1
|
Kapo N, Zuber Bogdanović I, Gagović E, Jurković Žilić D, Sukara R, Adžić B, Kadriaj P, Naletilić Š, Vodica A, Cvetkovikj A, Djadjovski I, Potkonjak A, Savić S, Tomanović S, Omeragić J, Hodžić A, Beck R. Non-zoonotic tick-borne pathogens in Western Balkan. Parasit Vectors 2025; 18:107. [PMID: 40087740 PMCID: PMC11907817 DOI: 10.1186/s13071-025-06740-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 02/24/2025] [Indexed: 03/17/2025] Open
Abstract
Ixodid ticks are present throughout the Western Balkan countries, including Albania, Bosnia and Herzegovina, Croatia, Montenegro, North Macedonia and Serbia, with many species serving as vectors for pathogens of both veterinary and medical importance. We have conducted a thorough examination of existing literature, encompassing historical documents, to collect information on all documented non-zoonotic tick-borne pathogens found in ticks, pets, farm animals and wild animals across the Western Balkan region. A comprehensive review was necessary due to the scarcity and scattered nature of available data from this area. The tick fauna in the Western Balkans consists of 32 species across five genera: Ixodes, Haemaphysalis, Dermacentor, Rhipicephalus and Hyalomma. Various pathogens responsible for diseases in animals, including bacteria and parasites, have also been documented, many of which can cause important diseases and significant reductions in animal productivity. Initial efforts were directed towards pathogen surveillance and the characterisation of non-zoonotic tick-borne pathogens, resulting in the identification of Theileria orientalis, Anaplasma bovis and Anaplasma marginale in cattle, although significant gaps remain in the current research. Studies on small ruminants have been sparse, with confirmed cases of Anaplasma ovis and Babesia ovis in sheep, but no comprehensive and systematic research on pathogens in goats. In contrast, research on canine piroplasms has identified several species, including Babesia canis and Babesia vulpes. Studies on wild animals, however, have predominantly focused on wild canines and carnivores, with limited attention given to non-zoonotic pathogens. Notably, only one study has reported non-zoonotic tick-borne pathogens in artiodactyl species and wild felids. This review is a much needed overview of existing research on non-zoonotic tick-borne diseases in the Western Balkans, including the historical context, current data and research gaps. Given the significant impact of these diseases on animal health and productivity, as well as their potential biodiversity, further comprehensive studies and the establishment of national surveillance systems for tick-borne diseases are essential for a better understanding and mitigation of their impact.
Collapse
Affiliation(s)
- Naida Kapo
- Department of Veterinary Clinical Sciences, Faculty of Veterinary Medicine, University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | | | - Ema Gagović
- Department for Bacteriology and Parasitology, Laboratory for Parasitology, Croatian Veterinary Institute, Zagreb, Croatia
| | - Daria Jurković Žilić
- Department for Bacteriology and Parasitology, Laboratory for Parasitology, Croatian Veterinary Institute, Zagreb, Croatia
| | - Ratko Sukara
- Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Bojan Adžić
- Diagnostic Veterinary Laboratory, Podgorica, Montenegro
| | - Përparim Kadriaj
- Vector Control Unit, Department of Epidemiology and Control of Infectious Diseases, Institute of Public Health, Tirana, Albania
| | - Šimun Naletilić
- Department of Pathology, Laboratory for Pathology, Croatian Veterinary Institute, Zagreb, Croatia
| | - Ani Vodica
- Animal Health Department, Food Safety and Veterinary Institute, Tirana, Albania
| | - Aleksandar Cvetkovikj
- Faculty of Veterinary Medicine Skopje, National Veterinary and Food Institute, Ss. Cyril and Methodius University in Skopje, Skopje, North Macedonia
| | - Igor Djadjovski
- Faculty of Veterinary Medicine Skopje, National Veterinary and Food Institute, Ss. Cyril and Methodius University in Skopje, Skopje, North Macedonia
| | - Aleksandar Potkonjak
- Department of Veterinary Medicine, Faculty of Agriculture, University of Novi Sad, Novi Sad, Serbia
| | - Sara Savić
- Scientific Veterinary Institute "Novi Sad", Novi Sad, Serbia
| | - Snežana Tomanović
- Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Jasmin Omeragić
- Department of Veterinary Clinical Sciences, Faculty of Veterinary Medicine, University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Adnan Hodžić
- Centre for Microbiology and Environmental Systems Science (CMESS), Department of Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria.
