1
|
Croci C, Erriquez L, Bisaglia B, Bellinzona G, Olivieri E, Sassera D, Castelli M. Genome sequence of Ehrlichia muris from Ixodes ricinus collected in Italy on a migratory bird provides epidemiological and evolutionary insights. Ticks Tick Borne Dis 2024; 15:102409. [PMID: 39488869 DOI: 10.1016/j.ttbdis.2024.102409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 10/04/2024] [Accepted: 10/06/2024] [Indexed: 11/05/2024]
Abstract
Ticks are prominent vectors of several zoonotic diseases. Tick-borne pathogens include the members of the genus Ehrlichia, which are obligate intracellular bacteria infecting immune and hematopoietic cells. Ehrlichia muris predominantly affects rodents, but was also reported to be a human pathogen. The known geographical distribution of this bacterium ranges from Asia, to the USA and eastern Europe. In the present work, we report the finding of E. muris in an Ixodes ricinus tick collected from a migratory bird (Turdus iliacus) in Italy, southern Europe. We sequenced the total DNA from this tick sample, and, thanks to a dedicated bioinformatic pipeline, selectively assembled the genome of the bacterium, which represents the first one for E. muris from Europe. Phylogenetic and comparative genomic analyses were then performed. Accounting for tick species distribution, bird migratory routes, and molecular phylogeny of the bacterium, it is likely that this bird transported the tick to Italy from an endemic area of E. muris, such as eastern Europe. In addition, comparative genomic analyses highlighted that E. muris and other Ehrlichia spp. display copy number variations in two families of membrane proteins, likely due to recent gene duplication, deletion and recombination events. These differences are probably a source of variability for surface antigens to evade host immunity, with a potential role in host adaptation and specificity. The present results underline the impact of migratory birds on the spread of tick-borne pathogens towards non-endemic areas, highlighting the need for further epidemiological surveillance at bird ringing stations in Italy, and advocating further investigations on possible local transmission of E. muris in competent mammalian hosts.
Collapse
Affiliation(s)
- Carlo Croci
- Department of Biology and Biotechnology, University of Pavia, Italy
| | - Luca Erriquez
- Department of Biology and Biotechnology, University of Pavia, Italy
| | | | - Greta Bellinzona
- Department of Biology and Biotechnology, University of Pavia, Italy
| | - Emanuela Olivieri
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna, Pavia, Italy
| | - Davide Sassera
- Department of Biology and Biotechnology, University of Pavia, Italy; Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Michele Castelli
- Department of Biology and Biotechnology, University of Pavia, Italy.
| |
Collapse
|
2
|
Xu G, Foster E, Ribbe F, Hojgaard A, Eisen RJ, Paull S, Rich SM. Detection of Ehrlichia muris eauclairensis in Blacklegged Ticks ( Ixodes scapularis) and White-Footed Mice ( Peromyscus leucopus) in Massachusetts. Vector Borne Zoonotic Dis 2023. [PMID: 37126383 DOI: 10.1089/vbz.2022.0098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023] Open
Abstract
In 2011, Ehrlichia muris eauclairensis (EME) was described as a human pathogen spread by the blacklegged tick, Ixodes scapularis. Until very recently, its reported distribution was limited to the upper midwestern United States, mainly in Minnesota and Wisconsin. In this study, we report the detection of EME DNA in 4 of 16,146 human biting I. scapularis ticks submitted from Massachusetts to a passive tick surveillance program. Active tick surveillance yielded evidence of EME local transmission in the northeastern United States through detection of EME DNA in 2 of 461 host-seeking I. scapularis nymphs, and in 2 white-footed mice (Peromyscus leucopus) of 491 rodent samples collected in the National Ecological Observatory Network (NEON) Harvard Forest site in Massachusetts.
Collapse
Affiliation(s)
- Guang Xu
- Department of Microbiology, University of Massachusetts-Amherst, Amherst, Massachusetts, USA
| | - Erik Foster
- Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado, USA
| | - Fumiko Ribbe
- Department of Microbiology, University of Massachusetts-Amherst, Amherst, Massachusetts, USA
| | - Andrias Hojgaard
- Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado, USA
| | - Rebecca J Eisen
- Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado, USA
| | - Sara Paull
- National Ecological Observatory Network, Battelle, Boulder, Colorado, USA
| | - Stephen M Rich
- Department of Microbiology, University of Massachusetts-Amherst, Amherst, Massachusetts, USA
| |
Collapse
|
3
|
Eisen L. Rodent-targeted approaches to reduce acarological risk of human exposure to pathogen-infected Ixodes ticks. Ticks Tick Borne Dis 2023; 14:102119. [PMID: 36680999 PMCID: PMC10863499 DOI: 10.1016/j.ttbdis.2023.102119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/04/2023] [Accepted: 01/13/2023] [Indexed: 01/15/2023]
Abstract
In the United States, rodents serve as important hosts of medically important Ixodes ticks, including Ixodes scapularis and Ixodes pacificus, as well as reservoirs for human pathogens, including Anaplasma phagocytophilum, Borrelia burgdorferi sensu stricto (s.s.), and Babesia microti. Over the last four decades, different methods to disrupt enzootic transmission of these pathogens between tick vectors and rodent reservoirs have been developed and evaluated. Early work focused on self-application of topical acaricide by rodents to kill infesting ticks; this resulted in two different types of commercial products based on (i) delivery of permethrin to rodents via impregnated cotton offered as nesting material or (ii) application of fipronil to rodents via an impregnated wick as they navigate through a bait box to reach a food source. More recent work has focused on approaches where acaricides, antibiotics, or a vaccine against Bo. burgdorferi s.s. are delivered orally via rodent food baits. Of these, the oral vaccine and oral acaricide are nearest to commercialization. Other approaches in early stages of development include anti-tick vaccines for rodents and use of heritable genome editing to engineer white-footed mice (Peromyscus leucopus) that are refractory to Bo. burgdorferi s.s. In this review, I first outline general benefits and drawbacks of rodent-targeted tick and pathogen control methods, and then describe the empirical evidence for different approaches to impact enzootic pathogen transmission and acarological risk of human exposure to pathogen-infected Ixodes ticks. Rodent-targeted methods remain promising components of integrated tick management approaches but there are concerns about the robustness of the impact of existing rodent-targeted products across habitats and variable tick host communities, and in some cases also for the implementation cost in relation to what homeowners in Lyme disease endemic areas say they are willing to pay for tick control.
