteria and tick-borne encephalitis virus.
Collapse
Affiliation(s)
- Pavlina Vechtova
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 31, CZ-37005, České Budějovice, Czech Republic. .,Faculty of Science, University of South Bohemia, Branišovská 1760, CZ-37005, České Budějovice, Czech Republic.
| | - Jarmila Sterbova
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 31, CZ-37005, České Budějovice, Czech Republic.,Faculty of Science, University of South Bohemia, Branišovská 1760, CZ-37005, České Budějovice, Czech Republic
| | - Jan Sterba
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 31, CZ-37005, České Budějovice, Czech Republic.,Faculty of Science, University of South Bohemia, Branišovská 1760, CZ-37005, České Budějovice, Czech Republic
| | - Marie Vancova
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 31, CZ-37005, České Budějovice, Czech Republic.,Faculty of Science, University of South Bohemia, Branišovská 1760, CZ-37005, České Budějovice, Czech Republic
| | - Ryan O M Rego
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 31, CZ-37005, České Budějovice, Czech Republic.,Faculty of Science, University of South Bohemia, Branišovská 1760, CZ-37005, České Budějovice, Czech Republic
| | - Martin Selinger
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 31, CZ-37005, České Budějovice, Czech Republic.,Faculty of Science, University of South Bohemia, Branišovská 1760, CZ-37005, České Budějovice, Czech Republic
| | - Martin Strnad
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 31, CZ-37005, České Budějovice, Czech Republic.,Faculty of Science, University of South Bohemia, Branišovská 1760, CZ-37005, České Budějovice, Czech Republic
| | - Maryna Golovchenko
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 31, CZ-37005, České Budějovice, Czech Republic
| | - Nataliia Rudenko
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 31, CZ-37005, České Budějovice, Czech Republic
| | - Libor Grubhoffer
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 31, CZ-37005, České Budějovice, Czech Republic.,Faculty of Science, University of South Bohemia, Branišovská 1760, CZ-37005, České Budějovice, Czech Republic
| |
Collapse
|
16
|
Bakshi M, Kim TK, Mulenga A. Disruption of blood meal-responsive serpins prevents Ixodes scapularis from feeding to repletion. Ticks Tick Borne Dis 2018; 9:506-518. [PMID: 29396196 PMCID: PMC5857477 DOI: 10.1016/j.ttbdis.2018.01.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 01/04/2018] [Accepted: 01/05/2018] [Indexed: 12/29/2022]
Abstract
Serine protease inhibitors (serpins) are thought to mediate the tick's evasion of the host's serine protease-mediated defense pathways such as inflammation and blood clotting. This study describes characterization and target validation of 11 blood meal-responsive serpins that are associated with nymph and adult Ixodes scapularis tick feeding as revealed by quantitative (q)RT-PCR and RNAi silencing analyses. Given the high number of targets, we used combinatorial (co) RNAi silencing to disrupt candidate serpins in two groups (G): seven highly identical and four non-identical serpins based on amino acid identities, here after called GI and GII respectively. We show that injection of both GI and GII co-dsRNA into unfed nymph and adult I. scapularis ticks triggered suppression of cognate serpin mRNA. We show that disruption of GII, but not GI serpins significantly reduced feeding efficiency of both nymph and adult I. scapularis ticks. Knockdown of GII serpin transcripts caused significant respective mortalities of ≤40 and 71% of nymphal and adult ticks that occurred within 24-48 h of attachment. This is significant, as the observed lethality preceded the tick feeding period when transmission of tick borne pathogens is predominant. We suspect that some of the GII serpins (S9, S17, S19 and S32) play roles in the tick detachment process in that upon detachment, mouthparts of GII co-dsRNA injected were covered with a whitish gel-like tissue that could be the tick cement cone. Normally, ticks do not retain tissue on their mouthparts upon detachment. Furthermore, disruption of GII serpins reduced tick blood meal sizes and the adult tick's ability to convert the blood meal to eggs. We discuss our data with reference to tick feeding physiology and conclude that some of the GII serpins are potential targets for anti-tick vaccine development.
