1
|
Dong R, Fang R, Yang X, Sun Y, Zhang Y, Li S. An Updated Review on the Spatial Distribution of Borrelia burgdorferi Sensu Lato Across Ticks, Animals and Humans in Northeastern China and Adjacent Regions. Zoonoses Public Health 2024; 71:763-778. [PMID: 39148261 DOI: 10.1111/zph.13176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/19/2024] [Accepted: 08/03/2024] [Indexed: 08/17/2024]
Abstract
BACKGROUND Lyme disease is a tick-borne zoonotic disease caused by Borrelia burgdorferi sensu lato and is prevalent in northeastern Asia, particularly in the forested area of Northeastern China. However, a lack of systematic data on the spatial distribution of B. burgdorferi in this region hinders the prediction of its transmission risk across the landscape. METHODS To provide an updated overview and establish a comprehensive spatial distribution database, we conducted a systematic review of literature published between 2000 and 2022. We collected and compiled relevant data on B. burgdorferi in Northeastern China and its neighbouring regions, outlining its distribution in ticks, wild animals, livestock and humans. Spatial analysis was performed to identify spatial clusters of tick positivity and host infection rates. RESULTS From a total of 1823 literature, we selected 110 references to compile 626 detection records of B. burgdorferi, including 288 in ticks, 109 in wildlife, 111 in livestock and domestic animals and 100 in humans. The average detection rate of B. burgdorferi in ticks was approximately 20%, with wildlife, livestock and domestic animal host positivity rates below 50% and human seroprevalence rates varying from 0.94% to 44.18%. CONCLUSIONS The study identified the presence of 17 tick species and ten genotypes of B. burgdorferi in the region, indicating a broad distribution. Notably, B. burgdorferi exhibited notable clustering, particularly in the central and eastern areas of Jilin Province, warranting further investigation.
Collapse
Affiliation(s)
- Ruixuan Dong
- College of Science, National University of Defense Technology, Changsha, China
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, China
| | - Ruying Fang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Yang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, China
| | - Yifan Sun
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, China
| | - Yinsheng Zhang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, China
| | - Sen Li
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
2
|
Ilchovska D. Lyme Disease and Autoimmune Diseases. INFECTION AND AUTOIMMUNITY 2024:473-488. [DOI: 10.1016/b978-0-323-99130-8.00041-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
3
|
Petráš J, Bártová E, Žákovská A. Molecular Detection of Borrelia burgdorferi s.l. ( Borreliella) and Chlamydia-Like Organism DNA in Early Developmental Stages of Arthropod Vector Species. Transbound Emerg Dis 2023; 2023:2511753. [PMID: 40303685 PMCID: PMC12017234 DOI: 10.1155/2023/2511753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/28/2023] [Accepted: 07/29/2023] [Indexed: 05/02/2025]
Abstract
Borrelia burgdorferi sensu lato (Bbsl) is spirochetes transmitted by ticks and known to cause Lyme disease. Chlamydia-like organisms (CLOs) comprise a large group of bacteria that can lead to serious health disorders, including miscarriage. Recently, CLOs have been found in ticks and patient skin biopsies. Due to the involvement of multiple potential vectors in the spread of these pathogens, the objective of this study was to confirm the presence of both organisms in the early developmental stages of selected vectors. Three potential vectors, Ixodes ricinus larvae, Culex pipiens larvae, and winged (unfed) adults of Lipoptena cervi, were collected in the Czech Republic in years 2019-2020. The presence of Bbsl and panchlamydial DNA was detected by PCR and positive samples were further analyzed by Sanger sequencing and phylogenetic tree construction. Bbsl DNA was proved in 1.5% (2/137) of I. ricinus larvae (identified as Borrelia afzelii and Borrelia garinii), in 1.7% (2/119) of C. pipiens larvae (both identified as B. garinii), and in 11% (3/27) of L. cervi (all identified as B. garinii). CLOs were identified in 0.7% (1/137) of I. ricinus larvae (Candidatus Protochlamydia) and in 7.4% (2/27) of L. cervi (unspecified genus), while C. pipiens larvae could not be evaluated (0%). This research represents the first investigation of the presence of CLOs in L. cervi. The detection of pathogen DNA in the early developmental stages of vectors suggests the potential for transgenerational transmission of Bbsl and CLOs in the selected vectors, although at a low rate.