| | - Relja Beck
- Department for Bacteriology and Parasitology, Laboratory for Parasitology, Croatian Veterinary Institute, Zagreb, Croatia.
| |
Collapse
|
2
|
Bertin A, Bonnet T, Lambert M, Ludemann E, Corbière F, Boucraut C, Lucas MN, Trumel C. What is your diagnosis: Acute hemolysis in a Limousin bull. Vet Clin Pathol 2024. [PMID: 39443292 DOI: 10.1111/vcp.13397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 09/06/2024] [Accepted: 09/21/2024] [Indexed: 10/25/2024]
Affiliation(s)
| | | | | | | | - Fabien Corbière
- ENVT, Toulouse, France
- INRAE, ENVT, UMR 1225 IHAP, Toulouse, France
| | | | | | - Catherine Trumel
- ENVT, Toulouse, France
- CREFRE, INSERM, ENVT, UPS, Université de Toulouse, Toulouse, France
| |
Collapse
|
3
|
Chikufenji B, Mohanta UK, Hayashida K, Chatanga E, Galon EM, Kamanga N, Ringo AE, Ma Z, Xuan X. Molecular detection and phylogenetic analysis of tick-borne pathogens in cattle from southern Malawi. Vet Res Commun 2024; 48:2753-2760. [PMID: 38676858 DOI: 10.1007/s11259-024-10395-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 04/23/2024] [Indexed: 04/29/2024]
Abstract
INTRODUCTION Tick-borne diseases (TBDs) pose a major hindrance to livestock production in countries with limited resources. Effective prevention and management of TBDs require a thorough understanding of disease vectors and pathogens. However, there is limited information on studies of bovine tick-borne pathogens (TBPs) using molecular methods in Malawi. This study aimed to detect TBPs of cattle populations in southern Malawi, which has the largest cattle population in the country. METHODOLOGY A total of 220 blood samples from apparently healthy cattle were collected in six districts, and were screened for selected TBPs using polymerase chain reaction (PCR). RESULTS The overall detection rate of TBPs was 72.3%. Among the detected pathogens, Babesia bigemina had the highest detection rate (34.5%), followed by Anaplasma marginale (23.2%), Anaplasma phagocytophilum (22.3%), Theileria taurotragi (22.3%), Theileria parva (15.5%), Anaplasma bovis (9.6%), Babesia bovis (7.3%), Theileria mutans (4.1%), and Babesia naoakii (2.7%). Among the positive samples, 64.2% were found to be co-infected with two or more TBPs, with the highest number of seven pathogens detected in a single sample. The study documents the existence of A. phagocytophilum, B. bovis, and B. naoakii in Malawian cattle for the first time. CONCLUSION The findings herein demonstrate a significant burden of TBPs on cattle in Malawi, which gives a challenge in combating TBDs. The high TBP burden, along with the high co-infection frequencies in Malawian cattle necessitates the urgency to implement effective control strategies to enhance cattle production in the country.
Collapse
Affiliation(s)
- Boniface Chikufenji
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, 080-8555, Japan
- Department of Animal Health and Livestock Development, Ministry of Agriculture Irrigation and Water Development, Post Office Box 2096, Lilongwe, Malawi
- Vets of Purpose Organization, Post Office Box 2355, Lilongwe, Malawi
| | - Uday Kumar Mohanta
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, 080-8555, Japan.
- Department of Microbiology and Parasitology, Sher‒e‒Bangla Agricultural University, Sher‒e‒Bangla Nagar, Dhaka, 1207, Bangladesh.
| | - Kyoko Hayashida
- Division of Collaboration and Education, International Institute for Zoonosis Control, Hokkaido University, Kita-20, Nishi-10, Sapporo, Hokkaido, 001-0020, Japan
| | - Elisha Chatanga
- Department of Veterinary Pathobiology, Faculty of Veterinary Medicine, Lilongwe University of Agriculture and Natural Resources, Post Office Box 219, Lilongwe, Malawi
| | - Eloiza May Galon
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, 080-8555, Japan
- College of Veterinary Medicine and Biomedical Sciences, Cavite State University, 4122, Indang, Cavite, Philippines
| | - Nathan Kamanga
- Department of Animal Health and Livestock Development, Ministry of Agriculture Irrigation and Water Development, Post Office Box 2096, Lilongwe, Malawi
| | - Aaron Edmond Ringo
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, 080-8555, Japan
| | - Zhuowei Ma
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, 080-8555, Japan
| | - Xuenan Xuan
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, 080-8555, Japan.