Collapse
Affiliation(s)
- Mariam Bakshi
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, 422 Raymond Stotzer, TAMU 4467, College Station, TX 77843, USA
| | - Tae Kwon Kim
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, 422 Raymond Stotzer, TAMU 4467, College Station, TX 77843, USA
| | - Albert Mulenga
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, 422 Raymond Stotzer, TAMU 4467, College Station, TX 77843, USA.
| |
Collapse
|
17
|
Rodrigues V, Fernandez B, Vercoutere A, Chamayou L, Andersen A, Vigy O, Demettre E, Seveno M, Aprelon R, Giraud-Girard K, Stachurski F, Loire E, Vachiéry N, Holzmuller P. Immunomodulatory Effects of Amblyomma variegatum Saliva on Bovine Cells: Characterization of Cellular Responses and Identification of Molecular Determinants. Front Cell Infect Microbiol 2018; 7:521. [PMID: 29354598 PMCID: PMC5759025 DOI: 10.3389/fcimb.2017.00521] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 12/07/2017] [Indexed: 12/25/2022] Open
Abstract
The tropical bont tick, Amblyomma variegatum, is a tick species of veterinary importance and is considered as one of major pest of ruminants in Africa and in the Caribbean. It causes direct skin lesions, transmits heartwater, and reactivates bovine dermatophilosis. Tick saliva is reported to affect overall host responses through immunomodulatory and anti-inflammatory molecules, among other bioactive molecules. The general objective of this study was to better understand the role of saliva in interaction between the Amblyomma tick and the host using cellular biology approaches and proteomics, and to discuss its impact on disease transmission and/or activation. We first focused on the immuno-modulating effects of semi-fed A. variegatum female saliva on bovine peripheral blood mononuclear cells (PBMC) and monocyte-derived macrophages in vitro. We analyzed its immuno-suppressive properties by measuring the effect of saliva on PBMC proliferation, and observed a significant decrease in ConA-stimulated PBMC lymphoproliferation. We then studied the effect of saliva on bovine macrophages using flow cytometry to analyze the expression of MHC-II and co-stimulation molecules (CD40, CD80, and CD86) and by measuring the production of nitric oxide (NO) and pro- or anti-inflammatory cytokines. We observed a significant decrease in the expression of MHC-II, CD40, and CD80 molecules, associated with decreased levels of IL-12-p40 and TNF-α and increased level of IL-10, which could explain the saliva-induced modulation of NO. To elucidate these immunomodulatory effects, crude saliva proteins were analyzed using proteomics with an Orbitrap Elite mass spectrometer. Among the 336 proteins identified in A. variegatum saliva, we evidenced bioactive molecules exhibiting anti-inflammatory, immuno-modulatory, and anti-oxidant properties (e.g., serpins, phospholipases A2, heme lipoprotein). We also characterized an intriguing ubiquitination complex that could be involved in saliva-induced immune modulation of the host. We propose a model for the interaction between A. variegatum saliva and host immune cells that could have an effect during tick feeding by favoring pathogen dissemination or activation by reducing the efficiency of host immune response to the corresponding tick-borne diseases.
