1
|
Rinne V, Gröndahl-Yli-Hannuksela K, Fair-Mäkelä R, Salmi M, Rantakari P, Lönnberg T, Alinikula J, Pietikäinen A, Hytönen J. Single-cell transcriptome analysis of the early immune response in the lymph nodes of Borrelia burgdorferi-infected mice. Microbes Infect 2025; 27:105424. [PMID: 39306236 DOI: 10.1016/j.micinf.2024.105424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 08/30/2024] [Accepted: 09/13/2024] [Indexed: 03/14/2025]
Abstract
Lyme borreliosis is a disease caused by Borrelia burgdorferi sensu lato bacteria. Borrelia burgdorferi is known to induce prolonged extrafollicular immune responses and abnormal germinal centre formation. The infection fails to generate a neutralizing type of immunity, eventually establishing a persistent infection. Here, we performed single-cell RNA sequencing to characterize the immune landscape of lymph node lymphocytes during the early Borrelia burgdorferi infection in a murine model. Our results indicate key features of an extrafollicular immune response four days after Borrelia burgdorferi infection, including notable B cell proliferation, immunoglobulin class switching to IgG3 and IgG2b isotypes, plasmablast differentiation, and the presence of extrafollicular B cells identified through immunohistochemistry. Additionally, we found infection-derived upregulation of suppressor of cytokine signalling genes Socs1 and Socs3, along with downregulation of genes associated with MHC II antigen presentation in B cells. Our results support the central role of B cells in the immune response of a Borrelia burgdorferi infection, and provide cues of mechanisms behind the determination between extrafollicular and germinal centre responses during Borrelia burgdorferi infection.
Collapse
Affiliation(s)
- Varpu Rinne
- Institute of Biomedicine, Faculty of Medicine, University of Turku, Turku, Finland.
| | | | - Ruth Fair-Mäkelä
- Institute of Biomedicine, Faculty of Medicine, University of Turku, Turku, Finland; InFLAMES Research Flagship, University of Turku, Turku, Finland
| | - Marko Salmi
- Institute of Biomedicine, Faculty of Medicine, University of Turku, Turku, Finland; InFLAMES Research Flagship, University of Turku, Turku, Finland; MediCity, Faculty of Medicine, University of Turku, Turku, Finland
| | - Pia Rantakari
- Institute of Biomedicine, Faculty of Medicine, University of Turku, Turku, Finland; Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Tapio Lönnberg
- InFLAMES Research Flagship, University of Turku, Turku, Finland; Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Jukka Alinikula
- Institute of Biomedicine, Faculty of Medicine, University of Turku, Turku, Finland
| | - Annukka Pietikäinen
- Institute of Biomedicine, Faculty of Medicine, University of Turku, Turku, Finland; TYKS Laboratories, Clinical Microbiology, Turku University Hospital, Turku, Finland
| | - Jukka Hytönen
- Institute of Biomedicine, Faculty of Medicine, University of Turku, Turku, Finland; TYKS Laboratories, Clinical Microbiology, Turku University Hospital, Turku, Finland
| |
Collapse
|
2
|
Brouwer MAE, Karami Z, Keating ST, Vrijmoeth H, Lemmers HLM, Dijkstra H, van de Veerdonk FL, Lupse M, Ter Hofstede HJM, Netea MG, Joosten LAB. Borrelia burgdorferi sensu lato inhibits CIITA transcription through pSTAT3 activation and enhanced SOCS1 and SOCS3 expression leading to limited IFN-γ production. Ticks Tick Borne Dis 2025; 16:102442. [PMID: 39879745 DOI: 10.1016/j.ttbdis.2025.102442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 12/30/2024] [Accepted: 01/13/2025] [Indexed: 01/31/2025]
Abstract
Interferons (IFNs) are important signaling molecules in the human immune response against micro-organisms. Throughout initial Borrelia burgdorferi sensu lato (B. burgdorferi s.l.) infection in vitro, inadequate IFN-γ production results in the absence of a strong T-helper 1 cell response, potentially hampering the development of an effective antibody responses in Lyme borreliosis (LB) patients. The aim of this study is to help understand the immunomodulatory mechanisms why IFN-γ production is absent in the early onset of LB. Therefore, cytokine production and STAT activation signature, following exposure of human immune cells to B. burgdorferi s.l., was investigated in vivo and in vitro. While STAT3 phosphorylation was highly induced in T cells, B cells and NK-(T) cells, STAT1 expression and IL-12p70 production were not or only slightly increased upon B. burgdorferi s.l. exposure. In response to B. burgdorferi s.l., STAT2 phosphorylation and IFNα production remained stable. STAT2 activation only increased in NK-(T) cells. In contrast, STAT4 signaling was reduced in all B. burgdorferi s.l. exposed immune cells. Moreover, B. burgdorferi s.l. significantly increased suppressor of cytokine signaling (SOCS)1 and SOCS3 gene expression in LB patients. Absence of IFN-γ production and STAT4 activation, in combination with STAT3 phosphorylation and upregulated SOCS1 and SOCS3 gene expression, suggests the formation of a more tolerant and anti-inflammatory response to B. burgdorferi s.l., specifically in T- and B-cells. In primary human PBMCs and monocyte populations, B. burgdorferi s.l. also specifically interfered with CIITA isoforms normally expressed in antigen presenting dendritic cells. In contrast, it enhanced CIITA isoforms typically present in adaptive immune cell subsets. Restoring antigen presentation capacity of innate immune cells and early production of IFN-γ in LB patients may help re-establish immune functions during initial LB. These new insights will help to understand the immunomodulatory mechanisms of B. burgdorferi s.l. during the onset of LB.