Collapse
Affiliation(s)
- Lars Eisen
- Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 3156 Rampart Road, Fort Collins, CO 80521, United States.
| |
Collapse
|
4
|
Lynn GE, Breuner NE, Hojgaard A, Oliver J, Eisen L, Eisen RJ. A comparison of horizontal and transovarial transmission efficiency of Borrelia miyamotoi by Ixodes scapularis. Ticks Tick Borne Dis 2022; 13:102003. [PMID: 35858517 PMCID: PMC10880489 DOI: 10.1016/j.ttbdis.2022.102003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/01/2022] [Accepted: 07/05/2022] [Indexed: 11/20/2022]
Abstract
Borrelia miyamotoi is a relapsing fever spirochete carried by Ixodes spp. ticks throughout the northern hemisphere. The pathogen is acquired either transovarially (vertically) or horizontally through blood-feeding and passed transtadially across life stages. Despite these complementary modes of transmission, infection prevalence of ticks with B. miyamotoi is typically low (<5%) in natural settings and the relative contributions of the two transmission modes have not been studied extensively. Horizontal transmission of B. miyamotoi (strain CT13-2396 or wild type strain) was initiated using infected Ixodes scapularis larvae or nymphs to expose rodents, which included both the immunocompetent CD-1 laboratory mouse (Mus musculus) and a natural reservoir host, the white-footed mouse (Peromyscus. leucopus), to simulate natural enzootic transmission. Transovarial transmission was evaluated using I. scapularis exposed to B. miyamotoi as either larvae or nymphs feeding on immunocompromised SCID mice (M. musculus) and subsequently fed as females on New Zealand white rabbits. Larvae from infected females were qPCR-tested individually to assess transovarial transmission rates. Tissue tropism of B. miyamotoi in infected ticks was demonstrated using in situ hybridization. Between 1 and 12% of ticks were positive (post-molt) for B. miyamotoi after feeding on groups of CD-1 mice or P. leucopus with evidence of infection, indicating that horizontal transmission was inefficient, regardless of whether infected larvae or nymphs were used to challenge the mice. Transovarial transmission occurred in 7 of 10 egg clutches from infected females. Filial infection prevalence in larvae ranged from 3 to 100% (median 71%). Both larval infection prevalence and spirochete load were highly correlated with maternal spirochete load. Spirochetes were disseminated throughout the tissues of all three stages of unfed ticks, including the salivary glands and female ovarian tissue. The results indicate that while multiple transmission routes contribute to enzootic maintenance of B. miyamotoi, transovarial transmission is likely to be the primary source of infected ticks and therefore risk assessment and tick control strategies should target adult female ticks.
Collapse
Affiliation(s)
- Geoffrey E Lynn
- Division of Vector-borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 3156 Rampart Road, Fort Collins, CO 80521, United States; AgriLife Texas A&M University, 1619 Garner Field Road, Uvalde, TX 78801, United States.
| | - Nicole E Breuner
- Division of Vector-borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 3156 Rampart Road, Fort Collins, CO 80521, United States; Current address: College of Public Health and Human Sciences, Oregon State University, 160 SW 26th St. Corvallis, OR 97331, United States
| | - Andrias Hojgaard
- Division of Vector-borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 3156 Rampart Road, Fort Collins, CO 80521, United States
| | - Jonathan Oliver
- School of Public Health, University of Minnesota, Twin Cities, Minneapolis, MN, United States
| | - Lars Eisen
- Division of Vector-borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 3156 Rampart Road, Fort Collins, CO 80521, United States
| | - Rebecca J Eisen
- Division of Vector-borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 3156 Rampart Road, Fort Collins, CO 80521, United States
| |
Collapse
|
5
|
Larson RT, Bron GM, Lee X, Zembsch TE, Siy PN, Paskewitz SM. Peromyscus maniculatus
(Rodentia: Cricetidae): An overlooked reservoir of tick‐borne pathogens in the Midwest, USA? Ecosphere 2021. [DOI: 10.1002/ecs2.3831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Ryan T. Larson
- Department of Entomology College of Agricultural and Life Sciences University of Wisconsin – Madison 1630 Linden Drive Madison Wisconsin 53706 USA
- Lieutenant Commander Medical Service Corps United States Navy 7700 Arlington Blvd. Ste. 5113 Falls Church Virginia 22042‐5113 USA
- Naval Medical Leader & Professional Development Command (NML&PDC) 8955 Wood Road Bethesda Maryland 20889‐5611 USA
| | - Gebbiena M. Bron
- Department of Entomology College of Agricultural and Life Sciences University of Wisconsin – Madison 1630 Linden Drive Madison Wisconsin 53706 USA
| | - Xia Lee
- Department of Entomology College of Agricultural and Life Sciences University of Wisconsin – Madison 1630 Linden Drive Madison Wisconsin 53706 USA
| | - Tela E. Zembsch
- Department of Entomology College of Agricultural and Life Sciences University of Wisconsin – Madison 1630 Linden Drive Madison Wisconsin 53706 USA
| | - Patricia N. Siy
- Department of Entomology College of Agricultural and Life Sciences University of Wisconsin – Madison 1630 Linden Drive Madison Wisconsin 53706 USA
| | - Susan M. Paskewitz
- Department of Entomology College of Agricultural and Life Sciences University of Wisconsin – Madison 1630 Linden Drive Madison Wisconsin 53706 USA
| |
Collapse
|
6
|
Zembsch TE, Lee X, Bron GM, Bartholomay LC, Paskewitz SM. Coinfection of Ixodes scapularis (Acari: Ixodidae) Nymphs With Babesia spp. (Piroplasmida: Babesiidae) and Borrelia burgdorferi (Spirochaetales: Spirochaetaceae) in Wisconsin. JOURNAL OF MEDICAL ENTOMOLOGY 2021; 58:1891-1899. [PMID: 33855361 DOI: 10.1093/jme/tjab056] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Indexed: 06/12/2023]
Abstract
Borrelia burgdorferi, the spirochete that causes Lyme disease, is endemic and widespread in Wisconsin. Research in the northeastern United States has revealed a positive association between Babesia microti, the main pathogen that causes babesiosis in humans, and Bo. burgdorferi in humans and in ticks. This study was conducted to examine associations between the disease agents in the Upper midwestern United States. Ixodes scapularis Say nymphs (N = 2,858) collected between 2015 and 2017 from nine locations in Wisconsin were tested for Babesia spp. and Borrelia spp. using real-time PCR. Two species of Babesia were detected; Ba. microti and Babesia odocoilei (a parasite of members of the family Cervidae). Prevalence of infection at the nine locations ranged from 0 to 13% for Ba. microti, 11 to 31% for Bo. burgdorferi sensu stricto, and 5.7 to 26% for Ba. odocoilei. Coinfection of nymphs with Bo. burgdorferi and Ba. odocoilei was detected in eight of the nine locations and significant positive associations were observed in two of the eight locations. The prevalence of nymphal coinfection with both and Bo. burgdorferi and Ba. microti ranged from 0.81 to 6.5%. These two pathogens were significantly positively associated in one of the five locations where both pathogens were detected. In the other four locations, the observed prevalence of coinfection was higher than expected in all but one site-year. Clinics and healthcare providers should be aware of the association between Ba. microti and Bo. burgdorferi pathogens when treating patients who report tick bites.