Collapse
Affiliation(s)
- Valérie Rodrigues
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement, UMR ASTRE "Animal, Santé, Territoire, Risques et Ecosystèmes,"Montpellier, France.,ASTRE, Université de Montpellier (I-MUSE), CIRAD, Institut National de la Recherche Agronomique, Montpellier, France
| | - Bernard Fernandez
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement, UMR ASTRE "Animal, Santé, Territoire, Risques et Ecosystèmes,"Montpellier, France.,ASTRE, Université de Montpellier (I-MUSE), CIRAD, Institut National de la Recherche Agronomique, Montpellier, France
| | - Arthur Vercoutere
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement, UMR ASTRE "Animal, Santé, Territoire, Risques et Ecosystèmes,"Montpellier, France.,ASTRE, Université de Montpellier (I-MUSE), CIRAD, Institut National de la Recherche Agronomique, Montpellier, France
| | - Léo Chamayou
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement, UMR ASTRE "Animal, Santé, Territoire, Risques et Ecosystèmes,"Montpellier, France.,ASTRE, Université de Montpellier (I-MUSE), CIRAD, Institut National de la Recherche Agronomique, Montpellier, France
| | - Alexandre Andersen
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement, UMR ASTRE "Animal, Santé, Territoire, Risques et Ecosystèmes,"Montpellier, France.,ASTRE, Université de Montpellier (I-MUSE), CIRAD, Institut National de la Recherche Agronomique, Montpellier, France
| | - Oana Vigy
- Institut de Génomique Fonctionnelle, Centre Nationnal de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Université de Montpellier, Montpellier, France
| | - Edith Demettre
- BioCampus Montpellier, Centre Nationnal de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Université de Montpellier, Montpellier, France
| | - Martial Seveno
- BioCampus Montpellier, Centre Nationnal de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Université de Montpellier, Montpellier, France
| | - Rosalie Aprelon
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement, UMR ASTRE "Animal, Santé, Territoire, Risques et Ecosystèmes,"Montpellier, France.,CIRAD, UMR ASTRE, Petit-Bourg, Guadeloupe, France
| | - Ken Giraud-Girard
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement, UMR ASTRE "Animal, Santé, Territoire, Risques et Ecosystèmes,"Montpellier, France.,CIRAD, UMR ASTRE, Petit-Bourg, Guadeloupe, France
| | - Frédéric Stachurski
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement, UMR ASTRE "Animal, Santé, Territoire, Risques et Ecosystèmes,"Montpellier, France.,ASTRE, Université de Montpellier (I-MUSE), CIRAD, Institut National de la Recherche Agronomique, Montpellier, France
| | - Etienne Loire
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement, UMR ASTRE "Animal, Santé, Territoire, Risques et Ecosystèmes,"Montpellier, France.,ASTRE, Université de Montpellier (I-MUSE), CIRAD, Institut National de la Recherche Agronomique, Montpellier, France
| | - Nathalie Vachiéry
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement, UMR ASTRE "Animal, Santé, Territoire, Risques et Ecosystèmes,"Montpellier, France.,ASTRE, Université de Montpellier (I-MUSE), CIRAD, Institut National de la Recherche Agronomique, Montpellier, France.,CIRAD, UMR ASTRE, Petit-Bourg, Guadeloupe, France
| | - Philippe Holzmuller
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement, UMR ASTRE "Animal, Santé, Territoire, Risques et Ecosystèmes,"Montpellier, France.,ASTRE, Université de Montpellier (I-MUSE), CIRAD, Institut National de la Recherche Agronomique, Montpellier, France
| |
Collapse
|
18
|
Antunes S, Rosa C, Couto J, Ferrolho J, Domingos A. Deciphering Babesia-Vector Interactions. Front Cell Infect Microbiol 2017; 7:429. [PMID: 29034218 PMCID: PMC5627281 DOI: 10.3389/fcimb.2017.00429] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 09/19/2017] [Indexed: 12/11/2022] Open
Abstract
Understanding host-pathogen-tick interactions remains a vitally important issue that might be better understood by basic research focused on each of the dyad interplays. Pathogens gain access to either the vector or host during tick feeding when ticks are confronted with strong hemostatic, inflammatory and immune responses. A prominent example of this is the Babesia spp.—tick—vertebrate host relationship. Babesia spp. are intraerythrocytic apicomplexan organisms spread worldwide, with a complex life cycle. The presence of transovarial transmission in almost all the Babesia species is the main difference between their life cycle and that of other piroplasmida. With more than 100 species described so far, Babesia are the second most commonly found blood parasite of mammals after trypanosomes. The prevalence of Babesia spp. infection is increasing worldwide and is currently classified as an emerging zoonosis. Babesia microti and Babesia divergens are the most frequent etiological agents associated with human babesiosis in North America and Europe, respectively. Although the Babesia-tick system has been extensively researched, the currently available prophylactic and control methods are not efficient, and chemotherapeutic treatment is limited. Studying the molecular changes induced by the presence of Babesia in the vector will not only elucidate the strategies used by the protozoa to overcome mechanical and immune barriers, but will also contribute toward the discovery of important tick molecules that have a role in vector capacity. This review provides an overview of the identified molecules involved in Babesia-tick interactions, with an emphasis on the fundamentally important ones for pathogen acquisition and transmission.