Collapse
Affiliation(s)
- Jiří Petráš
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Bohunice, Brno, Czech Republic
| | - Eva Bártová
- Department of Biology and Wildlife Diseases, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Palackého tř. 1946/1, 612 42, Brno, Czech Republic
| | - Alena Žákovská
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Bohunice, Brno, Czech Republic
- Department of Biology, Faculty of Education, Masaryk University, Poříčí 7/9, 63900, Brno, Czech Republic
| |
Collapse
|
4
|
Rose C, Lund MB, Søgård AM, Busck MM, Bechsgaard JS, Schramm A, Bilde T. Social transmission of bacterial symbionts homogenizes the microbiome within and across generations of group-living spiders. ISME COMMUNICATIONS 2023; 3:60. [PMID: 37330540 PMCID: PMC10276852 DOI: 10.1038/s43705-023-00256-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/12/2023] [Accepted: 05/12/2023] [Indexed: 06/19/2023]
Abstract
Disentangling modes and fidelity of symbiont transmission are key for understanding host-symbiont associations in wild populations. In group-living animals, social transmission may evolve to ensure high-fidelity transmission of symbionts, since non-reproducing helpers constitute a dead-end for vertical transmission. We investigated symbiont transmission in the social spider Stegodyphus dumicola, which lives in family groups where the majority of females are non-reproducing helpers, females feed offspring by regurgitation, and individuals feed communally on insect prey. Group members share temporally stable microbiomes across generations, while distinct variation in microbiome composition exists between groups. We hypothesized that horizontal transmission of symbionts is enhanced by social interactions, and investigated transmission routes within (horizontal) and across (vertical) generations using bacterial 16S rRNA gene amplicon sequencing in three experiments: (i) individuals were sampled at all life stages to assess at which life stage the microbiome is acquired. (ii) a cross-fostering design was employed to test whether offspring carry the microbiome from their natal nest, or acquire the microbiome of the foster nest via social transmission. (iii) adult spiders with different microbiome compositions were mixed to assess whether social transmission homogenizes microbiome composition among group members. We demonstrate that offspring hatch symbiont-free, and bacterial symbionts are transmitted vertically across generations by social interactions with the onset of regurgitation feeding by (foster)mothers in an early life stage. Social transmission governs horizontal inter-individual mixing and homogenization of microbiome composition among nest mates. We conclude that temporally stable host-symbiont associations in social species can be facilitated and maintained by high-fidelity social transmission.
Collapse
Affiliation(s)
- Clémence Rose
- Section for Genetics, Ecology and Evolution, Department of Biology, Aarhus University, Aarhus, Denmark.
| | - Marie B Lund
- Section for Microbiology, Department of Biology, Aarhus University, Aarhus, Denmark
| | - Andrea M Søgård
- Section for Genetics, Ecology and Evolution, Department of Biology, Aarhus University, Aarhus, Denmark
| | - Mette M Busck
- Section for Microbiology, Department of Biology, Aarhus University, Aarhus, Denmark
| | - Jesper S Bechsgaard
- Section for Genetics, Ecology and Evolution, Department of Biology, Aarhus University, Aarhus, Denmark
| | - Andreas Schramm
- Section for Microbiology, Department of Biology, Aarhus University, Aarhus, Denmark
| | - Trine Bilde
- Section for Genetics, Ecology and Evolution, Department of Biology, Aarhus University, Aarhus, Denmark
| |
Collapse
|
5
|
Meireles ACA, Rios FGF, Feitoza LHM, da Silva LR, Julião GR. Nondestructive Methods of Pathogen Detection: Importance of Mosquito Integrity in Studies of Disease Transmission and Control. Pathogens 2023; 12:816. [PMID: 37375506 DOI: 10.3390/pathogens12060816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/26/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Mosquitoes are vectors of many pathogens, including viruses, protozoans, and helminths, spreading these pathogens to humans as well as to wild and domestic animals. As the identification of species and the biological characterization of mosquito vectors are cornerstones for understanding patterns of disease transmission, and the design of control strategies, we conducted a literature review on the current use of noninvasive and nondestructive techniques for pathogen detection in mosquitoes, highlighting the importance of their taxonomic status and systematics, and some gaps in the knowledge of their vectorial capacity. Here, we summarized the alternative techniques for pathogen detection in mosquitoes based on both laboratory and field studies. Parasite infection and dissemination by mosquitoes can also be obtained via analyses of saliva- and excreta-based techniques or of the whole mosquito body, using a near-infrared spectrometry (NIRS) approach. Further research should be encouraged to seek strategies for detecting target pathogens while preserving mosquito morphology, especially in biodiversity hotspot regions, thus enabling the discovery of cryptic or new species, and the determination of more accurate taxonomic, parasitological, and epidemiological patterns.