Collapse
Affiliation(s)
- Michelle A E Brouwer
- Department of Internal Medicine and Radboud Community for Infectious diseases (RCI), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Zara Karami
- Department of Internal Medicine and Radboud Community for Infectious diseases (RCI), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Samuel T Keating
- Department of Internal Medicine and Radboud Community for Infectious diseases (RCI), Radboud University Medical Center, Nijmegen, the Netherlands; Department of Biology, University of Copenhagen, Copenhagen DK 2200, Denmark
| | - Hedwig Vrijmoeth
- Department of Internal Medicine and Radboud Community for Infectious diseases (RCI), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Heidi L M Lemmers
- Department of Internal Medicine and Radboud Community for Infectious diseases (RCI), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Helga Dijkstra
- Department of Internal Medicine and Radboud Community for Infectious diseases (RCI), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Frank L van de Veerdonk
- Department of Internal Medicine and Radboud Community for Infectious diseases (RCI), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Mihaela Lupse
- Department of Infectious Diseases, University of Medicine and Pharmacy "Iuliu Hatieganu", Cluj-Napoca 400349, Romania
| | - Hadewych J M Ter Hofstede
- Department of Internal Medicine and Radboud Community for Infectious diseases (RCI), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Community for Infectious diseases (RCI), Radboud University Medical Center, Nijmegen, the Netherlands; Department for Genomics & Immunoregulation, Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| | - Leo A B Joosten
- Department of Internal Medicine and Radboud Community for Infectious diseases (RCI), Radboud University Medical Center, Nijmegen, the Netherlands; Department of Medical Genetics, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania.
| |
Collapse
|
3
|
Snik ME, Stouthamer NE, Hovius JW, van Gool MM. Bridging the gap: Insights in the immunopathology of Lyme borreliosis. Eur J Immunol 2024; 54:e2451063. [PMID: 39396370 PMCID: PMC11628917 DOI: 10.1002/eji.202451063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 09/16/2024] [Accepted: 09/18/2024] [Indexed: 10/15/2024]
Abstract
Lyme borreliosis (LB), caused by Borrelia burgdorferi sensu lato (Bbsl) genospecies transmitted by Ixodes spp. ticks, is a significant public health concern in the Northern Hemisphere. This review highlights the complex interplay between Bbsl infection and host-immune responses, impacting clinical manifestations and long-term immunity. Early localized disease is characterized by erythema migrans (EM), driven by T-helper 1 (Th1) responses and proinflammatory cytokines. Dissemination to the heart and CNS can lead to Lyme carditis and neuroborreliosis respectively, orchestrated by immune cell infiltration and chemokine dysregulation. More chronic manifestations, including acrodermatitis chronica atrophicans and Lyme arthritis, involve prolonged inflammation as well as the development of autoimmunity. In addition, dysregulated immune responses impair long-term immunity, with compromised B-cell memory and antibody responses. Experimental models and clinical studies underscore the role of Th1/Th2 balance, B-cell dysfunction, and autoimmunity in LB pathogenesis. Moreover, LB-associated autoimmunity parallels mechanisms observed in other infectious and autoimmune diseases. Understanding immune dysregulation in LB provides insights into disease heterogeneity and could provide new strategies for diagnosis and treatment.