Collapse
Affiliation(s)
- Sandra Antunes
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Catarina Rosa
- Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Joana Couto
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Joana Ferrolho
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Ana Domingos
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisbon, Portugal
| |
Collapse
|
19
|
Šimo L, Kazimirova M, Richardson J, Bonnet SI. The Essential Role of Tick Salivary Glands and Saliva in Tick Feeding and Pathogen Transmission. Front Cell Infect Microbiol 2017; 7:281. [PMID: 28690983 PMCID: PMC5479950 DOI: 10.3389/fcimb.2017.00281] [Citation(s) in RCA: 206] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 06/08/2017] [Indexed: 12/30/2022] Open
Abstract
As long-term pool feeders, ticks have developed myriad strategies to remain discreetly but solidly attached to their hosts for the duration of their blood meal. The critical biological material that dampens host defenses and facilitates the flow of blood-thus assuring adequate feeding-is tick saliva. Saliva exhibits cytolytic, vasodilator, anticoagulant, anti-inflammatory, and immunosuppressive activity. This essential fluid is secreted by the salivary glands, which also mediate several other biological functions, including secretion of cement and hygroscopic components, as well as the watery component of blood as regards hard ticks. When salivary glands are invaded by tick-borne pathogens, pathogens may be transmitted via saliva, which is injected alternately with blood uptake during the tick bite. Both salivary glands and saliva thus play a key role in transmission of pathogenic microorganisms to vertebrate hosts. During their long co-evolution with ticks and vertebrate hosts, microorganisms have indeed developed various strategies to exploit tick salivary molecules to ensure both acquisition by ticks and transmission, local infection and systemic dissemination within the vertebrate host.
Collapse
Affiliation(s)
- Ladislav Šimo
- UMR BIPAR, INRA, Ecole Nationale Vétérinaire d'Alfort, ANSES, Université Paris-EstMaisons-Alfort, France
| | - Maria Kazimirova
- Institute of Zoology, Slovak Academy of SciencesBratislava, Slovakia
| | - Jennifer Richardson
- UMR Virologie, INRA, Ecole Nationale Vétérinaire d'Alfort, ANSES, Université Paris-EstMaisons-Alfort, France
| | - Sarah I. Bonnet
- UMR BIPAR, INRA, Ecole Nationale Vétérinaire d'Alfort, ANSES, Université Paris-EstMaisons-Alfort, France
| |
Collapse
|
20
|
Ixodes ricinus immunogenic saliva protein, homologue to Amblyomma americanum AV422: Determining its potential for use in tick bite confirmation. Ticks Tick Borne Dis 2017; 8:391-395. [PMID: 28119040 DOI: 10.1016/j.ttbdis.2017.01.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 12/30/2016] [Accepted: 01/04/2017] [Indexed: 11/21/2022]
Abstract
Tick bites often go unnoticed, so specific reliable tests are needed to confirm them for prompt diagnosis and treatment of tick-borne diseases. One of the promising candidates for developing such a test is AV422, a tick saliva protein that has been conserved across tick genera. In this study, we demonstrate the potential of the AV422 homologue from Ixodes ricinus to be used for tick bite detection for both Prostriata and Metastriata. We expressed recombinant (r) I. ricinus (Ir) AV422 in E. coli and subjected it to Western blot analysis using rat antibodies to saliva proteins of both I. ricinus (Prostriata) and Dermacentor reticulatus (Metastriata) larvae. Our data demonstrate that rIrAV422 specifically bound to antibodies from sera of rats used for both I. ricinus and D. reticulatus larvae feeding, but not to antibodies from control serum, emphasizing its specificity since tick bites were the sole cause of sera reactivity.