Collapse
Affiliation(s)
- T E Zembsch
- Department of Entomology, College of Agricultural and Life Sciences, University of Wisconsin-Madison, 1630 Linden Drive, Madison, WI 53706, USA
| | - X Lee
- Department of Entomology, College of Agricultural and Life Sciences, University of Wisconsin-Madison, 1630 Linden Drive, Madison, WI 53706, USA
| | - G M Bron
- Department of Entomology, College of Agricultural and Life Sciences, University of Wisconsin-Madison, 1630 Linden Drive, Madison, WI 53706, USA
| | - L C Bartholomay
- Department of Pathobiological Sciences, College of Veterinary Medicine, University of Wisconsin-Madison, 2015 Linden Drive, Madison, WI 53706, USA
| | - S M Paskewitz
- Department of Entomology, College of Agricultural and Life Sciences, University of Wisconsin-Madison, 1630 Linden Drive, Madison, WI 53706, USA
| |
Collapse
|
7
|
Tsao JI, Hamer SA, Han S, Sidge JL, Hickling GJ. The Contribution of Wildlife Hosts to the Rise of Ticks and Tick-Borne Diseases in North America. JOURNAL OF MEDICAL ENTOMOLOGY 2021; 58:1565-1587. [PMID: 33885784 DOI: 10.1093/jme/tjab047] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Indexed: 05/09/2023]
Abstract
Wildlife vertebrate hosts are integral to enzootic cycles of tick-borne pathogens, and in some cases have played key roles in the recent rise of ticks and tick-borne diseases in North America. In this forum article, we highlight roles that wildlife hosts play in the maintenance and transmission of zoonotic, companion animal, livestock, and wildlife tick-borne pathogens. We begin by illustrating how wildlife contribute directly and indirectly to the increase and geographic expansion of ticks and their associated pathogens. Wildlife provide blood meals for tick growth and reproduction; serve as pathogen reservoirs; and can disperse ticks and pathogens-either through natural movement (e.g., avian migration) or through human-facilitated movement (e.g., wildlife translocations and trade). We then discuss opportunities to manage tick-borne disease through actions directed at wildlife hosts. To conclude, we highlight key gaps in our understanding of the ecology of tick-host interactions, emphasizing that wildlife host communities are themselves a very dynamic component of tick-pathogen-host systems and therefore complicate management of tick-borne diseases, and should be taken into account when considering host-targeted approaches. Effective management of wildlife to reduce tick-borne disease risk further requires consideration of the 'human dimensions' of wildlife management. This includes understanding the public's diverse views and values about wildlife and wildlife impacts-including the perceived role of wildlife in fostering tick-borne diseases. Public health agencies should capitalize on the expertise of wildlife agencies when developing strategies to reduce tick-borne disease risks.