| |
Collapse
|
4
|
Zhou S, Huang L, Lin Y, Bhowmick B, Zhao J, Liao C, Guan Q, Wang J, Han Q. Molecular surveillance and genetic diversity of Anaplasma spp. in cattle (Bos taurus) and goat (Capra aegagrus hircus) from Hainan island/province, China. BMC Vet Res 2023; 19:213. [PMID: 37853405 PMCID: PMC10583423 DOI: 10.1186/s12917-023-03766-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 10/02/2023] [Indexed: 10/20/2023] Open
Abstract
Anaplasmosis is a highly prevalent tick-borne intracellular bacterial disease that affects various host species globally, particularly ruminants in tropical and subtropical regions. However, information regarding the distribution and epidemiology of anaplasmosis in small and large ruminants on Hainan Isalnd is limited. To address this knowledge gap, the present study aimed to assess the occurrence of Anaplasma spp. infections in goats (N = 731) and cattle (N = 176) blood samples using nested PCR and conventional PCR based assays. The results revealed an overall prevalence of 30.1% in goats and 14.8% in cattle. The infection rates of A. bovis, A. phagocytophilum, A. ovis and A. capra in goat samples were 22.7%, 13.8%, 2.0% and 3.4%, respectively, while the infection rates of A. bovis, A. phagocytophilum and A. marginale in cattle samples were 11.4%, 6.3% and 5.7%, respectively. A. bovis exhibited the highest prevalence among the Anaplasma spp. in both goat and cattle samples. In addition, the most frequent co-infection was the one with A. phagocytophilum and A. bovis. It was found that the age, sex and feeding habits of cattle and goats were considered to be important risk factors. Evaluation of the risk factor relating to the rearing system showed that the infection rate for the free-range goats and cattle was significantly higher when compared with stall-feeding system.This study represents one of the largest investigations on the distribution, prevalence, and risk factors associated with Anaplasma infection in ruminants on Hainan Island, highlighting a higher circulation of the infection in the region than previously anticipated. Further reasesrch is necessary to investigate tick vectors, reservoir animals, and the zoonotic potential of the Anaplasma spp. in this endemic region of Hainan Island.
Collapse
Affiliation(s)
- Sa Zhou
- One Health Institute, Hainan University, Haikou, 570228, Hainan, China
- College of Animal Science and Technology, Hainan University, Haikou, 570228, Hainan, China
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life Sciences, Hainan University, Haikou, 570228, Hainan, China
| | - Liangyuan Huang
- One Health Institute, Hainan University, Haikou, 570228, Hainan, China
- College of Animal Science and Technology, Hainan University, Haikou, 570228, Hainan, China
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life Sciences, Hainan University, Haikou, 570228, Hainan, China
| | - Yang Lin
- One Health Institute, Hainan University, Haikou, 570228, Hainan, China
- College of Animal Science and Technology, Hainan University, Haikou, 570228, Hainan, China
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life Sciences, Hainan University, Haikou, 570228, Hainan, China
| | - Biswajit Bhowmick
- One Health Institute, Hainan University, Haikou, 570228, Hainan, China
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life Sciences, Hainan University, Haikou, 570228, Hainan, China
| | - Jianguo Zhao
- One Health Institute, Hainan University, Haikou, 570228, Hainan, China
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life Sciences, Hainan University, Haikou, 570228, Hainan, China
| | - Chenghong Liao
- One Health Institute, Hainan University, Haikou, 570228, Hainan, China
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life Sciences, Hainan University, Haikou, 570228, Hainan, China
| | - Qingfeng Guan
- One Health Institute, Hainan University, Haikou, 570228, Hainan, China
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life Sciences, Hainan University, Haikou, 570228, Hainan, China
| | - Jinhua Wang
- One Health Institute, Hainan University, Haikou, 570228, Hainan, China.
- College of Animal Science and Technology, Hainan University, Haikou, 570228, Hainan, China.
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life Sciences, Hainan University, Haikou, 570228, Hainan, China.
| | - Qian Han
- One Health Institute, Hainan University, Haikou, 570228, Hainan, China.