Collapse
|
21
|
Silva NCS, Vale VF, Franco PF, Gontijo NF, Valenzuela JG, Pereira MH, Sant'Anna MRV, Rodrigues DS, Lima WS, Fux B, Araujo RN. Saliva of Rhipicephalus (Boophilus) microplus (Acari: Ixodidae) inhibits classical and alternative complement pathways. Parasit Vectors 2016; 9:445. [PMID: 27515662 PMCID: PMC4982215 DOI: 10.1186/s13071-016-1726-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 07/25/2016] [Indexed: 01/17/2023] Open
Abstract
Background Rhipicephalus (Boophilus) microplus is the main ectoparasite affecting livestock worldwide. For a successful parasitism, ticks need to evade several immune responses of their hosts, including the activation of the complement system. In spite of the importance of R. microplus, previous work only identified one salivary molecule that blocks the complement system. The current study describes complement inhibitory activities induced by R. microplus salivary components and mechanisms elicited by putative salivary proteins on both classical and alternative complement pathways. Results We found that R. microplus saliva from fully- and partially engorged females was able to inhibit both pathways. Saliva acts strongly at the initial steps of both complement activation pathways. In the classical pathway, the saliva blocked C4 cleavage, and hence, deposition of C4b on the activation surface, suggesting that the inhibition occurs at some point between C1q and C4. In the alternative pathway, saliva acts by binding to initial components of the cascade (C3b and properdin) thereby preventing the C3 convertase formation and reducing C3b production and deposition as well as cleavage of factor B. Saliva has no effect on formation or decay of the C6 to C8 components of the membrane attack complex. Conclusion The saliva of R. microplus is able to inhibit the early steps of classical and alternative pathways of the complement system. Saliva acts by blocking C4 cleavage and deposition of C4b on the classical pathway activation surface and, in the alternative pathway, saliva bind to initial components of the cascade (C3b and properdin) thereby preventing the C3 convertase formation and the production and deposition of additional C3b. Electronic supplementary material The online version of this article (doi:10.1186/s13071-016-1726-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Naylene C S Silva
- Departamento de Parasitologia, Laboratório de Fisiologia de Insetos Hematófagos, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Vladimir F Vale
- Departamento de Parasitologia, Laboratório de Fisiologia de Insetos Hematófagos, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.,Laboratório de Simulídeos e Oncocercose, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, RJ, Brazil
| | - Paula F Franco
- Departamento de Parasitologia, Laboratório de Fisiologia de Insetos Hematófagos, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Nelder F Gontijo
- Departamento de Parasitologia, Laboratório de Fisiologia de Insetos Hematófagos, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, 21941-591, Brazil
| | - Jesus G Valenzuela
- Vector Molecular Biology Section, LMVR, National Institute of Allergy and Infectious Diseases, NIH, Rockville, MD, USA
| | - Marcos H Pereira
- Departamento de Parasitologia, Laboratório de Fisiologia de Insetos Hematófagos, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, 21941-591, Brazil
| | - Mauricio R V Sant'Anna
- Departamento de Parasitologia, Laboratório de Fisiologia de Insetos Hematófagos, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Daniel S Rodrigues
- Empresa de Pesquisa Agropecuária de Minas Gerais, Fazenda Experimental Santa Rita, Rodovia MG 424 km 64, Caixa Postal 295, Prudente de Morais, 35701-970, MG, Brazil
| | - Walter S Lima
- Departamento de Parasitologia, Laboratório de Fisiologia de Insetos Hematófagos, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Blima Fux
- Departamento de Patologia, Universidade Federal do Espírito Santo, Vitória, MG, Brazil
| | - Ricardo N Araujo
- Departamento de Parasitologia, Laboratório de Fisiologia de Insetos Hematófagos, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil. .,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, 21941-591, Brazil.