Collapse
Affiliation(s)
- Marijn E. Snik
- Center for Experimental and Molecular Medicine, Amsterdam UMCUniversity of AmsterdamAmsterdamthe Netherlands
| | - Noor E.I.M. Stouthamer
- Center for Experimental and Molecular Medicine, Amsterdam UMCUniversity of AmsterdamAmsterdamthe Netherlands
| | - Joppe W. Hovius
- Center for Experimental and Molecular Medicine, Amsterdam UMCUniversity of AmsterdamAmsterdamthe Netherlands
- Amsterdam Institute for Immunology and Infectious DiseasesAmsterdamthe Netherlands
- Division of Infectious DiseasesDepartment of Internal MedicineAmsterdam UMC Multidisciplinary Lyme borreliosis CenterAmsterdam UMCUniversity of AmsterdamAmsterdamthe Netherlands
| | - Melissa M.J. van Gool
- Center for Experimental and Molecular Medicine, Amsterdam UMCUniversity of AmsterdamAmsterdamthe Netherlands
- Amsterdam Institute for Immunology and Infectious DiseasesAmsterdamthe Netherlands
| |
Collapse
|
4
|
Danner R, Prochniak LM, Pereckas M, Rouse JR, Wahhab A, Hackner LG, Lochhead RB. Identification of Major Histocompatibility Complex Class II Epitopes From Lyme Autoantigen Apolipoprotein B-100 and Borrelia burgdorferi Mcp4 in Murine Lyme Arthritis. J Infect Dis 2024; 230:S27-S39. [PMID: 39140726 PMCID: PMC11322890 DOI: 10.1093/infdis/jiae324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024] Open
Abstract
BACKGROUND During infection with the Lyme arthritis (LA) pathogen Borrelia burgdorferi, T-cell responses to both host and pathogen are dysregulated, resulting in chronic infection and frequent development of autoimmunity. METHODS To assess CD4+ T-cell epitopes presented during development of LA, we used an unbiased, immunopeptidomics approach to characterize the major histocompatibility complex (MHC) class II immunopeptidome in B burgdorferi-infected C57BL/6 (B6) mice, which develop mild, self-limiting LA, and infected B6 Il10-/- mice, which develop severe, persistent LA at 0, 4, and 16 weeks postinfection (22-23 mice per group). RESULTS Peptides derived from proteins involved in adaptive T- and B-cell responses and cholesterol metabolism, including human Lyme autoantigen apolipoprotein B-100 (apoB-100), were enriched in infected Il10-/- mice; whereas peptides derived from proteins involved in neutrophil extracellular net formation were enriched in infected B6 mice. Presentation of apoB-100 peptides showed evidence of epitope expansion during infection. Of several identified B burgdorferi peptides, only 1, a methyl-accepting chemotaxis protein peptide Mcp4442-462, was immunogenic. CONCLUSIONS ApoB-100, a human Lyme autoantigen, undergoes marked epitope expansion during LA development. The paucity of immunogenic B burgdorferi epitopes supports previous findings suggesting CD4+ T-cell responses are suppressed in murine LA.
Collapse
Affiliation(s)
- Rebecca Danner
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Lauren M Prochniak
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Michaela Pereckas
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Joseph R Rouse
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Amanda Wahhab
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Lauren G Hackner
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Robert B Lochhead
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Division of Rheumatology, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
5
|
Henningsson AJ, Hellberg S, Lerm M, Sayyab S. Genome-wide DNA Methylation Profiling in Lyme Neuroborreliosis Reveals Altered Methylation Patterns of HLA Genes. J Infect Dis 2024; 229:1209-1214. [PMID: 37824827 PMCID: PMC11011177 DOI: 10.1093/infdis/jiad451] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 10/04/2023] [Accepted: 10/11/2023] [Indexed: 10/14/2023] Open
Abstract
Lyme neuroborreliosis (LNB) is a complex neuroinflammatory disorder caused by Borrelia burgdorferi, which is transmitted through tick bites. Epigenetic alterations, specifically DNA methylation (DNAm), could play a role in the host immune response during infection. In this study, we present the first genome-wide analysis of DNAm in peripheral blood mononuclear cells from patients with LNB and those without LNB. Using a network-based approach, we highlighted HLA genes at the core of these DNAm changes, which were found to be enriched in immune-related pathways. These findings shed light on the role of epigenetic modifications in the LNB pathogenesis that should be confirmed and further expanded upon in future studies.