Collapse
Affiliation(s)
- Anne Caroline Alves Meireles
- Laboratory of Entomology, Oswaldo Cruz Foundation, Fiocruz Rondônia, Rua da Beira 7671, Lagoa, Porto Velho 76812-245, RO, Brazil
- Postgraduate Program in Biodiversity and Health, PhD in Sciences-Fiocruz Rondônia/Oswaldo Cruz Institute, Rua da Beira 7671, Lagoa, Porto Velho 76812-245, RO, Brazil
| | - Flávia Geovana Fontineles Rios
- Laboratory of Entomology, Oswaldo Cruz Foundation, Fiocruz Rondônia, Rua da Beira 7671, Lagoa, Porto Velho 76812-245, RO, Brazil
- Postgraduate Program in Experimental Biology-PGBIOEXP, Fiocruz Rondônia-UNIR, BR-364, Km 9.5, Porto Velho 78900-550, RO, Brazil
| | - Luiz Henrique Maciel Feitoza
- Laboratory of Entomology, Oswaldo Cruz Foundation, Fiocruz Rondônia, Rua da Beira 7671, Lagoa, Porto Velho 76812-245, RO, Brazil
- Postgraduate Program in Experimental Biology-PGBIOEXP, Fiocruz Rondônia-UNIR, BR-364, Km 9.5, Porto Velho 78900-550, RO, Brazil
| | - Lucas Rosendo da Silva
- Laboratory of Entomology, Oswaldo Cruz Foundation, Fiocruz Rondônia, Rua da Beira 7671, Lagoa, Porto Velho 76812-245, RO, Brazil
- Postgraduate Program in Experimental Biology-PGBIOEXP, Fiocruz Rondônia-UNIR, BR-364, Km 9.5, Porto Velho 78900-550, RO, Brazil
| | - Genimar Rebouças Julião
- Laboratory of Entomology, Oswaldo Cruz Foundation, Fiocruz Rondônia, Rua da Beira 7671, Lagoa, Porto Velho 76812-245, RO, Brazil
- Postgraduate Program in Experimental Biology-PGBIOEXP, Fiocruz Rondônia-UNIR, BR-364, Km 9.5, Porto Velho 78900-550, RO, Brazil
- National Institute of Epidemiology of Western Amazônia-INCT-EpiAmO, Rua da Beira 7671, Lagoa, Porto Velho 76812-245, RO, Brazil
| |
Collapse
|
6
|
Nebbak A, Almeras L, Parola P, Bitam I. Mosquito Vectors (Diptera: Culicidae) and Mosquito-Borne Diseases in North Africa. INSECTS 2022; 13:962. [PMID: 36292910 PMCID: PMC9604161 DOI: 10.3390/insects13100962] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/30/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
Mosquitoes (Diptera: Culicidae) are of significant public health importance because of their ability to transmit major diseases to humans and animals, and are considered as the world's most deadly arthropods. In recent decades, climate change and globalization have promoted mosquito-borne diseases' (MBDs) geographic expansion to new areas, such as North African countries, where some of these MBDs were unusual or even unknown. In this review, we summarize the latest data on mosquito vector species distribution and MBDs affecting both human and animals in North Africa, in order to better understand the risks associated with the introduction of new invasive mosquito species such as Aedes albopictus. Currently, 26 mosquito species confirmed as pathogen vectors occur in North Africa, including Aedes (five species), Culex (eight species), Culiseta (one species) and Anopheles (12 species). These 26 species are involved in the circulation of seven MBDs in North Africa, including two parasitic infections (malaria and filariasis) and five viral infections (WNV, RVF, DENV, SINV and USUV). No bacterial diseases have been reported so far in this area. This review may guide research studies to fill the data gaps, as well as helping with developing effective vector surveillance and controlling strategies by concerned institutions in different involved countries, leading to cooperative and coordinate vector control measures.