| |
Collapse
|
22
|
Eggleton P, Bremer E, Dudek E, Michalak M. Calreticulin, a therapeutic target? Expert Opin Ther Targets 2016; 20:1137-47. [DOI: 10.1517/14728222.2016.1164695] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
23
|
De novo assembly and analysis of midgut transcriptome of Haemaphysalis flava and identification of genes involved in blood digestion, feeding and defending from pathogens. INFECTION GENETICS AND EVOLUTION 2016; 38:62-72. [DOI: 10.1016/j.meegid.2015.12.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 11/23/2015] [Accepted: 12/08/2015] [Indexed: 02/07/2023]
|
24
|
Kim TK, Tirloni L, Pinto AFM, Moresco J, Yates JR, da Silva Vaz I, Mulenga A. Ixodes scapularis Tick Saliva Proteins Sequentially Secreted Every 24 h during Blood Feeding. PLoS Negl Trop Dis 2016; 10:e0004323. [PMID: 26751078 PMCID: PMC4709002 DOI: 10.1371/journal.pntd.0004323] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 12/02/2015] [Indexed: 12/31/2022] Open
Abstract
Ixodes scapularis is the most medically important tick species and transmits five of the 14 reportable human tick borne disease (TBD) agents in the USA. This study describes LC-MS/MS identification of 582 tick- and 83 rabbit proteins in saliva of I. scapularis ticks that fed for 24, 48, 72, 96, and 120 h, as well as engorged but not detached (BD), and spontaneously detached (SD). The 582 tick proteins include proteases (5.7%), protease inhibitors (7.4%), unknown function proteins (22%), immunity/antimicrobial (2.6%), lipocalin (3.1%), heme/iron binding (2.6%), extracellular matrix/ cell adhesion (2.2%), oxidant metabolism/ detoxification (6%), transporter/ receptor related (3.2%), cytoskeletal (5.5%), and housekeeping-like (39.7%). Notable observations include: (i) tick saliva proteins of unknown function accounting for >33% of total protein content, (ii) 79% of proteases are metalloproteases, (iii) 13% (76/582) of proteins in this study were found in saliva of other tick species and, (iv) ticks apparently selectively inject functionally similar but unique proteins every 24 h, which we speculate is the tick's antigenic variation equivalent strategy to protect important tick feeding functions from host immune system. The host immune responses to proteins present in 24 h I. scapularis saliva will not be effective at later feeding stages. Rabbit proteins identified in our study suggest the tick's strategic use of host proteins to modulate the feeding site. Notably fibrinogen, which is central to blood clotting and wound healing, was detected in high abundance in BD and SD saliva, when the tick is preparing to terminate feeding and detach from the host. A remarkable tick adaptation is that the feeding lesion is completely healed when the tick detaches from the host. Does the tick concentrate fibrinogen at the feeding site to aide in promoting healing of the feeding lesion? Overall, these data provide broad insight into molecular mechanisms regulating different tick feeding phases. These data set the foundation for in depth I. scapularis tick feeding physiology and TBD transmission studies.