Collapse
Affiliation(s)
- Anna J Henningsson
- Division of Clinical Microbiology, Department of Laboratory Medicine, County Hospital Ryhov, Jönköping
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Sandra Hellberg
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Maria Lerm
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Shumaila Sayyab
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
6
|
Gutierrez-Hoffmann M, Fan J, O’Meally RN, Cole RN, Florea L, Antonescu C, Talbot CC, Tiniakou E, Darrah E, Soloski MJ. The Interaction of Borrelia burgdorferi with Human Dendritic Cells: Functional Implications. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:612-625. [PMID: 37405694 PMCID: PMC10527078 DOI: 10.4049/jimmunol.2300235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/01/2023] [Indexed: 07/06/2023]
Abstract
Dendritic cells bridge the innate and adaptive immune responses by serving as sensors of infection and as the primary APCs responsible for the initiation of the T cell response against invading pathogens. The naive T cell activation requires the following three key signals to be delivered from dendritic cells: engagement of the TCR by peptide Ags bound to MHC molecules (signal 1), engagement of costimulatory molecules on both cell types (signal 2), and expression of polarizing cytokines (signal 3). Initial interactions between Borrelia burgdorferi, the causative agent of Lyme disease, and dendritic cells remain largely unexplored. To address this gap in knowledge, we cultured live B. burgdorferi with monocyte-derived dendritic cells (mo-DCs) from healthy donors to examine the bacterial immunopeptidome associated with HLA-DR. In parallel, we examined changes in the expression of key costimulatory and regulatory molecules as well as profiled the cytokines released by dendritic cells when exposed to live spirochetes. RNA-sequencing studies on B. burgdorferi-pulsed dendritic cells show a unique gene expression signature associated with B. burgdorferi stimulation that differs from stimulation with lipoteichoic acid, a TLR2 agonist. These studies revealed that exposure of mo-DCs to live B. burgdorferi drives the expression of both pro- and anti-inflammatory cytokines as well as immunoregulatory molecules (e.g., PD-L1, IDO1, Tim3). Collectively, these studies indicate that the interaction of live B. burgdorferi with mo-DCs promotes a unique mature DC phenotype that likely impacts the nature of the adaptive T cell response generated in human Lyme disease.
Collapse
Affiliation(s)
- Maria Gutierrez-Hoffmann
- Lyme Disease Research Center, Johns Hopkins University,
School of Medicine, Baltimore, MD 21224, USA
- Division of Rheumatology, Johns Hopkins University,
School of Medicine, Baltimore, MD 21224, USA
| | - Jinshui Fan
- Division of Rheumatology, Johns Hopkins University,
School of Medicine, Baltimore, MD 21224, USA
| | - Robert N. O’Meally
- Mass Spectrometry and Proteomics Facility,
Department of Biological Chemistry, Johns Hopkins University School of Medicine,
Baltimore, MD 21205, USA
| | - Robert N. Cole
- Mass Spectrometry and Proteomics Facility,
Department of Biological Chemistry, Johns Hopkins University School of Medicine,
Baltimore, MD 21205, USA
| | - Liliana Florea
- Department of Genetic Medicine, Johns Hopkins
University, School of Medicine, Baltimore, MD 21205, USA
| | - Corina Antonescu
- Department of Genetic Medicine, Johns Hopkins
University, School of Medicine, Baltimore, MD 21205, USA
| | - C. Conover Talbot
- Institute for Basic Biomedical Sciences, Johns
Hopkins University, School of Medicine, Baltimore, MD 21205, USA
| | - Eleni Tiniakou
- Division of Rheumatology, Johns Hopkins University,
School of Medicine, Baltimore, MD 21224, USA
| | - Erika Darrah
- Lyme Disease Research Center, Johns Hopkins University,
School of Medicine, Baltimore, MD 21224, USA
- Division of Rheumatology, Johns Hopkins University,
School of Medicine, Baltimore, MD 21224, USA
| | - Mark J. Soloski
- Lyme Disease Research Center, Johns Hopkins University,
School of Medicine, Baltimore, MD 21224, USA
- Division of Rheumatology, Johns Hopkins University,
School of Medicine, Baltimore, MD 21224, USA
| |
Collapse
|
7
|
Kerstholt M, van de Schoor FR, Oosting M, Moorlag SJCFM, Li Y, Jaeger M, van der Heijden WA, Tunjungputri RN, dos Santos JC, Kischkel B, Vrijmoeth HD, Baarsma ME, Kullberg BJ, Lupse M, Hovius JW, van den Wijngaard CC, Netea MG, de Mast Q, Joosten LAB. Identifying platelet-derived factors as amplifiers of B. burgdorferi-induced cytokine production. Clin Exp Immunol 2022; 210:53-67. [PMID: 36001729 PMCID: PMC9585555 DOI: 10.1093/cei/uxac073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 07/07/2022] [Accepted: 08/11/2022] [Indexed: 01/25/2023] Open