Collapse
Affiliation(s)
- Jean I Tsao
- Department of Fisheries and Wildlife, Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, MI, USA
| | - Sarah A Hamer
- Department of Veterinary Integrative Biosciences, and Schubot Center for Avian Health, Department of Veterinary Pathology, Texas A&M University, College Station, TX, USA
| | - Seungeun Han
- Department of Disease Control and Epidemiology, National Veterinary Institute (SVA), Uppsala, Sweden
| | - Jennifer L Sidge
- Michigan Department of Agriculture and Rural Development, Lansing, MI, USA
| | - Graham J Hickling
- Center for Wildlife Health, Department of Forestry, Wildlife and Fisheries, University of Tennessee, Knoxville, TN, USA
| |
Collapse
|
8
|
Humane Use of Cardiac Puncture for Non-Terminal Phlebotomy of Wild-Caught and Released Peromyscus spp. Animals (Basel) 2020; 10:ani10050826. [PMID: 32397470 PMCID: PMC7278385 DOI: 10.3390/ani10050826] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 04/28/2020] [Accepted: 05/07/2020] [Indexed: 11/17/2022] Open
Abstract
Simple Summary When researching tick-borne diseases and their management in the interest of improving public health, blood samples often need to be obtained from small rodents, which are the main source of the various pathogens that are picked up by ticks and can infect humans. In such research projects, animals are handled and released back into the environment with the least amount of harm done to ensure their continued survival. Post-sampling animal care is not an option on released animals as it is in a laboratory in a captive setting, therefore, sampling protocols need to reflect this fact. Blood sampling via cardiac puncture (sampling blood directly from the heart) tends to have a negative connotation because it is often associated with a procedure used for humane euthanasia in which sedated animals are bled to death per study protocols. We argue its use for obtaining blood samples is preferred in a field setting in which rodents are released. We show that our recapture and mortality rates rival or are better than other studies that utilize more familiar techniques. Death is not a requirement of its use and we suggest cardiac puncture for blood sampling is in the best interest of animal welfare because it does not make small rodents more prone to infection or negatively impact their vision or survival as can other blood sampling procedures. Abstract The cardiac puncture technique for obtaining relatively large volume (50–150 µL) blood samples from sedated rodents has been used in research for nearly a century. Historically, its use to phlebotomize and then release live rodents was more common. However, recently its use in a non-terminal capacity frequently imparts negative connotations in part because exsanguination of sedated animals via cardiac puncture is now an American Veterinary Medical Association-approved euthanasia technique. This association has resulted in ethical concerns by manuscript reviewers and in a few instances, outright refusal by some peer-reviewed journals to publish research that utilized the technique. To counter the perceived negative associations with its non-terminal use, we summarized nearly two decades (2001–2019) of capture and handling data throughout Connecticut, resulting in over 7000 cardiac punctures performed on nearly 5000 sedated, live-captured and released Peromyscus spp. We show that our total handling mortality rate (3.7%) was comparable, if not lower, than similar field studies that utilized other phlebotomy techniques. Many public health, integrated tick management, and vector-borne disease ecology studies require samples from individual wild-caught Peromyscus spp. over time to determine intervention efficacy and pathogen infection monitoring, and in such field studies, post-operative care is not an option. Proper execution of cardiac puncture does not increase susceptibility of individuals to predation upon release as can potential ocular abnormalities or infections that can occur as the result of use of other techniques. We posit that neither exsanguination nor resulting euthanasia are requirements of cardiac puncture and that its use is entirely appropriate for obtaining blood samples from live-captured and released Peromyscus spp. Properly performed cardiac puncture is an excellent technique to obtain blood samples from sedated, individual Peromyscus spp. on multiple appropriately-spaced occasions over single trapping seasons while keeping animal welfare a top priority.
Collapse
|
9
|
Ehrlichia Isolate from a Minnesota Tick: Characterization and Genetic Transformation. Appl Environ Microbiol 2019; 85:AEM.00866-19. [PMID: 31076433 DOI: 10.1128/aem.00866-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 05/02/2019] [Indexed: 11/20/2022] Open
Abstract
Ehrlichia muris subsp. eauclairensis is recognized as the etiological agent of human ehrlichiosis in Minnesota and Wisconsin. We describe the culture isolation of this organism from a field-collected tick and detail its relationship to other species of Ehrlichia The isolate could be grown in a variety of cultured cell lines and was effectively transmitted between Ixodes scapularis ticks and rodents, with PCR and microscopy demonstrating a broad pattern of dissemination in arthropod and mammalian tissues. Conversely, Amblyomma americanum ticks were not susceptible to infection by the Ehrlichia Histologic sections further revealed that the wild-type isolate was highly virulent for mice and hamsters, causing severe systemic disease that was frequently lethal. A Himar1 transposase system was used to create mCherry- and mKate-expressing EmCRT mutants, which retained the ability to infect rodents and ticks.IMPORTANCE Ehrlichioses are zoonotic diseases caused by intracellular bacteria that are transmitted by ixodid ticks. Here we report the culture isolation of bacteria which are closely related to, or the same as the Ehrlichia muris subsp. eauclairensis, a recently recognized human pathogen. EmCRT, obtained from a tick removed from deer at Camp Ripley, MN, is the second isolate of this subspecies described and is distinctive in that it was cultured directly from a field-collected tick. The isolate's cellular tropism, pathogenic changes caused in rodent tissues, and tick transmission to and from rodents are detailed in this study. We also describe the genetic mutants created from the EmCRT isolate, which are valuable tools for the further study of this intracellular pathogen.
Collapse
|
10
|
Johnson TL, Boegler KA, Clark RJ, Delorey MJ, Bjork JKH, Dorr FM, Schiffman EK, Neitzel DF, Monaghan AJ, Eisen RJ. An Acarological Risk Model Predicting the Density and Distribution of Host-Seeking Ixodes scapularis Nymphs in Minnesota. Am J Trop Med Hyg 2018; 98:1671-1682. [PMID: 29637876 PMCID: PMC6086181 DOI: 10.4269/ajtmh.17-0539] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Ixodes scapularis is the vector of at least seven human pathogens in Minnesota, two of which are known to cause Lyme disease (Borrelia burgdorferi sensu stricto and Borrelia mayonii). In Minnesota, the statewide incidence of Lyme disease and other I. scapularis–borne diseases and the geographic extent over which cases have been reported have both increased substantially over the last two decades. These changes correspond with an expanding distribution of I. scapularis over a similar time frame. Because the risk of exposure to I. scapularis–borne pathogens is likely related to the number of ticks encountered, we developed an acarological risk model predicting the density of host-seeking I. scapularis nymphs (DON) in Minnesota. The model was informed by sampling 81 sites located in 42 counties in Minnesota. Two main foci were predicted by the model to support elevated densities of host-seeking I. scapularis nymphs, which included the seven-county Minneapolis-St. Paul metropolitan area and counties in northern Minnesota, including Lake of the Woods and Koochiching counties. There was substantial heterogeneity observed in predicted DON across the state at the county scale; however, counties classified as high risk for I. scapularis–borne diseases and counties with known established populations of I. scapularis had the highest proportion of the county predicted as suitable for host-seeking nymphs (≥ 0.13 nymphs/100 m2). The model provides insight into areas of potential I. scapularis population expansion and identifies focal areas of predicted suitable habitat within counties where the incidence of I. scapularis–borne diseases has been historically low.