Collapse
Affiliation(s)
- Tae Kwon Kim
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, Texas, United States of America
| | - Lucas Tirloni
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, Texas, United States of America
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Antônio F. M. Pinto
- Centro de Pesquisas em Biologia Molecular e Funcional, Instituto Nacional de Ciência e Tecnologia em Tuberculose (INCT-TB), Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Rio Grande do Sul, Brazil
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California, United States of America
| | - James Moresco
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California, United States of America
| | - John R. Yates
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Itabajara da Silva Vaz
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
- Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Albert Mulenga
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, Texas, United States of America
- * E-mail:
| |
Collapse
|
25
|
Guiguet A, Dubreuil G, Harris MO, Appel HM, Schultz JC, Pereira MH, Giron D. Shared weapons of blood- and plant-feeding insects: Surprising commonalities for manipulating hosts. JOURNAL OF INSECT PHYSIOLOGY 2016; 84:4-21. [PMID: 26705897 DOI: 10.1016/j.jinsphys.2015.12.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 12/14/2015] [Accepted: 12/15/2015] [Indexed: 05/04/2023]
Abstract
Insects that reprogram host plants during colonization remind us that the insect side of plant-insect story is just as interesting as the plant side. Insect effectors secreted by the salivary glands play an important role in plant reprogramming. Recent discoveries point to large numbers of salivary effectors being produced by a single herbivore species. Since genetic and functional characterization of effectors is an arduous task, narrowing the field of candidates is useful. We present ideas about types and functions of effectors from research on blood-feeding parasites and their mammalian hosts. Because of their importance for human health, blood-feeding parasites have more tools from genomics and other - omics than plant-feeding parasites. Four themes have emerged: (1) mechanical damage resulting from attack by blood-feeding parasites triggers "early danger signals" in mammalian hosts, which are mediated by eATP, calcium, and hydrogen peroxide, (2) mammalian hosts need to modulate their immune responses to the three "early danger signals" and use apyrases, calreticulins, and peroxiredoxins, respectively, to achieve this, (3) blood-feeding parasites, like their mammalian hosts, rely on some of the same "early danger signals" and modulate their immune responses using the same proteins, and (4) blood-feeding parasites deploy apyrases, calreticulins, and peroxiredoxins in their saliva to manipulate the "danger signals" of their mammalian hosts. We review emerging evidence that plant-feeding insects also interfere with "early danger signals" of their hosts by deploying apyrases, calreticulins and peroxiredoxins in saliva. Given emerging links between these molecules, and plant growth and defense, we propose that these effectors interfere with phytohormone signaling, and therefore have a special importance for gall-inducing and leaf-mining insects, which manipulate host-plants to create better food and shelter.
Collapse
Affiliation(s)
- Antoine Guiguet
- Institut de Recherche sur la Biologie de l'Insecte, UMR 7261 CNRS - Université François-Rabelais de Tours, 37200 Tours, France; Département de Biologie, École Normale Supérieure de Lyon, 69007 Lyon, France
| | - Géraldine Dubreuil
- Institut de Recherche sur la Biologie de l'Insecte, UMR 7261 CNRS - Université François-Rabelais de Tours, 37200 Tours, France
| | - Marion O Harris
- Department of Entomology, North Dakota State University, Fargo, ND 58105, USA; Le Studium Loire Valley Institute for Advanced Studies, 45000 Orléans, France
| | - Heidi M Appel
- Life Science Center, University of Missouri, Columbia, MO 65211, USA
| | - Jack C Schultz
- Life Science Center, University of Missouri, Columbia, MO 65211, USA
| | - Marcos H Pereira
- Le Studium Loire Valley Institute for Advanced Studies, 45000 Orléans, France; Laboratório de Fisiologia de Insectos Hematófagos, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - David Giron
- Institut de Recherche sur la Biologie de l'Insecte, UMR 7261 CNRS - Université François-Rabelais de Tours, 37200 Tours, France.