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life Sciences, Hainan University, Haikou, 570228, Hainan, China.
| |
Collapse
|
5
|
Vilibic-Cavlek T, Janev-Holcer N, Bogdanic M, Ferenc T, Vujica Ferenc M, Krcmar S, Savic V, Stevanovic V, Ilic M, Barbic L. Current Status of Vector-Borne Diseases in Croatia: Challenges and Future Prospects. Life (Basel) 2023; 13:1856. [PMID: 37763260 PMCID: PMC10532474 DOI: 10.3390/life13091856] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/22/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
Different vector-borne pathogens are present or have (re-)emerged in Croatia. Flaviviruses tick-borne encephalitis (TBEV), West Nile (WNV), and Usutu (USUV) are widely distributed in continental regions, while Toscana virus (TOSV) and sandfly fever viruses are detected at the Croatian littoral. Recently, sporadic clinical cases of Tahyna orthobunyavirus (TAHV) and Bhanja bandavirus infection and seropositive individuals have been reported in continental Croatia. Acute infections and serologic evidence of WNV, TBEV, USUV, and TAHV were also confirmed in sentinel animals and vectors. Autochthonous dengue was reported in 2010 at the Croatian littoral. Lyme borreliosis is the most widely distributed vector-borne bacterial infection. The incidence is very high in northwestern and eastern regions, which correlates with numerous records of Ixodes ricinus ticks. Acute human Anaplasma phagocytophilum infections are reported sporadically, but there are many records of serologic evidence of anaplasmosis in animals. Mediterranean spotted fever (Rickettsia conorii) and murine typhus (Rickettsia typhi) are the main rickettsial infections in Croatia. Human leishmaniasis is notified sporadically, while serologic evidence of leishmaniasis was found in 11.4% of the Croatian population. After the official eradication of malaria in 1964, only imported cases were reported in Croatia. Since vector-borne diseases show a growing trend, continuous monitoring of vectors is required to protect the population from these infections.
Collapse
Affiliation(s)
- Tatjana Vilibic-Cavlek
- Department of Virology, Croatian Institute of Public Health, 10000 Zagreb, Croatia
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Natasa Janev-Holcer
- Environmental Health Department, Croatian Institute of Public Health, 10000 Zagreb, Croatia
- Department of Social Medicine and Epidemiology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| | - Maja Bogdanic
- Department of Virology, Croatian Institute of Public Health, 10000 Zagreb, Croatia
| | - Thomas Ferenc
- Department of Diagnostic and Interventional Radiology, Merkur University Hospital, 10000 Zagreb, Croatia
| | - Mateja Vujica Ferenc
- Department of Obstetrics and Gynecology, University Hospital Center Zagreb, 10000 Zagreb, Croatia
| | - Stjepan Krcmar
- Department of Biology, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Vladimir Savic
- Poultry Center, Croatian Veterinary Institute, 10000 Zagreb, Croatia
| | - Vladimir Stevanovic
- Department of Microbiology and Infectious Diseases with Clinic, Faculty of Veterinary Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Maja Ilic
- Department of Communicable Disease Epidemiology, Croatian Institute of Public Health, 10000 Zagreb, Croatia
| | - Ljubo Barbic
- Department of Microbiology and Infectious Diseases with Clinic, Faculty of Veterinary Medicine, University of Zagreb, 10000 Zagreb, Croatia
| |
Collapse
|
6
|
Makgabo SM, Brayton KA, Oosthuizen MC, Collins NE. Unravelling the diversity of Anaplasma species circulating in selected African wildlife hosts by targeted 16S microbiome analysis. CURRENT RESEARCH IN MICROBIAL SCIENCES 2023; 5:100198. [PMID: 37675244 PMCID: PMC10477809 DOI: 10.1016/j.crmicr.2023.100198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023] Open
Abstract
Organisms in the genus Anaplasma are obligate intracellular alphaproteobacteria. Bovine anaplasmosis, predominantly caused by Anaplasma marginale, is the most prevalent tick-borne disease (TBD) of cattle worldwide. Other Anaplasma species are known to cause disease; these include A. ovis, A. platys in dogs, A. capra in goats and humans, and A. phagocytophilum in humans. The rapid advancement of next-generation sequencing technologies has led to the discovery of many novel sequences ascribed to the genus Anaplasma, with over 20 putative new species being proposed since the last formal organization of the genus. Most 16S rRNA gene surveys for Anaplasma were conducted on cattle and to a lesser extent on rodents, dogs, and ticks. Little is known about the occurrence, diversity, or impact of Anaplasma species circulating in wildlife species. Therefore, we conducted a 16S rRNA gene survey with the goal of identifying Anaplasma species in a variety of wildlife species in the Kruger National Park and neighbouring game reserves, using an unbiased 16S rRNA gene microbiome approach. An Anaplasma/Ehrlichia-group specific quantitative real-time PCR (qPCR) assay revealed the presence of Anaplasma and/or Ehrlichia species in 70.0% (21/30) of African buffalo, 86.7% (26/30) of impala, 36.7% (11/30) of greater kudu, 3.2% (1/31) of African wild dog, 40.6% (13/32) of Burchell's zebra, 43.3% (13/30) of warthog, 22.6% (7/31) of spotted hyena, 40.0% (12/30) of leopard, 17.6% (6/34) of lion, 16.7% (5/30) of African elephant and 8.6% (3/35) of white rhinoceros samples. Microbiome sequencing data from the qPCR positive samples revealed four 16S rRNA sequences identical to previously published Anaplasma sequences, as well as nine novel Anaplasma 16S genotypes. Our results reveal a greater diversity of putative Anaplasma species circulating in wildlife than currently classified within the genus. Our findings highlight a potential expansion of the Anaplasma host range and the need for more genetic information from other important genes or genome sequencing of putative novel species for correct classification and further assessment of their occurrence in wildlife, livestock and companion animals.