Collapse
Affiliation(s)
- Tammi L Johnson
- Division of Vector-borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado
| | - Karen A Boegler
- Division of Vector-borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado
| | - Rebecca J Clark
- Division of Vector-borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado
| | - Mark J Delorey
- Division of Vector-borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado
| | | | | | | | | | - Andrew J Monaghan
- Research Applications Laboratory, National Center for Atmospheric Research, Boulder, Colorado
| | - Rebecca J Eisen
- Division of Vector-borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado
| |
Collapse
|
11
|
Eisen RJ, Eisen L. The Blacklegged Tick, Ixodes scapularis: An Increasing Public Health Concern. Trends Parasitol 2018; 34:295-309. [PMID: 29336985 PMCID: PMC5879012 DOI: 10.1016/j.pt.2017.12.006] [Citation(s) in RCA: 264] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 12/13/2017] [Accepted: 12/15/2017] [Indexed: 12/23/2022]
Abstract
In the United States, the blacklegged tick, Ixodes scapularis, is a vector of seven human pathogens, including those causing Lyme disease, anaplasmosis, babesiosis, Borrelia miyamotoi disease, Powassan virus disease, and ehrlichiosis associated with Ehrlichia muris eauclarensis. In addition to an accelerated rate of discovery of I. scapularis-borne pathogens over the past two decades, the geographic range of the tick, and incidence and range of I. scapularis-borne disease cases, have increased. Despite knowledge of when and where humans are most at risk of exposure to infected ticks, control of I. scapularis-borne diseases remains a challenge. Human vaccines are not available, and we lack solid evidence for other prevention and control methods to reduce human disease. The way forward is discussed.
Collapse
Affiliation(s)
- Rebecca J Eisen
- Division of Vector-Borne Diseases, National Center for Emerging Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, USA.
| | - Lars Eisen
- Division of Vector-Borne Diseases, National Center for Emerging Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, USA
| |
Collapse
|
12
|
Eisen RJ, Kugeler KJ, Eisen L, Beard CB, Paddock CD. Tick-Borne Zoonoses in the United States: Persistent and Emerging Threats to Human Health. ILAR J 2017; 58:319-335. [PMID: 28369515 PMCID: PMC5610605 DOI: 10.1093/ilar/ilx005] [Citation(s) in RCA: 215] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 02/01/2017] [Indexed: 01/02/2023] Open
Abstract
In the United States, ticks transmit the greatest diversity of arthropod-borne pathogens and are responsible for the most cases of all vector-borne diseases. In recent decades, the number of reported cases of notifiable tick-borne diseases has steadily increased, geographic distributions of many ticks and tick-borne diseases have expanded, and new tick-borne disease agents have been recognized. In this review, we (1) describe the known disease agents associated with the most commonly human-biting ixodid ticks, (2) review the natural histories of these ticks and their associated pathogens, (3) highlight spatial and temporal changes in vector tick distributions and tick-borne disease occurrence in recent decades, and (4) identify knowledge gaps and barriers to more effective prevention of tick-borne diseases. We describe 12 major tick-borne diseases caused by 15 distinct disease agents that are transmitted by the 8 most commonly human-biting ixodid ticks in the United States. Notably, 40% of these pathogens were described within the last two decades. Our assessment highlights the importance of animal studies to elucidate how tick-borne pathogens are maintained in nature, as well as advances in molecular detection of pathogens which has led to the discovery of several new tick-borne disease agents.
Collapse
Affiliation(s)
- Rebecca J Eisen
- Rebecca J. Eisen, PhD, is a Research Biologist in the Bacterial Diseases Branch, Division of Vector-Borne Diseases, Centers for Disease Control and Prevention in Fort Collins, Colorado. Kiersten J. Kugeler, PhD, is an Epidemiologist in the Bacterial Diseases Branch, Division of Vector-Borne Diseases, Centers for Disease Control and Prevention in Fort Collins, Colorado. Lars Eisen, PhD, is a Research Entomologist in the Bacterial Diseases Branch, Division of Vector-Borne Diseases, Centers for Disease Control and Prevention in Fort Collins, Colorado. Charles B. Beard, PhD, is a Branch Chief in the Bacterial Diseases Branch, Division of Vector-Borne Diseases, Centers for Disease Control and Prevention in Fort Collins, Colorado. Christopher D. Paddock, MD, is a Medical Officer/Pathologist in the Rickettsial Zoonoses Branch, Division of Vector-Borne Diseases, Centers for Disease Control and Prevention in Atlanta, Georgia
| | - Kiersten J Kugeler
- Rebecca J. Eisen, PhD, is a Research Biologist in the Bacterial Diseases Branch, Division of Vector-Borne Diseases, Centers for Disease Control and Prevention in Fort Collins, Colorado. Kiersten J. Kugeler, PhD, is an Epidemiologist in the Bacterial Diseases Branch, Division of Vector-Borne Diseases, Centers for Disease Control and Prevention in Fort Collins, Colorado. Lars Eisen, PhD, is a Research Entomologist in the Bacterial Diseases Branch, Division of Vector-Borne Diseases, Centers for Disease Control and Prevention in Fort Collins, Colorado. Charles B. Beard, PhD, is a Branch Chief in the Bacterial Diseases Branch, Division of Vector-Borne Diseases, Centers for Disease Control and Prevention in Fort Collins, Colorado. Christopher D. Paddock, MD, is a Medical Officer/Pathologist in the Rickettsial Zoonoses Branch, Division of Vector-Borne Diseases, Centers for Disease Control and Prevention in Atlanta, Georgia
| | - Lars Eisen
- Rebecca J. Eisen, PhD, is a Research Biologist in the Bacterial Diseases Branch, Division of Vector-Borne Diseases, Centers for Disease Control and Prevention in Fort Collins, Colorado. Kiersten J. Kugeler, PhD, is an Epidemiologist in the Bacterial Diseases Branch, Division of Vector-Borne Diseases, Centers for Disease Control and Prevention in Fort Collins, Colorado. Lars Eisen, PhD, is a Research Entomologist in the Bacterial Diseases Branch, Division of Vector-Borne Diseases, Centers for Disease Control and Prevention in Fort Collins, Colorado. Charles B. Beard, PhD, is a Branch Chief in the Bacterial Diseases Branch, Division of Vector-Borne Diseases, Centers for Disease Control and Prevention in Fort Collins, Colorado. Christopher D. Paddock, MD, is a Medical Officer/Pathologist in the Rickettsial Zoonoses Branch, Division of Vector-Borne Diseases, Centers for Disease Control and Prevention in Atlanta, Georgia