| |
Collapse
|
26
|
Kim TK, Radulovic Z, Mulenga A. Target validation of highly conserved Amblyomma americanum tick saliva serine protease inhibitor 19. Ticks Tick Borne Dis 2015; 7:405-14. [PMID: 26746129 DOI: 10.1016/j.ttbdis.2015.12.017] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 12/20/2015] [Accepted: 12/21/2015] [Indexed: 12/27/2022]
Abstract
Amblyomma americanum tick serine protease inhibitor (serpin, AAS) 19, is a highly conserved protein that is characterized by its functional domain being 100% conserved across tick species. We also reported that AAS19 was an immunogenic tick saliva protein with anti-haemostatic functions and an inhibitor of trypsin-like proteases including five of the eight serine protease factors in the blood clotting cascade. In this study the goal was to validate the importance of AAS19 in A. americanum tick physiology, assess immunogenicity and investigate tick vaccine efficacy of yeast-expressed recombinant (r) AAS19. We confirm that AAS19 is important to A. americanum fitness and blood meal feeding. AAS19 mRNA disruption by RNAi silencing caused ticks to obtain blood meals that were 50% smaller than controls, and treated ticks being morphologically deformed with 100% of the deformed ticks dying in incubation. We show that rAAS19 is highly immunogenic in that two 500 μg inoculations mixed with TiterMax Gold adjuvant provoked antibody titers of more than 1:320,000 that specifically reacted with native AAS19 in unfed and partially fed tick tissue. Since AAS19 is injected into animals during tick feeding, we challenge infested immunized rabbits twice to test if tick infestations of immunized rabbits could act as booster. While in the first infestation significantly smaller tick blood meals were observed on one of the two immunized rabbits, smaller blood meals were observed on both rabbits, but 60% of ticks that engorged on immunized rabbits in the second infestation failed to lay eggs. It is notable that ticks fed faster on immunized animals despite obtaining smaller blood meals. We conclude that rAAS19 is a potential component of cocktail tick vaccine.
Collapse
Affiliation(s)
- Tae K Kim
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, TX, USA
| | - Zeljko Radulovic
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, TX, USA
| | - Albert Mulenga
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
27
|
Conserved Amblyomma americanum tick Serpin19, an inhibitor of blood clotting factors Xa and XIa, trypsin and plasmin, has anti-haemostatic functions. Int J Parasitol 2015; 45:613-27. [PMID: 25957161 DOI: 10.1016/j.ijpara.2015.03.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 03/21/2015] [Accepted: 03/23/2015] [Indexed: 12/21/2022]
Abstract
Tick saliva serine protease inhibitors (serpins) facilitate tick blood meal feeding through inhibition of protease mediators of host defense pathways. We previously identified a highly conserved Amblyomma americanum serpin 19 that is characterised by its reactive center loop being 100% conserved in ixodid ticks. In this study, biochemical characterisation reveals that the ubiquitously transcribed A. americanum serpin 19 is an anti-coagulant protein, inhibiting the activity of five of the eight serine protease blood clotting factors. Pichia pastoris-expressed recombinant (r) A. americanum serpin 19 inhibits the enzyme activity of trypsin, plasmin and blood clotting factors (f) Xa and XIa, with stoichiometry of inhibition estimated at 5.1, 9.4, 23.8 and 28, respectively. Similar to typical inhibitory serpins, recombinant A. americanum serpin 19 forms irreversible complexes with trypsin, fXa and fXIa. At a higher molar excess of recombinant A. americanum serpin 19, fXIIa is inhibited by 82.5%, and thrombin (fIIa), fIXa, chymotrypsin and tryptase are inhibited moderately by 14-29%. In anti-hemostatic functional assays, recombinant A. americanum serpin 19 inhibits thrombin but not ADP and cathepsin G activated platelet aggregation, delays clotting in recalcification and thrombin time assays by up to 250s, and up to 40s in the activated partial thromboplastin time assay. Given A. americanum serpin 19 high cross-tick species conservation, and specific reactivity of recombinant A. americanum serpin 19 with antibodies to A. americanum tick saliva proteins, we conclude that recombinant A. americanum serpin 19 is a potential candidate for development of a universal tick vaccine.
Collapse
|