Collapse
Affiliation(s)
- S. Marcus Makgabo
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort, 0110, South Africa
- Department of Life and Consumer Sciences, College of Agriculture and Environmental Sciences, University of South Africa (UNISA), Florida Campus, Roodepoort, 1709, South Africa
| | - Kelly A. Brayton
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort, 0110, South Africa
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, USA
| | - Marinda C. Oosthuizen
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort, 0110, South Africa
- Centre for Veterinary Wildlife Research, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort, 0110, South Africa
| | - Nicola E. Collins
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort, 0110, South Africa
- Centre for Veterinary Wildlife Research, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort, 0110, South Africa
| |
Collapse
|
7
|
Siddiki AZ, Alam S, Tithi FA, Hoque SF, Sajib EH, Bin Hossen FF, Hossain MA. Construction of a multi-epitope in silico vaccine against Anaplasma Marginale using immunoinformatics approach. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2023; 50:102706. [DOI: 10.1016/j.bcab.2023.102706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
8
|
Hasan M, Roohi N, Rashid MI, Ali S, Ul-Rehman Z. Occurrence of ticks and tick-borne mixed parasitic microbiota in cross-bred cattle in District Lahore, Pakistan. BRAZ J BIOL 2022; 82:e266721. [PMID: 36515298 DOI: 10.1590/1519-6984.266721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 10/23/2022] [Indexed: 12/14/2022] Open
Abstract
The present study was focused on the incidence of ticks and tick-borne diseases (TTBD) in cross-bred cattle (Friesian x Sahiwal) of two farms (n = 2548) in district Lahore, Pakistan. We collected total of 572 ticks (adults and nymphs) and blood samples (10 ml) for microscopic i.e., blood smear test - Giemsa Stain (BST) and molecular analysis; Reverse Line Blot-General Primer-PCR (RLB-PCR) and Specie Specific Primer PCR (SP-PCR) from infested cattle (n = 100) from months of April to September. Results: The tick specie identified was Rhipicephalus microplus at both farms, with significant difference in infestations rate amongst both farms (p< 0.0001). The cross-bred cattle having higher ratio of Friesian blood and lower ratio of Sahiwal blood were mostly infested by ticks (p < 0.0458) and haemoparasites (p <0.474) and vice versa. The SP-PCR showed higher number of haemoparasites infection than BST, which revealed 16% T. annulata (p < 0.0001 and k value 0.485, 0.0001), 51% B. bigemina (p < 0.0001 and k value 0.485, 0.0001) and 15% A. marginale (p < 0.001 and k value 0.207, 0.001), respectively. The single infection with B. bigemina was 34% (n = 34/100) and A. marginale 6% (n = 6/100). The double infection with T. annulata/B. bigemina was 8% (n = 8/100) and B. bigemina/A. marginale 1% (n = 1/100). Whereas the triple infection with T. annulata/B. bigemina/A .marginale was 8% (n = 8/100). The phylogenetic study of isolated sequence of T. annulata revealed close homology to isolates from Iran (87%), B. bigemina to isolates from Cuba (94 to 100%) and A. marginale with isolates from Pakistan (99 to 98%).