Abstract
Previous studies have shown that monocytes can be 'trained' or tolerized by certain stimuli to respond stronger or weaker to a secondary stimulation. Rewiring of glucose metabolism was found to be important in inducing this phenotype. As we previously found that Borrelia burgdorferi (B. burgdorferi), the causative agent of Lyme borreliosis (LB), alters glucose metabolism in monocytes, we hypothesized that this may also induce long-term changes in innate immune responses. We found that exposure to B. burgdorferi decreased cytokine production in response to the TLR4-ligand lipopolysaccharide (LPS). In addition, B. burgdorferi exposure decreased baseline levels of glycolysis, as assessed by lactate production. Using GWAS analysis, we identified a gene, microfibril-associated protein 3-like (MFAP3L) as a factor influencing lactate production after B. burgdorferi exposure. Validation experiments proved that MFAP3L affects lactate- and cytokine production following B. burgdorferi stimulation. This is mediated by functions of MFAP3L, which includes activating ERK2 and through activation of platelet degranulation. Moreover, we showed that platelets and platelet-derived factors play important roles in B. burgdorferi-induced cytokine production. Certain platelet-derived factors, such chemokine C-X-C motif ligand 7 (CXCL7) and (C-C motif) ligand 5 (CCL5), were elevated in the circulation of LB patients in comparison to healthy individuals.
Collapse
Affiliation(s)
| | | | - Marije Oosting
- Department of Internal Medicine and Radboudumc Center for Infectious diseases (RCI), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Simone J C F M Moorlag
- Department of Internal Medicine and Radboudumc Center for Infectious diseases (RCI), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Yang Li
- Department of Internal Medicine and Radboudumc Center for Infectious diseases (RCI), Radboud University Medical Center, Nijmegen, The Netherlands,Department of Computational Biology for Individualised Medicine, Centre for Individualised Infection Medicine (CiiM) and TWINCORE, Joint Ventures Between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
| | - Martin Jaeger
- Department of Internal Medicine and Radboudumc Center for Infectious diseases (RCI), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Wouter A van der Heijden
- Department of Internal Medicine and Radboudumc Center for Infectious diseases (RCI), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Rahajeng N Tunjungputri
- Department of Internal Medicine and Radboudumc Center for Infectious diseases (RCI), Radboud University Medical Center, Nijmegen, The Netherlands,Center for Tropical and Infectious Diseases (CENTRID), Faculty of Medicine Diponegoro University, Dr. Kariadi Hospital, Semarang, Indonesia
| | - Jéssica C dos Santos
- Department of Internal Medicine and Radboudumc Center for Infectious diseases (RCI), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Brenda Kischkel
- Department of Internal Medicine and Radboud Institute of Molecular Life Sciences (RIMLS), Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Hedwig D Vrijmoeth
- Department of Internal Medicine and Radboudumc Center for Infectious diseases (RCI), Radboud University Medical Center, Nijmegen, The Netherlands
| | - M E Baarsma
- Amsterdam Institute of Infection and Immunology, Center for Experimental and Molecular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Bart-Jan Kullberg
- Department of Internal Medicine and Radboudumc Center for Infectious diseases (RCI), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Mihaela Lupse
- Department of Infectious Diseases, University of Medicine and Pharmacy ‘Iuliu Hatieganu’, Cluj-Napoca, Romania
| | - Joppe W Hovius
- Amsterdam Institute of Infection and Immunology, Center for Experimental and Molecular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Cees C van den Wijngaard
- National Institute for Public Health and the Environment (RIVM), Center of Infectious Disease Control, Bilthoven, The Netherlands
| | - Mihai G Netea
- Department of Internal Medicine and Radboudumc Center for Infectious diseases (RCI), Radboud University Medical Center, Nijmegen, The Netherlands,Department for Immunology and Metabolism, Life and Medical Sciences Institute (LIMES), University of Bonn, Germany
| | - Quirijn de Mast
- Department of Internal Medicine and Radboudumc Center for Infectious diseases (RCI), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Leo A B Joosten