| | - Charles B Beard
- Rebecca J. Eisen, PhD, is a Research Biologist in the Bacterial Diseases Branch, Division of Vector-Borne Diseases, Centers for Disease Control and Prevention in Fort Collins, Colorado. Kiersten J. Kugeler, PhD, is an Epidemiologist in the Bacterial Diseases Branch, Division of Vector-Borne Diseases, Centers for Disease Control and Prevention in Fort Collins, Colorado. Lars Eisen, PhD, is a Research Entomologist in the Bacterial Diseases Branch, Division of Vector-Borne Diseases, Centers for Disease Control and Prevention in Fort Collins, Colorado. Charles B. Beard, PhD, is a Branch Chief in the Bacterial Diseases Branch, Division of Vector-Borne Diseases, Centers for Disease Control and Prevention in Fort Collins, Colorado. Christopher D. Paddock, MD, is a Medical Officer/Pathologist in the Rickettsial Zoonoses Branch, Division of Vector-Borne Diseases, Centers for Disease Control and Prevention in Atlanta, Georgia
| | - Christopher D Paddock
- Rebecca J. Eisen, PhD, is a Research Biologist in the Bacterial Diseases Branch, Division of Vector-Borne Diseases, Centers for Disease Control and Prevention in Fort Collins, Colorado. Kiersten J. Kugeler, PhD, is an Epidemiologist in the Bacterial Diseases Branch, Division of Vector-Borne Diseases, Centers for Disease Control and Prevention in Fort Collins, Colorado. Lars Eisen, PhD, is a Research Entomologist in the Bacterial Diseases Branch, Division of Vector-Borne Diseases, Centers for Disease Control and Prevention in Fort Collins, Colorado. Charles B. Beard, PhD, is a Branch Chief in the Bacterial Diseases Branch, Division of Vector-Borne Diseases, Centers for Disease Control and Prevention in Fort Collins, Colorado. Christopher D. Paddock, MD, is a Medical Officer/Pathologist in the Rickettsial Zoonoses Branch, Division of Vector-Borne Diseases, Centers for Disease Control and Prevention in Atlanta, Georgia
| |
Collapse
|
13
|
Pritt BS, Allerdice MEJ, Sloan LM, Paddock CD, Munderloh UG, Rikihisa Y, Tajima T, Paskewitz SM, Neitzel DF, Hoang Johnson DK, Schiffman E, Davis JP, Goldsmith CS, Nelson CM, Karpathy SE. Proposal to reclassify Ehrlichia muris as Ehrlichia muris subsp. muris subsp. nov. and description of Ehrlichia muris subsp. eauclairensis subsp. nov., a newly recognized tick-borne pathogen of humans. Int J Syst Evol Microbiol 2017; 67:2121-2126. [PMID: 28699575 DOI: 10.1099/ijsem.0.001896] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We have previously described a novel taxon of the genus Ehrlichia (type strain WisconsinT), closely related to Ehrlichia muris, that causes human ehrlichiosis among patients with exposures to ticks in the upper midwestern USA. DNA from this bacterium was also detected in Ixodes scapularis and Peromyscus leucopus collected in Minnesota and Wisconsin. To determine the relationship between the E. muris-like agent (EMLA) and other species of the genus Ehrlichia phenotypic, genotypic and epidemiologic comparisons were undertaken, including sequence analysis of eight gene loci (3906 nucleotides) for 39 EMLA DNA samples and the type strain of E. muris AS145T. Three loci were also sequenced from DNA of nine strains of E. muris from mouse spleens from Japan. All sequences from E. muris were distinct from homologous EMLA sequences, but differences between them were less than those observed among other species of the genus Ehrlichia. Phenotypic comparison of EMLA and E. muris revealed similar culture and electron microscopic characteristics, but important differences were noted in their geographic distribution, ecological associations and behavior in mouse models of infection. Based on these comparisons, we propose that type strain WisconsinT represents a novel subspecies, Ehrlichia murissubsp. eauclairensis,subsp. nov. This strain is available through the Centers for Disease Control and Prevention Rickettsial Isolate Reference Collection (CRIRC EMU002T) and through the Collection de Souches de l'Unité des Rickettsies (CSURP2883 T). The subspecies Ehrlichia murissubsp. muris subsp. nov. is automatically created and the type strain AS145T is also available through the same collections (CRIRC EMU001T, CSUR E2T). Included is an emended description of E. muris.
Collapse
Affiliation(s)
- Bobbi S Pritt
- Mayo Clinic, Department of Laboratory Medicine and Pathology, Division of Clinical Microbiology, Rochester, MN, USA
| | - Michelle E J Allerdice
- Division of Vector-Borne Infectious Diseases, Centers for Disease Control and Prevention, Rickettsial Zoonoses Branch, Atlanta, GA, USA
| | - Lynne M Sloan
- Mayo Clinic, Department of Laboratory Medicine and Pathology, Division of Clinical Microbiology, Rochester, MN, USA
| | - Christopher D Paddock
- Division of Vector-Borne Infectious Diseases, Centers for Disease Control and Prevention, Rickettsial Zoonoses Branch, Atlanta, GA, USA
| | | | | | | | - Susan M Paskewitz
- Department of Entomology, University of Wisconsin-Madison, Madison, WI, USA
| | | | | | | | | | - Cynthia S Goldsmith
- Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Infectious Diseases Pathology Branch, Atlanta, GA, USA
| | - Curtis M Nelson
- Department of Entomology, University of Minnesota, St. Paul, MN, USA
| | - Sandor E Karpathy
- Division of Vector-Borne Infectious Diseases, Centers for Disease Control and Prevention, Rickettsial Zoonoses Branch, Atlanta, GA, USA
| |
Collapse
|
14
|
Abstract
A vast number of novel tick-related microorganisms and tick-borne disease agents have been identified in the past 20 years, and more are being described due to several factors, from the curiosity of clinicians faced with unusual clinical syndromes to new tools used by microbiologists and entomologists. Borrelioses, ehrlichioses, anaplasmosis, and tick-borne rickettsial diseases are some of the emerging diseases that have been described throughout the world in recent years. In this article, we focus on the bacterial agents and diseases that have been recognized in the past 3 years and refer to major recent reviews of other recognized infections.