Collapse
Affiliation(s)
- M Hasan
- University of the Punjab, Institute of Zoology, Lahore, Pakistan
| | - N Roohi
- University of the Punjab, Institute of Zoology, Lahore, Pakistan
| | - M I Rashid
- University of Veterinary and Animal Sciences, Department of Parasitology, Lahore, Pakistan
| | - S Ali
- University of Veterinary and Animal Sciences, Department of Parasitology, Lahore, Pakistan
| | - Z Ul-Rehman
- University of Veterinary and Animal Sciences, Department of Parasitology, Lahore, Pakistan
| |
Collapse
|
9
|
Chatanga E, Maganga E, Mohamed WMA, Ogata S, Pandey GS, Abdelbaset AE, Hayashida K, Sugimoto C, Katakura K, Nonaka N, Nakao R. High infection rate of tick-borne protozoan and rickettsial pathogens of cattle in Malawi and the development of a multiplex PCR for Babesia and Theileria species identification. Acta Trop 2022; 231:106413. [PMID: 35307457 DOI: 10.1016/j.actatropica.2022.106413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 03/16/2022] [Accepted: 03/16/2022] [Indexed: 11/01/2022]
Abstract
Malawi has an estimated cattle population of 1,884,803 heads, the indigenous Malawi zebu breed accounts for 91.2%, while the exotic and crossbred accounts for the remaining 8.8%. Although ticks and tick-borne diseases are widespread in Malawi, no molecular study has been conducted to investigate the tick-borne Anaplasmataceae and piroplasms infecting cattle. To provide an insight into the current status of tick-borne pathogens (TBPs) of cattle, a molecular survey was conducted in the central and southern regions of Malawi. A total of 191 cattle of which 132 were Malawi zebu, 44 were Holstein Friesian and 15 were Holstein-Friesian/ Malawi zebu crosses were screened for Anaplasmataceae and piroplasms using the heat shock protein groEL gene and 18S rDNA, respectively. A new 18S rDNA multiplex PCR assay was designed for Babesia and Theileria species identification without sequencing. Overall, 92.3% (n = 177) of the examined animals were infected with at least one TBP. Anaplasmataceae-positive rate was 57.6% (n = 110) while for piroplasms it was 80.1% (n = 153). The detected Anaplasmataceae were Anaplasma bovis 2.6% (n = 5), Anaplasma marginale 24.6% (n = 47), Anaplasma platys-like 13.6% (n = 26), uncharacterized Anaplasma sp. 14.1% (n = 27), and uncharacterized Ehrlichia sp. 16.2% (n = 31). The detected piroplasms were Babesia bigemina 2.6% (n = 5), Theileria mutans 73.8% (n = 141), Theileria parva 33.0% (n = 63), Theileria taurotragi 12.6% (n = 24), and Theileria velifera 53.4% (n = 102). Mixed infection rate was found in 79.6% (n = 152) of the samples analyzed. This study has shown a high burden of TBPs among cattle in Malawi which highlights the need to conceive new methods to control ticks and TBPs in order to improve animal health and productivity. The newly developed multiplex PCR assay would be a useful tool especially in resource limited settings where sequencing is not available and when mixed infections are expected.
Collapse
|
10
|
Bajer A, Beck A, Beck R, Behnke JM, Dwużnik-Szarek D, Eichenberger RM, Farkas R, Fuehrer HP, Heddergott M, Jokelainen P, Leschnik M, Oborina V, Paulauskas A, Radzijevskaja J, Ranka R, Schnyder M, Springer A, Strube C, Tolkacz K, Walochnik J. Babesiosis in Southeastern, Central and Northeastern Europe: An Emerging and Re-Emerging Tick-Borne Disease of Humans and Animals. Microorganisms 2022; 10:945. [PMID: 35630388 PMCID: PMC9146636 DOI: 10.3390/microorganisms10050945] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/19/2022] [Accepted: 04/26/2022] [Indexed: 12/10/2022] Open
Abstract
There is now considerable evidence that in Europe, babesiosis is an emerging infectious disease, with some of the causative species spreading as a consequence of the increasing range of their tick vector hosts. In this review, we summarize both the historic records and recent findings on the occurrence and incidence of babesiosis in 20 European countries located in southeastern Europe (Bosnia and Herzegovina, Croatia, and Serbia), central Europe (Austria, the Czech Republic, Germany, Hungary, Luxembourg, Poland, Slovakia, Slovenia, and Switzerland), and northern and northeastern Europe (Lithuania, Latvia, Estonia, Iceland, Denmark, Finland, Sweden, and Norway), identified in humans and selected species of domesticated animals (cats, dogs, horses, and cattle). Recorded cases of human babesiosis are still rare, but their number is expected to rise in the coming years. This is because of the widespread and longer seasonal activity of Ixodes ricinus as a result of climate change and because of the more extensive use of better molecular diagnostic methods. Bovine babesiosis has a re-emerging potential because of the likely loss of herd immunity, while canine babesiosis is rapidly expanding in central and northeastern Europe, its occurrence correlating with the rapid, successful expansion of the ornate dog tick (Dermacentor reticulatus) populations in Europe. Taken together, our analysis of the available reports shows clear evidence of an increasing annual incidence of babesiosis across Europe in both humans and animals that is changing in line with similar increases in the incidence of other tick-borne diseases. This situation is of major concern, and we recommend more extensive and frequent, standardized monitoring using a "One Health" approach.