Collapse
Affiliation(s)
- Amira Nebbak
- Centre de Recherche Scientifique et Technique en Analyses Physico-Chimiques (CRAPC), BP 384, Zone Industrielle, Bou-Ismail 42004, Algeria
| | - Lionel Almeras
- Aix Marseille University, IRD, AP-HM, SSA, VITROME, 13005 Marseille, France
- Unité Parasitologie et Entomologie, Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, 19-21 Boulevard Jean Moulin, 13005 Marseille, France
- IHU-Méditerranée Infection, 13005 Marseille, France
| | - Philippe Parola
- Aix Marseille University, IRD, AP-HM, SSA, VITROME, 13005 Marseille, France
- IHU-Méditerranée Infection, 13005 Marseille, France
| | - Idir Bitam
- Aix Marseille University, IRD, AP-HM, SSA, VITROME, 13005 Marseille, France
- École Supérieure en Sciences de l’Aliment et des Industries Agroalimentaire d’Alger, Oued Smar 16059, Algeria
| |
Collapse
|
7
|
Kirik H, Burtin V, Tummeleht L, Kurina O. Friends in All the Green Spaces: Weather Dependent Changes in Urban Mosquito (Diptera: Culicidae) Abundance and Diversity. INSECTS 2021; 12:insects12040352. [PMID: 33920956 PMCID: PMC8071238 DOI: 10.3390/insects12040352] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 11/23/2022]
Abstract
Simple Summary Many female mosquitoes require vertebrate blood for egg production. Cities are becoming increasingly important points of contact between mosquitoes and their prey, as large-scale urbanization continues. Human settlements represent unique but fragmented habitats that are permanently warmer than rural areas. Because of this, there is a growing demand to better understand urban mosquito populations and the factors affecting them in various circumstances. The aim of this study was to investigate the weather conditions influencing mosquito species and abundance in a Northern European town. Thus, a three-year-long mosquito collection effort was undertaken in Estonia. Results indicated that the number of active mosquitoes decreased with wind and higher temperatures. Interestingly, there was a significant negative correlation between temperature and humidity. Furthermore, while mosquitoes belonging to the Culex pipiens/Culex torrentium group were consistently abundant during the end of the warm season, other dominant species varied considerably between the months and the three study years. Overall, springtime hydrological conditions seemed to greatly influence the mosquito season. Urbanization could generate both higher temperatures and drier environments, resulting in fewer mosquitoes in some areas. This study also revealed the mosquito species most likely to contribute to disease transmission in Estonian towns. Abstract Mosquitoes (Diptera: Culicidae) are universally recognized as troublesome pests and vectors of various pathogens and parasites. Understandably, the species makeup and diversity of individual populations depends on local and broad scale environmental trends, especially on temperature and hydrological variations. Anthropogenic landscapes make for unique habitats, but their effect on insects likely varies across climatic regions. The aim of this study was to investigate the diversity and seasonal patterns of urban mosquitoes in the boreal region. Specimens were collected with an insect net from May to September during three years and determined to species or species group level. Weather information was added to each data point and results analyzed using multivariate regression models. Fieldwork yielded 1890 mosquitoes from four genera. Both abundance and the effective number of species (ENS) significantly decreased during the study period. The number of collected mosquitoes had a negative correlation with wind speed and temperature, latter of which exhibited a negative association with humidity. Species succession followed predictable patterns, but with some variation between years. Still, Culex pipiens/Culex torrentium were the most abundant throughout the study. Importantly, all dominant species were known disease vectors. Our work showed that higher temperatures could result in fewer mosquitoes in boreal towns.