Collapse
|
15
|
Herrin BH, Peregrine AS, Goring J, Beall MJ, Little SE. Canine infection with Borrelia burgdorferi, Dirofilaria immitis, Anaplasma spp. and Ehrlichia spp. in Canada, 2013-2014. Parasit Vectors 2017; 10:244. [PMID: 28526093 PMCID: PMC5437676 DOI: 10.1186/s13071-017-2184-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 05/10/2017] [Indexed: 10/30/2022] Open
Abstract
BACKGROUND Canine test results generated by veterinarians throughout Canada from 2013-2014 were evaluated to assess the geographical distribution of canine infection with Borrelia burgdorferi, Dirofilaria immitis, Ehrlichia spp., and Anaplasma spp. METHODS The percent positive test results of 115,636 SNAP® 4Dx® Plus tests from dogs tested were collated by province and municipality to determine the distribution of these vector-borne infections in Canada. RESULTS A total of 2,844/115,636 (2.5%) dogs tested positive for antibody to B. burgdorferi. In contrast, positive test results for D. immitis antigen and antibodies to Ehrlichia spp. and Anaplasma spp. were low, with less than 0.5% of dogs testing positive for any one of these three agents nationwide. Provincial seroprevalence for antibodies to B. burgdorferi ranged from 0.5% (Saskatchewan)-15.7% (Nova Scotia); the areas of highest percent positive test results were in proximity to regions in the USA considered endemic for Lyme borreliosis, including Nova Scotia (15.7%) and Eastern Ontario (5.1%). These high endemic foci, which had significantly higher percent positive test results than the rest of the nation (P < 0.0001), were surrounded by areas of moderate to low seroprevalence in New Brunswick (3.7%), Quebec (2.8%), and the rest of Ontario (0.9%), as well as northward and westward through Manitoba (2.4%) and Saskatchewan (0.5%). Insufficient results were available from the westernmost provinces, including Alberta and British Columbia, to allow analysis. CONCLUSION Increased surveillance of these vector-borne disease agents, especially B. burgdorferi, is important as climate, vector range, and habitat continues to change throughout Canada. Using dogs as sentinels for these pathogens can aid in recognition of the public and veterinary health threat that each pose.
Collapse
Affiliation(s)
- Brian H Herrin
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, USA.
| | - Andrew S Peregrine
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | | | | | - Susan E Little
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, USA
| |
Collapse
|
16
|
Abstract
Human ehrlichiosis and anaplasmosis are acute febrile tick-borne infectious diseases caused by various members from the genera Ehrlichia and Anaplasma. Ehrlichia chaffeensis is the major etiologic agent of human monocytotropic ehrlichiosis (HME), while Anaplasma phagocytophilum is the major cause of human granulocytic anaplasmosis (HGA). The clinical manifestations of HME and HGA ranges from subclinical to potentially life-threatening diseases associated with multi-organ failure. Macrophages and neutrophils are the major target cells for Ehrlichia and Anaplasma, respectively. The threat to public health is increasing with newly emerging ehrlichial and anaplasma agents, yet vaccines for human ehrlichioses and anaplasmosis are not available, and therapeutic options are limited. This article reviews recent advances in the understanding of HME and HGA.
Collapse
|
17
|
Lynn GE, Oliver JD, Cornax I, O'Sullivan MG, Munderloh UG. Experimental evaluation of Peromyscus leucopus as a reservoir host of the Ehrlichia muris-like agent. Parasit Vectors 2017; 10:48. [PMID: 28129781 PMCID: PMC5273795 DOI: 10.1186/s13071-017-1980-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 01/12/2017] [Indexed: 11/10/2022] Open
Abstract
Background The Ehrlichia muris-like agent (EMLA) is a newly recognized human pathogen in the North Central United States. Although blacklegged ticks (Ixodes scapularis) have been identified as capable vectors, wild reservoirs have not yet been established for EMLA. As key hosts for I. scapularis, white-footed mice (Peromyscus leucopus) are important reservoirs for various tick-borne pathogens, and potentially, for EMLA. The objective of this study was to evaluate reservoir competence in P. leucopus using a natural vector. Results Mice acquired EMLA infection from feeding ticks and were able to transmit infection to naïve ticks. Transmission between simultaneously feeding tick life stages was also demonstrated. Infections in mice were acute and severe, with systemic dissemination. Limited host survival and clearance of infection among survivors resulted in a narrow interval where EMLA could be acquired by feeding ticks. Conclusions Peromyscus leucopus is a competent reservoir of EMLA and likely to play a role in its enzootic transmission cycle. The duration and severity of EMLA infection in these hosts suggests that tick phenology is a critical factor determining the geographic distribution of EMLA in North America.