Collapse
Affiliation(s)
- Anna Bajer
- Department of Eco-Epidemiology of Parasitic Diseases, Faculty of Biology, Institute of Developmental Biology and Biomedical Sciences, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland; (D.D.-S.); (K.T.)
| | - Ana Beck
- Ribnjak 8, 10 000 Zagreb, Croatia;
| | - Relja Beck
- Department for Bacteriology and Parasitology, Croatian Veterinary Institute, Savska Cesta 143, 10 000 Zagreb, Croatia;
| | - Jerzy M. Behnke
- School of Life Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK;
| | - Dorota Dwużnik-Szarek
- Department of Eco-Epidemiology of Parasitic Diseases, Faculty of Biology, Institute of Developmental Biology and Biomedical Sciences, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland; (D.D.-S.); (K.T.)
| | - Ramon M. Eichenberger
- Vetsuisse Faculty, Institute of Parasitology, University of Zurich, 8057 Zürich, Switzerland; (R.M.E.); (M.S.)
| | - Róbert Farkas
- Department of Parasitology and Zoology, University of Veterinary Medicine, 1078 Budapest, Hungary;
| | - Hans-Peter Fuehrer
- Department of Pathobiology, Institute of Parasitology, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria;
| | - Mike Heddergott
- Department of Zoology, Musée National d’Historire Naturelle, 25, Rue Münster, 2160 Luxembourg, Luxembourg;
| | - Pikka Jokelainen
- Infectious Disease Prepardness, Statens Serum Institut, Artillerivej 5, DK-2300 Copenhagen, Denmark;
| | - Michael Leschnik
- Clinical Unit of Internal Medicine Small Animals, Department/Universitätsklinik für Kleintiere und Pferde, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Wien, Austria;
| | - Valentina Oborina
- Small Animal Clinic of Estonian University of Life Sciences, Kreutzwaldi 62, 51014 Tartu, Estonia;
| | - Algimantas Paulauskas
- Faculty of Natural Sciences, Vytautas Magnus University, K. Donelaičio str. 58, LT-44248 Kaunas, Lithuania; (A.P.); (J.R.)
| | - Jana Radzijevskaja
- Faculty of Natural Sciences, Vytautas Magnus University, K. Donelaičio str. 58, LT-44248 Kaunas, Lithuania; (A.P.); (J.R.)
| | - Renate Ranka
- Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia;
| | - Manuela Schnyder
- Vetsuisse Faculty, Institute of Parasitology, University of Zurich, 8057 Zürich, Switzerland; (R.M.E.); (M.S.)
| | - Andrea Springer
- Centre for Infection Medicine, Institute for Parasitology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; (A.S.); (C.S.)
| | - Christina Strube
- Centre for Infection Medicine, Institute for Parasitology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; (A.S.); (C.S.)
| | - Katarzyna Tolkacz
- Department of Eco-Epidemiology of Parasitic Diseases, Faculty of Biology, Institute of Developmental Biology and Biomedical Sciences, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland; (D.D.-S.); (K.T.)
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 5A Pawińskiego Str, 02-106 Warsaw, Poland
| | - Julia Walochnik
- Institute for Specific Prophylaxis and Tropical Medicine, Medical University of Vienna, 1090 Vienna, Austria;
| |
Collapse
|
11
|
Kovalchuk SN. Molecular characterization and phylogenetic study of Theileria sp. parasites detected in cattle from the Moscow region of Russia. Ticks Tick Borne Dis 2021; 13:101835. [PMID: 34601345 DOI: 10.1016/j.ttbdis.2021.101835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 08/26/2021] [Accepted: 08/26/2021] [Indexed: 10/20/2022]
Abstract
Theileriae are obligate intracellular protozoan parasites which are transmitted by ixodid ticks and infect both wild and domestic ruminants worldwide. Theileriosis causes significant economic losses to the livestock industry in many countries due to the high morbidity and mortality in cattle herds. In Russia, information concerning prevalence of Theileria spp. in cattle is very limited. This study reports on molecular characterization and phylogenetic analysis of Theileria spp. parasites detected in cattle from the Moscow region of Russia. Phylogenetic analysis based on the full length 18S rRNA gene revealed that the Russian Theileria parasites belong to the Theileria orientalis / Theileria buffeli / Theileria sergenti group and share a common genotype with T. buffeli Marula from Kenya, T. buffeli isolates from Japan and South Korea, T. orientalis isolate from Australia and T. sergenti isolate from Japan, which belong to the pathogenic Chitose genotype.