- Correspondence: Leo A.B. Joosten, Lab Experimentele geneeskunde, Radboudumc, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, The Netherlands. E-mail:
| |
Collapse
|
8
|
Oosting M, Brouwer M, Vrijmoeth HD, Pascual Domingo R, Greco A, ter Hofstede H, van den Bogaard EH, Schalkwijk J, Netea MG, Joosten LA. Borrelia burgdorferi is strong inducer of IFN-γ production by human primary NK cells. Cytokine 2022; 155:155895. [DOI: 10.1016/j.cyto.2022.155895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 04/05/2022] [Accepted: 04/20/2022] [Indexed: 11/28/2022]
|
9
|
Borrelia burgdorferi inhibits NADPH-mediated reactive oxygen species production through the mTOR pathway. Ticks Tick Borne Dis 2022; 13:101943. [DOI: 10.1016/j.ttbdis.2022.101943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 03/14/2022] [Accepted: 03/18/2022] [Indexed: 11/21/2022]
|
10
|
Borrelia burgdorferi is a poor inducer of interferon-gamma: amplification induced by interleukin-12. Infect Immun 2022; 90:e0055821. [PMID: 35130450 DOI: 10.1128/iai.00558-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Background Laboratory diagnosis of Lyme borreliosis (LB) is mainly based on serology, which has limitations, particularly in the early stages of the disease. In recent years there have been conflicting reports concerning a new diagnostic tool using the cytokine interferon-gamma (IFN-γ). Previous studies have generally found low concentrations of IFN-γ in early LB infection. The goal of this study is to investigate IFN-γ regulation during early LB and provide insights into the host response to B. burgdorferi. Methods We performed in vitro experiments with whole blood assays and peripheral blood mononuclear cells (PBMCs) of LB patients and healthy volunteers exposed to B. burgdorferi and evaluated the IFN-γ response using ELISA and related interindividual variation in IFN-γ production to the presence of single nucleotide polymorphisms. Results IFN-γ production of B. burgdorferi-exposed PBMCs and whole blood was amplified by the addition of IL-12 to the stimulation system. This effect was observed after 24 hours of B. burgdorferi stimulation in both healthy individuals and LB patients. The effect was highly variable between individuals, but was significantly higher in LB patients six weeks since the start of antibiotic treatment compared to healthy individuals. IL-12 p40 and IL-18 mRNA was upregulated upon exposure to B. burgdorferi, whereas IL-12 p35 and IFN-γ mRNA expression remained relatively unchanged. SNP Rs280520 in the downstream IL-12 pathway, Tyrosine Kinase 2, was associated with increased IFN-γ production. Conclusions This study shows that IL-12 evokes an IFN-γ response in B. burgdorferi exposed cells, and LB patients and healthy controls respond differently to this stimulation.
Collapse
|
11
|
Woitzik P, Linder S. Molecular Mechanisms of Borrelia burgdorferi Phagocytosis and Intracellular Processing by Human Macrophages. BIOLOGY 2021; 10:567. [PMID: 34206480 PMCID: PMC8301104 DOI: 10.3390/biology10070567] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/16/2021] [Accepted: 06/20/2021] [Indexed: 12/21/2022]
Abstract
Lyme disease is the most common vector-borne illness in North America and Europe. Its causative agents are spirochetes of the Borrelia burgdorferi sensu latu complex. Infection with borreliae can manifest in different tissues, most commonly in the skin and joints, but in severe cases also in the nervous systems and the heart. The immune response of the host is a crucial factor for preventing the development or progression of Lyme disease. Macrophages are part of the innate immune system and thus one of the first cells to encounter infecting borreliae. As professional phagocytes, they are capable of recognition, uptake, intracellular processing and final elimination of borreliae. This sequence of events involves the initial capture and internalization by actin-rich cellular protrusions, filopodia and coiling pseudopods. Uptake into phagosomes is followed by compaction of the elongated spirochetes and degradation in mature phagolysosomes. In this review, we discuss the current knowledge about the processes and molecular mechanisms involved in recognition, capturing, uptake and intracellular processing of Borrelia by human macrophages. Moreover, we highlight interactions between macrophages and other cells of the immune system during these processes and point out open questions in the intracellular processing of borreliae, which include potential escape strategies of Borrelia.
Collapse
Affiliation(s)
| | - Stefan Linder
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Eppendorf, 20246 Hamburg, Germany;
| |
Collapse
|