Collapse
Affiliation(s)
- Geoffrey E Lynn
- Entomology Department, University of Minnesota - Twin Cities, 1980 Folwell Ave, St. Paul, MN, USA.
| | - Jonathan D Oliver
- Entomology Department, University of Minnesota - Twin Cities, 1980 Folwell Ave, St. Paul, MN, USA
| | - Ingrid Cornax
- Masonic Cancer Center Comparative Pathology Shared Resource, Masonic Cancer Center, University of Minnesota - Twin Cities, 420 Delaware St. SE, Minneapolis, MN, USA
| | - M Gerard O'Sullivan
- Masonic Cancer Center Comparative Pathology Shared Resource, Masonic Cancer Center, University of Minnesota - Twin Cities, 420 Delaware St. SE, Minneapolis, MN, USA
| | - Ulrike G Munderloh
- Entomology Department, University of Minnesota - Twin Cities, 1980 Folwell Ave, St. Paul, MN, USA
| |
Collapse
|
18
|
Barbour AG. Infection resistance and tolerance in Peromyscus spp., natural reservoirs of microbes that are virulent for humans. Semin Cell Dev Biol 2017; 61:115-122. [PMID: 27381345 PMCID: PMC5205561 DOI: 10.1016/j.semcdb.2016.07.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 06/30/2016] [Accepted: 07/01/2016] [Indexed: 01/20/2023]
Abstract
The widely-distributed North American species Peromyscus leucopus and P. maniculatus of cricetine rodents are, between them, important natural reservoirs for several zoonotic diseases of humans: Lyme disease, human granulocytic anaplasmosis, babesiosis, erhlichiosis, hard tickborne relapsing fever, Powassan virus encephalitis, hantavirus pulmonary syndrome, and plague. While these infections are frequently disabling and sometimes fatal for humans, the peromyscines display little pathology and apparently suffer few consequences, even when prevalence of persistent infection in a population is high. While these Peromyscus spp. are unable to clear some of the infections, they appear to have partial resistance, which limits the burden of the pathogen. In addition, they display traits of infection tolerance, which reduces the damage of the infection. Research on these complementary resistance and tolerance phenomena in Peromyscus has relevance both for disease control measures targeting natural reservoirs and for understanding the mechanisms of the comparatively greater sickness of many humans with these and other infections.
Collapse
Affiliation(s)
- Alan G Barbour
- Departments of Medicine, Microbiology & Molecular Genetics, and Ecology & Evolutionary Biology, University of California Irvine, 843 Health Sciences Drive, Irvine, CA 92697-4028, USA.
| |
Collapse
|
19
|
Karpathy SE, Allerdice MEJ, Sheth M, Dasch GA, Levin ML. Co-Feeding Transmission of the Ehrlichia muris-Like Agent to Mice (Mus musculus). Vector Borne Zoonotic Dis 2016; 16:145-50. [PMID: 26824725 DOI: 10.1089/vbz.2015.1878] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The Ehrlichia muris-like agent (EMLA) is a newly recognized human pathogen found in Wisconsin and Minnesota. Ecological investigations have implicated both the blacklegged tick, Ixodes scapularis, and the white-footed mouse, Peromyscus leucopus, as playing roles in the maintenance of EMLA in nature. The work presented here shows that I. scapularis is an efficient vector of EMLA in a laboratory mouse model, but that Dermacentor variabilis, another frequent human biting tick found in EMLA endemic areas, is not. Additionally, I. scapularis larvae are able to acquire EMLA through co-feeding with infected nymphs. As EMLA only persists in mouse blood for a relatively short period of time, co-feeding transmission may play an important role in the maintenance of EMLA in ticks, and subsequently may play a role in limiting the geographic distribution of this pathogen in areas where co-feeding of larvae and nymphs is less common.
Collapse
Affiliation(s)
- Sandor E Karpathy
- 1 Rickettsial Zoonoses Branch, Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, U.S. Department of Health and Human Services , Atlanta, Georgia
| | - Michelle E J Allerdice
- 1 Rickettsial Zoonoses Branch, Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, U.S. Department of Health and Human Services , Atlanta, Georgia
| | - Mili Sheth
- 1 Rickettsial Zoonoses Branch, Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, U.S. Department of Health and Human Services , Atlanta, Georgia
| | - Gregory A Dasch
- 1 Rickettsial Zoonoses Branch, Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, U.S. Department of Health and Human Services , Atlanta, Georgia
| | - Michael L Levin
- 1 Rickettsial Zoonoses Branch, Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, U.S. Department of Health and Human Services , Atlanta, Georgia
| |
Collapse
|
20
|
Allerdice MEJ, Pritt BS, Sloan LM, Paddock CD, Karpathy SE. A real-time PCR assay for detection of the Ehrlichia muris-like agent, a newly recognized pathogen of humans in the upper Midwestern United States. Ticks Tick Borne Dis 2015; 7:146-149. [PMID: 26507653 DOI: 10.1016/j.ttbdis.2015.10.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 10/07/2015] [Accepted: 10/10/2015] [Indexed: 11/24/2022]
Abstract
The Ehrlichia muris-like agent (EMLA) is an emerging, tick-transmitted human pathogen that occurs in the upper Midwestern United States. Here, we describe the development and validation of a p13-based quantitative real-time PCR TaqMan assay to detect EMLA in blood or tissues of ticks, humans, and rodents. The primer and probe specificities of the assay were ascertained using a large panel of various Ehrlichia species and other members of Rickettsiales. In addition to control DNA, both non-infected and EMLA-infected human blood, Mus musculus blood, and M. musculus tissue extracts were evaluated, as were non-infected and EMLA-infected Ixodes scapularis and uninfected Dermacentor variabilis DNA lysates. The specificity of the probe was determined via real-time PCR. An EMLA p13 control plasmid was constructed, and serial dilutions were used to determine the analytical sensitivity, which was found to be 1 copy per 4μl of template DNA. The sensitivity and specificity of this assay provides a powerful tool for ecological studies involving arthropod vectors and their mammalian hosts.
Collapse
Affiliation(s)
- Michelle E J Allerdice
- Rickettsial Zoonoses Branch, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 1600 Clifton Rd. NE, Atlanta, GA 30329, United States.
| | - Bobbi S Pritt
- Division of Clinical Microbiology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, United States
| | - Lynne M Sloan
- Division of Clinical Microbiology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, United States
| | - Christopher D Paddock
- Rickettsial Zoonoses Branch, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 1600 Clifton Rd. NE, Atlanta, GA 30329, United States
| | - Sandor E Karpathy
- Rickettsial Zoonoses Branch, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 1600 Clifton Rd. NE, Atlanta, GA 30329, United States
| |
Collapse
|