Collapse
Affiliation(s)
- Heli Kirik
- Inst of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Friedrich Reinhold Kreutzwaldi 5D, 51006 Tartu, Estonia;
- Correspondence: ; Tel.: +372-5649-6490
| | | | - Lea Tummeleht
- Inst of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Friedrich Reinhold Kreutzwaldi 62, 51006 Tartu, Estonia;
| | - Olavi Kurina
- Inst of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Friedrich Reinhold Kreutzwaldi 5D, 51006 Tartu, Estonia;
| |
Collapse
|
8
|
Graña-Miraglia L, Sikutova S, Vancová M, Bílý T, Fingerle V, Sing A, Castillo-Ramírez S, Margos G, Rudolf I. Spirochetes isolated from arthropods constitute a novel genus Entomospira genus novum within the order Spirochaetales. Sci Rep 2020; 10:17053. [PMID: 33051478 PMCID: PMC7554043 DOI: 10.1038/s41598-020-74033-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 09/09/2020] [Indexed: 11/22/2022] Open
Abstract
Spirochetal bacteria were successfully isolated from mosquitoes (Culex pipiens, Aedes cinereus) in the Czech Republic between 1999 and 2002. Preliminary 16S rRNA phylogenetic sequence analysis showed that these strains differed significantly from other spirochetal genera within the family Spirochaetaceae and suggested a novel bacterial genus in this family. To obtain more comprehensive genomic information of these isolates, we used Illumina MiSeq and Oxford Nanopore technologies to sequence four genomes of these spirochetes (BR151, BR149, BR193, BR208). The overall size of the genomes varied between 1.68 and 1.78 Mb; the GC content ranged from 38.5 to 45.8%. Draft genomes were compared to 36 publicly available genomes encompassing eight genera from the class Spirochaetes. A phylogeny generated from orthologous genes across all taxa and the percentage of conserved proteins (POCP) confirmed the genus status of these novel spirochetes. The genus Entomospira gen. nov. is proposed with BR151 selected as type species of the genus. For this isolate and the closest related isolate, BR149, we propose the species name Entomospira culicis sp. nov. The two other isolates BR208 and BR193 are named Entomospira nematocera sp. nov. (BR208) and Entomospira entomophilus sp. nov. (BR193). Finally, we discuss their interesting phylogenetic positioning.
Collapse
Affiliation(s)
- Lucía Graña-Miraglia
- Programa de Genómica Evolutiva, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Apartado Postal 565-A, CP 62210, Cuernavaca, Morelos, Mexico
| | - Silvie Sikutova
- Institute of Vertebrate Biology, V.V.I., Czech Academy of Sciences, Květná 8, 603 65, Brno, Czech Republic
| | - Marie Vancová
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, Branišovská 31, 370 05, Ceske Budejovice, Czech Republic
| | - Tomáš Bílý
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, Branišovská 31, 370 05, Ceske Budejovice, Czech Republic
| | - Volker Fingerle
- National Reference Center for Borreliosis at the Bavarian Health and Food Safety Authority, Veterinärstr. 2, 85764, Oberschleissheim, Germany
| | - Andreas Sing
- National Reference Center for Borreliosis at the Bavarian Health and Food Safety Authority, Veterinärstr. 2, 85764, Oberschleissheim, Germany
| | - Santiago Castillo-Ramírez
- Programa de Genómica Evolutiva, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Apartado Postal 565-A, CP 62210, Cuernavaca, Morelos, Mexico
| | - Gabriele Margos
- National Reference Center for Borreliosis at the Bavarian Health and Food Safety Authority, Veterinärstr. 2, 85764, Oberschleissheim, Germany.
| | - Ivo Rudolf
- Institute of Vertebrate Biology, V.V.I., Czech Academy of Sciences, Květná 8, 603 65, Brno, Czech Republic
| |
Collapse
|
9
|
Novel Mitochondrial DNA Lineage Found among Ochlerotatus communis (De Geer, 1776) of the Nordic-Baltic Region. INSECTS 2020; 11:insects11060397. [PMID: 32604846 PMCID: PMC7348767 DOI: 10.3390/insects11060397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/21/2020] [Accepted: 06/23/2020] [Indexed: 11/26/2022]
Abstract
The Ochlerotatus (Oc.) communis complex consist of three Northern American species as well as a common Holarctic mosquito (Diptera: Culicidae) Oc. communis (De Geer, 1776). These sister species exhibit important ecological differences and are capable of transmitting various pathogens, but cannot always be differentiated by morphological traits. To investigate the Oc. communis complex in Europe, we compared three molecular markers (COI, ND5 and ITS2) from 54 Estonian mosquitoes as well as two COI marker sequences from Sweden. These sequences were subjected to phylogenetic analysis and screened for Wolbachia Hertig and Wolbach symbionts. Within and between groups, distances were calculated for each marker to better understand the relationships among individuals. Results demonstrate that a group of samples, extracted from adult female mosquitoes matching the morphology of Oc. communis, show a marked difference from the main species when comparing the mitochondrial markers COI and ND5. However, there is no variance between the same specimens when considering the nuclear ITS2. We conclude that Oc. communis encompasses two distinct mitochondrial DNA lineages in the Nordic-Baltic region. Further research is needed to investigate the origin and extent of these genetic differences.