Collapse
Affiliation(s)
- Svetlana N Kovalchuk
- Institute of Innovative Biotechnologies in Animal Husbandry - the branch of L.K. Ernst Federal Research Center for Animal Husbandry, Kostyakova str., 12/4, Moscow, 127422 Russia
| |
Collapse
|
12
|
Banović P, Díaz-Sánchez AA, Galon C, Foucault-Simonin A, Simin V, Mijatović D, Papić L, Wu-Chuang A, Obregón D, Moutailler S, Cabezas-Cruz A. A One Health approach to study the circulation of tick-borne pathogens: A preliminary study. One Health 2021; 13:100270. [PMID: 34141849 PMCID: PMC8188046 DOI: 10.1016/j.onehlt.2021.100270] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 05/22/2021] [Accepted: 05/25/2021] [Indexed: 12/14/2022] Open
Abstract
Tick-borne pathogens (TBPs) have complex life cycles involving tick vectors and vertebrate hosts. However, there is limited empirical evidence on the zoonotic circulation of TBPs. In this study, we used a One Health approach to study the possible circulation of TBPs in ticks, animals and humans within a rural household in the foothills of the Fruška Gora mountain, northern Serbia. The presence of TBP DNA was assessed using microfluidic PCR (25 bacterial species, 7 parasite species, 5 bacterial genera, 3 parasite genera) in animal, human and tick samples and the presence of tick-borne encephalitis virus (TBEV) RNA was screened for using RT-qPCR on tick samples. In addition, Lyme borreliosis serology was assessed in patients sera. Rhipicephalus sanguineus and Ixodes ricinus ticks were identified on dogs and Haemaphysalis punctata was identified on house walls. Rickettsia helvetica was the most common pathogen detected in pooled R. sanguineus and I. ricinus tick samples, followed by Hepatozoon canis. None of the H. punctata tick samples tested positive for the presence of TBPs. Anaplasma phagocytophilum and Rickettsia monacensis were the most frequent pathogens detected in dogs, followed by Rickettsia felis, whereas Anaplasma bovis was the only pathogen found in one of the goats tested. None of the human blood samples collected from family members tested positive for the presence of TBPs. Although microfluidic PCR did not detect Borrelia sp. in any of the tested tick or blood samples, a family member with a history of Lyme disease was seropositive for Borrelia burgdorferi sensu lato (s.l.). We conclude that, despite the presence of TBPs in tick and vertebrate reservoirs, there is no evidence of infection with TBPs across various components of the epidemiological chain in a rural Fruška Gora household.
Collapse
Affiliation(s)
- Pavle Banović
- Ambulance for Lyme Borreliosis and Other Tick-Borne Diseases, Pasteur Institute Novi Sad, Novi Sad 21000, Serbia.,Department of Microbiology with Parasitology and Immunology, Faculty of Medicine, University of Novi Sad, Novi Sad 21000, Serbia
| | - Adrian Alberto Díaz-Sánchez
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, Saskatchewan S7N 5E2, Canada
| | - Clemence Galon
- ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort F-94700, France
| | - Angélique Foucault-Simonin
- ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort F-94700, France
| | - Verica Simin
- Department for Microbiological & Other Diagnostics, Pasteur Institute Novi Sad, Novi Sad 21000, Serbia
| | - Dragana Mijatović
- Ambulance for Lyme Borreliosis and Other Tick-Borne Diseases, Pasteur Institute Novi Sad, Novi Sad 21000, Serbia
| | - Luka Papić
- Department of Veterinary Medicine, Faculty of Agriculture, University of Novi Sad, Novi Sad 21000, Serbia
| | - Alejandra Wu-Chuang
- ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort F-94700, France
| | - Dasiel Obregón
- School of Environmental Sciences University of Guelph, Guelph, Ontario N1G 2W1, Canada.,Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, São Paulo 13400-970, Brazil
| | - Sara Moutailler
- ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort F-94700, France
| | - Alejandro Cabezas-Cruz
- ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort F-94700, France
| |
Collapse
|