Collapse
|
10
|
Bartonella species in medically important mosquitoes, Central Europe. Parasitol Res 2020; 119:2713-2717. [PMID: 32506253 DOI: 10.1007/s00436-020-06732-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 05/25/2020] [Indexed: 10/24/2022]
Abstract
Here, we provide the first mass molecular screening of medically important mosquitoes for Bartonella species using multiple genetic markers. We examined a total of 72,115 mosquito specimens, morphologically attributed to Aedes vexans (61,050 individuals), Culex pipiens (10,484 individuals) and species of the Anopheles maculipennis complex (581 individuals) for Bartonella spp. The initial screening yielded 63 Bartonella-positive A. vexans mosquitoes (mean prevalence 0.1%), 34 Bartonella-positive C. pipiens mosquitoes (mean prevalence 0.3%) and 158 Bartonella-positive A. maculipennis group mosquitoes (mean prevalence 27.2%). Several different Bartonella ITS sequences were recovered. This study highlights the need for molecular screening of mosquitoes, the most important vectors of arthropod-borne pathogens, for potential bacterial agents.
Collapse
|
11
|
First report of Coxiella burnetii and Borrelia burgdorferi sensu lato in poultry red mites, Dermanyssus gallinae ( Mesostigmata, Acari), related to urban outbreaks of dermatitis in Italy. New Microbes New Infect 2018; 23:103-109. [PMID: 29692913 PMCID: PMC5913367 DOI: 10.1016/j.nmni.2018.01.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 01/17/2018] [Accepted: 01/18/2018] [Indexed: 11/29/2022] Open
Abstract
The poultry red mite (PRM), Dermanyssus gallinae, is a nonburrowing haematophagous nest-dwelling ectoparasite of birds; occasionally it bites humans, inducing dermatitis. The possibility that this parasite may also be involved in transmission of pathogens is an additional concern. We investigated the presence of zoonotic agents in PRMs from bird nests and pets, and related them to urban outbreaks of dermatitis. A total of 98 PRMs from 12 outbreaks of PRM dermatitis that occurred in Italian cities from 2001 to 2017 were molecularly investigated for detection of Coxiella spp. (16S rRNA), Chlamydophila spp. (16S rRNA), Rickettsia spp. (17 kDa protein-encoding gene), Borrelia burgdorferi sensu lato (groEL gene) and Bartonella spp. (16S–23S rRNA intergenic spacer). Of the 12 tested mite pools, one was positive for Coxiella burnetii (100% identity) and two for B. burgdorferi sensu lato (99% with Borrelia afzelii). For the first time, the presence of B. burgdorferi sensu lato and C. burnetii is reported in PRMs from urban areas. Birds, mainly pigeons, can harbour both pathogens. Therefore, birds and their nest-dwelling PRMs may play a role in the epidemiology of these infections.
Collapse
|
12
|
The human immune system’s response to carcinogenic and other infectious agents transmitted by mosquito vectors. Parasitol Res 2016; 116:1-9. [DOI: 10.1007/s00436-016-5272-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Accepted: 09/21/2016] [Indexed: 10/20/2022]
|
13
|
Börstler J, Jöst H, Garms R, Krüger A, Tannich E, Becker N, Schmidt-Chanasit J, Lühken R. Host-feeding patterns of mosquito species in Germany. Parasit Vectors 2016; 9:318. [PMID: 27259984 PMCID: PMC4893232 DOI: 10.1186/s13071-016-1597-z] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Accepted: 05/17/2016] [Indexed: 11/10/2022] Open
Abstract
Background Mosquito-borne pathogens are of growing importance in many countries of Europe including Germany. At the same time, the transmission cycles of most mosquito-borne pathogens (e.g. viruses or filarial parasites) are not completely understood. There is especially a lack of knowledge about the vector capacity of the different mosquito species, which is strongly influenced by their host-feeding patterns. While this kind of information is important to identify the relevant vector species, e.g. to direct efficient control measures, studies about the host-feeding patterns of mosquito species in Germany are scarce and outdated. Methods Between 2012 and 2015, 775 blood-fed mosquito specimens were collected. Sampling was conducted with Heavy Duty Encephalitis Vector Survey traps, Biogents Sentinel traps, gravid traps, hand-held aspirators, sweep nets, and human-bait collection. The host species for each mosquito specimen was identified with polymerase chain reactions and subsequent Sanger sequencing of the cytochrome b gene. Results A total of 32 host species were identified for 23 mosquito species, covering 21 mammalian species (including humans) and eleven bird species. Three mosquito species accounted for nearly three quarters of all collected blood-fed mosquitoes: Aedes vexans (363 specimens, 46.8 % of all mosquito specimens), Culex pipiens pipiens form pipiens (100, 12.9 %) and Ochlerotatus cantans (99, 12.8 %). Non-human mammals dominated the host species (572 specimens, 73.8 % of all mosquito specimens), followed by humans (152, 19.6 %) and birds (51, 6.6 %). The most common host species were roe deer (Capreolus capreolus; 258 mosquito specimens, 33.3 % of all mosquito specimens, 65 % of all mosquito species), humans (Homo sapiens; 152, 19.6 %, 90 %), cattle (Bos taurus; 101, 13.0 %, 60 %), and wild boar (Sus scrofa; 116, 15.0 %, 50 %). There were no statistically significant differences in the spatial-temporal host-feeding patterns of the three most common mosquito species. Conclusions Although the collected blood-fed mosquito species had a strong overlap of host species, two different host-feeding groups were identified with mosquito species feeding on (i) non-human mammals and humans or (ii) birds, non-human mammals, and humans, which make them potential vectors of pathogens only between mammals or between mammals and birds, respectively. Due to the combination of their host-feeding patterns and wide distribution in Germany, Cx. pipiens pipiens form pipiens and Cx. torrentium are potentially most important vectors for pathogens transmitted from birds to humans and the species Ae. vexans for pathogens transmitted from non-human mammals to humans. Finally, the presented study indicated a much broader host range compared to the classifications found in the literature for some of the species, which highlights the need for studies on the host-feeding patterns of mosquitoes to further assess their vector capacity and the disease ecology in Europe. Electronic supplementary material The online version of this article (doi:10.1186/s13071-016-1597-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jessica Börstler
- Bernhard Nocht Institute for Tropical Medicine, WHO Collaborating Centre for Arbovirus and Hemorrhagic Fever Reference and Research, Hamburg, Germany
| | - Hanna Jöst
- Bernhard Nocht Institute for Tropical Medicine, WHO Collaborating Centre for Arbovirus and Hemorrhagic Fever Reference and Research, Hamburg, Germany.,German Centre for Infection Research (DZIF), partner site Hamburg-Luebeck-Borstel, Hamburg, Germany
| | - Rolf Garms
- Bernhard Nocht Institute for Tropical Medicine, WHO Collaborating Centre for Arbovirus and Hemorrhagic Fever Reference and Research, Hamburg, Germany
| | - Andreas Krüger
- Department of Tropical Medicine, Bundeswehr Hospital Hamburg, Hamburg, Germany
| | - Egbert Tannich
- Bernhard Nocht Institute for Tropical Medicine, WHO Collaborating Centre for Arbovirus and Hemorrhagic Fever Reference and Research, Hamburg, Germany.,German Centre for Infection Research (DZIF), partner site Hamburg-Luebeck-Borstel, Hamburg, Germany
| | - Norbert Becker
- German Mosquito Control Association (KABS), Institute for Dipterology, Speyer, Germany.,University of Heidelberg, Heidelberg, Germany
| | - Jonas Schmidt-Chanasit
- Bernhard Nocht Institute for Tropical Medicine, WHO Collaborating Centre for Arbovirus and Hemorrhagic Fever Reference and Research, Hamburg, Germany.,German Centre for Infection Research (DZIF), partner site Hamburg-Luebeck-Borstel, Hamburg, Germany
| | - Renke Lühken
- Bernhard Nocht Institute for Tropical Medicine, WHO Collaborating Centre for Arbovirus and Hemorrhagic Fever Reference and Research, Hamburg, Germany.
| |
Collapse
|